JPH01101435A - Detecting device for road surface friction coefficient - Google Patents

Detecting device for road surface friction coefficient

Info

Publication number
JPH01101435A
JPH01101435A JP62260452A JP26045287A JPH01101435A JP H01101435 A JPH01101435 A JP H01101435A JP 62260452 A JP62260452 A JP 62260452A JP 26045287 A JP26045287 A JP 26045287A JP H01101435 A JPH01101435 A JP H01101435A
Authority
JP
Japan
Prior art keywords
vehicle
friction coefficient
road surface
surface friction
detection means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62260452A
Other languages
Japanese (ja)
Inventor
Kenichi Watanabe
憲一 渡辺
Akihiko Miyoshi
三好 晃彦
Shoichi Kamimura
上村 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62260452A priority Critical patent/JPH01101435A/en
Publication of JPH01101435A publication Critical patent/JPH01101435A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)

Abstract

PURPOSE:To accurately perform detection by calculating the road surface friction coefficient between tires and a road surface from the motion equation of a vehicle in its turning, etc., according to differential values of variables such as lateral acceleration and steering angles of the front and rear wheels. CONSTITUTION:When the vehicle turns, a differential value arithmetic means 38 differentiates the lateral acceleration ay of at the vehicle gravity center detected by a motion state detecting means 51, the front and rear wheel steering angles deltaF and deltaR detected by a steering state detecting means 37, etc. Further, a friction coefficient arithmetic means 39 calculates the road surface friction coefficient mu between the tires and road surface corresponding to the dynamic characteristics of the vehicle from an equation [where c=a+b, K=KF+KR, (s) is a Laplacean, and KF and KR are the tire cornering power of the front and rear wheels] derived from the basic motion equation of the vehicle according to the output values of the differential value arithmetic means 38 and a vehicle speed detecting means 53 and the stability factor of the vehicle stored in a storage means 31.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両のタイヤと路面との間の路面摩擦係数を
検出する摩擦係数検出装置に係り、特に車両の動特性に
応じた路面摩擦係数を検出するようにしたものに関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a friction coefficient detection device that detects a road surface friction coefficient between a vehicle tire and a road surface, and particularly relates to a friction coefficient detection device that detects a road surface friction coefficient between a vehicle tire and a road surface. Regarding detecting coefficients.

(従来の技術) 従来より、車両のタイヤと路面との間の路面摩擦係数を
検出する摩擦係数検出装置として、例えば特開昭59−
148769号公報に開示される如く、前輪の舵角に応
じて路面摩擦係数の値を複数個予測し、該予測された摩
擦係数にそれぞれ対応する横加速度を演算して、該演算
された横加速度と実測された横加速度とを比較し、最も
近い値に対応する予測摩擦係数を選択することにより、
実際の摩擦係数を推定し、この推定した摩擦係数を用い
て旋回走行時の後輪舵角を制御しようとす−るものが知
られている。
(Prior Art) Conventionally, as a friction coefficient detection device for detecting a road surface friction coefficient between a vehicle tire and a road surface, for example, Japanese Patent Application Laid-Open No. 1986-
As disclosed in Japanese Patent No. 148769, a plurality of values of the road surface friction coefficient are predicted according to the steering angle of the front wheels, lateral acceleration corresponding to each of the predicted friction coefficients is calculated, and the calculated lateral acceleration is calculated. By comparing the actual lateral acceleration and selecting the predicted friction coefficient corresponding to the closest value,
There is a known system that estimates the actual coefficient of friction and uses the estimated coefficient of friction to control the steering angle of the rear wheels during cornering.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは、摩擦係数が一定で
あると仮定し、操舵入力に対する車両の横加速度やヨー
レイト等の過渡応答つまり動特性が同等考慮されていな
い。したがって、ハンドルの操舵角度の変化がない状態
、つまり定常用を描く旋回走行時等の定常状態ではある
程度の推定精度を確保することができるが、現実には、
そのような定常状態はごくまれである。すなわち、上記
従来のものでは、十分信頼し得る路面摩擦係数を導出し
て正確な旋回走行制御に供することができない。
(Problems to be Solved by the Invention) However, in the conventional method described above, it is assumed that the coefficient of friction is constant, and transient responses such as lateral acceleration and yaw rate of the vehicle to steering input, that is, dynamic characteristics, are not equally considered. . Therefore, a certain degree of estimation accuracy can be secured in a state where there is no change in the steering angle of the steering wheel, that is, in a steady state such as when turning a steady state, but in reality,
Such steady states are extremely rare. That is, with the above-mentioned conventional method, it is not possible to derive a sufficiently reliable road surface friction coefficient and use it for accurate turning control.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、操舵入力に対する車両の動特性をも考慮して路面
摩擦係数を検出することにより、旋回走行時等に路面摩
擦係数の変化を検出し、旋回走行制御等に有用な路面摩
擦係数検出装置を提供することにある。
The present invention has been made in view of the above, and its purpose is to detect changes in the road surface friction coefficient during cornering, etc. by detecting the road surface friction coefficient in consideration of the dynamic characteristics of the vehicle in response to steering input. An object of the present invention is to provide a road surface friction coefficient detection device useful for cornering control and the like.

(問題点を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように、車両のタイヤと路面との間の摩擦係数を検
出する摩擦係数検出装置を対象とする。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a friction coefficient detection device for detecting the friction coefficient between the tires of a vehicle and the road surface, as shown in FIG. set to target.

そして、車両重心点の横加速度aY等の車両の運動状態
を検出する運動状態検出手段51と、前後輪舵角δF、
δRなどの操舵状態を検出する操舵状態検出手段37と
、車両の速度Vを検出する車速検出手段53と、車両の
重量m、車両の重心点と前後輪軸との距離a、  b、
標準状態における前輪および後輪のタイヤコーナリング
パワーKF。
The motion state detection means 51 detects the motion state of the vehicle such as the lateral acceleration aY of the vehicle center of gravity, and the front and rear wheel steering angles δF,
The steering state detection means 37 detects the steering state such as δR, the vehicle speed detection means 53 detects the speed V of the vehicle, the weight m of the vehicle, the distances a, b, between the center of gravity of the vehicle and the front and rear wheel axes.
Tire cornering power KF of front and rear wheels in standard conditions.

KR並びに車両のヨー慣性モーメントエなどの車両のス
タビリテイファクタを記憶する記憶手段31と、上記運
動状態検出手段51および操舵状態検出手段37の出力
を受け、該両検出手段37゜53の検出値の微分値を演
算する微分値演算手段38と、上記車速検出手段53お
よび微分値演算手段38の出力値と上記記憶手段31の
記憶内容とに応じて、車両の基本的な運動方程式から導
出される式 %式%) (ただし、c−a+b、KmKp +KR,sはラプラ
ス演算子)に基づき、路面摩擦係数μを演算する摩擦係
数演算手段39とを設ける構成としたものである。
A storage means 31 for storing vehicle stability factors such as KR and vehicle yaw moment of inertia receives the outputs of the motion state detection means 51 and steering state detection means 37, and detects the detected values of both detection means 37.53. is derived from the basic equation of motion of the vehicle according to the output values of the vehicle speed detection means 53 and the differential value calculation means 38 and the contents stored in the storage means 31. The friction coefficient calculating means 39 calculates the road surface friction coefficient μ based on the formula % (% formula %) (where c-a+b, KmKp +KR, s is a Laplace operator).

ここに、上記(1)式は以下のようにして導出されたも
のである。
Here, the above equation (1) is derived as follows.

すなわち、第4図に示すように、車両の旋回時において
タイヤに働く力の釣り合いから、基本的な下記の運動方
程式、 m、aY−2Fp +2FR(3) ■、チー2afFp−2b−FR(4)FF−μmKF
(δF−β−a・γ/V’)    (5)FR−p−
Kq(δR−β+b・r/V)    (6)ただし、
 v(j+γ)−av      (7)(ここで、F
F、FRはそれぞれ前輪2.後輪3のコーナリングフォ
ース、γはヨーレイトである)を得るが、上記式(3)
〜(7′)から、FF、PR,β。
That is, as shown in Fig. 4, from the balance of the forces acting on the tires when the vehicle turns, the basic equation of motion is: m, aY-2Fp +2FR(3) ■, Qi2afFp-2b-FR(4 )FF-μmKF
(δF-β-a・γ/V') (5) FR-p-
Kq (δR-β+b・r/V) (6) However,
v(j+γ)−av (7) (where F
F and FR are front wheels 2. The cornering force of rear wheel 3, γ is the yaw rate) is obtained using the above formula (3).
From ~(7'), FF, PR, β.

γ、テを消去すると、 [m・I−V’s’+ 2μ・V (m (a’KF+
 b’KR) +1・K)・s +4 c’KF−KR
・u”−2μ・m−V’ (a−KF−b−KR)]a
v= 2 a−1−V” (KF4 F +Kn−6n ) 
・s + 4 u”V−KF−KR9C(b−δp+a
−δR)−s + 4 μ’V’Kp・KR−C・(δ
F−δR)          (8)を得る(ただし
、Sはラプラス演算子、K−KF+KR%cma+b)
By eliminating γ and Te, we get [m・IV's'+ 2μ・V (m (a'KF+
b'KR) +1・K)・s +4 c'KF-KR
・u''-2μ・m-V' (a-KF-b-KR)] a
v= 2 a-1-V” (KF4 F +Kn-6n)
・s + 4 u”V-KF-KR9C (b-δp+a
-δR)-s + 4 μ'V'Kp・KR-C・(δ
F-δR) (8) is obtained (S is the Laplace operator, K-KF+KR%cma+b)
.

ここで、Sの二乗項は過渡応答の高周波成分であって、
通常無視し得るので零とおき、上式の両辺をμで除する
ことにより、 u = [V (m (a’Kp + b’KR) +
 I−K)・s −m−V’Ca−Kr−−b−KR)
]  av/2cmKF−KR+V  (b−δF+a
−δR)−8+V’(δF−δR)  −c−a Y 
l           (1)’を得る。
Here, the square term of S is the high frequency component of the transient response,
Since it can usually be ignored, we set it to zero, and by dividing both sides of the above equation by μ, we get u = [V (m (a'Kp + b'KR) +
I-K)・s-m-V'Ca-Kr--b-KR)
] av/2cmKF-KR+V (b-δF+a
-δR)-8+V'(δF-δR) -c-a Y
l (1)' is obtained.

そして、さらに上式の分子、分母にSを乗じることによ
り、 u= [V  (m (a’KF+b”KR)+ l−
K1・s −m−V”Ca−KF−b−KR)] MY
/2 C−KF、Kq  (V Cb−jr−+a−a
t:z )・S +V’Cjt:6R)−c−my) つまり上記(1)式を得る。
Then, by further multiplying the numerator and denominator of the above formula by S, u= [V (m (a'KF+b''KR)+ l-
K1・s-m-V"Ca-KF-b-KR)] MY
/2 C-KF, Kq (V Cb-jr-+a-a
t:z)・S+V'Cjt:6R)-c-my) In other words, the above equation (1) is obtained.

(作用) 以上の構成により、本発明では、車両の旋回走行時等に
おいて、運動状態検出手段51で検出された車両重心点
の横加速度a ’I’ s操舵状態検出手段37で検出
された前後輪舵角δF、δRなどに応じて、微分値演算
手段38により、それらの微分値が演算され、さらに、
摩擦係数演算手段39より、該微分値演算手段38およ
び上記車速検出手段53の出力値と記憶手段31に記憶
された車両のスタビリテイファクタとに応じて、車両の
基本的な運動方程式から導かれる上記(1)式に基づき
、車両の動特性に対応したタイヤと路面との間の路面摩
擦係数μが算出される。
(Function) With the above configuration, in the present invention, when the vehicle is turning or the like, the lateral acceleration a 'I' of the vehicle center of gravity detected by the motion state detection means 51 s The longitudinal acceleration detected by the steering state detection means 37 According to the wheel steering angles δF, δR, etc., the differential value calculation means 38 calculates the differential values thereof, and further,
The friction coefficient calculation means 39 derives a coefficient from the basic equation of motion of the vehicle according to the output values of the differential value calculation means 38 and the vehicle speed detection means 53 and the stability factor of the vehicle stored in the storage means 31. Based on the above equation (1), the road surface friction coefficient μ between the tires and the road surface corresponding to the dynamic characteristics of the vehicle is calculated.

その場合、路面摩擦係数μを演算するパラメータとして
、各変数つまり車両重心点の横加速度aY1前後輪舵角
δF、δRなどの微分値を利用しているので、各変数の
値が小さいときにも演算誤差が増大することなく、正確
に路面摩擦係数μが算出される。
In that case, the differential values of each variable, ie, the lateral acceleration aY1 at the vehicle center of gravity, the front and rear wheel steering angles δF, δR, etc., are used as parameters for calculating the road surface friction coefficient μ, so even when the values of each variable are small, The road surface friction coefficient μ is accurately calculated without increasing calculation errors.

よって、車両の動特性に応じた路面摩擦係数μの変化を
速やかに検出することができ、このように導出された路
面摩擦係数μを車両の旋回走行制御等に利用することに
より、例えC−圧雪路の旋回走行等においても安定した
走行を行うことができる。
Therefore, it is possible to quickly detect changes in the road surface friction coefficient μ according to the dynamic characteristics of the vehicle, and by using the road surface friction coefficient μ derived in this way for vehicle turning control, etc. Stable driving can be achieved even when turning around on a snow-packed road.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は、本発明を適用した車両の4輪操舵装置の構成
を示し、2.2は車両の左右の前輪、3゜3は左右の後
輪である。5は上記前輪2,2の舵角δFを調節する前
輪操舵機構である。該前輪操舵機構5は、前輪2,2を
回転自在に支持するとともにジヨイント部6aを介して
車体に支持された左右一対のナックル部材6.6と、該
ナックル部材6.6のナックルアーム部6b、6bにそ
れぞれ一端が連結された左右一対のタイロッド8゜8と
、該一対のタイロッド8,8の各他端同士をそれぞれ両
端で連結してなるラック軸9と、ハンドル4の回転をピ
ニオンとラック(いずれも図示せず)を介して上記ラッ
ク軸9の左右の移動に変換させるステアリングギヤ機構
1Gとを主要部材として構成されている。
FIG. 2 shows the configuration of a four-wheel steering system for a vehicle to which the present invention is applied, where 2.2 is the left and right front wheels of the vehicle, and 3.3 is the left and right rear wheels. Reference numeral 5 denotes a front wheel steering mechanism that adjusts the steering angle δF of the front wheels 2, 2. The front wheel steering mechanism 5 includes a pair of left and right knuckle members 6.6 that rotatably support the front wheels 2, 2 and are supported by the vehicle body via a joint portion 6a, and a knuckle arm portion 6b of the knuckle member 6.6. , 6b, a pair of left and right tie rods 8°8 each having one end connected thereto, a rack shaft 9 formed by connecting the other ends of the pair of tie rods 8, 8 at both ends, and a pinion to control the rotation of the handle 4. The main component is a steering gear mechanism 1G that converts the rack shaft 9 into left and right movement via a rack (none of which is shown).

そして、該前輪操舵機構5において、ハンドル4が一定
の操舵角θで回転されると、°ステアリングギヤ機構1
0によりラック軸9を介してタイロッド8,8が左右方
向に移動し、その移動により、ナックル部材6,6がジ
ヨイント部5a、5aの回りにそれぞれ回動させられて
、前輪2.2カーフロントギヤ比2(−θ/δF)に応
じた前輪舵角δFで転舵させられるようになされている
In the front wheel steering mechanism 5, when the handle 4 is rotated at a constant steering angle θ, the steering gear mechanism 1
0 causes the tie rods 8, 8 to move in the left-right direction via the rack shaft 9, and due to this movement, the knuckle members 6, 6 are rotated around the joint parts 5a, 5a, respectively, and the front wheels 2. The front wheels are steered at a front wheel steering angle δF corresponding to a gear ratio of 2 (-θ/δF).

また、上記後輪3,3側には、左右の後輪3゜3を上記
前輪操舵機構5による前輪2,2の転舵に伴なって転舵
させるための後輪操舵機構12が設けられている。該後
輪操舵機構12は、上記前輪操舵機構5と同じ機能を有
する各要素、つまり一対のナックル部材13.13と、
タイロッド14.14と、ラック軸15とを有するとと
もに、該ラック軸15のラック部15aに先端のピニオ
ン部16aで噛合するピニオン軸16と、該ピニオン軸
16の他端に取付けられた傘歯車18と、該傘歯車18
に噛合する傘歯車19を出力軸に取付けてなるパルスモ
ータ20とを主要部材として構成されている。
Furthermore, a rear wheel steering mechanism 12 is provided on the rear wheels 3, 3 side for steering the left and right rear wheels 3°3 in accordance with the steering of the front wheels 2, 2 by the front wheel steering mechanism 5. ing. The rear wheel steering mechanism 12 includes elements having the same functions as the front wheel steering mechanism 5, that is, a pair of knuckle members 13.13,
A pinion shaft 16 which has a tie rod 14, 14 and a rack shaft 15, and which engages the rack portion 15a of the rack shaft 15 with a pinion portion 16a at its tip, and a bevel gear 18 attached to the other end of the pinion shaft 16. and the bevel gear 18
The main component is a pulse motor 20 having a bevel gear 19 attached to an output shaft that meshes with the motor.

そして、上記前輪操舵機構5による前輪舵角δFの調節
に応じて、後述の制御ユニット21によりパルスモータ
20が駆動されると、パルスモータ20の回転駆動力が
2つの傘歯車19.1g、ピニオン部16aおよびラッ
ク部15aを介してラック軸15の左右方向の運動に変
換されるようになされている。
When the pulse motor 20 is driven by the control unit 21 (described later) in accordance with the adjustment of the front wheel steering angle δF by the front wheel steering mechanism 5, the rotational driving force of the pulse motor 20 is applied to the two bevel gears 19.1g and the pinion. The movement is converted into a horizontal movement of the rack shaft 15 via the portion 16a and the rack portion 15a.

さらに、上記後輪操舵機構12のラック軸15には、そ
の車幅方向の往復運動をアシストするためのパワーシリ
ンダ23が配設されていて、該パワーシリンダ23は、
ラック軸15に一体的に取付けられたピストン23aと
、該ピストン23aによって仕切られる2つの油圧室2
3b、23cとを有している。また、該油圧室23b、
23cはそれぞれ油圧通路24.25を介してコントロ
ールバルブ26に連通している。該コントロールバルブ
26は、油供給通路27および油戻し通路28を介して
ポンプ駆動用モータ30により回転駆動される油圧ポン
プ29に連通するようになされている。
Further, a power cylinder 23 is disposed on the rack shaft 15 of the rear wheel steering mechanism 12 to assist in its reciprocating movement in the vehicle width direction.
A piston 23a integrally attached to the rack shaft 15, and two hydraulic chambers 2 partitioned by the piston 23a.
3b and 23c. Moreover, the hydraulic chamber 23b,
23c communicate with the control valve 26 via hydraulic passages 24, 25, respectively. The control valve 26 communicates with a hydraulic pump 29 which is rotationally driven by a pump drive motor 30 via an oil supply passage 27 and an oil return passage 28 .

上記コントロールバルブ26は、ビニオン軸16の回転
方向に応じてパワーシリンダ23の油圧室23b、23
cに対する油圧の供給を制御するものである。すなわち
、パルスモータ20の回転駆動力により後輪3.3を転
舵すべく、傘歯車18.19およびビニオン軸16を介
してラック軸15が車幅方向に移動させられるとき、後
輪3゜3の転舵方向に応じて、油圧供給通路27および
油圧戻し通路28と、各油圧通路24.25と、各油圧
室23b、23Cとの連通関係を切換え、パワーシリン
ダ23の油圧室23b、23Cに対する圧油の給排によ
り、ラック軸15の車幅方向の移動を助成し、後輪3.
3を所定の後輪舵角δRだけ転舵させるようになされて
いる。
The control valve 26 controls the hydraulic chambers 23b and 23 of the power cylinder 23 depending on the rotational direction of the pinion shaft 16.
This controls the supply of hydraulic pressure to c. That is, when the rack shaft 15 is moved in the vehicle width direction via the bevel gear 18.19 and the pinion shaft 16 in order to steer the rear wheel 3.3 by the rotational driving force of the pulse motor 20, the rear wheel 3.3 3, the communication relationship between the hydraulic supply passage 27, the hydraulic return passage 28, each hydraulic passage 24, 25, and each hydraulic chamber 23b, 23C is switched, and the hydraulic chamber 23b, 23C of the power cylinder 23 is switched. The movement of the rack shaft 15 in the vehicle width direction is aided by supplying and discharging pressurized oil to and from the rear wheels 3.
3 by a predetermined rear wheel steering angle δR.

次に、21は、上記パルスモータ20およびポンプ駆動
用モータ30を制御する制御ユニットであって、該制御
ユニット21には、下記各センサ51〜53の信号が入
力されている。すなわち、51は車両の旋回走行時等に
おいて車体に作用する車幅方向の力つまり横力から横加
速度aYを検出する運動状態検出手段としての横力セン
サ、52はハンドル舵角θから予め定められた所定のフ
ロントギヤ比2に基づき前輪舵角δFを検出する舵角セ
、ンサ、53は左方の前輪2の回転数に基づき車速Vを
検出する車速検出手段としての車速センサである。
Next, 21 is a control unit that controls the pulse motor 20 and the pump drive motor 30, and signals from the following sensors 51 to 53 are input to the control unit 21. That is, 51 is a lateral force sensor as a motion state detection means for detecting a lateral acceleration aY from a force in the vehicle width direction, that is, a lateral force, acting on the vehicle body when the vehicle is turning, etc., and 52 is a lateral force sensor that is predetermined from the steering wheel steering angle θ. A steering angle sensor 53 that detects the front wheel steering angle δF based on the predetermined front gear ratio 2 is a vehicle speed sensor serving as a vehicle speed detecting means that detects the vehicle speed V based on the rotation speed of the left front wheel 2.

そして、上記制御ユニット21は、第3図に示すように
、車両の重量m1車両の重心点と前後輪軸との距離a、
  b、標準状態における前輪および後輪のタイヤコー
ナリングパワーKF、KR,車両のヨー慣性モーメント
Iなどの車両のスタビリテイファクタ、後述の路面摩擦
係数μの演算式、転舵比特性、などの制御に必要なデー
タを記憶する記憶手段としての記憶部31と、外部スイ
ッチSWの切換えを検知して、車両の横滑り角βが零の
制御を行う側になっているか否か(後述する)を判別す
るとともに、その判別結果に応じて上記記憶部31に設
定されている路面摩擦係数μの演算式を切換える切換器
32と、該切換器32の判別結果および選択された路面
摩擦係数μの演算式に基づき上記各センサ類の出力に応
じて、路面とタイヤとの間の路面摩擦係数μを演算する
摩擦係数演算部33と、該摩擦係数演算部33の出力に
応じて記憶部31に記憶された転舵比特性から適正な転
舵比特性を選択する転舵比特性選択部34と、該転舵比
特性選択部34で選択された転舵比Rに基づき転舵比R
つまり後輪舵角δRを演算するとともに、上記摩擦係数
演算部33における路面摩擦係数μの演算のための後輪
舵角δRを検出する機能を有する後輪舵角演算部35と
、該後輪舵角演算部35の出力を受け、上記パルスモー
タ20およびポンプ駆動用モータ3Gを駆動するための
パルス信号を形成するパルス信号形成部36と、該パル
ス信号形成部36から得られたパルス信号に基づいてパ
ルスモータ20およびポンプ駆動用30を駆動する駆動
部MCとで形成されている。ここで、上記舵角センサ5
2および後輪舵角演算部35により、前後輪舵角δF、
δRなどの操舵状態を検出する操舵状態検出手段37が
構成されている。
As shown in FIG. 3, the control unit 21 controls the weight of the vehicle m1, the distance a between the center of gravity of the vehicle and the front and rear wheel axles,
b. Control of front and rear tire cornering powers KF and KR in standard conditions, vehicle stability factors such as the vehicle's yaw moment of inertia I, the calculation formula for the road surface friction coefficient μ described later, steering ratio characteristics, etc. The storage section 31 serves as a storage means for storing necessary data, and the switching of the external switch SW is detected to determine whether or not the side slip angle β of the vehicle is controlled to be zero (described later). In addition, there is a switch 32 that switches the calculation formula for the road surface friction coefficient μ set in the storage unit 31 according to the determination result, and a switch 32 that switches the calculation formula for the road surface friction coefficient μ set in the storage unit 31 according to the determination result of the switch 32 and the selected calculation formula for the road surface friction coefficient μ. A friction coefficient calculating section 33 calculates a road surface friction coefficient μ between the road surface and the tires according to the outputs of the above-mentioned sensors, and a friction coefficient calculating section 33 calculates the road surface friction coefficient μ between the road surface and the tires according to the outputs of the above-mentioned sensors. A steering ratio characteristic selection unit 34 that selects an appropriate steering ratio characteristic from the steering ratio characteristics, and a steering ratio R based on the steering ratio R selected by the steering ratio characteristic selection unit 34.
In other words, the rear wheel steering angle calculating section 35 has a function of calculating the rear wheel steering angle δR and detecting the rear wheel steering angle δR for calculating the road surface friction coefficient μ in the friction coefficient calculating section 33; A pulse signal forming section 36 receives the output of the steering angle calculating section 35 and forms a pulse signal for driving the pulse motor 20 and the pump drive motor 3G, and a pulse signal obtained from the pulse signal forming section 36 is processed. It is formed of a pulse motor 20 and a drive unit MC that drives the pump drive 30 based on the pump drive unit. Here, the steering angle sensor 5
2 and the rear wheel steering angle calculation unit 35, the front and rear wheel steering angles δF,
A steering state detection means 37 is configured to detect a steering state such as δR.

そして、本発明の特徴として、上記記憶部31には、以
下のようにして定められた路面摩擦係数μの演算式が設
定されている。
As a feature of the present invention, an arithmetic expression for the road surface friction coefficient μ determined as follows is set in the storage unit 31.

すなわち、第4図に示すように、車両の旋回時において
タイヤに働く力の釣り合いから、下記に示す基本的な前
出の運動方程式(3)〜(7)m−aY−2FF+2F
R 1、チー2a−FE−2b−FR FF−u・KF CδF−β−a・γ/v)FR−μ・
KR(δR−β+b−7/V)ただし、 ■(/j+γ
) −aY (ここで、FF、PRはそれぞれ前輪2.後輪3のコー
ナリングフォース、γはヨーレイトである)を得るが、
上記式(3)〜(7)から、FF、FR,β。
That is, as shown in Fig. 4, from the balance of the forces acting on the tires when the vehicle turns, the basic equations of motion (3) to (7) m-aY-2FF+2F shown below are obtained.
R 1, Chi2a-FE-2b-FR FF-u・KF CδF-β-a・γ/v) FR-μ・
KR(δR-β+b-7/V) However, ■(/j+γ
) -aY (where FF and PR are the cornering forces of front wheel 2 and rear wheel 3, respectively, and γ is the yaw rate), but
From the above formulas (3) to (7), FF, FR, β.

γ、子を消去すると、 [m−1−V”s”+ 2 B−V (m (a’Kp
 + b’KR) +1−Kl ・s + 4 c”K
p−KR・tt’ −2B−m−V” (a−Kp−b
−Kq)]av− 2μm1−V” CKt−6F + KR・6 R)−
8+ 4 B”V・KF−KR−c (b−δF+a−
δR)−s + 4 μ’V’KF・KR−C(δF−
δR) つまり前出の(8)式を得る(ただし、Sはラプラス演
算子、K−Kp +kRs c−a+b)oここで、S
の二乗項は過渡応答の高周波成分であって、通常無視し
得るので零とおき、上式の両辺をμで徐することにより
、 u= [V (m (a”KF+btKR) + I・
K1−5−m−V’Ca−KF−b−KR)]  aY
/2 c−Kr:KR(V (b−δp+a−δR)−
S +V’ (δF−δR)−c−avl つまり前出の(1)′式を得る。
γ, by eliminating the children, we get [m-1-V"s"+ 2 B-V (m (a'Kp
+ b'KR) +1-Kl ・s + 4 c”K
p-KR・tt'-2B-m-V" (a-Kp-b
-Kq)]av- 2μm1-V” CKt-6F + KR・6 R)-
8+ 4 B"V・KF-KR-c (b-δF+a-
δR)-s + 4 μ'V'KF・KR-C(δF-
δR) In other words, the above equation (8) is obtained (where S is the Laplace operator, K-Kp +kRs c-a+b) o Here, S
The square term of is a high frequency component of the transient response and can usually be ignored, so by setting it to zero and dividing both sides of the above equation by μ, we get u= [V (m (a”KF+btKR) + I・
K1-5-m-V'Ca-KF-b-KR)] aY
/2 c-Kr:KR(V (b-δp+a-δR)-
S +V' (δF-δR)-c-avl In other words, the above equation (1)' is obtained.

そして、さらに上式の分子、分母にSを乗じることによ
り、 u = [V  (m (a’KF+ b”KR) +
 I−K)−s −m−V”(a−KF−b−KR)]
 :aY/2cmKFKR(V (b−jp +a−6
R>・s+V (15F6R)−c−My) つまり前出の(1)式を得る。
Then, by further multiplying the numerator and denominator of the above formula by S, u = [V (m (a'KF + b''KR) +
I-K)-s-m-V"(a-KF-b-KR)]
:aY/2cmKFKR(V (b-jp +a-6
R>・s+V (15F6R)-c-My) In other words, the above equation (1) is obtained.

すなわち、路面摩擦係数μが、車両の慣性質量m1車両
重心点と前輪軸間の距離a1車両重心点と後輪軸間の距
離b、標準状態における前輪2及び後輪3のコーナリン
グフォースK F、K Rsヨー慣性モーメント■等の
スタビリテイファクタと、車両重心点の横加速度a ’
+’ s前輪舵角δF、後輪舵角δRなどの変数の微分
値並びに車速Vなどの値とから求まることになる。
That is, the road surface friction coefficient μ is the inertial mass of the vehicle, m1, the distance between the vehicle center of gravity and the front wheel axle, a1, the distance between the vehicle center of gravity and the rear wheel axle, and the cornering force K of the front wheels 2 and rear wheels 3 in the standard state. Stability factors such as Rs yaw moment of inertia and lateral acceleration a' at the vehicle center of gravity
+'s It is determined from the differential values of variables such as the front wheel steering angle δF and the rear wheel steering angle δR, as well as values such as the vehicle speed V.

なお、特に4輪操舵でβを零とする制御を行うようなも
のでは、上記方程式(3)〜(7)においてβ−〇とす
れば、より簡単な式 %式%( さらに、上式の右辺の分子2分母にSを乗じることによ
り μmm−Av/2 (Kr−jp +KR−jR−(A
y/V”)  Ca−KF−b−Kq ) )    
  (2)を得る。本実施例では、車両の制御の種類に
応じて、路面摩擦係数μを演算する基本的な運動方程式
として、上記(1)または(2)式を上記切換器32に
より切換えるようにしている。
In addition, especially in the case where control is performed to make β zero with four-wheel steering, if β-〇 is used in the above equations (3) to (7), the simpler formula % formula % (Furthermore, the above equation By multiplying the numerator and 2 denominators on the right side by S, μmm-Av/2 (Kr-jp +KR-jR-(A
y/V”) Ca-KF-b-Kq) )
(2) is obtained. In this embodiment, the switch 32 switches between equation (1) and equation (2) as the basic equation of motion for calculating the road surface friction coefficient μ, depending on the type of vehicle control.

上記記憶部31には、上記転舵比特性選択部34で選択
すべき転舵比特性が設定されている。すなわち、二の転
舵比特性は、第6図に示すように、基本的に、転舵比R
を車速Vが小さいときには逆位相側に、車速Vが大きい
ときには同位相側になるように連続的に変化させるとと
もに、路面摩擦係数μの変化に応じて、3種類の転舵比
特性に切換えるものである。例えば、路面摩擦係数μが
標準的な値のときには、図中曲線r2のごとくなるのに
対し、路面摩擦係数μが比較的小さいときには、曲線r
1のごとく転舵状態の位相が逆転する      −車
速Vlの値を上記標準特性の同車速v2よりも低い側に
、逆に路面摩擦係数μが比較的大きいときには、図中曲
線r3のごとく位相逆転の車速値■3を高い側にそれぞ
れ設定されている。
In the storage section 31, steering ratio characteristics to be selected by the steering ratio characteristic selection section 34 are set. That is, as shown in FIG. 6, the second steering ratio characteristic is basically the steering ratio R.
is continuously changed to the opposite phase side when the vehicle speed V is low, and to the same phase side when the vehicle speed V is high, and switches to three types of steering ratio characteristics according to changes in the road surface friction coefficient μ. It is. For example, when the road surface friction coefficient μ is a standard value, the curve r2 in the figure appears, whereas when the road surface friction coefficient μ is relatively small, the curve r
The phase of the steering state is reversed as shown in 1. - When the value of vehicle speed Vl is lower than the same vehicle speed v2 of the above standard characteristic, and conversely, when the road surface friction coefficient μ is relatively large, the phase is reversed as shown by curve r3 in the figure. The vehicle speed value ■3 is set on the higher side.

次に、第5図は、上記摩擦係数演算部33において所定
のサンプリング周期ごとに行われる路面摩擦係数μの演
算手順を示し、まず、ステップS1で上記車速センサ5
3、横力センサ51、舵角センサ52および後輪舵角演
算部35の信号から車速v1車両重心点の横加速度a 
Y s前輪舵角δF、後輪舵角δRを読取り、ステップ
S2でそれらの変数のうちa ’/ +  δF、δR
の微分値を演算する。次に、ステップ83〜Ssでそれ
ぞれ車速Vの値および前輪舵角δF、後輪舵角δ日、横
加速度aYの微分値の絶対値が所定の設定値以上か否か
を判別し、判別がYESであれば、順に進んで、ステッ
プS6で上記(1)または(′2J式に基づき、路面摩
擦係数μを算出したのちステップS8に進む。一方、上
記ステップ83〜SSにおける判別のいずれかがNO,
つまり車速Vの値および前輪舵角δF、後輪舵角δR,
,車両重心点の横加速度avの微分値の絶対値がそれぞ
れ設定値以下の場合には、上記(1)または(2)式の
右辺分母が零に近づき誤差が増大する虞れ力5あるため
、路面摩擦係数μの算出を行わずに、ステップS7で前
回のサンプリング時に演算した路面摩擦係数μの値を設
定してステップS8に移行する。このステップS8では
、路面摩擦係数μが負か否かを判別し、判別がμくOの
YESであれば、路面摩擦係数μの特性からして不合理
であるのでステップS9でμ−〇に再設定する一方、ス
テップS8における判別がμ≧0のNoであるときには
そのままで、ステップ310に進む。
Next, FIG. 5 shows a procedure for calculating the road surface friction coefficient μ which is performed at each predetermined sampling period in the friction coefficient calculating section 33. First, in step S1, the vehicle speed sensor 5
3. From the signals of the lateral force sensor 51, the steering angle sensor 52, and the rear wheel steering angle calculating section 35, calculate the vehicle speed v1 and the lateral acceleration a of the vehicle center of gravity.
Y s Read the front wheel steering angle δF and the rear wheel steering angle δR, and in step S2, a'/+ δF, δR are calculated from these variables.
Calculate the differential value of . Next, in steps 83 to Ss, it is determined whether the value of the vehicle speed V, the front wheel steering angle δF, the rear wheel steering angle δ, and the absolute value of the differential value of the lateral acceleration aY are greater than or equal to a predetermined set value. If YES, the process proceeds in order, and in step S6 the road surface friction coefficient μ is calculated based on the above formula (1) or ('2J), and then the process proceeds to step S8.On the other hand, if any of the determinations in steps 83 to SS No,
In other words, the value of vehicle speed V, front wheel steering angle δF, rear wheel steering angle δR,
, if the absolute value of the differential value of the lateral acceleration av at the vehicle center of gravity is less than the respective set value, there is a risk that the denominator on the right side of equation (1) or (2) above will approach zero and the error will increase. , without calculating the road surface friction coefficient μ, the value of the road surface friction coefficient μ calculated during the previous sampling is set in step S7, and the process proceeds to step S8. In this step S8, it is determined whether the road surface friction coefficient μ is negative or not, and if the determination is YES (μ is O), it is unreasonable considering the characteristics of the road surface friction coefficient μ, so in step S9 it is set to μ−〇. On the other hand, if the determination in step S8 is No (μ≧0), the process directly proceeds to step 310.

そして、ステップS1・では、制御を円滑に行うために
、 μ′ −μ/(1+τ・S) (ただし、μ′はμを積分化処理した新しい積分化摩擦
係数、τは積分時定数、Sはラプラス演算子)に基づき
路面摩擦係数μの積分化処理を行って制御を終了する。
Then, in step S1, in order to perform control smoothly, μ' - μ/(1 + τ・S) (where μ' is the new integrated friction coefficient obtained by integrating μ, τ is the integral time constant, and S is the Laplace operator), the road surface friction coefficient μ is integrated, and the control is completed.

よって、上記ステップS2により上記横力センサ(運動
状態検出手段)51ならびに舵角センサ52および後輪
舵角演算部35(操舵状態検出手段37)の出力を受け
、該両検出手段37.53の検出値の微分値を演算する
微分値演算手段38が構成され、上記ステップS6によ
り、上記車速センサ(車速検出手段)53および微分値
演算手段38の出力値と上記記憶部(記憶手段)31の
記憶内容とに応じて、車両の基本的な運動方程式から導
出される上記(1)式に基づき、路面摩擦係数μを演算
する摩擦係数演算手段39が構成されている。
Therefore, in step S2, the outputs of the lateral force sensor (motion state detection means) 51, the steering angle sensor 52, and the rear wheel steering angle calculation unit 35 (steering state detection means 37) are received, and the outputs of both the detection means 37.53 are A differential value calculation means 38 is configured to calculate a differential value of the detected value, and in step S6, the output values of the vehicle speed sensor (vehicle speed detection means) 53 and the differential value calculation means 38 and the output values of the storage section (storage means) 31 are A friction coefficient calculation means 39 is configured to calculate the road surface friction coefficient μ based on the above equation (1) derived from the basic equation of motion of the vehicle according to the stored contents.

車両の旋回走行時等に、各センサ51〜52の出力を受
けて、上記摩擦係数演算部33により、上記基本的な運
動方程式から導出された式(1)または(2)に基づい
て路面摩擦係数μが演算されると、上記転舵比特性選択
部34により、上記摩擦係数演算部33で算出された路
面摩擦係数μ(実際には積分化摩擦係数μ′)の値の大
小に応じて、予め上記記憶部31に設定された第S図の
転舵比特性曲線に1〜に3のうちいずれかが選択される
When the vehicle is turning, etc., the friction coefficient calculation unit 33 calculates the road surface friction based on equation (1) or (2) derived from the basic equation of motion in response to the outputs of the sensors 51 to 52. When the coefficient μ is calculated, the steering ratio characteristic selection unit 34 selects a coefficient according to the value of the road surface friction coefficient μ (actually, the integrated friction coefficient μ′) calculated by the friction coefficient calculation unit 33. , any one of 1 to 3 is selected as the steering ratio characteristic curve of FIG.

次に、上記後輪舵角演算部35により、上記転舵比選択
部34で選択された転舵比、上記舵角センサ52で検出
された前輪舵角δFおよび上記車速センサ53で検出さ
れた車3vの値に応−じて、適切な後輪舵角δRが演算
される。さらに、パルス信号形成部36でその演算値に
応じたパルス信号が出力され、駆動部MCにより、該パ
ルス信号に応じて上記パルスモータ20およ、びポンプ
駆動用モータ30が駆動されて、後輪3,3の舵角が所
定の舵角δRになるよう駆動される。
Next, the rear wheel steering angle calculation unit 35 calculates the steering ratio selected by the steering ratio selection unit 34, the front wheel steering angle δF detected by the steering angle sensor 52, and the front wheel steering angle δF detected by the vehicle speed sensor 53. An appropriate rear wheel steering angle δR is calculated according to the value of the vehicle 3v. Further, the pulse signal forming section 36 outputs a pulse signal according to the calculated value, and the driving section MC drives the pulse motor 20 and the pump drive motor 30 according to the pulse signal. The wheels 3, 3 are driven so that the steering angle becomes a predetermined steering angle δR.

したがって、上記実施例では、車両の旋回走行時、タイ
ヤと路面との間の路面摩擦係数μを各検出手段で検出さ
れた車両重心点の横加速度a ’/ s前輪舵角δFお
よび後輪舵角δRの微分値に応じ、基本的な運動方程式
から導出された(1)または(2)式に基づいて演算す
るようにしたので、車両の運動状態に応じた路面摩擦係
数μの変化を速やかに検出することができる。加えて、
車両の横力av。
Therefore, in the above embodiment, when the vehicle is turning, the road surface friction coefficient μ between the tires and the road surface is determined by the lateral acceleration a'/s of the vehicle center of gravity detected by each detection means, the front wheel steering angle δF, and the rear wheel steering angle. Since the calculation is based on equation (1) or (2) derived from the basic equation of motion depending on the differential value of the angle δR, changes in the road surface friction coefficient μ depending on the state of motion of the vehicle can be quickly detected. can be detected. In addition,
Vehicle lateral force av.

前輪舵角δFおよび後輪舵角δRが所定値よりも小さい
ときにも精度よく路面摩擦係数μを検出できる。すなわ
ち、路面摩擦係数μの演算式として、式(1)′および
(2)′のように上記各変数a Y +  δF。
The road surface friction coefficient μ can be detected accurately even when the front wheel steering angle δF and the rear wheel steering angle δR are smaller than predetermined values. That is, as a formula for calculating the road surface friction coefficient μ, each of the above variables a Y + δF is used as shown in formulas (1)' and (2)'.

δRの値をそのまま利用するものでは、各変数aY、δ
F、δRの絶対値が小さいときには、上記(1)′また
は(2)′式において、右辺の分母が零に近付くために
、各検出手段の検出誤差による路面摩擦係数μの演算誤
差が増大するので、路面摩擦係数μの演算を中止して、
以前の制御で求めたμの値を使用する必要がある。それ
に対して、上記実施例ではそのような場合にも(1)ま
たは(2)式の右辺の分母が零に近付くことはなく、十
分信頼し得る検出精度を維持できる。そして、このよう
に演算された蕗面摩擦係数μに応じた後輪舵角の制御を
行うので、制御遅れを生ずることなく、例えば圧雪路の
旋回走行等においても安定した走行を行うことができる
のである。
In the case where the value of δR is used as is, each variable aY, δ
When the absolute values of F and δR are small, the denominator on the right side of equation (1)' or (2)' approaches zero, so the calculation error of the road surface friction coefficient μ due to the detection error of each detection means increases. Therefore, we stopped calculating the road surface friction coefficient μ, and
It is necessary to use the value of μ found in the previous control. In contrast, in the above embodiment, even in such a case, the denominator on the right side of equation (1) or (2) does not approach zero, and sufficiently reliable detection accuracy can be maintained. Since the rear wheel steering angle is controlled according to the coefficient of friction μ calculated in this way, stable driving can be performed without causing control delays, for example, when driving around turns on a snow-packed road. It is.

また、特に、上記実施例ではステップSIQで演算され
た路面摩擦係数μの積分化処理を行っているので、過渡
応答における路面摩擦係数μの微細な変動が平準化され
、より安定した旋回走行を行うことができるという著効
を有する。
In addition, in particular, in the above embodiment, since the integration process of the road surface friction coefficient μ calculated in step SIQ is performed, minute fluctuations in the road surface friction coefficient μ during transient response are smoothed out, and more stable cornering is achieved. It has the legal effect that it can be carried out.

なお、本発明は上記実施例のような4輪操舵の場合に限
定されるものではなく、例えば2輪操舵の場合、本発明
の路面摩擦係数検出装置で検出された路面摩擦係数μを
利用して、・低摩擦係数を有する路面で走行する場合等
に利用されるいわゆるアンチロック・ブレーキ・システ
ムに適用すれば、旋回走行時等に実際の路面摩擦係数μ
の変化に対応したブレーキ力の制御を行うことができ、
制御効果を向上させることができるものである。
Note that the present invention is not limited to the case of four-wheel steering as in the above embodiment; for example, in the case of two-wheel steering, the road surface friction coefficient μ detected by the road surface friction coefficient detection device of the present invention may be used. Therefore, if applied to a so-called anti-lock brake system used when driving on a road surface with a low coefficient of friction, the actual road surface friction coefficient μ can be reduced during cornering, etc.
Brake force can be controlled in response to changes in
It is possible to improve the control effect.

(発明の効果) 以上説明したように、本発明の路面摩擦係数検出装置に
よれば、車両の旋回走行時等における車両の運動方程式
に基づき、横加速度、前後車輪の舵角などの変数の微分
値に応じて、タイヤと路面との間の路面摩擦係数を演算
するようにしたので、変数の値が小さいときにも検出精
度を損ねずに路面摩擦係数をその変化に伴って正確に検
出することができ、安定した車両の旋回走行制御に供す
ることができる。
(Effects of the Invention) As explained above, according to the road surface friction coefficient detection device of the present invention, the differential of variables such as lateral acceleration and steering angle of front and rear wheels is calculated based on the equation of motion of the vehicle when the vehicle is turning. The road surface friction coefficient between the tires and the road surface is calculated according to the value, so even when the value of the variable is small, the road surface friction coefficient can be accurately detected as it changes without compromising detection accuracy. This enables stable turning control of the vehicle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図以下は本発明の実施例を示し、第2図は車両の全
体構成図、第3図は車両の制御装置の構成図、第4図は
車両が旋回走行時に作用する力の関係を示す図、第5図
は路面摩擦係数演算部における制御を示すフローチャー
ト、第6図は記憶部に設定された選択されるべき転舵比
特性を示す図である。 31・・・記憶部(記憶手段)、35・・・後輪舵角演
算部、37・・・操舵状態検出手段、38・・・微分値
演算手段、39・・・・・・摩擦係数演算手段、51・
・・横力センサ(運動状態検出手段)、52・・・舵角
センサ、53・・・車速センサ(車速検出手段)。 特 許 出 願 人   マツダ株式会社代  理  
人    弁理士 前 1) 弘第2図 第1図 第6図 同1tj目 だFイtm 第5図
FIG. 1 is a block diagram showing the configuration of the present invention. Figure 2 and subsequent figures show embodiments of the present invention. Figure 2 is an overall configuration diagram of the vehicle, Figure 3 is a configuration diagram of the vehicle control device, and Figure 4 shows the relationship of forces that act when the vehicle turns. FIG. 5 is a flowchart showing the control in the road surface friction coefficient calculation section, and FIG. 6 is a diagram showing the steering ratio characteristics to be selected set in the storage section. 31... Storage unit (storage means), 35... Rear wheel steering angle calculation unit, 37... Steering state detection means, 38... Differential value calculation means, 39... Friction coefficient calculation means, 51.
. . . Lateral force sensor (motion state detection means), 52 . . . Rudder angle sensor, 53 . . . Vehicle speed sensor (vehicle speed detection means). Patent applicant Mazda Motor Corporation representative
Person Patent Attorney Front 1) Hiro 2 Figure 1 Figure 6 Figure 1 tj F Itm Figure 5

Claims (1)

【特許請求の範囲】[Claims] (1)車両のタイヤと路面との間の摩擦係数を検出する
摩擦係数検出装置であって、車両重心点の横加速度a_
Y等の車両の運動状態を検出する運動状態検出手段と、
前後輪舵角δ_F、δ_Rなどの操舵状態を検出する操
舵状態検出手段と、車両の速度Vを検出する車速検出手
段と、車両の重量m、車両の重心点と前後輪軸との距離
a、b、標準状態における前輪および後輪のタイヤコー
ナリングパワーK_F、K_R並びに車両のヨー慣性モ
ーメントIなどの車両のスタビリティファクタを記憶す
る記憶手段と、上記運動状態検出手段および操舵状態検
出手段の出力を受け、該両検出手段の検出値の微分値を
演算する微分値演算手段と、上記車速検出手段および微
分値演算手段の出力値と上記記憶手段の記憶内容とに応
じて、車両の基本的な運動方程式から導出される式 μ=[V{m(a^2K_F+b^2K_R)+I・K
}・s−m・V^2(a・K_F−b・K_R)]■_
Y/2c・K_F・K_R{V(b・■_F+a・■_
R)・s+V^2(■_F−■_R)−c・■_Y} (ただし、c=a+b、K=K_F+K_R、sはラプ
ラス演算子)に基づき、路面摩擦係数μを演算する摩擦
係数演算手段とを備えたことを特徴とする路面摩擦係数
検出装置。
(1) A friction coefficient detection device that detects the friction coefficient between the vehicle tires and the road surface, which detects the lateral acceleration a_ of the vehicle center of gravity.
a motion state detection means for detecting a motion state of a vehicle such as Y;
Steering state detection means for detecting steering states such as front and rear wheel steering angles δ_F and δ_R, vehicle speed detection means for detecting vehicle speed V, vehicle weight m, and distances a and b between the center of gravity of the vehicle and the front and rear wheel axes. , storage means for storing stability factors of the vehicle such as tire cornering powers K_F, K_R of the front wheels and rear wheels in a standard state and yaw moment of inertia I of the vehicle, and receiving outputs from the motion state detection means and the steering state detection means. , a differential value calculation means for calculating a differential value of the detected values of both the detection means, and a basic motion of the vehicle according to the output values of the vehicle speed detection means and the differential value calculation means and the memory contents of the storage means. The formula derived from the equation μ=[V{m(a^2K_F+b^2K_R)+I・K
}・s−m・V^2(a・K_F−b・K_R)]■_
Y/2c・K_F・K_R{V(b・■_F+a・■_
Friction coefficient calculating means for calculating the road surface friction coefficient μ based on R)・s+V^2(■_F−■_R)−c・■_Y} (where c=a+b, K=K_F+K_R, s is the Laplace operator) A road surface friction coefficient detection device comprising:
JP62260452A 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient Pending JPH01101435A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62260452A JPH01101435A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260452A JPH01101435A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Publications (1)

Publication Number Publication Date
JPH01101435A true JPH01101435A (en) 1989-04-19

Family

ID=17348139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260452A Pending JPH01101435A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Country Status (1)

Country Link
JP (1) JPH01101435A (en)

Similar Documents

Publication Publication Date Title
US4951198A (en) Friction detecting device for vehicles
JP3463415B2 (en) Vehicle yawing behavior control device
EP0460582B1 (en) Steering angle detecting apparatus for motor vehicles
JPH04505737A (en) Vehicle steering system
JPH0547428B2 (en)
JP2725426B2 (en) Vehicle slip angle estimating device, suspension device and rear wheel steering device using the same
US5105899A (en) Rear wheel steering angle control system for vehicles
JPH06221968A (en) Road surface friction coefficient detection device
JPH01101435A (en) Detecting device for road surface friction coefficient
JP3463530B2 (en) Vehicle motion control device
EP0384400B1 (en) Rear wheel steering angle control system for vehicle
JPH0561147B2 (en)
JPH01101434A (en) Detecting device for road surface friction coefficient
JPH0453751B2 (en)
JPH01101436A (en) Detecting device for road surface friction coefficient
JPH01101437A (en) Detecting device for road surface friction coefficient
JPS6215173A (en) Vehicle motion state quantity computing device
JPH01101441A (en) Detecting device for road surface friction coefficient
JPH01101438A (en) Detecting device for road surface friction coefficient
JP2532106B2 (en) Steering control device for four-wheel steering vehicle
JPH01101439A (en) Detecting device for road surface friction coefficient
JPH0518754B2 (en)
JPS62221908A (en) Posture control device for vehicle
JP2940372B2 (en) Auxiliary steering angle control device for vehicles
JPH034429B2 (en)