JPH01101437A - Detecting device for road surface friction coefficient - Google Patents

Detecting device for road surface friction coefficient

Info

Publication number
JPH01101437A
JPH01101437A JP62260454A JP26045487A JPH01101437A JP H01101437 A JPH01101437 A JP H01101437A JP 62260454 A JP62260454 A JP 62260454A JP 26045487 A JP26045487 A JP 26045487A JP H01101437 A JPH01101437 A JP H01101437A
Authority
JP
Japan
Prior art keywords
vehicle
friction coefficient
road surface
surface friction
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62260454A
Other languages
Japanese (ja)
Inventor
Akihiko Miyoshi
三好 晃彦
Kenichi Watanabe
憲一 渡辺
Shoichi Kamimura
上村 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62260454A priority Critical patent/JPH01101437A/en
Priority to EP88117133A priority patent/EP0312096B1/en
Priority to DE8888117133T priority patent/DE3877118T2/en
Priority to US07/260,890 priority patent/US4951198A/en
Publication of JPH01101437A publication Critical patent/JPH01101437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To perform accurate detection even when variables are small by calculating the road surface friction coefficient from an arithmetic equation based upon the differential values of lateral acceleration and front and rear wheel steering angles as parameters under specific conditions where an arithmetic error increases. CONSTITUTION:A 2nd friction coefficient arithmetic means 42 is used when the traveling state of the vehicle detected by a traveling state detecting means 40 meets specific requirements wherein the arithmetic error in road surface friction coefficient mu expressed by an equation I [where (s) is a Laplacean, K=KF+KR, c=a+b, and KF and KR are the tire cornering power of the front and rear wheels] increases. Namely, the road surface friction coefficient muis calculated based upon an equation II derived from the basic motion equation of the vehicle corresponding to the differential values of variables such as the lateral acceleration ay of the gravity center of the vehicle calculated by a differential value arithmetic means 38, a front wheel steering angle deltaF, and a rear wheel steering angle deltaR, the vehicle speed V, and the stability factor of the vehicle stored in a storage means 31.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両のタイヤと路面との間の路面摩擦係数を
検出する摩擦係数検出装置に係り、特に車両の動特性に
応じた路面摩擦係数を検出するようにしたものに関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a friction coefficient detection device that detects a road surface friction coefficient between a vehicle tire and a road surface, and particularly relates to a friction coefficient detection device that detects a road surface friction coefficient between a vehicle tire and a road surface. Regarding detecting coefficients.

(従来の技術) 従来より、車両のタイヤと路面との間の路面摩擦係数を
検出する摩擦係数検出装置として、例えば特開昭59−
148769号公報に開示される如く、前輪の舵角に応
じて路面摩擦係数の値を複数個予測し、該予測された摩
擦係数にそれぞれ対応する横加速度を演算して、該演算
された横加速度と実測された横加速度とを比較し、最も
近い値に対応する予測摩擦係数を選択することにより、
実際の摩擦係数を推定し、推定した摩擦係数を用いて旋
回走行時の後輪舵角を制御しようとするものが知られて
いる。
(Prior Art) Conventionally, as a friction coefficient detection device for detecting a road surface friction coefficient between a vehicle tire and a road surface, for example, Japanese Patent Application Laid-Open No. 1986-
As disclosed in Japanese Patent No. 148769, a plurality of values of the road surface friction coefficient are predicted according to the steering angle of the front wheels, lateral acceleration corresponding to each of the predicted friction coefficients is calculated, and the calculated lateral acceleration is calculated. By comparing the actual lateral acceleration and selecting the predicted friction coefficient corresponding to the closest value,
There is a known system that estimates an actual friction coefficient and uses the estimated friction coefficient to control the rear wheel steering angle during cornering.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは、摩擦係数が一定で
あると仮定し、操舵入力に対する車両の横加速度やヨー
レイト等の過渡応答つまり動特性が同等考慮されていな
い。したがって、ハンドルの操舵角度の変化がない状態
、つまり定常内を描く旋回走行時等の定常状態ではある
程度の推定精度を確保することができるが、現実には、
そのような定常状態はごくまれである。すなわち、上記
従来のものでは、十分信頼し得る路面摩擦係数を導出し
て正確な旋回走行制御に供することができない。
(Problems to be Solved by the Invention) However, in the conventional method described above, it is assumed that the coefficient of friction is constant, and transient responses such as lateral acceleration and yaw rate of the vehicle to steering input, that is, dynamic characteristics, are not equally considered. . Therefore, a certain degree of estimation accuracy can be secured in a state where there is no change in the steering angle of the steering wheel, that is, in a steady state such as when turning within a steady state, but in reality,
Such steady states are extremely rare. That is, with the above-mentioned conventional method, it is not possible to derive a sufficiently reliable road surface friction coefficient and use it for accurate turning control.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、操舵入力に対する車両の動特性をも考慮して路面
摩擦係数を検出することにより、旋回走行時等に路面摩
擦係数の変化を検出し、旋回走行制御等に有用な路面摩
擦係数検出装置を提供することにある。
The present invention has been made in view of the above, and its purpose is to detect changes in the road surface friction coefficient during cornering, etc. by detecting the road surface friction coefficient in consideration of the dynamic characteristics of the vehicle in response to steering input. An object of the present invention is to provide a road surface friction coefficient detection device useful for cornering control and the like.

(問題点を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように、車両のタイヤと路面との間の摩擦係数を検
出する摩擦係数検出装置を対象とする。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a friction coefficient detection device for detecting the friction coefficient between the tires of a vehicle and the road surface, as shown in FIG. set to target.

そして、車両重心点の横加速度aY等の車両の運動状態
を検出する運動状態検出手段51と、前後輪舵角δF、
δRなどの操舵状態を検出する操舵状態検出手段37と
、車両の速度Vを検出する車速検出手段53と、車両の
重量m1車両の重心点と前後輪軸との距離a、 b、標
準状態における前輪および後輪のタイヤコーナリングパ
ワーKF。
The motion state detection means 51 detects the motion state of the vehicle such as the lateral acceleration aY of the vehicle center of gravity, and the front and rear wheel steering angles δF,
The steering state detection means 37 detects the steering state such as δR, the vehicle speed detection means 53 detects the speed V of the vehicle, the weight m1 of the vehicle, the distances a and b between the center of gravity of the vehicle and the front and rear wheel axles, and the front wheels in the standard state. and rear tire cornering power KF.

KR並びに車両のヨー慣性モーメントエなどの車両のス
タビリテイファクタを記憶する記憶手段31と、上記運
動状態検出手段51および操舵状態検出手段37の出力
を受け、該両検出手段51゜37の検出値の微分値を演
算する微分値演算手段38と、車両の走行状態が特殊な
所定条件にあるときを検出する走行状態検出手段40と
、該走行状態検出手段40の出力を受け、車両の走行状
態が通常条件にあるときには、上記運動状態検出手段5
1、操舵状態検出手段37および車速検出手段53の出
力値と記憶手段31の記憶内容とに応じて、車両の基本
的な運動方程式から導出される式 %式% に基づき、路面摩擦係数μを演算する第1摩擦係数演算
手段41と、上記走行状態検出手段40の出力を受け、
車両の走行状態が特殊な所定条件にあるときには、上記
車速検出手段53および微分値演算手段38の出力値と
記憶手段31の記憶内容とに応じて、車両の基本的な運
動方程式から導出される式 %式%) に基づき、路面摩擦係数μを演算する第2摩擦係数演算
手段42とを設ける構成としたものである。
A storage means 31 for storing stability factors of the vehicle such as KR and vehicle yaw moment of inertia receives the outputs of the motion state detection means 51 and the steering state detection means 37, and detects the detected values of both the detection means 51 and 37. a differential value calculating means 38 for calculating the differential value of the driving state; a driving state detecting means 40 for detecting when the running state of the vehicle is under a special predetermined condition; is under normal conditions, the motion state detection means 5
1. Based on the output values of the steering state detection means 37 and the vehicle speed detection means 53 and the contents stored in the storage means 31, calculate the road surface friction coefficient μ based on the formula % derived from the basic equation of motion of the vehicle. Receiving the output of the first friction coefficient calculating means 41 and the running state detecting means 40,
When the running state of the vehicle is under a special predetermined condition, the value is derived from the basic equation of motion of the vehicle according to the output values of the vehicle speed detection means 53 and the differential value calculation means 38 and the stored contents of the storage means 31. The second friction coefficient calculating means 42 calculates the road surface friction coefficient μ based on the formula (%).

ここに、上記(1)および(2)式は、以下のようにし
て導出されたものである。
Here, the above equations (1) and (2) are derived as follows.

すなわち、第4図に示すように、車両の旋回時において
タイヤに働く力の釣り合いから、基本的な下記の運動方
程式、 m=a Y −2F t: + 2 F R(3)■−
チー2 a−FF−2b−FR(4)FF−u・Kr:
CδF−β=a−γ/ V )   (5)FR−μm
KR(δR−B+b−r/V)   (6)ただし、 
■(β+γ) =ay      [7](ここで、F
F、FRはそれぞれ前輪2.後輪3のコーナリングフォ
ース、γはヨーレイトである)を得るが、上記式(3)
〜(7)から、FF、FR,β。
That is, as shown in Fig. 4, from the balance of the forces acting on the tires when the vehicle turns, the following basic equation of motion: m=a Y -2F t: + 2 FR (3) -
Chi 2 a-FF-2b-FR (4) FF-u・Kr:
CδF-β=a-γ/V) (5) FR-μm
KR (δR-B+b-r/V) (6) However,
■(β+γ) = ay [7] (here, F
F and FR are front wheels 2. The cornering force of rear wheel 3, γ is the yaw rate) is obtained using the above formula (3).
From ~(7), FF, FR, β.

γ、8を消去すると、 [m−1−Vis’+ 2 μmV fm (a”KF
+ b”KR) +I−K}・s + 4 c”KF−
KR・μ” −2tt−m・V” (a−Kt=−b−
KR)] aY− 2B−1−V’ (KF−δF + KFZ−6R)・
s”+ 4 tl”V=KF−KR−C(b・δF+&
−δR}・s + 4 u”J”KF・KR−C(δF
−δR)             (8)を得る。
By eliminating γ, 8, we get [m-1-Vis'+ 2 μmV fm (a”KF
+ b”KR) +I-K}・s + 4 c”KF-
KR・μ” −2tt−m・V” (a−Kt=−b−
KR)] aY- 2B-1-V' (KF-δF + KFZ-6R)・
s"+ 4 tl"V=KF-KR-C(b・δF+&
−δR}・s + 4 u”J”KF・KR−C(δF
−δR) (8) is obtained.

ここで、Sの二乗項は過渡応答の高周波成分であって、
通常無視し得るので零とおき、上式の両辺をμで除する
ことにより、 tt −[V (m (a’KF+b”KR) + l
−K1−5−m−V”  (a−K F  −b−K 
R)  コ  a  Y /2cmK F−KR{V 
Cb・6t: +a−6R}・s+V”c6rニーδR
}・c=aY) つまり上記(1)式を得る。
Here, the square term of S is the high frequency component of the transient response,
Since it can usually be ignored, we set it to zero, and by dividing both sides of the above equation by μ, we get tt - [V (m (a'KF+b''KR) + l
-K1-5-m-V" (a-K F -b-K
R) Ko a Y /2cmK F-KR{V
Cb・6t: +a−6R}・s+V”c6r knee δR
}・c=aY) In other words, the above equation (1) is obtained.

そして、さらに上式の分子、分母にSを乗じることによ
り、 μ” [V (m (a’KF+b”KR) + l−
K1−5−m−V”  (a−K F  −b−K R
)  コ  a  Y / 2  c −K F−KR
{V Cb・■F+a−6R}・8+V’(6iF−(
5R}・c−isY)          (8)つま
り上記(2)式を得る。
Then, by further multiplying the numerator and denominator of the above formula by S, μ'' [V (m (a'KF+b''KR) + l-
K1-5-m-V" (a-K F -b-K R
) Ko a Y / 2 c -K F-KR
{V Cb・■F+a-6R}・8+V'(6iF-(
5R}·c-isY) (8) In other words, the above formula (2) is obtained.

(作用) 以上の構成により、本発明では、車両の旋回走行時等に
おいて、走行状態検出手段40により判別される車両の
走行状態が通常条件にあるときには、第1摩擦係数演算
手段41により、記憶手段31に記憶された車両のスタ
ビリテイファクタと、車速検出手段53、運動状態検出
手段51および操舵状態検出手段37で検出された車両
重心点の横加速度a Y s車速Vおよび前後輪舵角δ
F1δRなどの変数とに応じて、車両の基本的な運動方
程式から導出される(1)式に基づいて路面摩擦係数μ
が演算される。
(Function) With the above configuration, in the present invention, when the vehicle running state determined by the running state detecting means 40 is in the normal condition when the vehicle is turning or the like, the first friction coefficient calculating means 41 stores the The stability factor of the vehicle stored in the means 31, the lateral acceleration of the vehicle center of gravity a Y s detected by the vehicle speed detecting means 53, the motion state detecting means 51, and the steering state detecting means 37, the vehicle speed V, and the front and rear wheel steering angle δ.
Depending on variables such as F1δR, the road surface friction coefficient μ is calculated based on equation (1) derived from the basic equation of motion of the vehicle.
is calculated.

また、走行状態検出手段40により検出される車両の走
行状態が上記(1)式による路面摩擦係数μの演算誤差
が大きくなるような特殊な所定条件にあるときには、第
2摩擦係数演算手段42により、微分値演算手段38で
演算された車両重心点の横加速度aY、前輪舵角δF、
後輪舵角δRなどの変数の微分値と、上記車速Vの値と
、記憶手段31に記憶された車両のスタビリテイファク
タとに応じて、基本的な車両の運動方程式から導出され
る上記(2)式に基づき、路面摩擦係数μが算出される
Further, when the running state of the vehicle detected by the running state detecting means 40 is under special predetermined conditions such that the calculation error of the road surface friction coefficient μ according to the above equation (1) becomes large, the second friction coefficient calculating means 42 , lateral acceleration aY of the vehicle center of gravity calculated by the differential value calculation means 38, front wheel steering angle δF,
The above-mentioned ( 2) Based on the formula, the road surface friction coefficient μ is calculated.

したがって、車両の動特性に応じた路面摩擦係数μの変
化を速やかに検出することができるとともに、上記(1
)式の分母が零に近づき、各検出手段37.51.53
の検出誤差が拡大されて上記第一1演算手段41による
路面摩擦係数μの演算値の変動が大きくなるような走行
状態にあるときには、車両重心点の横加速度a Y %
前後輪舵角δF、δRなどの変数の微分値をパラメータ
とする(2)式に基づき、路面摩擦係数μが演算される
ので、各変数の値が小さいときにも演算誤差が増大する
ことなく、正確に路面摩擦係数μが算出される。
Therefore, it is possible to quickly detect changes in the road surface friction coefficient μ according to the dynamic characteristics of the vehicle, and also
) formula approaches zero, each detection means 37.51.53
When the driving condition is such that the detection error of is magnified and the fluctuation of the calculated value of the road surface friction coefficient μ by the first calculation means 41 becomes large, the lateral acceleration a Y % of the vehicle center of gravity increases.
Since the road surface friction coefficient μ is calculated based on equation (2), which uses the differential values of variables such as the front and rear wheel steering angles δF and δR as parameters, the calculation error does not increase even when the value of each variable is small. , the road surface friction coefficient μ is accurately calculated.

よって、車両の動特性に応じた路面摩擦係数μの変化を
速やかにかつ正確に検出することができ、このように導
出された路面摩擦係数μを車両の旋回走行制御等に利用
することにより、例えば圧雪路の旋回走行等においても
安定した走行を行うことができる。
Therefore, it is possible to quickly and accurately detect changes in the road surface friction coefficient μ according to the dynamic characteristics of the vehicle, and by using the road surface friction coefficient μ derived in this way for vehicle turning control, etc. For example, stable driving can be achieved even when turning around on a snow-packed road.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は、本発明を適用した車両の4輪操舵装置の構成
を示し、2,2は車両の左右の前輪、3゜3は左右の後
輪である。5は上記前輪2.2の舵角δFを調節する前
輪操舵機構である。該前輪操舵機構5は、前輪2.2を
回転自在に支持するとともにジヨイント部6aを介して
車体に支持された左右一対のナックル部材6,6と、該
ナックル部材6,6のナックルアーム部6b、6bにそ
れぞれ一端が連結された左右一対のタイロッド8゜8と
、該一対のタイロッド8,8の各他端同士をそれぞれ両
端で連結してなるラック軸9と、ハンドル4の回転をビ
ニオンとラック(いずれも図示せず)を介して上記ラッ
ク軸9の左右の移動に変換させるステアリングギヤ機構
10とを主要部材として構成されている。
FIG. 2 shows the configuration of a four-wheel steering system for a vehicle to which the present invention is applied, in which reference numerals 2 and 2 indicate left and right front wheels of the vehicle, and 3° and 3 indicate left and right rear wheels of the vehicle. 5 is a front wheel steering mechanism that adjusts the steering angle δF of the front wheels 2.2. The front wheel steering mechanism 5 includes a pair of left and right knuckle members 6, 6 that rotatably support the front wheels 2.2 and are supported by the vehicle body via a joint portion 6a, and a knuckle arm portion 6b of the knuckle members 6, 6. , 6b, a pair of left and right tie rods 8°8 each having one end connected thereto, a rack shaft 9 formed by connecting the other ends of the pair of tie rods 8, 8 to each other at both ends, and a rack shaft 9 that controls the rotation of the handle 4 with a pinion. The main component is a steering gear mechanism 10 that converts the rack shaft 9 into left and right movement via a rack (none of which is shown).

そして、該前輪操舵機構5において、ハンドル4が一定
の操舵角θで回転されると、ステアリングギヤ機構10
によりラック軸9を介してタイロッド8.8が左右方向
に移動し、その移動により、ナックル部材6,6がジヨ
イント部5a、5aの回りにそれぞれ回動させられて、
前輪2.2がフロントギヤ比Z(−θ/δF)に応じた
前輪舵角δFで転舵させられるようになされている。
In the front wheel steering mechanism 5, when the handle 4 is rotated at a constant steering angle θ, the steering gear mechanism 10
The tie rod 8.8 moves in the left-right direction via the rack shaft 9, and due to this movement, the knuckle members 6, 6 are rotated around the joint parts 5a, 5a, respectively.
The front wheels 2.2 are steered at a front wheel steering angle δF corresponding to a front gear ratio Z (-θ/δF).

また、上記後輪3,3側には、左右の後輪3゜−3を上
記前輪操舵機構5による前輪2,2の転舵に伴なって転
舵させるための後輪操舵機構12が設けられている。該
後輪操舵機構12は、上記前輪操舵機構5と同じ機能を
有する各要素、つまり一対のナックル部材13.13と
、タイロッド14.14と、ラック軸15とを有すると
ともに、該ラック軸15のラック部15aに先端のビニ
オン部16aで噛合するピニオン軸16と、該ピニオン
軸16の他端に取付けられた傘歯車18と、該傘歯車1
8に噛合する傘歯車19を出力軸に取付けてなるパルス
モータ20とを主要部材として構成されている。
Furthermore, a rear wheel steering mechanism 12 is provided on the rear wheels 3, 3 side for steering the left and right rear wheels 3°-3 in accordance with the steering of the front wheels 2, 2 by the front wheel steering mechanism 5. It is being The rear wheel steering mechanism 12 has elements having the same functions as the front wheel steering mechanism 5, that is, a pair of knuckle members 13.13, a tie rod 14.14, and a rack shaft 15. A pinion shaft 16 that meshes with the rack portion 15a at the tip end binion portion 16a, a bevel gear 18 attached to the other end of the pinion shaft 16, and the bevel gear 1.
The main component is a pulse motor 20 having a bevel gear 19 attached to an output shaft that meshes with the pulse motor 8.

そして、上記前輪操舵機構5による前輪舵角δFの調節
に応じて、後述の制御ユニット21によりパルスモータ
20が駆動されると、パルスモータ20の回転駆動力が
2つの傘歯車19.18、ビニオン部16aおよびラッ
ク部15aを介してラック軸15の左右方向の運動に変
換されるようになされている。
When the pulse motor 20 is driven by the control unit 21 (described later) in accordance with the adjustment of the front wheel steering angle δF by the front wheel steering mechanism 5, the rotational driving force of the pulse motor 20 is applied to the two bevel gears 19, 18, and the pinion. The movement is converted into a horizontal movement of the rack shaft 15 via the portion 16a and the rack portion 15a.

さらに、上記後輪操舵機構12のラック軸15には、そ
の車幅方向の往復運動をアシストするためのパワーシリ
ンダ23が配設されていて、該パワーシリンダ23は、
ラック軸15に一体的に取付けられたピストン23aと
、該ピストン23aによって仕切られる2つの油圧室2
3b、23Cとを有している。また、該油圧室23b、
23Cはそれぞれ油圧通路24.25を介してコントロ
ールバルブ26に連通している。該コントロールバルブ
26は、油供給通路27および油戻し通路28を介して
ポンプ駆動用モータ30により回転駆動される油圧ポン
プ29に連通するようになされている。
Further, a power cylinder 23 is disposed on the rack shaft 15 of the rear wheel steering mechanism 12 to assist in its reciprocating movement in the vehicle width direction.
A piston 23a integrally attached to the rack shaft 15, and two hydraulic chambers 2 partitioned by the piston 23a.
3b and 23C. Moreover, the hydraulic chamber 23b,
23C communicate with the control valve 26 via hydraulic passages 24, 25, respectively. The control valve 26 communicates with a hydraulic pump 29 which is rotationally driven by a pump drive motor 30 via an oil supply passage 27 and an oil return passage 28 .

上記コントロールバルブ26は、ビニ、オン軸16の回
転方向に応じてパワーシリンダ23の油圧室23b、2
3Cに対する油圧の供給を制御するものである。すなわ
ち、パルスモータ20の回転駆動力により後輪3,3を
転舵すべく、傘歯車18.19およびピニオン軸16を
介してラック軸15が車幅方向に移動させられるとき、
後輪3゜3の転舵方向に応じて、油圧供給通路27およ
び油圧戻し通路28と、各油圧通路24.25と、各油
圧室23b、23Cとの連通関係を切換え、パワーシリ
ンダ23の油圧室23b、23Cに対する圧油の給排に
より、ラック軸15の車幅方向の移動を助成し、後輪3
,3を所定の後輪舵角δRだけ転舵させるようになされ
ている。
The control valve 26 controls the hydraulic chambers 23b and 2 of the power cylinder 23 depending on the direction of rotation of the vinyl and on-shaft 16.
This controls the supply of hydraulic pressure to 3C. That is, when the rack shaft 15 is moved in the vehicle width direction via the bevel gears 18, 19 and the pinion shaft 16 in order to steer the rear wheels 3, 3 by the rotational driving force of the pulse motor 20,
Depending on the steering direction of the rear wheels 3°3, the communication relationship between the hydraulic pressure supply passage 27, the hydraulic pressure return passage 28, each hydraulic passage 24, 25, and each hydraulic chamber 23b, 23C is switched, and the hydraulic pressure of the power cylinder 23 is changed. By supplying and discharging pressure oil to and from the chambers 23b and 23C, movement of the rack shaft 15 in the vehicle width direction is assisted, and the rear wheel 3
, 3 by a predetermined rear wheel steering angle δR.

次に、21は、上記パルスモータ20およびポンプ駆動
用モータ30を制御する制御ユニットであって、該制御
ユニット21には、下記各センサ51〜53の信号が入
力されている。すなわち、51は車両の旋回走行時等に
おいて車体に作用する車幅方向の力つまり横力から横加
速度aYを検出する運動状態検出手段としての横力セン
サ、52はハンドル舵角θから予め定められた所定のフ
ロントギヤ比Zに基づき前輪舵角δFを検出する舵角セ
ンサ、53は左方の前輪2の回転数に基づき車速Vを検
出する車速検出手段としての車速センサである。
Next, 21 is a control unit that controls the pulse motor 20 and the pump drive motor 30, and signals from the following sensors 51 to 53 are input to the control unit 21. That is, 51 is a lateral force sensor as a motion state detection means for detecting a lateral acceleration aY from a force in the vehicle width direction, that is, a lateral force, acting on the vehicle body when the vehicle is turning, etc., and 52 is a lateral force sensor that is predetermined from the steering wheel steering angle θ. A steering angle sensor 53 detects a front wheel steering angle δF based on a predetermined front gear ratio Z, and a vehicle speed sensor 53 serves as a vehicle speed detecting means to detect a vehicle speed V based on the rotation speed of the left front wheel 2.

そして、上記制御ユニット21は、第3図に示すように
、車両の重量m、車両の重心点と前後輪軸との距離a、
  b、標準状態における前輪および後輪のタイヤコー
ナリングパワーKF、KR,車両のヨー慣性モーメント
エなどの車両のスタビリテイファクタ、後述の路面摩擦
係数μの演算式、転舵比特性、などの制御に必要なデー
タを記憶する記憶手段としての記憶部31と、外部スイ
ッチSWの切換えを検知して、車両の横滑り角βが零の
制御を行う側になっているか否か(後述する)を判別す
るとともに、その判別結果に応じて上記記憶部31に設
定されている路面摩擦係数μの演算式を切換える切換器
32と、該切換器32の判別結果および選択された路面
摩擦係数μの演算式に基づき上記各センサ類の出力に応
じて、路面とタイヤとの間の路面摩擦係数μを演算する
摩擦係数演算部33と、該摩擦係数演算部33の出力に
応じて記憶部31に記憶された転舵比特性から適正な転
舵比特性を選択する転舵比特性選択部34と、該転舵比
特性選択部34で選択された転舵比Rに基づき転舵比R
つまり後輪舵角δRを演算するとともに、上記摩擦係数
演算部33における路−面摩擦係数μの演算のための後
輪舵角δRを検出する機能を有する後輪舵角演算部35
と、該後輪舵角演算部35の出力を受け、上記パルスモ
ータ20およびポンプ駆動用モータ30を駆動するため
のパルス信号を形成するパルス信号形成部36と、該パ
ルス信号形成部36から得られたパルス信号に基づいて
パルスモータ20およびポンプ駆動用30を駆動する駆
動部MCとで形成されている。ここで、上記舵角センサ
52および後輪舵角演算部35により、前後輪舵角δF
、δRなどの操舵状態を検出する操舵状態検出手段37
が構成されている。
As shown in FIG. 3, the control unit 21 controls the weight m of the vehicle, the distance a between the center of gravity of the vehicle and the front and rear wheel axles,
b. For control of front and rear tire cornering powers KF and KR in standard conditions, vehicle stability factors such as the vehicle's yaw moment of inertia, the calculation formula for the road surface friction coefficient μ described later, steering ratio characteristics, etc. The storage section 31 serves as a storage means for storing necessary data, and the switching of the external switch SW is detected to determine whether or not the side slip angle β of the vehicle is controlled to be zero (described later). In addition, there is a switch 32 that switches the calculation formula for the road surface friction coefficient μ set in the storage unit 31 according to the determination result, and a switch 32 that switches the calculation formula for the road surface friction coefficient μ set in the storage unit 31 according to the determination result of the switch 32 and the selected calculation formula for the road surface friction coefficient μ. A friction coefficient calculating section 33 calculates a road surface friction coefficient μ between the road surface and the tires according to the outputs of the above-mentioned sensors, and a friction coefficient calculating section 33 calculates the road surface friction coefficient μ between the road surface and the tires according to the outputs of the above-mentioned sensors. A steering ratio characteristic selection unit 34 that selects an appropriate steering ratio characteristic from the steering ratio characteristics, and a steering ratio R based on the steering ratio R selected by the steering ratio characteristic selection unit 34.
In other words, the rear wheel steering angle calculation unit 35 has a function of calculating the rear wheel steering angle δR and detecting the rear wheel steering angle δR for calculating the road-surface friction coefficient μ in the friction coefficient calculation unit 33.
and a pulse signal forming section 36 that receives the output of the rear wheel steering angle calculating section 35 and forms pulse signals for driving the pulse motor 20 and the pump drive motor 30; The drive unit MC includes a pulse motor 20 and a drive unit MC that drives the pump drive 30 based on the received pulse signals. Here, the steering angle sensor 52 and the rear wheel steering angle calculating section 35 calculate the front and rear wheel steering angles δF.
, δR, etc. steering state detection means 37
is configured.

そして、本発明の特徴として、上記記憶部31には、以
下のようにして定められた路面摩擦係数μ、の演算式が
設定されている。
As a feature of the present invention, the storage unit 31 is set with an arithmetic expression for the road surface friction coefficient μ determined as follows.

すなわち、第4図に示すように、車両の旋回時において
タイヤに働く力の釣り合いから、下記に示す基本的な前
出の運動方程式(3)〜(7)%式% ただし、 ■(/3+γ) =av (ここで、FF、FRはそれぞれ前輪2.後輪3のコー
ナリングフォース、γはヨーレイトである)を得るが、
上記式(3)〜(7′)から、FF、FR,β。
That is, as shown in Fig. 4, from the balance of the forces acting on the tires when the vehicle turns, the basic equations of motion (3) to (7) shown below are expressed as follows: ■(/3+γ ) = av (where FF and FR are the cornering forces of front wheel 2 and rear wheel 3, respectively, and γ is the yaw rate), but
From the above formulas (3) to (7'), FF, FR, β.

γ、iを消去すると、 [m・I−Vjs’+ 2 μmV (m (a”KF
+ビKR)+1−K}・s + 4 c”KF−KR−
u’ −2−B−m−V” (a−Kp−b−KR)]
  aY − 2u−1−V’CKF・6F+KR4R)・s″+4 
μmy・KF−KR−c(b・δ1=+a−δR}・s
 + 4 p’V”Kt:・KR−C(δF−δR) つまり前出の(8)式を得る(ただし、Sはラプラス演
算子、K=KF +kR,c=a+b)oここで、Sの
二乗項は過渡応答の高周波成分であって、通常無視し得
るので零とおき、上式の両辺をμで徐することにより1 、CZ −[V (m (a’Kp +b’Kq ) 
+I−K}・s −m−V’(a=KF−b−KR) 
] aY/ 2 C=KFKR{V (b・6iF+a
−6R}・s +V’(δp−δR}・c=avl つまり前出の(1)式を得る。
By eliminating γ and i, we get [m・I−Vjs'+ 2 μmV (m (a”KF
+BiKR)+1-K}・s +4 c”KF-KR-
u'-2-B-m-V” (a-Kp-b-KR)]
aY - 2u-1-V'CKF・6F+KR4R)・s″+4
μmy・KF−KR−c(b・δ1=+a−δR}・s
+ 4 p'V''Kt:・KR-C(δF-δR) In other words, we obtain the above equation (8) (where S is the Laplace operator, K=KF +kR, c=a+b) o Here, S The square term of is a high frequency component of the transient response and can usually be ignored, so it is set to zero, and by dividing both sides of the above equation by μ, 1, CZ - [V (m (a'Kp + b'Kq )
+I-K}・s -m-V' (a=KF-b-KR)
] aY/ 2 C=KFKR{V (b・6iF+a
−6R}·s +V'(δp−δR}·c=avl In other words, the above equation (1) is obtained.

すなわち、路面摩擦係数μが、車両重心点の横加速度a
 Y s前輪舵角δF、後輪舵角δR1車速Vなどの変
数をパラメータとして求められる。
In other words, the road surface friction coefficient μ is the lateral acceleration a of the vehicle center of gravity
Ys It is determined using variables such as front wheel steering angle δF, rear wheel steering angle δR1, and vehicle speed V as parameters.

また、さらに上式の分子、分母にSを乗じることにより
、 μ= [V (m (a”KF+b’KR) +I−K
)・s −m−V2(a・Kt−−b−KR) ] i
hY/2 c−Kr−・KR{V Cb−6F+a4q
}・s+V”(JF6R> −c=ay) つまり前出の(2)式を得る。
Furthermore, by multiplying the numerator and denominator of the above formula by S, μ= [V (m (a”KF+b'KR) +I-K
)・s −m−V2(a・Kt−−b−KR) ] i
hY/2 c-Kr-・KR{V Cb-6F+a4q
}・s+V” (JF6R> −c=ay) In other words, the above equation (2) is obtained.

すなわち、路面摩擦係数μが、変数Vと車両重心点の横
加速度a ’/ s前輪舵角δF、後輪舵角δRなどの
変数の微分値をパラメータとして求められることになる
That is, the road surface friction coefficient μ is determined using the variable V and the differential values of variables such as the lateral acceleration a'/s of the vehicle center of gravity, the front wheel steering angle δF, and the rear wheel steering angle δR.

なお、特に4輪操舵でβを零とする制御を行うようなも
のでは、上記方程式(3)〜(7)においてβ−0とす
れば、より簡単な式 %式%( さらに、上式の右辺の分子9分母にSを乗じることによ
り μ=maY/2 (KrニーaF+KR−jR−(iy
/V”)  Ca=KF−b−KR) )      
00)を得る。本実施例では、上記切換器32により、
路面摩擦係数μを演算する基本的な運動方程式として、
βが零になる制御を行わないときには上記(1)、 (
2)に、βが零になる制御を行うときには上記(9)、
 00)式に切換えるようにしている。
In addition, especially in the case where control is performed to make β zero with four-wheel steering, if β - 0 is set in the above equations (3) to (7), the simpler formula % formula % (Furthermore, the above formula By multiplying the 9th denominator of the numerator on the right side by S, μ=maY/2 (Krnee aF+KR−jR−(iy
/V") Ca=KF-b-KR))
00) is obtained. In this embodiment, the switching device 32 allows
The basic equation of motion for calculating the road friction coefficient μ is:
When control is not performed so that β becomes zero, the above (1), (
In 2), when performing control such that β becomes zero, the above (9),
00) formula.

上記記憶部31には、上記転舵比特性選択部34で選択
すべき転舵比特性が設定されている。すなわち、この転
舵比特性は、第6図に示すように、基本的に、転舵比R
を車速Vが小さいときには逆位相側に、車速Vが大きい
ときには同位相側になるように連続的に変化させるとと
もに、路面摩擦係数μの変化に応じて、3種類の転舵比
特性に切換えるものである。例えば、路面摩擦係数μが
標、準的な値のときには、図中曲線r2のごとくなるの
に対し、路面摩擦係数μが比較的小さいときには、曲線
r1のごとく転舵状態の位相が逆転する車速v1の値を
上記標準特性の同車速v2よりも低い側に、逆に路面摩
擦係数μが比較的大きいときには、図中曲線r3のごと
く位相逆転の車速値v3を高い側にそれぞれ設定されて
いる。
In the storage section 31, steering ratio characteristics to be selected by the steering ratio characteristic selection section 34 are set. That is, as shown in FIG. 6, this steering ratio characteristic basically corresponds to the steering ratio R.
is continuously changed to the opposite phase side when the vehicle speed V is low, and to the same phase side when the vehicle speed V is high, and switches to three types of steering ratio characteristics according to changes in the road surface friction coefficient μ. It is. For example, when the road surface friction coefficient μ is a standard value, the curve r2 in the figure appears, whereas when the road surface friction coefficient μ is relatively small, the vehicle speed at which the phase of the steering state is reversed is as shown by the curve r1. The value of v1 is set to a lower side than the same vehicle speed v2 of the above standard characteristic, and conversely, when the road surface friction coefficient μ is relatively large, the vehicle speed value v3 of phase reversal is set to a higher side as shown by curve r3 in the figure. .

次に、第5図は、上記摩擦係数演算部33において所定
のサンプリング周期ごとに行われる路面摩擦係数μの演
算手順を示し、まず、ステップS1で上記車速センサ5
3、横力センサ51、舵角センサ52および後輪舵角演
算部35の信号から車速v1車両重心点の横加速度a 
Y s前輪舵角δF、後輪舵角δRを読取り、ステップ
S2でそれらの変数のうちaY、  δF、δRの微分
値を演算する。次に、ステップ83〜S5でそれぞれ車
速■の値および前輪舵角δF、後輪舵角δR2横加速度
aYの絶対値が所定の設定値以上か否かを判別し、判別
がYESであれば、路面摩擦係数μ推定を行うことがで
きる通常条件にあると判断してステップS6に進み、変
数V、aY、  δF、δRをパラメータとする上記(
1)または(9)式に基づいて路面摩擦係数μを算出し
たのちステップ5lflに進む。
Next, FIG. 5 shows a procedure for calculating the road surface friction coefficient μ which is performed at each predetermined sampling period in the friction coefficient calculating section 33. First, in step S1, the vehicle speed sensor 5
3. From the signals of the lateral force sensor 51, the steering angle sensor 52, and the rear wheel steering angle calculating section 35, calculate the vehicle speed v1 and the lateral acceleration a of the vehicle center of gravity.
Ys The front wheel steering angle δF and the rear wheel steering angle δR are read, and in step S2, the differential values of aY, δF, and δR among these variables are calculated. Next, in steps 83 to S5, it is determined whether the value of vehicle speed ■ and the absolute values of front wheel steering angle δF, rear wheel steering angle δR2, and lateral acceleration aY are greater than or equal to a predetermined set value, and if the determination is YES, It is determined that the normal conditions are in place for estimating the road surface friction coefficient μ, and the process proceeds to step S6, where the above (
After calculating the road surface friction coefficient μ based on equation 1) or equation (9), the process proceeds to step 5lfl.

一方、上記ステップS4.SSにおける判別のいずれか
がNOlつまり前後輪舵角δF、δRおよび車両重心点
の横加速度aYの絶対値がそれぞれ設定値以下の場合に
は、上記(1)または(9)式の右辺分母が零に近付き
誤差が増大するので、通常の路面摩擦係数μ推定を行う
ことができない特殊な所定条件にあると判断してステッ
プS7に移行し、ステップSy、S6で、前後輪舵角δ
F、δRの微分値の絶対値、横加速度aYの微分値の絶
対値がそれぞれ設定値以上か否かを判別する。そして、
ステップS7.S8における判別がYESのときには、
順に進んでステップS9で変数Vと変数aY、δF、δ
Rの微分値とをパラメータとする上記(′2Vまたは(
至)式に基づいて路面摩擦係数μを算出してステップS
IGに進む。
On the other hand, step S4. If any of the determinations in SS is NOl, that is, the absolute values of the front and rear wheel steering angles δF, δR and the lateral acceleration aY of the vehicle center of gravity are each less than the set value, then the denominator on the right side of equation (1) or (9) above is Since it approaches zero and the error increases, it is determined that there is a special predetermined condition in which the normal road surface friction coefficient μ cannot be estimated, and the process moves to step S7. In steps Sy and S6, the front and rear wheel steering angles δ are
It is determined whether the absolute values of the differential values of F and δR and the absolute values of the differential value of the lateral acceleration aY are each greater than or equal to a set value. and,
Step S7. When the determination in S8 is YES,
Proceeding in order, in step S9, variable V and variables aY, δF, δ
The above ('2V or (
Step S: Calculate the road surface friction coefficient μ based on the formula
Go to IG.

ステップSIOでは、路面摩擦係数μが負か否か、を判
別し、判別がμく0のYESであれば、路面摩擦係数μ
の特性からして不合理であるのでステップSoでμm0
に再設定する一方、ステップS10における判別がμ≧
0のNOであるときにはそのままで、ステップS+3に
進む。
In step SIO, it is determined whether the road surface friction coefficient μ is negative or not, and if the determination is YES (μ is 0), the road surface friction coefficient μ
This is unreasonable considering the characteristics of μm0 in step So.
On the other hand, the determination in step S10 is μ≧
If the answer is NO (0), the process directly proceeds to step S+3.

なお、上記ステップS3、S7、S8における判別のい
ずれかがNOlつまり、車速Vの値、前後輪舵角δF、
δRの微分値の絶対値、横加速度aYの微分値の絶対値
がそれぞれ設定値よりも小さいときには、ステップS+
2で前回のサンプリングで推定した路面摩擦係数μの値
を設定してステップS13に進む。
Note that any of the determinations in steps S3, S7, and S8 above is NO1, that is, the value of the vehicle speed V, the front and rear wheel steering angle δF,
When the absolute value of the differential value of δR and the absolute value of the differential value of the lateral acceleration aY are each smaller than the set values, step S+
In step S2, the value of the road surface friction coefficient μ estimated in the previous sampling is set, and the process proceeds to step S13.

そして、ステップS+3では、制御を円滑に行うために
、 μ′−μ/(1+τ・S) (ただし、μ′はμを積分化処理した新しい積分化摩擦
係数、τは積分時定数、Sはラプラス演算子)に基づき
積分化摩擦係数μ′を演算して制御を終了する。
Then, in step S+3, in order to perform control smoothly, μ'-μ/(1+τ・S) (where μ' is the new integrated friction coefficient obtained by integrating μ, τ is the integral time constant, and S is The integrated friction coefficient μ' is calculated based on the Laplace operator) and the control is completed.

よって、上記ステップS2により上記横力センサ(運動
状態検出手段)51ならびに舵角センサ52および後輪
舵角演算部35(操舵状態検出手段37)の出力を受け
、両検出手段37.53の検出値の微分値を演算する微
分値演算手段38が構成され、上記ステップSa、Ss
およびステップS7.S8により、車両の走行状態が所
定条件にあるか否かを判別する走行状態検出手段40が
構成されている。また、上記ステップS6により、車両
の走行状態が所定条件にないときには、上記車速センサ
(車速検出手段)53、横力センサ(運動状態検出手段
)51および操舵状態検出手段37の出力値と上記記憶
手段31の記憶内容とに応じ、車両の基本的な運動方程
式から導出される上記(1)式に基づき、路面摩擦係数
μを演算する第1摩擦係数演算手段41が構成され、上
記ステップS7により、車両の走行状態が所定条件にあ
るときには、上記車速センサ53および微分値演算手段
38の出力値と上記記憶手段31の記憶内容とに応じて
、車両の基本的な運動方程式から導出される上記(2)
式に基づいて、路面摩擦係数μを一演算する第2摩擦係
数演算手段42が構成されている。
Therefore, in step S2, the outputs of the lateral force sensor (motion state detection means) 51, the steering angle sensor 52, and the rear wheel steering angle calculation unit 35 (steering state detection means 37) are received, and the detection of both detection means 37.53 is performed. A differential value calculation means 38 is configured to calculate the differential value of the value, and the steps Sa, Ss
and step S7. S8 constitutes a running state detection means 40 that determines whether the running state of the vehicle meets a predetermined condition. Further, in step S6, if the running state of the vehicle does not meet the predetermined condition, the output values of the vehicle speed sensor (vehicle speed detecting means) 53, the lateral force sensor (motion state detecting means) 51, and the steering state detecting means 37 are combined with the above-mentioned memory. In accordance with the memory contents of the means 31, a first friction coefficient calculation means 41 is configured to calculate the road surface friction coefficient μ based on the above equation (1) derived from the basic equation of motion of the vehicle, and in step S7 , when the running state of the vehicle is under a predetermined condition, the above-mentioned equation derived from the basic equation of motion of the vehicle is determined according to the output values of the vehicle speed sensor 53 and the differential value calculation means 38 and the stored contents of the storage means 31. (2)
A second friction coefficient calculation means 42 is configured to calculate the road surface friction coefficient μ based on the formula.

車両の旋回走行時等に、各センサ51〜52の出力をう
けて、上記路面摩擦係数演算部33により、上記基本的
な運動方程式から導出された式(1)または(2)に基
づいて路面摩擦係数μが演算されると、上記転舵比特性
選択部34により、上記路面摩擦係数演算部33で算出
された路面摩擦係数μ(実際には積分化摩擦係数μ′)
の値の大小に応じて、予め上記記憶部31に設定された
第6図の転舵比特性曲線に1〜に3のうちいずれかが選
択される。次に、上記後輪舵角演算部35により、上記
転舵比選択部34で選択された転舵比、上記舵角センサ
52で検出された前輪舵角δFおよび上記車速センサ5
3で検出された車速Vの値に応じて、適切な後輪舵角δ
Rが演算される。さらに、パルス信号形成部36でその
演算値に応じたパルス信号が出力され、駆動部MCによ
り、該パルス信号に応じて上記パルスモータ20および
ポンプ駆動用モータ30が駆動されて、後輪3.3の舵
角が所定の舵角δRになるよう駆動される。
When the vehicle is turning, etc., the road surface friction coefficient calculating section 33 calculates the road surface based on equation (1) or (2) derived from the basic equation of motion based on the outputs of the sensors 51 to 52. When the friction coefficient μ is calculated, the steering ratio characteristic selection unit 34 selects the road surface friction coefficient μ (actually, the integrated friction coefficient μ′) calculated by the road surface friction coefficient calculation unit 33.
Depending on the magnitude of the value, any one of 1 to 3 is selected for the steering ratio characteristic curve of FIG. 6, which is set in advance in the storage section 31. Next, the rear wheel steering angle calculation unit 35 calculates the steering ratio selected by the steering ratio selection unit 34, the front wheel steering angle δF detected by the steering angle sensor 52, and the vehicle speed sensor 5.
An appropriate rear wheel steering angle δ is determined according to the value of the vehicle speed V detected in step 3.
R is calculated. Further, the pulse signal forming section 36 outputs a pulse signal according to the calculated value, and the driving section MC drives the pulse motor 20 and the pump drive motor 30 according to the pulse signal, thereby driving the rear wheels 3. The steering angle is driven so that the steering angle of No. 3 becomes a predetermined steering angle δR.

したがって、上記実施例では、車両の旋回走行時、タイ
ヤと路面との間の路面摩擦係数μを各検゛ 出手段で検
出された車速v1車両重心点の横加速度a Y s前輪
舵角δFおよび後輪舵角6日をパラメータとする基本的
な運動方程式から導出された(7)または(9)式に基
づいて演算するようにしたので、車両の運動状態に応じ
た路面摩擦係数μの変化を速やかに検出することができ
る。
Therefore, in the above embodiment, when the vehicle is turning, the road surface friction coefficient μ between the tires and the road surface is determined by the vehicle speed detected by each detection means, v1, the lateral acceleration at the center of gravity of the vehicle, a, Y, the front wheel steering angle, δF, and Since the calculation is based on equation (7) or (9) derived from the basic equation of motion with the rear wheel steering angle as a parameter, changes in the road surface friction coefficient μ according to the vehicle motion state can be calculated. can be detected promptly.

加えて、変数Vの値や各変数aY、  δF、δRの絶
対値が小さいときには、上記(1)または(9)式にお
いて、右辺の分母が零に近づくために、各検出手段の検
出誤差による路面摩擦係数μの演算誤差が増大するが、
走行状態がそのような特殊な所定条件にある場合には、
ステップS7に移行して、変数Vと変数aY、  δF
、δRの微分値とをパラメータとする(aまたは(至)
式により路面摩擦係数μの演算を行うようにしているの
で、各検出手段の検出誤差の拡大は生じない。したがっ
て、変数Vの値や各変数av、  δF、δRの絶対値
が小さい−ときにも、十分信頼し得る検出精度を維持で
きる。
In addition, when the value of the variable V or the absolute value of each variable aY, δF, δR is small, the denominator on the right side approaches zero in the above equation (1) or (9), so the detection error of each detection means is Although the calculation error of the road surface friction coefficient μ increases,
If the driving condition is under such special predetermined conditions,
Proceeding to step S7, variable V and variables aY, δF
, and the differential value of δR as parameters (a or (to)
Since the road surface friction coefficient μ is calculated using the formula, the detection error of each detection means does not increase. Therefore, even when the value of the variable V and the absolute values of the variables av, δF, and δR are small, sufficiently reliable detection accuracy can be maintained.

そして、このように演算された路面摩擦係数μに応じた
後輪舵角の制御を行うので、制御遅れを生ずることなく
、かつ正確に、例えば圧雪路の旋回走行等においても安
定した走行を行うことができるのである。
Since the rear wheel steering angle is controlled according to the road surface friction coefficient μ calculated in this way, stable driving is achieved without any control delay and accurately, for example, when driving around turns on a snow-packed road. It is possible.

また、特に、上記実施例ではステップSIOで演算され
た路面摩擦係数μの積分化処理を行っているので、過渡
応答における路面摩擦係数μの微細な変動が平準化され
、より安定した旋回走行を行うことができるという著効
を有する。
In particular, in the above embodiment, since the integration process is performed on the road surface friction coefficient μ calculated in step SIO, minute fluctuations in the road surface friction coefficient μ during transient response are smoothed out, resulting in more stable cornering. It has the legal effect that it can be carried out.

なお、本発明は上記実施例のような4輪操舵の場合に限
定されるものではなく、例えば2輪操舵の場合、本発明
の路面摩擦係数検出装置で検出された路面摩擦係数μを
利用して、低摩擦係数を有する路面で走行する場合等に
利用されるいわゆるアンチロック・ブレーキ・システム
に適用すれば、旋回走行時等に実際の路面摩擦係数μの
変化に対応したブレーキ力の制御を行うことができ、制
御効果を向上させることができるものである。
Note that the present invention is not limited to the case of four-wheel steering as in the above embodiment; for example, in the case of two-wheel steering, the road surface friction coefficient μ detected by the road surface friction coefficient detection device of the present invention may be used. If applied to a so-called anti-lock braking system used when driving on a road surface with a low friction coefficient, it will be possible to control the braking force in response to changes in the actual road surface friction coefficient μ during cornering, etc. It is possible to improve the control effect.

(発明の効果) 以上説明したように、本発明の路面摩擦係数検出装置に
よれば、車両の旋回走行時等における車両の基本的な運
動方程式から導出された車速、横加速度、前後車輪の舵
角などの変数をパラメータとする演算式に基づいてタイ
ヤと路面との間の路面摩擦係数を演算するとともに、そ
の式の分母が零に近づくような特殊な所定条件では、横
加速度、前後輪舵角の微分値をパラメータとする演算式
に基づいて路面摩擦係数を演算するようにしたので、変
数の値が小さいときにも検出精度を損ねずに路面摩擦係
数をその変化に伴って正確に検出することができ、安定
した1両の旋回走行制御に供することができる。
(Effects of the Invention) As explained above, according to the road surface friction coefficient detection device of the present invention, the vehicle speed, lateral acceleration, and steering of the front and rear wheels derived from the basic equation of motion of the vehicle when the vehicle is turning, etc. The road surface friction coefficient between the tires and the road surface is calculated based on a calculation formula that uses variables such as angle as parameters, and under special predetermined conditions where the denominator of the formula approaches zero, lateral acceleration, front and rear wheel steering, etc. The road surface friction coefficient is calculated based on an equation that uses the angle differential value as a parameter, so even when the value of the variable is small, the road surface friction coefficient can be accurately detected as it changes without compromising detection accuracy. This enables stable turning control of one vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図以下は本発明の実施例を示し、第2図は車両の全
体構成図、第3図は車両の制御装置の構成図、第4図は
車両が旋回走行時に作用する力の関係を示す図、第5図
は路面摩擦係数演算部におけ−る制御を示すフローチャ
ート、第6図は記憶部に設定された選択されるべき転舵
比特性を示す図である。 31・・・記憶部(記憶手段)、35・・・後輪舵角演
算部、37・・・操舵状態検出手段、38・・・微分値
演算手段、40・・・走行状態検出手段、41・・・・
・・第1摩擦係数演算手段、42・・・第2摩擦係数演
算手段、51・・・横力センサ(運動状態検出手段}・
s2・・・舵角センサ、53・・・車速センサ(車速検
出手段)。 特 許 出 願 人   マツダ株式会社代  理  
人    弁理士 前 1) 仏事2図 第1図 第6図
FIG. 1 is a block diagram showing the configuration of the present invention. Figure 2 and subsequent figures show embodiments of the present invention. Figure 2 is an overall configuration diagram of the vehicle, Figure 3 is a configuration diagram of the vehicle control device, and Figure 4 shows the relationship of forces that act when the vehicle turns. FIG. 5 is a flowchart showing the control in the road surface friction coefficient calculation section, and FIG. 6 is a diagram showing the steering ratio characteristics to be selected set in the storage section. 31... Storage section (storage means), 35... Rear wheel steering angle calculation section, 37... Steering state detection means, 38... Differential value calculation means, 40... Traveling state detection means, 41・・・・・・
...First friction coefficient calculation means, 42...Second friction coefficient calculation means, 51...Lateral force sensor (motion state detection means})
s2... Rudder angle sensor, 53... Vehicle speed sensor (vehicle speed detection means). Patent applicant Mazda Motor Corporation representative
Person Patent attorney front 1) Buddhist rituals 2 Figure 1 Figure 6

Claims (1)

【特許請求の範囲】[Claims] (1)車両のタイヤと路面との間の摩擦係数を検出する
摩擦係数検出装置であって、車両重心点の横加速度a_
Y等の車両の運動状態を検出する運動状態検出手段と、
前後輪の舵角δ_F、δ_Rなどの操舵状態を検出する
操舵状態検出手段と、車両の速度Vを検出する車速検出
手段と、車両の重量m、車両の重心点と前後輪軸との距
離a、b、標準状態における前輪および後輪のタイヤコ
ーナリングパワーK_F、K_R並びに車両のヨー慣性
モーメントIなどの車両のスタビリティファクタを記憶
する記憶手段と、上記運動状態検出手段および操舵状態
検出手段の出力を受け、該両検出手段の検出値の微分値
を演算する微分値演算手段と、車両の走行状態が特殊な
所定条件にあるときを検出する走行状態検出手段と、該
走行状態検出手段の出力を受け、車両の走行状態が通常
条件にあるときには、上記運動状態検出手段、操舵状態
検出手段および車速検出手段の出力値と記憶手段の記憶
内容とに応じて、車両の基本的な運動方程式から導出さ
れる式μ=[V{m(a^2K_F+b^2K_R)+
I・K}・s−m・V^2(a・K_F−b・K_R)
]a_Y/2c・K_F・K_R{V(b・δ_F+a
・δ_R)・s+V^2(δ_F−δ_R)−c・a_
Y} (ただし、sはラプラス演算子、K=K_F+K_R、
c=a+b)に基づき、路面摩擦係数μを演算する第1
摩擦係数演算手段と、上記走行状態検出手段の出力を受
け、車両の走行状態が特殊な所定条件にあるときには、
上記車速検出手段および微分値演算手段の出力値と記憶
手段の記憶内容とに応じて、車両の基本的な運動方程式
から導出される式 μ=[V{m(a^2K_F+b^2K_R)+I・K
}・s−m・V^2(a・K_F−b・K_R)]■_
Y/2_c・K_F・K_R{V(b・■_F+a・■
_R)・s+V^2(■_F−■_R)−c・■_Y} に基づき、路面摩擦係数μを演算する第2摩擦係数演算
手段とを備えたことを特徴とする路面摩擦係数検出装置
(1) A friction coefficient detection device that detects the friction coefficient between the vehicle tires and the road surface, which detects the lateral acceleration a_ of the vehicle center of gravity.
a motion state detection means for detecting a motion state of a vehicle such as Y;
A steering state detection means for detecting steering states such as steering angles δ_F and δ_R of the front and rear wheels, a vehicle speed detection means for detecting the speed V of the vehicle, a weight m of the vehicle, a distance a between the center of gravity of the vehicle and the front and rear wheel axes, b. Storage means for storing stability factors of the vehicle such as tire cornering powers K_F, K_R of the front wheels and rear wheels and the yaw moment of inertia I of the vehicle in a standard state, and outputs of the above-mentioned motion state detection means and steering state detection means; a differential value calculating means for calculating a differential value of the detected values of both the detecting means; a driving state detecting means for detecting when the driving state of the vehicle is under a special predetermined condition; and an output of the driving state detecting means. Therefore, when the running state of the vehicle is under normal conditions, the equation of motion is derived from the basic equation of motion of the vehicle according to the output values of the motion state detection means, steering state detection means, and vehicle speed detection means and the contents stored in the storage means. The formula μ=[V{m(a^2K_F+b^2K_R)+
I・K}・s−m・V^2(a・K_F−b・K_R)
]a_Y/2c・K_F・K_R{V(b・δ_F+a
・δ_R)・s+V^2(δ_F−δ_R)−c・a_
Y} (where s is the Laplace operator, K=K_F+K_R,
c=a+b), the first step calculates the road surface friction coefficient μ.
In response to the outputs of the friction coefficient calculating means and the running state detecting means, when the running state of the vehicle is under a special predetermined condition,
According to the output values of the vehicle speed detection means and the differential value calculation means and the contents stored in the storage means, the formula μ=[V{m(a^2K_F+b^2K_R)+I・K
}・s−m・V^2(a・K_F−b・K_R)]■_
Y/2_c・K_F・K_R{V(b・■_F+a・■
_R)・s+V^2(■_F−■_R)−c・■_Y} A road surface friction coefficient detection device characterized by comprising: second friction coefficient calculation means for calculating a road surface friction coefficient μ based on the following equation.
JP62260454A 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient Pending JPH01101437A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62260454A JPH01101437A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient
EP88117133A EP0312096B1 (en) 1987-10-15 1988-10-14 Friction detecting device for vehicles
DE8888117133T DE3877118T2 (en) 1987-10-15 1988-10-14 DEVICE FOR DETERMINING THE FRICTION FACTOR FOR VEHICLES.
US07/260,890 US4951198A (en) 1987-10-15 1988-10-14 Friction detecting device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260454A JPH01101437A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Publications (1)

Publication Number Publication Date
JPH01101437A true JPH01101437A (en) 1989-04-19

Family

ID=17348170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260454A Pending JPH01101437A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Country Status (1)

Country Link
JP (1) JPH01101437A (en)

Similar Documents

Publication Publication Date Title
US4951198A (en) Friction detecting device for vehicles
JPH0478668A (en) Rear wheel steering control method
JP2725426B2 (en) Vehicle slip angle estimating device, suspension device and rear wheel steering device using the same
JPH01202581A (en) Rear wheel steering angle control method in front-rear-wheel-steering vehicle
US5105899A (en) Rear wheel steering angle control system for vehicles
JPH06221968A (en) Road surface friction coefficient detection device
JPH01101437A (en) Detecting device for road surface friction coefficient
JPH01101434A (en) Detecting device for road surface friction coefficient
JPS60191875A (en) Controlling method of steerage for vehicles
JPH01101436A (en) Detecting device for road surface friction coefficient
JPH07144653A (en) Controller of quantity of yawing momentum of vehicle
JPH01101435A (en) Detecting device for road surface friction coefficient
JPH01101441A (en) Detecting device for road surface friction coefficient
JP2717676B2 (en) Rear wheel steering control device for vehicle
JP2921311B2 (en) Cooperative control method between driving force movement and four-wheel steering
JPH01101438A (en) Detecting device for road surface friction coefficient
JPH01101439A (en) Detecting device for road surface friction coefficient
JPH01311960A (en) Active four-wheel steering gear
JP2532106B2 (en) Steering control device for four-wheel steering vehicle
JPH0547429B2 (en)
JPS60191876A (en) Controlling method of steerage for vehicles
JP2502761B2 (en) Four-wheel steering system for vehicles
JPS63192667A (en) Rear wheel steering device for vehicle
JP3320882B2 (en) Vehicle steering system
JPH01101440A (en) Detecting device for road surface friction coefficient