JPH01104706A - Smelting reduction method - Google Patents

Smelting reduction method

Info

Publication number
JPH01104706A
JPH01104706A JP62260603A JP26060387A JPH01104706A JP H01104706 A JPH01104706 A JP H01104706A JP 62260603 A JP62260603 A JP 62260603A JP 26060387 A JP26060387 A JP 26060387A JP H01104706 A JPH01104706 A JP H01104706A
Authority
JP
Japan
Prior art keywords
furnace
smelting furnace
secondary combustion
smelting
iron ore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62260603A
Other languages
Japanese (ja)
Other versions
JP2596000B2 (en
Inventor
Kenji Takahashi
謙治 高橋
Katsuhiro Iwasaki
克博 岩崎
Shigeru Inoue
茂 井上
Haruyoshi Tanabe
治良 田辺
Masahiro Kawakami
川上 正弘
Kenzo Yamada
健三 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62260603A priority Critical patent/JP2596000B2/en
Priority to US07/246,456 priority patent/US4936908A/en
Priority to AU22448/88A priority patent/AU607807C/en
Priority to AT88115580T priority patent/ATE88218T1/en
Priority to DE88115580T priority patent/DE3880245T2/en
Priority to EP88115580A priority patent/EP0308925B1/en
Priority to CA000578419A priority patent/CA1336542C/en
Priority to KR1019880012423A priority patent/KR910006005B1/en
Priority to CN88106882A priority patent/CN1014721B/en
Priority to BR888804958A priority patent/BR8804958A/en
Publication of JPH01104706A publication Critical patent/JPH01104706A/en
Priority to US07/503,805 priority patent/US4988079A/en
Application granted granted Critical
Publication of JP2596000B2 publication Critical patent/JP2596000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/029Introducing coolant gas in the shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Abstract

PURPOSE:To execute smelting reduction of iron ore with good thermal efficiency within a smelting furnace by charging preheated and prereduced iron ore together with a carbonaceous material and slag making agent into the smelting furnace and blowing oxygen for decarburization and secondary combustion from a top blowing oxygen lance at a specific discharge angle into the furnace. CONSTITUTION:The iron ore charged from a 2nd chute 31 into a preheating and prereducing furnace 30 is preheated and prereduced by the high-temp. reducing gas from the smelting furnace 10 and is charged from the 3rd chute 32 into the smelting furnace 10. The carbonaceous material and slag making agent are charged from a 1st chute 13 into the smelting furnace simultaneously therewith. The oxygen for decarburization and secondary combustion is blown from the top blowing oxygen lance 21 into the furnace and a gas for stirring is blown from tuyeres 25, 26 of the side wall and furnace bottom into the furnace. The discharge direction 28 of the nozzle 24 for decarburization is set at <=15 deg.C and the discharge direction 29 of the nozzle 23 for secondary combustion is set at 30-45 deg. in the above-mentioned method for smelting reduction of the iron ore. The decarburization is thereby efficiently executed and the secondary combustion is accelerated, by which the thermal efficiency is improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、転炉型の溶融還元法における製鉄において、
溶湯への熱附加を効率よく行うための溶融還元法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to steel manufacturing using a converter type smelting reduction method.
This invention relates to a melt reduction method for efficiently adding heat to molten metal.

[従来の技術] 溶融還元法は、高炉製銑法に変わるものであり、高炉製
銑法においては高炉の建設費が高く、広大な敷地が必要
であるという高炉製銑法の欠点を解消すべく、近年に至
り開発されたものである。
[Conventional technology] The smelting reduction method is an alternative to the blast furnace iron making method, and it eliminates the drawbacks of the blast furnace iron making method, such as the high construction cost and the need for a large site. It has been developed in recent years.

この還元法においては、製錬炉内の溶銑中に原料となる
予備還−元鉱石又は生鉱石が装入され、また還元材また
は燃料となる炭材及び石灰その他の造滓剤が装入された
製錬炉内に酸素が吹き込まれる。そうすると炭材が溶銑
中に溶解するとともに、炭材の炭素が酸素ガスによって
酸化される。このときの酸化熱によって鉱石が溶融され
るとともに、鉱石が炭材中の炭素によって還元される。
In this reduction method, pre-reduced ore or raw ore is charged into hot metal in a smelting furnace, and carbonaceous materials, lime, and other slag-forming agents are charged as reducing agents or fuel. Oxygen is blown into the smelting furnace. Then, the carbonaceous material is dissolved in the hot metal, and the carbon of the carbonaceous material is oxidized by the oxygen gas. The ore is melted by the heat of oxidation at this time, and the ore is reduced by the carbon in the carbonaceous material.

溶銑から発生するCOガスは過剰に吹き込まれる酸素ガ
スにより2次燃焼されてCO2ガスになる。このCO2
ガスの顕熱は、溶銑上を覆っているスラグに伝達され、
次いで溶銑に伝達される。
The CO gas generated from the hot metal is subjected to secondary combustion by the excessively blown oxygen gas and becomes CO2 gas. This CO2
The sensible heat of the gas is transferred to the slag covering the hot metal,
It is then transferred to the hot metal.

こうして鉄鉱石が還元されて溶銑が製造されるが、製錬
炉における鉄鉱石の還元工程を軽減するため、前記製錬
炉に装入される前の鉄鉱石の予備還元率を60乃至75
%とし、従って、製錬炉の排ガスは還元性の高い低酸化
度のガスを多量に使用している。
In this way, iron ore is reduced to produce hot metal, but in order to reduce the iron ore reduction process in the smelting furnace, the preliminary reduction rate of the iron ore before being charged into the smelting furnace is set to 60 to 75.
%, therefore, the exhaust gas from the smelting furnace uses a large amount of highly reducing gas with a low oxidation degree.

[発明が解決しようとする問題点] しかしながら、前記製錬炉から排出されるガスを利用し
て、予備還元率を30%以上にする場合には、製錬炉の
排出ガスの酸化度を下げ、また前記ガス量を多量に必要
とするので、CO2ガスの燃焼度つまり2次燃焼効率が
下がって溶融還元の熱効率が低下する虞がある。
[Problems to be Solved by the Invention] However, when using the gas discharged from the smelting furnace to increase the preliminary reduction rate to 30% or more, it is necessary to reduce the degree of oxidation of the exhaust gas from the smelting furnace. Furthermore, since a large amount of the gas is required, there is a risk that the burnup of CO2 gas, that is, the secondary combustion efficiency will decrease, and the thermal efficiency of smelting reduction will decrease.

この発明は、かかる問題点を解決するためになされたも
のであって、前記製錬炉からの排出エネルギ7を抑え、
溶融還元の熱効率を向上させる溶融還元法を提供しよう
とするものである。
This invention was made in order to solve such problems, and it suppresses the exhaust energy 7 from the smelting furnace,
The present invention aims to provide a smelting reduction method that improves the thermal efficiency of smelting reduction.

[問題点を解決するための手段] この発明による溶融還元法は鉄鉱石を予熱予備還元炉で
予熱、予備還元して炭材、造滓剤ともに製錬炉に装入し
、脱炭用及び2次燃焼用ノズルを有する上吹き酸素ラン
スから酸素を吹き込むとともに、製錬炉の側壁または炉
底に設けられた羽口から攪拌用ガスを吹き込んで鉄鉱石
を溶融還元する方法であって、前記脱炭用ノズルの吐出
角度が15度以下で、かつ前記2次燃焼用ノズルの吐出
角度が30度以上45度以下であることを特徴とする。
[Means for Solving the Problems] In the smelting reduction method according to the present invention, iron ore is preheated and pre-reduced in a preheating pre-reduction furnace, and both carbon material and slag-forming agent are charged into a smelting furnace. A method for melting and reducing iron ore by blowing oxygen from a top-blown oxygen lance having a secondary combustion nozzle and blowing stirring gas from a tuyere provided on the side wall or bottom of a smelting furnace, the method comprising: The discharge angle of the decarburization nozzle is 15 degrees or less, and the discharge angle of the secondary combustion nozzle is 30 degrees or more and 45 degrees or less.

[作用] 製錬炉に種湯となる溶銑な予め装入し、ざらに造滓剤及
び炭材を装入して酸素吹錬を行いスラグが形成された後
鉄鉱石が装入され、炭材またはCOガスの燃焼により反
応熱または溶解熱が供給され、また前記炭材及び鉄浴中
の[C]による鉄鉱石の溶融還元が進行する。このとき
酸素ランスは脱炭用及び2次燃焼用の酸素ノズルを有し
、脱炭用ノズルからの酸素ジェットの吐出角は15度以
内とされであるので、前記酸素ジェットは銅浴面に垂直
に近い角度で衝突して脱炭が効率良く行われる。また2
次燃焼用ノズルからの酸素シェドの吐出角度は垂直に近
い場合は2次燃焼により生成したCO2ガスが前鉄浴か
ら飛散する粒鉄に含まれる[C]により還元されてCO
ガスとなって排出されるので熱効率を低下させる。虞が
ある。反対に前記吐出角度が水平に近い場合は製錬炉の
内壁耐火物の損耗が激しく製造コストの増大につながる
虞がある。以上の問題から2次燃焼用ノズルの吐出角度
の範囲を検討した結果これを80度以上45度以下とす
ることが合理的であることを知見した。こうして前記製
錬炉内で効率の良い鉄鉱石の溶融還元が行われる。
[Function] Molten pig iron is charged in advance into a smelting furnace as a seed metal, slag-forming agent and carbonaceous material are charged into a slag, oxygen blowing is performed to form slag, iron ore is charged, and charcoal is formed. Reaction heat or heat of dissolution is supplied by the combustion of the carbonaceous material or CO gas, and melting and reduction of the iron ore by the carbonaceous material and [C] in the iron bath proceeds. At this time, the oxygen lance has an oxygen nozzle for decarburization and secondary combustion, and since the discharge angle of the oxygen jet from the decarburization nozzle is within 15 degrees, the oxygen jet is perpendicular to the copper bath surface. Colliding at an angle close to , decarburization is carried out efficiently. Also 2
If the discharge angle of the oxygen shed from the secondary combustion nozzle is close to vertical, the CO2 gas generated by the secondary combustion is reduced by [C] contained in the granulated iron scattered from the front iron bath, and the CO2 gas is reduced to CO2.
Since it is emitted as a gas, it reduces thermal efficiency. There is a possibility. On the other hand, if the discharge angle is close to horizontal, there is a risk that the inner wall refractories of the smelting furnace will be severely worn out, leading to an increase in manufacturing costs. As a result of examining the range of the discharge angle of the secondary combustion nozzle in view of the above problems, it was found that it is reasonable to set this range to 80 degrees or more and 45 degrees or less. In this way, the iron ore is efficiently smelted and reduced in the smelting furnace.

[実施例] 本発明の実施例を添付の第1図及び第2図を参照しなが
ら説明する。第1図は本発明の溶融還元法に用いられる
プロセスの説明図で、第2図は酸素ランス先端部を拡大
して示したもので酸素ジェットの吐出方向と吐出角度に
関する説明図である。
[Example] An example of the present invention will be described with reference to the attached FIGS. 1 and 2. FIG. 1 is an explanatory diagram of the process used in the melt reduction method of the present invention, and FIG. 2 is an enlarged view of the tip of the oxygen lance, and is an explanatory diagram regarding the discharge direction and discharge angle of the oxygen jet.

製錬炉10内には鉄浴11及びスラグ層12が形成され
、−副原料である石炭及び造滓剤が装入される第1のシ
ュート18が前記製錬炉の上部゛に設けられており、ま
た酸素を吹き込む酸素ランス21が炉内に鉛直に挿入さ
れる。第2図に示す通り前記ランスには脱炭用酸素及び
2次燃焼用酸素を噴出するノズル22.23が夫々別の
酸素供給系統に接続されて圧力、流量が個別に制御出来
るように設けられ、更にランス先端の中心には主に炭材
または石灰等の副原料を吹き込むノズル24が設けられ
ている。第2図で酸素ランス21の先端に示した矢印は
28.29は夫々脱炭用、2次燃焼用の酸素の吹きだし
方向を示す。前記炉の上方には流動層型の反応装置であ
る予熱予備還元炉30が設けられ、これに鉄鉱石が供給
される第2 のシュー ト31と、ここで予熱、予備還
元された鉄鉱石が前記製錬炉10に挿入される第3のシ
ュート32が設けられ、また予熱予備還元炉30に製錬
炉10の発生ガスを供給する導管33が設けられている
An iron bath 11 and a slag layer 12 are formed in the smelting furnace 10, and a first chute 18 into which coal as an auxiliary raw material and a slag-forming agent are charged is provided at the upper part of the smelting furnace. Additionally, an oxygen lance 21 for blowing oxygen is vertically inserted into the furnace. As shown in Figure 2, the lance is provided with nozzles 22 and 23 for spouting oxygen for decarburization and oxygen for secondary combustion, each connected to a separate oxygen supply system so that the pressure and flow rate can be controlled individually. Furthermore, a nozzle 24 is provided at the center of the tip of the lance, which mainly blows auxiliary raw materials such as carbonaceous material or lime. The arrows 28 and 29 shown at the tip of the oxygen lance 21 in FIG. 2 indicate the direction in which oxygen is blown out for decarburization and for secondary combustion, respectively. A preheating and pre-reducing furnace 30, which is a fluidized bed type reactor, is provided above the furnace, and a second chute 31 to which iron ore is supplied, and a second chute 31 through which the preheated and pre-reduced iron ore is fed. A third chute 32 inserted into the smelting furnace 10 is provided, and a conduit 33 for supplying gas generated from the smelting furnace 10 to the preheating pre-reduction furnace 30 is provided.

また、予熱予備還元炉80の排ガスからダストを除去す
るホットサイクロン34、予熱予備還元炉30の排出ガ
スの顕熱を利用して蒸気を得る熱交換器35が設けられ
ている。さらに、前記製錬炉10の側壁及び炉底には攪
拌用のガスを吹き込む羽口25.26が夫々設けられて
いる。以上のように構成された本発明の方法に用いる溶
融還元装置の作用について説明する。原料である鉄鉱石
は第2のシュート31から予熱予備還元炉80に挿入さ
れここで製錬炉10から導管33を通して発生ガスの供
給を受けて予熱および還元された後、製錬炉10に第3
のシュート82を通して装入される。副原料である石炭
、造滓剤は装入装置が簡便である通常のホッパー(図示
せず)から第1のシュートを通して製錬炉10内に装入
される外、必要に応じて上記酸素ランスに設けたノズル
24から粉状として装入することも可能である。
Further, a hot cyclone 34 that removes dust from the exhaust gas of the preheating preliminary reduction furnace 80 and a heat exchanger 35 that obtains steam by using the sensible heat of the exhaust gas of the preheating preliminary reduction furnace 30 are provided. Furthermore, tuyeres 25 and 26 are provided on the side wall and the bottom of the smelting furnace 10, respectively, for blowing gas for stirring. The operation of the melting and reducing apparatus used in the method of the present invention configured as described above will be explained. Iron ore, which is a raw material, is inserted into a preheating pre-reduction furnace 80 from the second chute 31, where it is preheated and reduced by being supplied with generated gas from the smelting furnace 10 through the conduit 33, and then transferred to the smelting furnace 10. 3
It is charged through the chute 82 of. Coal and slag-forming agent, which are auxiliary raw materials, are charged into the smelting furnace 10 through a first chute from an ordinary hopper (not shown) with a simple charging device. It is also possible to charge it in powder form through a nozzle 24 provided in the.

上記のように製錬炉に装入された主原料及び副原料は製
錬炉の側壁及び炉底に設けられた羽口25.26から吹
き込まれる撹拌用ガースによって、既に炉内に形成され
ている鉄浴およびスラグ層とともに十分攪拌される。こ
の撹拌用ガスはAr。
As mentioned above, the main raw materials and auxiliary raw materials charged into the smelting furnace are already formed in the furnace by the stirring girth blown through the tuyeres 25 and 26 provided on the side wall and bottom of the smelting furnace. The iron bath and slag layer are thoroughly stirred. This stirring gas is Ar.

N2等の不活性ガス及びプロセスガスである前記予熱予
備還元炉からの排ガスが用いられる。
An inert gas such as N2 and a process gas exhaust gas from the preheating pre-reduction furnace are used.

一方前記酸素ランス21の脱炭用ノズル22から供給さ
れる酸素は前記炭材を酸化させて原料である鉄鉱石を還
元するのに十分な熱を供給する。
On the other hand, oxygen supplied from the decarburization nozzle 22 of the oxygen lance 21 supplies sufficient heat to oxidize the carbonaceous material and reduce the iron ore that is the raw material.

第2図において前記ノズルからの吹きだし方向28と酸
素ランスの中、6軸40の間の角即ち吐出角は15度以
下にされているので鋼浴に酸素ジェットが十分な速度で
衝突し、脱炭効率が確保される。
In FIG. 2, the angle between the blowing direction 28 from the nozzle and the six axes 40 in the oxygen lance, that is, the discharge angle, is set to 15 degrees or less, so that the oxygen jet collides with the steel bath at a sufficient speed and is released. Charcoal efficiency is ensured.

また2次燃焼用ノズル23からの酸素ジェットの吹きだ
し方向29の吐出角θは30度以上45度以下にされて
いる。此等の角度は第3図に示す検討結果及び製錬炉内
壁の溶損状況から得られたものである。第3図は前記吐
出角θと製錬炉の排出ガスの酸化度 [0D=(C02
+H20)/(CO+CO□+H2”N20) ]との
関係を示すグラフ図で、前記吐出角θが80度未満であ
ると2次燃焼されたC02が鉄浴から飛散された粒鉄中
の炭素によって還元される割合が多くなり、前記酸化度
(OD)の低下が著しくなって2次燃焼効率を下げるこ
とになる。また前記吐出角θが45度を超えると2次燃
焼用の酸素ジェットによる製錬炉内壁の溶損が黴しくな
る。
Further, the discharge angle θ in the direction 29 of the oxygen jet from the secondary combustion nozzle 23 is set to be greater than or equal to 30 degrees and less than or equal to 45 degrees. These angles were obtained from the study results shown in Figure 3 and the state of melting damage on the inner wall of the smelting furnace. Figure 3 shows the discharge angle θ and the oxidation degree of the exhaust gas from the smelting furnace [0D=(C02
+ H20)/(CO+CO The reduced ratio increases, and the oxidation degree (OD) decreases significantly, resulting in a decrease in secondary combustion efficiency.Furthermore, if the discharge angle θ exceeds 45 degrees, the production by the oxygen jet for secondary combustion is The melting damage on the inner wall of the furnace becomes moldy.

以上のように酸素ジェットの吐出角度を設定することに
より排出ガスの酸化度が上げられて2次燃焼効率が向上
される。
By setting the discharge angle of the oxygen jet as described above, the degree of oxidation of the exhaust gas is increased and the secondary combustion efficiency is improved.

なお、予熱予備還元炉30からの排ガスはホットサイク
ロン34でダストが除去された後、蒸気発生器35で熱
交換されて系外に排出されるが、必要に応じて切り換え
弁36により製錬炉10の攪拌用ガスとして利用される
。前記蒸気発生器35に代えて鉄鉱石予熱装置を設け、
予熱予備還元炉30の排ガスの顕熱を利用することも可
能である。
Incidentally, the exhaust gas from the preheating pre-reduction furnace 30 has dust removed by the hot cyclone 34, and then heat exchanged by the steam generator 35 and discharged outside the system. It is used as a stirring gas. An iron ore preheating device is provided in place of the steam generator 35,
It is also possible to utilize the sensible heat of the exhaust gas from the preheating preliminary reduction furnace 30.

[発明の効果] 本発明め溶融還元法によれば、撹拌用ガスによる鉄浴ま
たはスラグ層の撹拌、2次燃焼用酸素による製錬炉内ガ
スの酸化および脱炭用酸素による鉄浴からのCの脱炭が
効率良く行われるので、溶融還元の熱効率が向上する。
[Effects of the Invention] According to the smelting reduction method of the present invention, stirring of the iron bath or slag layer with the stirring gas, oxidation of the gas in the smelting furnace with the secondary combustion oxygen, and oxidation of the iron bath with the decarburization oxygen are possible. Since C is efficiently decarburized, the thermal efficiency of melting and reduction is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の溶融還元法に用いられるプロセスの
説明図、第2図は本発明による酸素ランス先端部の吐出
方向と吐出角度に関する説明図、第3図は2次燃焼用酸
素ジェットの吐出角θとODとの関係を示すグラフ図で
ある。 10・・・製錬炉、11・・・鉄浴、12・・ニスラグ
層、13・・・第1のシュート、21・・・酸素ランス
、22.23.24・・・ノズル、25.26・・・羽
口、28.29・・・酸素ジェットの吹きだし方向、3
0・・・予熱予備還元炉、31・・・第2のシュート、
32・・・第3のシュート。
Fig. 1 is an explanatory diagram of the process used in the melt reduction method of the present invention, Fig. 2 is an explanatory diagram of the discharge direction and discharge angle of the oxygen lance tip according to the present invention, and Fig. 3 is an explanatory diagram of the oxygen jet for secondary combustion. It is a graph figure showing the relationship between discharge angle theta and OD. DESCRIPTION OF SYMBOLS 10... Smelting furnace, 11... Iron bath, 12... Nisslag layer, 13... First chute, 21... Oxygen lance, 22.23.24... Nozzle, 25.26 ...tuyere, 28.29...oxygen jet blowing direction, 3
0... Preheating preliminary reduction furnace, 31... Second chute,
32...Third shoot.

Claims (1)

【特許請求の範囲】[Claims]  鉄鉱石を予熱予備還元炉で予熱、予備還元して炭材、
造滓剤とともに製錬炉に装入し、脱炭用ノズル及び2次
燃焼用ノズルを有する上吹き酸素ランスから酸素を吹き
込むとともに、製錬炉の側壁または炉底に設けられた羽
口から攪拌用ガスを吹き込んで鉄鉱石を溶融還元する方
法であって、前記脱炭用ノズルの吐出角度が15度以下
で、かつ前記2次燃焼用ノズルの吐出角度が30度以上
45度以下であることを特徴とする溶融還元法。
Iron ore is preheated and pre-reduced in a preheating pre-reduction furnace to produce carbonaceous material,
The slag-forming agent is charged into the smelting furnace, and oxygen is blown into it from a top-blowing oxygen lance that has a decarburization nozzle and a secondary combustion nozzle, and stirring is performed through tuyeres installed on the side wall or bottom of the smelting furnace. A method of melting and reducing iron ore by blowing a commercial gas, wherein the discharge angle of the decarburization nozzle is 15 degrees or less, and the discharge angle of the secondary combustion nozzle is 30 degrees or more and 45 degrees or less. A melt reduction method characterized by:
JP62260603A 1987-09-25 1987-10-15 Smelting reduction method Expired - Fee Related JP2596000B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP62260603A JP2596000B2 (en) 1987-10-15 1987-10-15 Smelting reduction method
US07/246,456 US4936908A (en) 1987-09-25 1988-09-19 Method for smelting and reducing iron ores
AU22448/88A AU607807C (en) 1987-09-25 1988-09-20 Method for smelting and reducing iron ores and apparatus therefor
DE88115580T DE3880245T2 (en) 1987-09-25 1988-09-22 Method and device for melting and reducing iron ores.
EP88115580A EP0308925B1 (en) 1987-09-25 1988-09-22 Method and apparatus for smelting and reducing iron ores
AT88115580T ATE88218T1 (en) 1987-09-25 1988-09-22 METHOD AND APPARATUS FOR MELTING AND REDUCING IRON ORE.
CA000578419A CA1336542C (en) 1987-09-25 1988-09-23 Method for smelting and reducing iron ores and apparatus therefor
KR1019880012423A KR910006005B1 (en) 1987-09-25 1988-09-24 Method for smelting and reducing iron ores
CN88106882A CN1014721B (en) 1987-09-25 1988-09-24 Process and apparatus for melting and reducing iron ore
BR888804958A BR8804958A (en) 1987-09-25 1988-09-26 PROCESS AND APPLIANCE FOR IRON ORE FOUNDATION AND REDUCTION
US07/503,805 US4988079A (en) 1987-09-25 1990-04-03 Apparatus for smelting and reducing iron ores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260603A JP2596000B2 (en) 1987-10-15 1987-10-15 Smelting reduction method

Publications (2)

Publication Number Publication Date
JPH01104706A true JPH01104706A (en) 1989-04-21
JP2596000B2 JP2596000B2 (en) 1997-04-02

Family

ID=17350231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260603A Expired - Fee Related JP2596000B2 (en) 1987-09-25 1987-10-15 Smelting reduction method

Country Status (1)

Country Link
JP (1) JP2596000B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192513A (en) * 1986-02-17 1987-08-24 Nippon Kokan Kk <Nkk> Method and apparatus for melt reduction

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192513A (en) * 1986-02-17 1987-08-24 Nippon Kokan Kk <Nkk> Method and apparatus for melt reduction

Also Published As

Publication number Publication date
JP2596000B2 (en) 1997-04-02

Similar Documents

Publication Publication Date Title
EP2380995B1 (en) Smelting vessel, steel making plant and steel production method
JP4837856B2 (en) Direct smelting method
JP2735774B2 (en) How to enhance reactions in metallurgical reactors
CA1336542C (en) Method for smelting and reducing iron ores and apparatus therefor
US6602321B2 (en) Direct smelting process
CA1336744C (en) Method for smelting reduction of iron ore and apparatus therefor
JP6729073B2 (en) Reduction/dissolution method of iron raw material containing iron oxide
JP2600733B2 (en) Smelting reduction method
JP2638861B2 (en) Melt reduction method
JPH01104706A (en) Smelting reduction method
JP2600732B2 (en) Smelting reduction method and equipment
JP2596003B2 (en) Smelting reduction method
JP2668913B2 (en) Smelting reduction method
JP2638840B2 (en) Smelting reduction method
JPH07216430A (en) Molten steel production method and top blowing lance for molten metal refining
JP2596001B2 (en) Smelting reduction method
JP2668912B2 (en) Smelting reduction method
JP2596002B2 (en) Continuous production of molten steel in the same smelting furnace
JPH01191719A (en) Method for operating smelting reduction furnace
JPH01205015A (en) Smelting reduction method and apparatus thereof
JP2595991B2 (en) Smelting reduction method
JPH06102806B2 (en) Smelting reduction furnace
JPH01205014A (en) Smelting reduction method and apparatus thereof
JPH01195213A (en) Method for supplying raw powdery material into iron bath type melting and reducing furnace
JPS6338506A (en) Adding method for powdery carbon material into smelting reduction furnace

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees