JP2596000B2 - Smelting reduction method - Google Patents

Smelting reduction method

Info

Publication number
JP2596000B2
JP2596000B2 JP62260603A JP26060387A JP2596000B2 JP 2596000 B2 JP2596000 B2 JP 2596000B2 JP 62260603 A JP62260603 A JP 62260603A JP 26060387 A JP26060387 A JP 26060387A JP 2596000 B2 JP2596000 B2 JP 2596000B2
Authority
JP
Japan
Prior art keywords
nozzle
oxygen
smelting furnace
furnace
secondary combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62260603A
Other languages
Japanese (ja)
Other versions
JPH01104706A (en
Inventor
謙治 高橋
克博 岩崎
茂 井上
治良 田辺
正弘 川上
健三 山田
Original Assignee
日本鋼管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本鋼管株式会社 filed Critical 日本鋼管株式会社
Priority to JP62260603A priority Critical patent/JP2596000B2/en
Priority to US07/246,456 priority patent/US4936908A/en
Priority to AU22448/88A priority patent/AU607807C/en
Priority to DE88115580T priority patent/DE3880245T2/en
Priority to EP88115580A priority patent/EP0308925B1/en
Priority to AT88115580T priority patent/ATE88218T1/en
Priority to CA000578419A priority patent/CA1336542C/en
Priority to KR1019880012423A priority patent/KR910006005B1/en
Priority to CN88106882A priority patent/CN1014721B/en
Priority to BR888804958A priority patent/BR8804958A/en
Publication of JPH01104706A publication Critical patent/JPH01104706A/en
Priority to US07/503,805 priority patent/US4988079A/en
Application granted granted Critical
Publication of JP2596000B2 publication Critical patent/JP2596000B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/0006Making spongy iron or liquid steel, by direct processes obtaining iron or steel in a molten state
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/02Making spongy iron or liquid steel, by direct processes in shaft furnaces
    • C21B13/029Introducing coolant gas in the shaft furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/20Increasing the gas reduction potential of recycled exhaust gases
    • C21B2100/26Increasing the gas reduction potential of recycled exhaust gases by adding additional fuel in recirculation pipes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/40Gas purification of exhaust gases to be recirculated or used in other metallurgical processes
    • C21B2100/44Removing particles, e.g. by scrubbing, dedusting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、転炉型の溶融還元法における製鉄におい
て、溶湯への熱附加を効率よく行うための溶融還元法に
関するものである。
Description: TECHNICAL FIELD The present invention relates to a smelting reduction method for efficiently adding heat to molten metal in iron making in a converter type smelting reduction method.

[従来の技術] 溶融還元法は、高炉製銑法に変わるものであり、高炉
製銑法においては高炉の建設費が高く、広大な敷地が必
要であるという高炉製銑法の欠点を解消すべく、近年に
至り開発されたものである。
[Prior art] The smelting reduction method is an alternative to the blast furnace iron making method, and eliminates the disadvantages of the blast furnace iron making method, which requires a large blast furnace construction cost and a vast site. Therefore, it has been developed in recent years.

この還元法においては、製錬炉内の溶銑中に原料とな
る予備還元鉱石又は生鉱石が装入され、また還元材また
は燃料となる炭材及び石炭その他の造滓剤が装入された
製錬炉内に酸素が吹き込まれる。そうすると炭材が溶銑
中に溶解するとともに、炭材の炭素が酸素ガスによって
酸化される。このときの酸化熱によって鉱石が溶融され
るとともに、鉱石が炭材中の炭素によって還元される。
溶銑から発生するCOガスは過剰に吹き込まれる酸素ガス
により2次燃焼されてCO2ガスになる。このCO2ガスの顕
熱は、溶銑上を覆っているスラグに伝達され、次いで溶
銑に伝達される。
In this reduction method, a pre-reduced ore or raw ore as a raw material is charged into hot metal in a smelting furnace, and a carbon material and coal or other slag-making agent as a reducing material or fuel are charged. Oxygen is blown into the smelting furnace. Then, the carbon material is dissolved in the hot metal, and the carbon of the carbon material is oxidized by the oxygen gas. The ore is melted by the heat of oxidation at this time, and the ore is reduced by the carbon in the carbonaceous material.
The CO gas generated from the hot metal is secondarily combusted by the oxygen gas blown excessively to become CO 2 gas. The sensible heat of the CO 2 gas is transferred to the slag covering the hot metal and then to the hot metal.

こうして鉄鉱石が還元されて溶銑が製造されるが、製
錬炉における鉄鉱石の還元工程を軽減するため、前記製
錬炉に装入される前の鉄鉱石の予備還元率を60乃至75%
とし、従って、製錬炉の排ガスは還元性の高い低酸化度
のガスを多量に使用している。
In this way, the iron ore is reduced to produce hot metal. In order to reduce the iron ore reduction step in the smelting furnace, the preliminary reduction rate of the iron ore before being charged into the smelting furnace is 60 to 75%.
Therefore, the exhaust gas of the smelting furnace uses a large amount of a low-oxidation gas having high reducibility.

[発明が解決しようとする問題点] しかしながら、前記製錬炉から排出されるガスを利用
して、予備還元率を30%以上にする場合には、製錬炉の
排出ガスの酸化度を下げ、また前記ガス量を多量に必要
とするので、CO2ガスの燃焼度つまり2次燃焼効率が下
がって溶融還元の熱効率が低下する虞がある。
[Problems to be Solved by the Invention] However, when the pre-reduction rate is set to 30% or more using the gas discharged from the smelting furnace, the oxidation degree of the exhaust gas from the smelting furnace is reduced. In addition, since a large amount of the gas is required, the burnup of the CO 2 gas, that is, the secondary combustion efficiency may decrease, and the thermal efficiency of the smelting reduction may decrease.

この発明は、かかる問題点を解決するためになされた
ものであって、前記製錬炉からの排出エネルギーを抑
え、溶融還元の熱効率を向上させる溶融還元法を提供し
ようとするものである。
The present invention has been made to solve such a problem, and it is an object of the present invention to provide a smelting reduction method that suppresses energy discharged from the smelting furnace and improves the thermal efficiency of smelting reduction.

[問題点を解決するための手段] この発明による溶融還元法は、鉄鉱石を予熱予備還元
炉で予熱、予備還元して炭材、造滓材とともに製錬炉に
装入し、脱炭用ノズル及び2次燃焼用ノズルを有する上
吹き酸素ランスから酸素を吹き込むとともに、製錬炉の
側壁または炉底に設けられた羽口から撹拌用ガスを吹き
込んで鉄鉱石を溶融還元する方法であって、前記脱炭用
ノズル及び前記2次燃焼用ノズルは夫々別の酸素供給系
統に接続され、2次燃焼用ノズルは脱炭用ノズルの外周
に配置されており、且つ、前記脱炭用ノズルの吐出角度
が15度以下で、前記2次燃焼用ノズルの吐出角度が30度
以上45度以下であることを特徴とする。
[Means for Solving the Problems] In the smelting reduction method according to the present invention, the iron ore is preheated and pre-reduced in a preheating pre-reduction furnace, and is charged into a smelting furnace together with carbonaceous material and slag-making material, for decarburization. A method of blowing and blowing oxygen from a top blowing oxygen lance having a nozzle and a secondary combustion nozzle, and blowing a stirring gas from a tuyere provided on a side wall or a bottom of a smelting furnace to melt-reduce iron ore, The decarburizing nozzle and the secondary combustion nozzle are connected to different oxygen supply systems, respectively, and the secondary combustion nozzle is arranged on the outer periphery of the decarburizing nozzle, and the decarburizing nozzle is The discharge angle is 15 degrees or less, and the discharge angle of the secondary combustion nozzle is 30 degrees or more and 45 degrees or less.

[作用] 製錬炉に種湯となる溶銑を予め装入し、さらに造滓材
及び炭材を装入して酸素吹錬を行いスラグが形成された
後鉄鉱石が装入され、炭材またはCOガスの燃焼により反
応熱または溶融熱が供給され、また前記炭材及び鉄浴中
の[C]による鉄鉱石の溶融還元が進行する。このとき
酸化ランスは脱炭用及び2次燃焼用の酸素ノズルを有
し、脱炭用ノズルからの酸素ジェットの吐出角度は15度
以内とされてあるので、前記酸素ジェットは鋼浴面に垂
直に近い角度で衝突して脱炭が効率良く行われる。また
2次燃焼用ノズルからの酸素ジェトの吐出角度は垂直に
近い場合は2次燃焼により生成したCO2ガスが前鉄浴か
ら飛散する粒鉄に含まれる[C]により還元されてCOガ
スとなって排出されるので熱効率を低下させる虞があ
る。反対に前記吐出角度が水平に近い場合は製錬炉の内
壁耐火物の損耗が激しく製造コストの増大につながる虞
がある。以上の問題から2次燃焼用ノズルの吐出角度の
範囲を検討した結果これを30度以上45度以下とすること
が合理的であることを知見した。また脱炭用ノズルと2
次燃焼用ノズルとが、夫々別の酸素供給系統に接続され
ているので、脱炭用酸素と2次燃焼用酸素の圧力、流量
を個別に制御できる。こうして前記製錬炉内で効率の良
い鉄鉱石の溶融還元が行われる。
[Action] Hot metal as seed water is charged into a smelting furnace in advance, slag-making material and carbon material are charged, oxygen blasting is performed, slag is formed, and iron ore is charged. Alternatively, the heat of reaction or the heat of fusion is supplied by the combustion of the CO gas, and the smelting reduction of iron ore by the carbonaceous material and [C] in the iron bath proceeds. At this time, the oxidizing lance has oxygen nozzles for decarburization and secondary combustion, and the discharge angle of the oxygen jet from the decarburization nozzle is within 15 degrees, so that the oxygen jet is perpendicular to the steel bath surface. Decollision is performed efficiently by colliding at an angle close to. When the ejection angle of the oxygen jet from the nozzle for secondary combustion is nearly vertical, the CO 2 gas generated by the secondary combustion is reduced by [C] contained in the granular iron scattered from the iron bath and becomes CO gas As a result, the heat efficiency may be reduced. Conversely, if the discharge angle is nearly horizontal, the refractory on the inner wall of the smelting furnace will be severely worn, which may lead to an increase in manufacturing costs. From the above problem, the range of the discharge angle of the secondary combustion nozzle was examined. As a result, it was found that it is reasonable to set the discharge angle to 30 degrees or more and 45 degrees or less. Decarburization nozzle and 2
Since the secondary combustion nozzles are connected to different oxygen supply systems, the pressure and flow rate of the decarburizing oxygen and the secondary combustion oxygen can be individually controlled. Thus, the iron ore is efficiently melt-reduced in the smelting furnace.

[実施例] 本発明の実施例を添付の第1図及び第2図を参照しな
がら説明する。第1図は本発明の溶融還元法に用いられ
るプロセスの説明図で、第2図は酸素ランス先端部を拡
大して示したもので酸素ジェットの吐出方向と吐出角度
に関する説明図である。製錬炉10内には鉄浴11及びスラ
グ層12が形成され、副原料である石炭及び造滓剤が装入
される第1のシュート13が前記製錬炉の上部に設けられ
ており、また酸素を吹き込む酸素ランス21が炉内に鉛直
に挿入される。第2図に示す通り前記ランスには脱炭用
酸素及び2次燃焼用酸素を噴出するノズル22、23が夫々
別の酸素供給系統に接続されて圧力、流量が個別に制御
出来るように設けられ、更にランス先端の中心には主に
炭材または石灰等の副原料を吹き込むノズル24が設けら
れている。第2図で酸素ランス21の先端に示した矢印2
8、29は夫々脱炭用、2次燃焼用の酸素の吹きだし方向
を示す。前記炉の上方には流動層型の反応装置である予
熱予備還元炉30が設けられ、これに鉄鉱石が供給される
第2のシュート31と、ここで予熱、予備還元された鉄鉱
石が前記製錬炉10に挿入される第3のシュート32が設け
られ、また予熱予備還元炉30に製錬炉10の発生ガスを供
給する導管33が設けられている。
Embodiment An embodiment of the present invention will be described with reference to the attached FIGS. FIG. 1 is an explanatory view of a process used in a smelting reduction method of the present invention, and FIG. 2 is an enlarged view of a tip portion of an oxygen lance, and is an explanatory view relating to a discharge direction and a discharge angle of an oxygen jet. An iron bath 11 and a slag layer 12 are formed in the smelting furnace 10, and a first chute 13 into which coal and slag-making agent as auxiliary materials are charged is provided at an upper portion of the smelting furnace, An oxygen lance 21 for blowing oxygen is vertically inserted into the furnace. As shown in FIG. 2, the lance is provided with nozzles 22 and 23 for ejecting oxygen for decarburization and oxygen for secondary combustion, respectively, connected to separate oxygen supply systems so that the pressure and the flow rate can be individually controlled. In addition, a nozzle 24 is provided at the center of the lance tip for mainly injecting auxiliary materials such as carbonaceous material or lime. Arrow 2 shown at the tip of oxygen lance 21 in FIG.
Numerals 8 and 29 indicate the directions of oxygen blowing for decarburization and secondary combustion, respectively. Above the furnace, a preheating pre-reduction furnace 30, which is a fluidized bed type reactor, is provided. A second chute 31 to which iron ore is supplied, and a preheated and pre-reduced iron ore, A third chute 32 inserted into the smelting furnace 10 is provided, and a conduit 33 for supplying gas generated from the smelting furnace 10 to the preheating pre-reduction furnace 30 is provided.

また、予熱予備還元炉30の排ガスからダストを除去す
るホットサイクロン34、予熱予備還元炉30の排出ガスの
顕熱を利用して蒸気を得る熱交換器35が設けられてい
る。さらに、前記製錬炉10の側壁及び炉底には撹拌用の
ガスを吹き込む羽口25、26が夫々設けられている。以上
のように構成された本発明の方法に用いる溶融還元装置
の作用について説明する。原料である鉄鉱石は第2のシ
ュート31から予熱予備還元炉30に挿入されここで製錬炉
10から導管33を通して発生ガスの供給を受けて予熱およ
び還元された後、製錬炉10に第3のシュート32を通して
装入される。副原料である石炭、造滓剤は装入装置が簡
便である通常のホッパー(図示せず)から第1のシュー
トを通して製錬炉10内に装入される外、必要に応じて上
記酸素ランスに設けたノズル24から粉状として装入する
ことも可能である。
Further, a hot cyclone 34 for removing dust from exhaust gas of the preheating pre-reduction furnace 30 and a heat exchanger 35 for obtaining steam using sensible heat of exhaust gas of the pre-heating pre-reduction furnace 30 are provided. Further, tuyeres 25 and 26 for blowing gas for stirring are provided on the side wall and the bottom of the smelting furnace 10, respectively. The operation of the smelting reduction apparatus configured as described above and used in the method of the present invention will be described. Iron ore, which is a raw material, is inserted from a second chute 31 into a preheating pre-reduction furnace 30 where the smelting furnace
After being supplied with the generated gas from the pipe 10 through a conduit 33 and preheated and reduced, the smelting furnace 10 is charged through a third chute 32. Coal and slag-making agent as auxiliary raw materials are charged into the smelting furnace 10 through a first chute from a normal hopper (not shown) having a simple charging device. It is also possible to charge as powder from the nozzle 24 provided in the nozzle.

上記のように製錬炉に装入された主原料及び副原料は
製錬炉の側壁及び炉底に設けられた羽口25、26から吹き
込まれる攪拌用ガスによって、既に炉内に形成されてい
る鉄浴およびスラグ層とともに十分撹拌される。この攪
拌用ガスはAr、N2等の不活性ガス及びプロセスガスであ
る前記予熱予備還元炉からの排ガスが用いられる。
The main raw materials and auxiliary raw materials charged into the smelting furnace as described above are already formed in the furnace by the stirring gas blown from the tuyeres 25 and 26 provided on the side walls and the bottom of the smelting furnace. It is well stirred with the iron bath and slag layer. As the agitation gas, an inert gas such as Ar or N 2 and the exhaust gas from the preheating pre-reduction furnace, which is a process gas, are used.

一方前記酸素ランス21の脱炭用ノズル22から供給され
る酸素は前記炭材を酸化させて原料である鉄鉱石を還元
するのに十分な熱を供給する。第2図において前記ノズ
ルからの吹きだし方向28と酸素ランスの中心軸40との間
の角即ち吐出角度は15度以下にされているので鋼浴に酸
素ジェットが十分な速度で衝突し、脱炭効率が確保され
る。また2次燃焼用ノズル23からの酸素ジェットの吹き
だし方向29の吐出角度Θは30度以上45度以下にされてい
る。此等の角度は第3図に示す検討結果及び製錬炉内壁
の溶損状況から得られたものである。第3図は前記吐出
角度Θと製錬炉の排出ガスの酸化度[OD=(CO2+H2O)
/(CO+CO2+H2+H2O)]との関係を示すグラフ図で、
前記吐出角度Θが30度未満であると2次燃焼されたCO2
が鉄浴から飛散された粒鉄中の炭素によって還元される
割合が多くなり、前記酸化度(OD)の低下が著しくなっ
て2次燃焼効率を下げることになる。また前記吐出角度
Θが45度を超えると2次燃焼用の酸素ジェットによる製
錬炉内壁の溶損が激しくなる。以上のように酸素ジェッ
トの吐出角度を設定することにより排出ガスの酸化度が
上げられて2次燃焼効率が向上される。
On the other hand, oxygen supplied from the decarburizing nozzle 22 of the oxygen lance 21 supplies sufficient heat to oxidize the carbon material and reduce iron ore as a raw material. In FIG. 2, since the angle between the blowing direction 28 from the nozzle and the central axis 40 of the oxygen lance, that is, the discharge angle, is set to 15 degrees or less, the oxygen jet collides with the steel bath at a sufficient speed, and decarburization occurs. Efficiency is ensured. The discharge angle の of the oxygen jet from the secondary combustion nozzle 23 in the blowing direction 29 is set to 30 degrees or more and 45 degrees or less. These angles were obtained from the examination results shown in FIG. 3 and the state of erosion of the inner wall of the smelting furnace. Fig. 3 shows the discharge angle Θ and the degree of oxidation of exhaust gas from the smelting furnace [OD = (CO 2 + H 2 O)
/ (CO + CO 2 + H 2 + H 2 O)].
If the discharge angle Θ is less than 30 degrees, the secondary combusted CO 2
Is reduced by the carbon in the granular iron scattered from the iron bath, and the degree of oxidation (OD) is remarkably reduced to lower the secondary combustion efficiency. If the discharge angle を exceeds 45 degrees, the inner wall of the smelting furnace will be severely damaged by the oxygen jet for secondary combustion. By setting the discharge angle of the oxygen jet as described above, the degree of oxidation of the exhaust gas is increased, and the secondary combustion efficiency is improved.

なお、予熱予備還元炉30からの排ガスはホットサイク
ロン34でダストが除去された後、蒸気発生器35で熱交換
されて系外に排出されるが、必要に応じて切り換え弁36
により製錬炉10の撹拌用ガスとして利用される。前記蒸
気発生器35に代えて鉄鉱石予熱装置を設け、予熱予備還
元炉30の排ガスの顕熱を利用することも可能である。
The exhaust gas from the preheating pre-reduction furnace 30 is subjected to heat exchange in a steam generator 35 and then discharged outside the system after dust is removed in a hot cyclone 34.
Is used as a stirring gas for the smelting furnace 10. It is also possible to provide an iron ore preheating device instead of the steam generator 35, and use the sensible heat of the exhaust gas of the preheating pre-reduction furnace 30.

[発明の効果] 本発明の溶融還元法によれば、攪拌用ガスによる鉄浴
またはスラグ層の攪拌、2次燃焼用酸素による製錬炉内
ガスの酸化および脱炭用酸素による鉄浴からのCの脱炭
が効率良く行われるので、溶融還元の熱効率が向上す
る。
[Effects of the Invention] According to the smelting reduction method of the present invention, stirring of an iron bath or a slag layer with a stirring gas, oxidation of gas in a smelting furnace with oxygen for secondary combustion, and removal of oxygen from the iron bath with oxygen for decarburization. Since the decarburization of C is performed efficiently, the thermal efficiency of smelting reduction is improved.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の溶融還元法に用いられるプロセスの
説明図、第2図は本発明による酸素ランス先端部の吐出
方向と吐出角度に関する説明図、第3図は2次燃焼用酸
素ジェットの吐出角度ΘとODとの関係を示すグラフ図で
ある。 10……製錬炉、11……鉄浴、12……スラグ層、13……第
1のシュート、21……酸素ランス、22、23、24……ノズ
ル、25、26……羽口、28、29……酸素ジェットの吹きだ
し方向、30……予熱予備還元炉、31……第2のシュー
ト、32……第3のシュート。
FIG. 1 is an explanatory view of a process used in the smelting reduction method of the present invention, FIG. 2 is an explanatory view of a discharge direction and a discharge angle of an oxygen lance tip portion according to the present invention, and FIG. FIG. 4 is a graph showing a relationship between a discharge angle Θ and OD. 10 ... smelting furnace, 11 ... iron bath, 12 ... slag layer, 13 ... first chute, 21 ... oxygen lance, 22, 23, 24 ... nozzle, 25, 26 ... tuyere, 28, 29 ... oxygen jet blowing direction, 30 ... preheating pre-reduction furnace, 31 ... second chute, 32 ... third chute.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川上 正弘 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 (72)発明者 山田 健三 東京都千代田区丸の内1丁目1番2号 日本鋼管株式会社内 審査官 津野 孝 (56)参考文献 特開 昭62−192513(JP,A) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Masahiro Kawakami 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Kenzo Yamada 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Examiner Takashi Tsuno (56) Reference: JP-A-62-192513 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】鉄鉱石を予熱予備還元炉で予熱、予備還元
して炭材、造滓材とともに製錬炉に装入し、脱炭用ノズ
ル及び2次燃焼用ノズルを有する上吹き酸素ランスから
酸素を吹き込むとともに、製錬炉の側壁または炉底に設
けられた羽口から撹拌用ガスを吹き込んで鉄鉱石を溶融
還元する方法であって、前記脱炭用ノズル及び前記2次
燃焼用ノズルは夫々別の酸素供給系統に接続され、2次
燃焼用ノズルは脱炭用ノズルの外周に配置されており、
且つ、前記脱炭用ノズルの吐出角度が15度以下で、前記
2次燃焼用ノズルの吐出角度が30度以上45度以下である
ことを特徴とする溶融還元法。
An iron ore is preheated and pre-reduced in a preheating pre-reduction furnace and charged into a smelting furnace together with a carbon material and a slag-making material. A method for melting and reducing iron ore by blowing a gas for stirring from a tuyere provided at a side wall or a bottom of a smelting furnace while blowing oxygen from the smelting furnace, wherein the decarburizing nozzle and the secondary combustion nozzle Are connected to different oxygen supply systems, respectively, and the secondary combustion nozzle is arranged on the outer periphery of the decarburization nozzle,
And a discharge angle of the decarburization nozzle is 15 degrees or less, and a discharge angle of the secondary combustion nozzle is 30 degrees or more and 45 degrees or less.
JP62260603A 1987-09-25 1987-10-15 Smelting reduction method Expired - Fee Related JP2596000B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP62260603A JP2596000B2 (en) 1987-10-15 1987-10-15 Smelting reduction method
US07/246,456 US4936908A (en) 1987-09-25 1988-09-19 Method for smelting and reducing iron ores
AU22448/88A AU607807C (en) 1987-09-25 1988-09-20 Method for smelting and reducing iron ores and apparatus therefor
EP88115580A EP0308925B1 (en) 1987-09-25 1988-09-22 Method and apparatus for smelting and reducing iron ores
AT88115580T ATE88218T1 (en) 1987-09-25 1988-09-22 METHOD AND APPARATUS FOR MELTING AND REDUCING IRON ORE.
DE88115580T DE3880245T2 (en) 1987-09-25 1988-09-22 Method and device for melting and reducing iron ores.
CA000578419A CA1336542C (en) 1987-09-25 1988-09-23 Method for smelting and reducing iron ores and apparatus therefor
KR1019880012423A KR910006005B1 (en) 1987-09-25 1988-09-24 Method for smelting and reducing iron ores
CN88106882A CN1014721B (en) 1987-09-25 1988-09-24 Process and apparatus for melting and reducing iron ore
BR888804958A BR8804958A (en) 1987-09-25 1988-09-26 PROCESS AND APPLIANCE FOR IRON ORE FOUNDATION AND REDUCTION
US07/503,805 US4988079A (en) 1987-09-25 1990-04-03 Apparatus for smelting and reducing iron ores

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260603A JP2596000B2 (en) 1987-10-15 1987-10-15 Smelting reduction method

Publications (2)

Publication Number Publication Date
JPH01104706A JPH01104706A (en) 1989-04-21
JP2596000B2 true JP2596000B2 (en) 1997-04-02

Family

ID=17350231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260603A Expired - Fee Related JP2596000B2 (en) 1987-09-25 1987-10-15 Smelting reduction method

Country Status (1)

Country Link
JP (1) JP2596000B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62192513A (en) * 1986-02-17 1987-08-24 Nippon Kokan Kk <Nkk> Method and apparatus for melt reduction

Also Published As

Publication number Publication date
JPH01104706A (en) 1989-04-21

Similar Documents

Publication Publication Date Title
US5065985A (en) Method for smelting reduction of iron ore and apparatus therefor
JP2735774B2 (en) How to enhance reactions in metallurgical reactors
EP0605535B1 (en) Process for production of iron
JP4837856B2 (en) Direct smelting method
CA1336744C (en) Method for smelting reduction of iron ore and apparatus therefor
RU2258744C2 (en) Method and device for direct melting process
EP0419868B1 (en) Method of in-bath smelting reduction of metals and in-bath smelting reduction furnace
JP2596000B2 (en) Smelting reduction method
JP2638861B2 (en) Melt reduction method
JP2600733B2 (en) Smelting reduction method
JP2596003B2 (en) Smelting reduction method
JP2600732B2 (en) Smelting reduction method and equipment
JP2638840B2 (en) Smelting reduction method
JP2596001B2 (en) Smelting reduction method
JP2596002B2 (en) Continuous production of molten steel in the same smelting furnace
JP2668913B2 (en) Smelting reduction method
JP2595991B2 (en) Smelting reduction method
JP2668912B2 (en) Smelting reduction method
JPH0723499B2 (en) Melt reduction method
JP2600229B2 (en) Smelting reduction method and equipment
ITRM960551A1 (en) PROCEDURE FOR THE DIRECT PRODUCTION OF CAST IRON STARTING FROM FERRIFEROUS MATERIAL AND APPROPRIATE EQUIPMENT FOR THE EXECUTION OF SUCH PROCE =
JPH01191719A (en) Method for operating smelting reduction furnace
JPH09157725A (en) Method for melting ferrous scrap
JPH01205015A (en) Smelting reduction method and apparatus thereof
JPH01205014A (en) Smelting reduction method and apparatus thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees