JPH01103189A - Speed/flux controller for induction motor - Google Patents

Speed/flux controller for induction motor

Info

Publication number
JPH01103189A
JPH01103189A JP62259916A JP25991687A JPH01103189A JP H01103189 A JPH01103189 A JP H01103189A JP 62259916 A JP62259916 A JP 62259916A JP 25991687 A JP25991687 A JP 25991687A JP H01103189 A JPH01103189 A JP H01103189A
Authority
JP
Japan
Prior art keywords
axis
magnetic flux
angular velocity
value
induction motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62259916A
Other languages
Japanese (ja)
Inventor
Shinzo Kodama
児玉 慎三
Naoki Morishima
直樹 森島
Hajime Maeda
前田 肇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62259916A priority Critical patent/JPH01103189A/en
Publication of JPH01103189A publication Critical patent/JPH01103189A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To control speed and flux stably even if q-axis flux component is not brought to 0 due to unclear induction motor coefficient or disturbance, by configuring a speed/flux controller into a non-linear multi-variable system. CONSTITUTION:Coefficient units 10, 11, 12, 13, 14, 15, 16 are provided with values of K1, K2, K3 and M. The value M represents the mutual inductance between a stator winding and a rotor winding. d-axis current command I'1d, q-axis current command I'1q and angular frequency command omegaS are outputted respectively from a d-axis root value subtractor 21, a q-axis adder 23 and the coefficient unit 16. The outputs I'1d and I'1q from a speed/flux control section are controlled non-linearly with the product of flux and speed is being fed back.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は誘導電動機の固定子巻線に可変電圧・可変周
波数の電圧源を接続し、該電圧源の電圧と周波数とを操
作する誘導電動機の速度・磁束制御装置に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] This invention relates to an induction motor in which a variable voltage/variable frequency voltage source is connected to the stator winding of the induction motor, and the voltage and frequency of the voltage source are controlled. The present invention relates to a speed/magnetic flux control device.

〔従来の技術〕[Conventional technology]

第2図は、例えば昭和58年電気学会全国大会s、s−
1「交流電動機ベクトル制御技術の現状と問題」難波江
章(長岡技術科学大学)、S、8−2「ベクトル制御の
理論」長潮、堀、奥山(日立製作所)、8.8−3rベ
クトル制御の制御方式」赤松昌彦(三菱電機)、または
JAACE’87−5第31回システムと制御研究発表
講演会「誘導電動機の断制御方式」森島(三菱電機)、
油田1児−玉(大阪大学)に示された従来の一般的に論
じられている「すべり周波数形ベクトル制御」の基本回
路の構成図であり、図において、1は例えばサイクロコ
ンバータ等の可変電圧、可変周波数の電力変換器で、通
常の電源系統の交流電力を所望の電圧2周波数に変換し
て誘導電動機2の固定子巻線に供給する。3は前記誘導
電動機2の回転子角速度を検出する速度検出器、4は前
記誘導電動機2の固定子巻線に流れこむ3相交流電流1
1U *IIV + IIWを検出する電流検出器、5
は3相−2相変換器で、この3相−2相変換器5によっ
て3相交流電流IIU r IIV r IIWを上記
固定子巻線に印加される交流電圧の周波数ωlと同期し
て回転する2軸の回転座標系(d−q座標系)での値、
すなわち固定子巻線電流11d 、 Ilqに変換する
Figure 2 shows, for example, the 1981 National Conference of the Institute of Electrical Engineers of Japan s, s-
1 "Current status and problems of AC motor vector control technology" Ei Namba (Nagaoka University of Technology), S, 8-2 "Theory of vector control" Nagashio, Hori, Okuyama (Hitachi), 8.8-3r vector control Masahiko Akamatsu (Mitsubishi Electric), or JAACE'87-5 31st System and Control Research Presentation Lecture "Disconnection control method for induction motors" Morishima (Mitsubishi Electric),
This is a configuration diagram of the basic circuit of the conventional and commonly discussed "slip frequency type vector control" shown by Yuta Ichigo-Tama (Osaka University). , a variable frequency power converter converts AC power from a normal power supply system into two desired voltages and frequencies, and supplies the converted voltage to the stator winding of the induction motor 2. 3 is a speed detector for detecting the rotor angular velocity of the induction motor 2; 4 is a three-phase alternating current 1 flowing into the stator winding of the induction motor 2;
1U *Current detector that detects IIV + IIW, 5
is a 3-phase to 2-phase converter, and the 3-phase to 2-phase converter 5 rotates the 3-phase alternating current IIU r IIV r IIW in synchronization with the frequency ωl of the alternating current voltage applied to the stator winding. Value in a two-axis rotating coordinate system (d-q coordinate system),
That is, it is converted into stator winding current 11d, Ilq.

6はd−q座標系での固定子巻線電流11d * Il
qと固定子巻線電圧vta I Vlqから回転子に鎖
交する磁束Φ2d +Φ2qを算出する磁束演算器、7
は前記d−q座標系忙おける電力変換器1の発生すべき
電圧指令値を実際の3相隔時値v1υ* vIV +V
1w K変換する2相−3相変換器、8はd軸電流コン
トローラで、固定子巻線電流のd軸成分指令値11dと
その実際値11(1との差を増幅して指令値どおりの電
流を流す。9は同じ<qitl+電流コントローラで、
固定子巻線電流のq軸成分について制御する。29は回
転子巻線鎖交磁束のd軸成分Φ2dを所望の値φ2d 
K制御するための磁束コントローラ、30は誘導電動機
2の回転子角速度ω。
6 is the stator winding current 11d*Il in the d-q coordinate system
a magnetic flux calculator that calculates the magnetic flux Φ2d +Φ2q interlinking with the rotor from q and the stator winding voltage vta I Vlq, 7
is the voltage command value to be generated by the power converter 1 in the d-q coordinate system, and the actual three-phase interval value v1υ* vIV +V
1w is a 2-phase to 3-phase converter that performs K conversion, and 8 is a d-axis current controller, which amplifies the difference between the d-axis component command value 11d of the stator winding current and its actual value 11 (1) and converts it to the command value. Flow current. 9 is the same < qitl + current controller,
Controls the q-axis component of stator winding current. 29 sets the d-axis component Φ2d of the rotor winding flux linkage to the desired value φ2d.
A magnetic flux controller 30 is used to control the rotor angular velocity ω of the induction motor 2.

を所望の値ω、*に制御するための速度コントローラ、
31は除算器、32は係数器で、これら除算器31およ
び係数器32によってすべり周波数指令ωS*を算出す
る。また22,24,27.28は減算器、26は加算
器である。
a speed controller for controlling ω,* to a desired value,
31 is a divider, and 32 is a coefficient unit. These divider 31 and coefficient unit 32 calculate the slip frequency command ωS*. Further, 22, 24, 27, and 28 are subtracters, and 26 is an adder.

次に動作について説明する。まず電流制御系について説
明する。誘導電動機2の固定子巻線に流れこむ3相交流
電流11U + IIV + IIWは電流検出器4に
よって検出される。3相−2相変換器5は前記検出され
た3相交流電流IIU * Itv 、 IIWを固定
子巻線に印加される3相交流電圧vtu l vlV+
VIWの周波数ω1に同期して回転する2軸の直交座標
系(d−q座標系)から見た固定子巻線電流11d +
 Ilqに変換する。3相交流電流IIU + IIV
+IIWから該固定子巻線電流xlcl 、 Ilqへ
の変換はθ、=fωldt        ・・・・・
・・・・・・・・・・(1)で行われる。da電流コン
トローラ8は固定子巻線d@電流指令値11dと前記(
1) 、 +2)式で求めた固定子巻線電流11dとの
差を増幅し、固定子巻線電圧のd@電圧指令値Vldを
出力する。同様托してq軸成分についてもq軸電流コン
トローラ9によってq軸電圧指令値Vlqを出力する。
Next, the operation will be explained. First, the current control system will be explained. A three-phase alternating current 11U + IIV + IIW flowing into the stator winding of the induction motor 2 is detected by a current detector 4 . The three-phase to two-phase converter 5 converts the detected three-phase alternating current IIU*Itv, IIW into a three-phase alternating current voltage vtul vlV+ applied to the stator winding.
Stator winding current 11d + as seen from a two-axis orthogonal coordinate system (d-q coordinate system) rotating in synchronization with the frequency ω1 of VIW
Convert to Ilq. 3-phase AC current IIU + IIV
The conversion from +IIW to the stator winding current xlcl, Ilq is θ, =fωldt...
・・・・・・・・・・・・(1) is carried out. The da current controller 8 controls the stator winding d@current command value 11d and the (
1), +2) The difference between the stator winding current 11d and the stator winding current 11d obtained by the equations is amplified, and the stator winding voltage d@voltage command value Vld is output. Similarly, for the q-axis component, the q-axis current controller 9 outputs the q-axis voltage command value Vlq.

d@電圧指令値v1dとq軸電圧指令値V1 qとは2
相−3相変換器7によって実際の3相隣時電圧vIU 
p vIV eVIWに変換される。d軸電圧指令値v
1d、Vlqから3相隣時電圧vIU、■1v、■1w
への変換はで行われる。これによっ【得られた3相隣時
電圧VIU * vtv 、viwが実際に電力変換器
1から発生され、所望の電流を流すことができる。次に
すべり周波数演算について説明する。上述の電流制御系
が十分高速に励作しているとすれば夫々、固定予巻id
軸及びq軸電流指令値は工1d =11d111q=1
1qと見なせる。この時固定子巻線電流11d + I
lqを入力とみた時の誘導電動機2のシステムの状態方
程式は下式となる。
d@voltage command value v1d and q-axis voltage command value V1 q is 2
The actual three-phase adjacent voltage vIU is determined by the phase-to-three-phase converter 7.
p vIV eVIW. d-axis voltage command value v
1d, Vlq to 3-phase adjacent voltage vIU, ■1v, ■1w
The conversion to is done in . As a result, the obtained three-phase adjacent voltages VIU * vtv and viw are actually generated from the power converter 1, and a desired current can flow. Next, the slip frequency calculation will be explained. If the current control system described above is excited at a sufficiently high speed, the fixed prewinding ID
The axis and q-axis current command values are 1d = 11d111q = 1
It can be considered as 1q. At this time, stator winding current 11d + I
The equation of state of the system of the induction motor 2 when lq is considered as an input is as follows.

φ02d=−αΦ2d+ωBΦ2q+βIld    
  ・・・(4)〆2q”−αΦ2q−ωSΦ2d+β
Ilq・(51Z、 = r Cl1qΦ2d −11
dΦ2q)       −(6)ここでα、β、Tは
誘導電動機2によって決まる正の定数である。Φ2dは
d軸成分の回転子巻線鎖交磁束(以下d軸成分磁束とい
う)、Φ2qはq軸成分の回転子巻線鎖交磁束(以下q
軸成分磁束という)であり、ωrは回転子角速度、ωS
はすべり周波数で ω8=ω1−ω、          ・・・(7)で
ある。いま、もし とすると(5)式は メ2.=−αφ2.            ・・・(
9)となる。α〉0なのでq軸成分磁束φ2qは時間が
たつにつれてゼロに近づいていく。こうしである時刻の
後はφ2.=Oと見なせる。除算器31と係数器32に
よってすべり周波数ωSの指令値ω?が(8)式に基づ
いて計算される。加算器26によってすべり周波数指令
値08本と回転子角速度ω、が加算され、固定子巻線に
印加される交流電圧周波数ω1が計算され、2相−3相
変換器7と電力変換器1によって実際に誘導電動機2に
周波数ω1の交流電圧が印加される。
φ02d=-αΦ2d+ωBΦ2q+βIld
...(4)〆2q"−αΦ2q−ωSΦ2d+β
Ilq・(51Z, = r Cl1qΦ2d −11
dΦ2q) - (6) where α, β, and T are positive constants determined by the induction motor 2. Φ2d is the rotor winding magnetic flux linkage of the d-axis component (hereinafter referred to as d-axis component magnetic flux), and Φ2q is the rotor winding magnetic flux linkage of the q-axis component (hereinafter referred to as q
(referred to as the axial component magnetic flux), ωr is the rotor angular velocity, ωS
is the slip frequency and ω8=ω1−ω, (7). Now, if we assume that equation (5) becomes Me2. =-αφ2. ...(
9). Since α>0, the q-axis component magnetic flux φ2q approaches zero as time passes. After a certain time like this, φ2. It can be considered as =O. The command value ω? of the slip frequency ωS is determined by the divider 31 and the coefficient unit 32. is calculated based on equation (8). The adder 26 adds 08 slip frequency command values and the rotor angular velocity ω, and the AC voltage frequency ω1 applied to the stator winding is calculated. Actually, an AC voltage of frequency ω1 is applied to the induction motor 2.

次に磁束制御について説明する。上述のすべり周波数制
御によってq軸成分磁束はφ2q = oとなれば磁束
を制御するのはd軸成分磁束Φ2dを制御することにな
る。(4)式からφ2q=0としてl2d==−αΦ2
d十βIld       ・・・(10)となってd
軸固定子巻線電流11dを操作すればd軸成分磁束φ2
dを所望の値に制御できることになる。磁束コントロー
ラ29ではd軸成分磁束指令値Φ2Jとd軸成分磁束Φ
2dとの差を増幅して固定子巻線電流指令値xx3を出
力している。d軸成分磁束Φ2dの値は破束演算器6で
求められる。
Next, magnetic flux control will be explained. If the q-axis component magnetic flux becomes φ2q=o by the above-mentioned slip frequency control, the magnetic flux is controlled by controlling the d-axis component magnetic flux φ2d. From equation (4), assuming φ2q=0, l2d==-αΦ2
d ten βIld ... (10) and d
By manipulating the shaft stator winding current 11d, the d-axis component magnetic flux φ2
This means that d can be controlled to a desired value. In the magnetic flux controller 29, the d-axis component magnetic flux command value Φ2J and the d-axis component magnetic flux Φ
2d is amplified and a stator winding current command value xx3 is output. The value of the d-axis component magnetic flux Φ2d is determined by the fracture flux calculator 6.

次に速度制御について説明する。すべり周波数制御によ
ってΦ2q =0 +磁束制御によりてφ2d=Φ2d
(定数)K制御できれば(6)式は’、==rΦ2d 
I lq            −(11)となって
q軸固定子巻線電流11.を操作すれば回転子角速度ω
、を所望の値に制御できろことになる。速度コントロー
ラ30では回転子角速度の指令値ωどと実測値ω、との
差を増幅しq軸固定子巻線電流119の指令値11qを
出力している。
Next, speed control will be explained. Φ2q = 0 by slip frequency control + φ2d = Φ2d by magnetic flux control
(Constant) If K can be controlled, equation (6) becomes ', == rΦ2d
I lq - (11) and the q-axis stator winding current 11. By operating the rotor angular velocity ω
, can be controlled to a desired value. The speed controller 30 amplifies the difference between the command value ω of the rotor angular velocity and the actual measurement value ω, and outputs a command value 11q of the q-axis stator winding current 119.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の誘導電動機の速度・磁束制御装置は以上のように
構成されているので、もし誘導電動機2の定数βが不明
確であれば(8)式のすべり周波数制御が不完全となり
、φ2q =I? Oとなる。そうすると磁束・速度制
御もΦ2q〜Oのため、非線形なシステムとなり所望の
制御特性を得ることは困難となる。また、たとえ誘導電
動機2の定数βが明確であってもシステムへの外乱など
によりφ2Q’FOとなった時にそれをΦ2q=0に戻
すのは(9)式かられかるように誘導電動機2の定数α
に依存し、それKよりて定まる時定数でしか戻らない。
Since the conventional induction motor speed/magnetic flux control device is configured as described above, if the constant β of the induction motor 2 is unclear, the slip frequency control in equation (8) will be incomplete, and φ2q = I ? It becomes O. In this case, since the magnetic flux/speed control is also Φ2q~O, the system becomes a nonlinear system and it becomes difficult to obtain desired control characteristics. Furthermore, even if the constant β of the induction motor 2 is clear, it is necessary to return it to Φ2q=0 when it becomes φ2Q'FO due to disturbance to the system, as shown in equation (9). constant α
, and returns only with a time constant determined by K.

よって、Φ29師0の間でのシステムは、もはや非線形
システムであり、速度・磁束制御の特性や安定性は保証
されないという問題点があった。
Therefore, the system between Φ29 and 0 is no longer a nonlinear system, and there is a problem in that the characteristics and stability of speed and magnetic flux control are not guaranteed.

この発明は上記のような問題点を解消するため罠なされ
たもので誘導電動機定数が不明確であったり、外乱など
によりΦ2q”FOとなっても、安定に速度・磁束を制
御できる誘導電動機の速度・磁束制御装置を得ることを
目的とする。
This invention was made in order to solve the above problems, and it is an induction motor that can stably control the speed and magnetic flux even if the induction motor constant is unclear or becomes Φ2q"FO due to disturbance etc. The purpose is to obtain a speed/magnetic flux control device.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る誘導電動機の速度・磁束制御装置は誘導
電動機の速度検出器が検出する該誘導電動機の回転子角
速度及び回転子角速度指令値との差と、前記差と磁束演
算器が検出する回転子鎖交磁束との積を用い前記誘導電
動機に流れる電流の大きさを制御するd軸及びq軸電流
コントローラの電流指令値、更に前記誘導電動機に可変
電圧可変周波数の電力を供給する電力変換器の運転周波
数を得ろようKしたものである1、 〔作 用〕 この発明におけろ誘導電動機の速度・磁束制御装置は非
線形制御理論を導入して誘導電動機を非線形の多変数シ
ステムとして扱い、q軸成分磁束φ2.を状態量として
システム中に組込み、回転子角速度ωr、d軸成分磁束
φ2d、q軸成分磁束φ2qを同時に所望値に制御する
ように固定子巻線電流Itd e Itq及びすべり周
波数ωSを同時に操作するよう圧する。
The speed/magnetic flux control device for an induction motor according to the present invention detects a difference between a rotor angular velocity and a rotor angular velocity command value of the induction motor detected by a speed detector of the induction motor, and a rotation detected by a magnetic flux calculator between the difference and the rotor angular velocity command value of the induction motor. a power converter that supplies current command values of d-axis and q-axis current controllers that control the magnitude of current flowing through the induction motor using the product with the child interlinkage magnetic flux, and further supplies variable voltage and variable frequency power to the induction motor; 1. [Operation] In this invention, the speed/magnetic flux control device for an induction motor introduces nonlinear control theory to treat the induction motor as a nonlinear multivariable system. Axial component magnetic flux φ2. is incorporated into the system as a state quantity, and the stator winding current Itd e Itq and the slip frequency ωS are simultaneously manipulated so as to simultaneously control the rotor angular velocity ωr, the d-axis component magnetic flux φ2d, and the q-axis component magnetic flux φ2q to desired values. pressure.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

図中、第2図と同一の部分は同一の符号をもって図示し
た第1図において、10,11,12,13.14.1
5.16は係数器で、それぞれ図に示すようにKl e
 K2 * K5  およびMという値で与えられてい
る。Mは誘導電動機2の固定子巻線と回転子巻線との間
の相互インダクタンスの値で(4)(5)式の中で使用
したパラメータで表わせばM=α/βである。(ここで
、d1〜d5はd軸第1〜第3ルート値、q1〜q)は
q軸第1〜第3ルート値という)係数器Kl 、 K2
 、 K5  の値は負の値なら、どのような値をとっ
【もよい。17.18は乗算器、19.2G、21.2
2.24.25は減算器、23.26は加算器である。
In the drawing, the same parts as in Fig. 2 are designated by the same reference numerals.
5.16 is a coefficient multiplier, as shown in the figure, Kl e
It is given by the values K2 * K5 and M. M is the value of the mutual inductance between the stator winding and the rotor winding of the induction motor 2, and expressed by the parameters used in equations (4) and (5), M=α/β. (Here, d1 to d5 are the d-axis first to third root values, and q1 to q are the q-axis first to third root values.) Coefficient units Kl, K2
, K5 can take any negative value. 17.18 is a multiplier, 19.2G, 21.2
2.24.25 is a subtracter, and 23.26 is an adder.

(ここで、19をd軸成分減算器、20をq軸成分減算
器、21をd軸ルート値減算器、22をd動域算器、2
3をq軸加算器、24をq動域算器、25を角速度減算
器、12.26を角速度加算器という。)この第1図に
おいて、速度・磁束制御部の出力11d” + Ilc
” +ωS*は、下式で示されたものによって与えられ
ている。
(Here, 19 is a d-axis component subtractor, 20 is a q-axis component subtracter, 21 is a d-axis root value subtracter, 22 is a d-axis component subtractor, 2
3 is called a q-axis adder, 24 is called a q motion range calculator, 25 is called an angular velocity subtracter, and 12.26 is called an angular velocity adder. ) In this Figure 1, the output 11d" + Ilc of the speed/magnetic flux control section
” +ωS* is given by the formula below.

x1%=x、(Φ2d−Φra)−KzΦ2.(ω、−
ωr*)+MΦ?d・・・(12)11q = Kl(
Φ2q−ψ2Q)+に2Φza(ωr−ωr)+MΦ2
(1−(13)ω;”K3(ω、−ωr )     
       ・(14)(12)、(13)式からも
わかるように磁束と速度との積がフィードバックされて
いる非線形制御である。
x1%=x, (Φ2d-Φra)-KzΦ2. (ω, −
ωr*)+MΦ? d...(12)11q = Kl(
Φ2q−ψ2Q)+2Φza(ωr−ωr)+MΦ2
(1-(13)ω;”K3(ω,-ωr)
- As can be seen from equations (14), (12), and (13), this is nonlinear control in which the product of magnetic flux and velocity is fed back.

次にこの発明の動作原理について説明する。まず、(1
2)、(13)、(14)式のフィードバック則が(4
1、(51。
Next, the operating principle of this invention will be explained. First, (1
The feedback law of equations 2), (13), and (14) is (4
1, (51.

(6)式で与えられた誘導電動機2のシステムを、係数
器Kl 、に2 * K5  の値を負の値にとる限り
必ず安定化することを説明する。そのために、まず(4
)(51、(6)式を次のように書きなおす。
It will be explained that the system of the induction motor 2 given by equation (6) is always stabilized as long as the value of 2*K5 in the coefficient unit Kl is set to a negative value. For that purpose, first (4
)(51, Rewrite equation (6) as follows.

ここで 町−11d  pφ2d = Itd −Mφ2d  
     …(16)u2−114  、+29= 1
1Q−MΦ2.・(17)u5”’II       
              °−(”°ゝさて、リア
ブノフの安定論によればある止定対称行列Pにより定義
されるリアブノフ関数V (x)V(x)=xpx の導関数(時間微分)÷(X)が となるならシステムは大域的に安定である。なおここで
添字のTは転置を表わす。上述の識論は次のようKも言
いかえることができる。すなわち(19)式のような性
質をもつV (x)を形成する止定対称行列Pが存在す
るならば、そのシステムは安定である。そこでシステム
が(15)式で表わされろ時の豪(xiを計算すると mx+x (PA+A P)X±j:ui(x”(PB
l+B、 P)x4−2CHPx)  =・(二〇)と
なる。今、固定子巻線電流11d 、 Ell、及びす
べり周波数ωSが(12)、(13)、(14)式で与
えられた固定子巻線d軸及びq軸電流指令値11d 、
Ilq 、及びすべり周波数指令値ω?に制御されたと
する。すなわちIld ” ”l”d r Ilq =
 Ilq 、ω、=ω8 である。そこで(16)、(
17)、(18)式に(12)、(13)、(14)式
をそれぞれ代入すると ul=に1(Φ2d−Φ’2d)−に2Φ2Q(ωr−
”r)−Kl−Xi−Ki’Φ2qx3 −(21)u
2−Kl(Φ2q”J2q)”K2Φ2d(ω、−ω、
”)−に1X2+に2φ2dXs   =(Z2)u5
”K5Cω、−ωr)−に5X5          
 ”−・・(23)となる。一方、止定対称行列Pとし
て を考えることにする。(2D)式に(21)、(Z2)
、(久)および(24)式を代入し【整理すると ※(xl−−2α(X工+x2) +2(pαγ/β十に3)(φ2qXl−Φ2dX2)
X5+(KIXI−に2Φ2qx5)(2βxl−2p
rφ2qx5)” (KI X2+に2ψ2(IX5)
(2βX2+2prφ2dX3)となる。これなさらに
次のように変形する。
Here Town-11d pφ2d = Itd −Mφ2d
...(16) u2-114, +29=1
1Q-MΦ2.・(17) u5'''II
°−(”°ゝNow, according to Lyabunov's stability theory, the derivative (time differential) ÷ (X) of the Lyabunov function V (x) V(x) = xpx defined by a certain fixed symmetric matrix P is If so, the system is globally stable.Here, the subscript T represents transposition.The above theory of knowledge can also be rephrased for K as follows.In other words, if V has the property as shown in equation (19), If there exists a fixed symmetric matrix P forming (x), the system is stable. Therefore, the system can be expressed by equation (15).If we calculate :ui(x”(PB
l+B, P)x4-2CHPx) =・(20). Now, stator winding d-axis and q-axis current command values 11d, where stator winding current 11d, Ell, and slip frequency ωS are given by equations (12), (13), and (14),
Ilq, and slip frequency command value ω? Suppose that it is controlled by That is, Ild ” “l”d r Ilq =
Ilq, ω, = ω8. So (16), (
By substituting equations (12), (13), and (14) into equations (17) and (18), respectively, ul = 1(Φ2d-Φ'2d)- and 2Φ2Q(ωr-
”r)-Kl-Xi-Ki'Φ2qx3 -(21)u
2-Kl(Φ2q"J2q)"K2Φ2d(ω, -ω,
”)- to 1X2+ to 2φ2dXs = (Z2)u5
"K5Cω, -ωr)-5X5
”-...(23).On the other hand, let us consider a fixed symmetric matrix P.In equation (2D), (21), (Z2)
, (ku) and (24) and rearranged *(xl--2α(X engineering+x2) +2(pαγ/β10 to 3)(φ2qXl-Φ2dX2)
X5+ (2Φ2qx5 to KIXI-) (2βxl-2p
rφ2qx5)” (2ψ2(IX5) to KI X2+
(2βX2+2prφ2dX3). This can be further modified as follows.

′22 ?(x)−−2(α−βfl)(xl+x2)+2(p
αr/I+に3−pr fl )(Φ;、x1+φ2d
X2)X5+に;(2βX1−2prφ2qxs)2/
  2β+に’l(2βX2 ’p2pTΦ2clX3
)” / 2βここで KL ” r1= Kl              
  ・・・(25)Kll)r=βに2       
          °°°(謳)※(xiが(19)
式の条件を満たすにはpαr/β+に5−pl f 1
=0          ・・・(27)となるように
p * Kl l ”lが決まればよい。(25)。
'22? (x)−−2(α−βfl)(xl+x2)+2(p
αr/I+3−pr fl )(Φ;, x1+φ2d
X2) to X5+; (2βX1-2prφ2qxs)2/
2β+'l(2βX2'p2pTΦ2clX3
)” / 2β where KL ” r1= Kl
...(25) Kll) r = β to 2
°°°(song)※(xi is (19)
To satisfy the condition of the formula, 5-pl f 1 is added to pαr/β+
=0...(27) p * Kl l ''l should be determined so that it becomes (25).

(26)、■)式を解くと となる1、係数器Kl l K21 K5の値が負、誘
導電動機2によって定まる定数α、β、γが正の値であ
るから(29)、(30)、(31)式より明らかK 
(28)式の条件も満たしている。
(26), ■) Solving the equation gives 1, the value of the coefficient unit Kl l K21 K5 is negative, and the constants α, β, and γ determined by the induction motor 2 are positive values, so (29), (30) , it is clear from equation (31) that K
The condition of equation (28) is also satisfied.

以上により止定対数行列Pは次のように求まる。From the above, the fixed logarithm matrix P can be found as follows.

(32)式で表わされる止定対称行列Pが存在するので
、(12)、(13)、(14)式で表わされるフィー
ドバック則によって誘導電動機2のシステムを必ず安定
化できることが示された。
Since the fixed symmetric matrix P expressed by equation (32) exists, it was shown that the system of the induction motor 2 can definitely be stabilized by the feedback law expressed by equations (12), (13), and (14).

(12)、(13)、(14)式のフィードバック則に
はに1 * K2、に5  の3つのパラメータがあり
、これらの値を負とする限り必ず安定であるが、実際に
どのような値とするかは応答の速さ、非干渉化、最適化
といった条件に応じて一意的に決定することができる。
The feedback laws of equations (12), (13), and (14) have three parameters, 1 * K2, and 5, and are always stable as long as these values are negative. The value can be uniquely determined depending on conditions such as response speed, non-interference, and optimization.

制御パラメータに11 K2. K、  の一意的決定
方法の一例として速度制御の所望の収束度をにω、磁束
制御の所望の収束度をにφとし、速度制御と磁束制御の
非干渉化も条件に加えると、次のような制御パラメータ
Kl 、 K2 、 K、  をえらべばよい。
11 K2 for control parameters. As an example of a unique determination method, let the desired degree of convergence of speed control be ω, the desired degree of convergence of magnetic flux control be φ, and if non-interference between speed control and magnetic flux control is also added to the conditions, the following can be obtained. It is sufficient to select the control parameters Kl, K2, K, as follows.

また、上記実施例では誘導電動機への適用にっいて説明
したが、本発明は誘導電動機のみならず、システムが(
15)式で表わされる装置については全て適用が可能で
ある。
Furthermore, in the above embodiment, the application to an induction motor was explained, but the present invention is applicable not only to an induction motor but also to a system (
15) Applicable to all devices expressed by formula.

〔発明の効果〕〔Effect of the invention〕

以上のよ5に、この発明によれば、誘導電動機の速度・
磁束制御装置を非線形多変数システムとして構成したの
で、従来のベクトル制御のようにq軸成分の回転子鎖交
磁束Φ2.がΦ2q=0という条件を必要とせず、任意
のΦ2qで安定度の高い制御システムが構成できる効果
がある。また制御パラメータに1. K2. K、  
が負という条件だけ滴たせばよく、電動機定数に応じて
決める必要はなく、電動機定数の不明確さや変動に対し
ても安定度の高い確実な制御システムが得られる効果が
ある。
As described above, according to the present invention, the speed of the induction motor
Since the magnetic flux control device is configured as a nonlinear multivariable system, the q-axis component rotor linkage magnetic flux Φ2. does not require the condition that Φ2q=0, and has the effect that a highly stable control system can be constructed with any Φ2q. In addition, 1. K2. K,
It is only necessary to apply the droplet only on the condition that is negative, and there is no need to determine it according to the motor constant, which has the effect of providing a highly stable and reliable control system even when the motor constant is unclear or fluctuates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による誘導電動機の速度・磁
束制御装置を示すブロック図、第2図は従来の誘導電動
機の速度・磁束制御装置を示すブロック図である。 図において、1は電力変換器、2は誘導電動機、3は速
度検出器、4は電流検出器、5は3相−2相変換器、6
は磁束演算器、7は2相−3相変換器、8はd@電流コ
ントローラ、9はq軸電流コントローラ、19はd軸成
分減算器、20はq軸成分減算器、21はd軸ルート値
減算値、22はd軸減算器、23はq軸加算器、24は
q動域算器、25は角速度減算器、26は角速度加算器
である。 なお、図中、同一符号は同一部分を表わす。
FIG. 1 is a block diagram showing a speed/magnetic flux control device for an induction motor according to an embodiment of the present invention, and FIG. 2 is a block diagram showing a conventional speed/magnetic flux control device for an induction motor. In the figure, 1 is a power converter, 2 is an induction motor, 3 is a speed detector, 4 is a current detector, 5 is a 3-phase to 2-phase converter, and 6
is a magnetic flux calculator, 7 is a 2-phase to 3-phase converter, 8 is a d@current controller, 9 is a q-axis current controller, 19 is a d-axis component subtractor, 20 is a q-axis component subtractor, 21 is a d-axis route 22 is a d-axis subtracter, 23 is a q-axis adder, 24 is a q-range calculator, 25 is an angular velocity subtractor, and 26 is an angular velocity adder. Note that in the figures, the same reference numerals represent the same parts.

Claims (3)

【特許請求の範囲】[Claims] (1)誘導電動機に可変電圧可変周波数の電力を供給す
る電力変換器と、前記電力変換器が供給する交流電力の
周波数に同期して回転するd−q座標系から見た前記誘
導電動機の固定子に流れる電流のd軸成分及びq軸成分
とを検出する電流検出器と、前記電流検出器で検出され
た直交座標系から見た固定子巻線電流のd軸成分及びq
軸成分との大きさを夫々d軸減算器及びq軸減算器を介
して制御するd軸及びq軸電流コントローラと、前記誘
導電動機の回転子角速度を検出する速度検出器と、前記
d−q座標系から見た前記誘導電動機の回転子に鎖交す
る磁束のd軸磁束とq軸磁束を検出する磁束演算器とを
有する誘導電動機の速度・磁束制御装置において、前記
d軸電流コントローラの入力条件決定要素とする回転子
巻線鎖交磁束の所望値、前記磁束演算器から出力される
d軸及びq軸成分、及び回転子角速度の所望値と回転子
角速度との減算結果を入力とする第1の演算回路と、前
記第1の演算回路の出力と直交座標系から見たd軸固定
子巻線電流との減算結果を入力とするd軸減算器と、前
記q軸電流コントローラの入力条件決定要素とする回転
子巻線鎖交磁束の所望値、前記磁束演算器から出力され
るq軸成分及び回転子角速度の所望値と回転子角速度と
の減算結果を入力とする第2の演算回路と、前記第2の
演算回路の出力と直交座標系から見たq軸回転子巻線電
流との減算結果を入力とするq軸減算器と、前記回転子
角速度所望値と速度検出器から得られた回転子角速度と
を演算する角速度減算器と、前記角速度演算器の出力に
所定の係数値を与えて該回転子角速度を演算し3相−2
相変換器及び2相−3相変換器に入力する角速度加算器
とを備えたことを特徴とする誘導電動機の速度・磁束制
御装置。
(1) A power converter that supplies variable voltage and variable frequency power to an induction motor, and fixation of the induction motor as seen from a d-q coordinate system that rotates in synchronization with the frequency of AC power supplied by the power converter. a current detector that detects the d-axis component and the q-axis component of the current flowing in the stator winding;
a d-axis and q-axis current controller that controls the magnitude of the axial component through a d-axis subtracter and a q-axis subtracter, respectively; a speed detector that detects the rotor angular velocity of the induction motor; In the speed/magnetic flux control device for an induction motor, the device includes a magnetic flux calculator that detects d-axis magnetic flux and q-axis magnetic flux of the magnetic flux interlinking with the rotor of the induction motor as seen from a coordinate system, and an input of the d-axis current controller. The desired value of the rotor winding flux linkage as a condition determining element, the d-axis and q-axis components output from the magnetic flux calculator, and the result of subtraction between the desired value of the rotor angular velocity and the rotor angular velocity are input. a first arithmetic circuit; a d-axis subtracter that inputs the result of subtraction between the output of the first arithmetic circuit and the d-axis stator winding current seen from the orthogonal coordinate system; and an input of the q-axis current controller. A second operation that receives as input the desired value of the rotor winding flux linkage as a condition determining element, the q-axis component output from the magnetic flux calculator, and the result of subtraction between the desired value of the rotor angular velocity and the rotor angular velocity. a q-axis subtracter inputting the result of subtraction between the output of the second arithmetic circuit and the q-axis rotor winding current seen from the orthogonal coordinate system, and a desired value of the rotor angular velocity and the speed detector. An angular velocity subtracter calculates the obtained rotor angular velocity, and a predetermined coefficient value is given to the output of the angular velocity calculator to calculate the rotor angular velocity.
A speed/magnetic flux control device for an induction motor, comprising a phase converter and an angular velocity adder input to a two-phase to three-phase converter.
(2)前記第1の演算回路の構成を磁束演算器のd軸成
分より回転子巻線鎖交磁束の所望値を減算するd軸成分
減算器と、前記回転子巻線鎖交磁束の所望値に所定の係
数を与えて出力したd軸第1ルート値、前記d軸成分減
算器の出力に所定の係数値を与えて出力したd軸第2ル
ート値、及びq軸成分に前記角速度減算器の出力を乗算
器で乗算した結果に所定の係数値を与えて得たd軸第3
ルート値とを入力として減算するd軸ルート値減算器と
をもって構築したことを特徴とする特許請求の範囲第1
項記載の誘導電動機の速度・磁束制御装置。
(2) The configuration of the first arithmetic circuit includes a d-axis component subtracter that subtracts a desired value of the rotor winding flux linkage from the d-axis component of the magnetic flux calculator, and a desired value of the rotor winding flux linkage. A d-axis first root value outputted by giving a predetermined coefficient to the value, a d-axis second root value outputted by giving a predetermined coefficient value to the output of the d-axis component subtracter, and the angular velocity subtracted from the q-axis component. The d-axis third
Claim 1 is constructed with a d-axis root value subtracter that inputs and subtracts the root value.
A speed/magnetic flux control device for an induction motor as described in .
(3)前記第2の演算回路の構成を磁束演算器のq軸成
分より回転子巻線鎖交磁束の所望値を減算するq軸成分
減算器と、前記磁束演算器のd軸成分及び前記角速度減
算器の出力とを乗算し、所定の係数を与えて出力したq
軸第1ルート値、前記q軸成分減算器の出力に所定の値
を与えて出力したq軸第2ルート値、前記回転子巻線鎖
交磁束の所定値に所定の係数を与えて出力したq軸第3
ルート値とを加算するq軸加算器とをもって構築したこ
とを特徴とする特許請求の範囲第1項記載の誘導電動機
の速度・磁束制御装置。
(3) The configuration of the second calculation circuit includes a q-axis component subtracter that subtracts a desired value of the rotor winding flux linkage from the q-axis component of the magnetic flux calculation unit, and a d-axis component of the magnetic flux calculation unit and the Multiply by the output of the angular velocity subtracter, give a predetermined coefficient, and output q
The axis first root value, the q-axis second root value which is output by giving a predetermined value to the output of the q-axis component subtracter, and the q-axis second root value which is output by giving a predetermined coefficient to the predetermined value of the rotor winding flux linkage. q-axis 3rd
The speed/magnetic flux control device for an induction motor according to claim 1, characterized in that it is constructed with a q-axis adder for adding the route value.
JP62259916A 1987-10-14 1987-10-14 Speed/flux controller for induction motor Pending JPH01103189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62259916A JPH01103189A (en) 1987-10-14 1987-10-14 Speed/flux controller for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62259916A JPH01103189A (en) 1987-10-14 1987-10-14 Speed/flux controller for induction motor

Publications (1)

Publication Number Publication Date
JPH01103189A true JPH01103189A (en) 1989-04-20

Family

ID=17340709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62259916A Pending JPH01103189A (en) 1987-10-14 1987-10-14 Speed/flux controller for induction motor

Country Status (1)

Country Link
JP (1) JPH01103189A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395879A (en) * 1986-10-09 1988-04-26 Mitsubishi Electric Corp Speed & flux controlling device for induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6395879A (en) * 1986-10-09 1988-04-26 Mitsubishi Electric Corp Speed & flux controlling device for induction motor

Similar Documents

Publication Publication Date Title
US6933701B2 (en) Control apparatus for synchronous motor
CN109952701B (en) Motor control device and electric power steering control device provided with same
JPH11341898A (en) Induction motor controller
US20030085683A1 (en) Controller for multiplex winding motor
JPH05344773A (en) Parallel operation controller for pwm inverter
JPH09285199A (en) Control device for induction motor
JP2002136197A (en) Sensorless vector control apparatus and method
JPS5953796B2 (en) Induction motor control device
KR950015957A (en) Vector control method and apparatus of induction motor
JPH0250718B2 (en)
JPH01103189A (en) Speed/flux controller for induction motor
JPH07107783A (en) Variable-speed driving gear of ac motor
JPS6395879A (en) Speed &amp; flux controlling device for induction motor
JPS6159071B2 (en)
JP3266790B2 (en) Induction motor control device
JPS6152176A (en) Vector controlling method of induction motor
JPS6225888A (en) Controller for induction motor
JP2001008500A (en) Control device for induction motor
JP3603967B2 (en) Induction motor control device
JPH01274683A (en) Speed and magnetic flux controller for induction motor
JPH05146191A (en) Controller for synchronous motor
JPH0965700A (en) Induction motor controller
JPH08224000A (en) Controller for induction motor
JPS60121982A (en) Controller of induction motor
JPH04127893A (en) Controller for synchronous motor