JPH01101441A - Detecting device for road surface friction coefficient - Google Patents

Detecting device for road surface friction coefficient

Info

Publication number
JPH01101441A
JPH01101441A JP62260458A JP26045887A JPH01101441A JP H01101441 A JPH01101441 A JP H01101441A JP 62260458 A JP62260458 A JP 62260458A JP 26045887 A JP26045887 A JP 26045887A JP H01101441 A JPH01101441 A JP H01101441A
Authority
JP
Japan
Prior art keywords
vehicle
friction coefficient
road surface
steering
surface friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62260458A
Other languages
Japanese (ja)
Inventor
Akihiko Miyoshi
三好 晃彦
Kenichi Watanabe
憲一 渡辺
Shoichi Kamimura
上村 昭一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP62260458A priority Critical patent/JPH01101441A/en
Priority to DE8888117133T priority patent/DE3877118T2/en
Priority to EP88117133A priority patent/EP0312096B1/en
Priority to US07/260,890 priority patent/US4951198A/en
Publication of JPH01101441A publication Critical patent/JPH01101441A/en
Pending legal-status Critical Current

Links

Landscapes

  • Steering Control In Accordance With Driving Conditions (AREA)
  • Steering-Linkage Mechanisms And Four-Wheel Steering (AREA)

Abstract

PURPOSE:To accurately detect a road surface friction coefficient corresponding to the traveling state of a vehicle by adding a time delay element for compensating the time delay of the cornering power of a front and a rear wheel behind the steering wheel operation. CONSTITUTION:A motion state detecting means 51 detects motion states of the vehicle such as the lateral acceleration ay of the gravity center of the vehicle and a steering state detecting means 37 detects steering states such as front and rear steering angles thetaF and thetaR, etc. Further, a vehicle speed detecting means 53 detects the traveling speed V of the vehicle and a storage means 31 is stored with the weight (m) of the vehicle, the distances (a) and (b) between the gravity center of the vehicle and front and rear axles, cornering power KF and KR of the front and rear wheels, and a stability factor such as the yaw inertial moment I of the vehicle. Then an arithmetic means corrects the delay of the KF and KR by a correcting element 40 to calculate a dynamic friction coefficient from an equation.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、車両のタイヤと路面との間の路面摩擦係数を
検出する摩擦係数検出装置に係り、特に車両の動特性に
応じた路面摩擦係数を検出するようにしたものに関する
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a friction coefficient detection device that detects a road surface friction coefficient between a vehicle tire and a road surface, and particularly relates to a friction coefficient detection device that detects a road surface friction coefficient between a vehicle tire and a road surface. Regarding detecting coefficients.

(従来の技術) 、従来より、車両のタイヤと路面との間の路面摩擦係数
を検出する摩擦係数検出装置として、例えば特開昭59
−148769号公報に開示される如く、前輪の舵角に
応じて路面摩擦係数の値を複数個予測し、該予測された
摩擦係数にそれぞれ対応する横加速度を演算して、該演
算された横加速度と実測された横加速度とを比較し、最
も近い値に対応する予測摩擦係数を選択することにより
、実際の摩擦係数を推定し、この推定した摩擦係数を用
いて旋回走行時の後輪舵角を制御しようとするものが知
られている。
(Prior Art) Conventionally, as a friction coefficient detection device for detecting a road surface friction coefficient between a vehicle tire and a road surface, for example, JP-A-59
As disclosed in Japanese Patent Publication No. 148769, a plurality of road surface friction coefficient values are predicted according to the steering angle of the front wheels, lateral accelerations corresponding to each of the predicted friction coefficients are calculated, and the calculated lateral By comparing the acceleration and the actually measured lateral acceleration and selecting the predicted friction coefficient corresponding to the closest value, the actual friction coefficient is estimated, and this estimated friction coefficient is used to adjust the rear wheel steering when turning. There are known methods that attempt to control the angle.

(発明が解決しようとする問題点) しかしながら、上記従来のものでは、摩擦係数が一定で
あると仮定するにとどまり、操舵入力に対する車両の横
加速度やヨーレイト等の過渡応答特性つまり動特性が同
等考慮されていない。したがって、ハンドルの操舵角度
の変化がない状態、つまり定常用を描く旋回走行時等品
定常状態ではある程度の推定精度を確保することができ
るが、現実には、そのような定常状態はごくまれである
(Problem to be solved by the invention) However, in the conventional method described above, it is only assumed that the coefficient of friction is constant, and transient response characteristics such as lateral acceleration and yaw rate of the vehicle in response to steering input, that is, dynamic characteristics are equally taken into account. It has not been. Therefore, a certain degree of estimation accuracy can be secured in a state where there is no change in the steering angle of the steering wheel, that is, in a steady state such as when turning, which describes a steady state, but in reality, such a steady state is extremely rare. be.

すなわち、上記従来のものでは、十分信頼し得る高精度
の路面摩擦係数を導出して正確な旋回走行制御に供する
ことができない。
That is, with the above-mentioned conventional method, it is not possible to derive a sufficiently reliable and highly accurate road surface friction coefficient to provide accurate turning control.

また、前輪の操舵角はハンドル操舵に対して一定の遅れ
を持っているために、例えば急旋回時などには路面摩擦
係数推定が実際の走行条件変化に一正確に対応すること
ができず、そのために検出誤差を生ずるという問題もあ
る。
In addition, because the front wheel steering angle has a certain delay with respect to the steering wheel steering, the estimation of the road friction coefficient cannot accurately respond to changes in actual driving conditions, such as when making sharp turns. Therefore, there is also the problem that detection errors occur.

本発明は斯かる点に鑑みてなされたものであり、その目
的は、操舵入力に対する車両の動特性をも考慮して路面
摩擦係数を検出することにより、旋回走行時等の路面摩
擦係数の変化をも検出するとともに、特に急激な条件変
化に対しても十分対応し得る適切な手段を講することに
より、旋回走行制御等に有用な路面摩擦係数検出装置を
提供することにある。
The present invention has been made in view of the above, and its purpose is to detect changes in the road surface friction coefficient during cornering, etc. by detecting the road surface friction coefficient in consideration of the dynamic characteristics of the vehicle in response to steering input. It is an object of the present invention to provide a road surface friction coefficient detection device which is useful for cornering control, etc., by detecting the friction coefficient as well as taking appropriate means that can sufficiently respond to particularly sudden changes in conditions.

(問題点を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように、車両のタイヤと路面との間の摩擦係数μを
検出する路面摩擦係数検出装置を対象とする。
(Means for Solving the Problems) To achieve the above object, the present invention provides a road surface friction coefficient detection system that detects the friction coefficient μ between the tires of a vehicle and the road surface, as shown in FIG. Targeting equipment.

そして、車両重心点の横加速度aY等の車両の運動状態
を検出する運動状態検出手段51と、前後輪舵角θF、
ORなどの操舵状態を検出する操舵状態検出手段37と
、車両の走行速度Vを検出する車速検出手段53と、車
両の重量m1車両の重心点と前後輪軸との距離a、  
b、標準状態における前輪および後輪のタイヤコーナリ
ングパワーKF、KR並びに車両のヨー慣性モーメント
エなどの車両のスタビリテイファクタを記憶する記憶手
段31と、該記憶手段31に記憶するコーナリングパワ
ーKF、KRに対して一定の時定数τからなる時間遅れ
要素D {D=1/ (1+τ・s)1を付加する補正
手段40と、上記運動状態検出手段51、操舵状態検出
手段37、車速検出手段53および補正手段40の出力
値と記憶手段31の記憶内容とに応じて、車両の基本的
な運動方程式から導出される式 u= [V (m (a”Kp +b”KR) + l
−K1・s −m;V’(a−KF−b−KR)] a
Y/2cmKF−KR(V Cb−6F+a−6R)−
s+V’c6rニーδρ)−c−av)[2) (ただし、c−a+b、に−KF+KR% δF=D・
θF1δρ=D・θ日、Sはラプラス演算子)に基づき
、路面摩擦係数μを演算する摩擦係数演算手段41とを
設ける構成としたものである。
The motion state detection means 51 detects the motion state of the vehicle such as the lateral acceleration aY of the center of gravity of the vehicle, and the front and rear wheel steering angles θF,
A steering state detection means 37 that detects a steering state such as OR, a vehicle speed detection means 53 that detects the running speed V of the vehicle, a weight m1 of the vehicle, a distance a between the center of gravity of the vehicle and the front and rear wheel axes,
b. Storage means 31 for storing tire cornering powers KF, KR of the front wheels and rear wheels in a standard state and stability factors of the vehicle such as the yaw moment of inertia of the vehicle, and the cornering powers KF, KR stored in the storage means 31; a correction means 40 that adds a time delay element D {D=1/ (1+τ・s)1 to the time constant τ, the motion state detection means 51, the steering state detection means 37, and the vehicle speed detection means 53. According to the output value of the correction means 40 and the storage contents of the storage means 31, the formula u=[V (m (a"Kp +b"KR) + l) derived from the basic equation of motion of the vehicle
-K1・s -m;V'(a-KF-b-KR)] a
Y/2cmKF-KR(V Cb-6F+a-6R)-
s+V'c6rnee δρ)-c-av) [2) (However, c-a+b, -KF+KR% δF=D・
The friction coefficient calculating means 41 calculates the road surface friction coefficient μ based on θF1δρ=D·θday, S is the Laplace operator).

ここに、上記(1)および(2)式は、以下のようにし
て導出されたものである。
Here, the above equations (1) and (2) are derived as follows.

すなわち、第4図に示すように、車両の旋回時において
タイヤに働く力の釣り合いから、基本的な下記−の運動
方程式、 m−aY−2FF +2 FR(3) ■、ケチ−a−FF−2b−PR(4)FF−μmKF
(θF−β−a−γ/V)   (5)FR−p−KR
CθR−β+b・y/V)   (6)ただし、 ■(
β+γ)−aY      (7)(ここで、FF、F
Rはそれぞれ前輪2.後輪3のコーナリングフォース、
γはヨーレイトである)を得るが、上記式(3)〜(7
)から、FF、FR,β。
That is, as shown in Fig. 4, from the balance of the forces acting on the tires when the vehicle turns, the basic equation of motion is: m-aY-2FF +2 FR(3) ■, Stiff-a-FF- 2b-PR(4)FF-μmKF
(θF-β-a-γ/V) (5) FR-p-KR
CθR-β+b・y/V) (6) However, ■(
β+γ)−aY (7) (where FF, F
R is the front wheel 2. Cornering force of rear wheel 3,
γ is the yaw rate), but the above equations (3) to (7
), FF, FR, β.

γ、iを消去すると、 [m−1−V’−、s”+ 2 p−V (m (a”
KF+ b”KR) +1゛K)・s + 4 c”K
F−KR・p” −2p−m−V” (a−KFb−K
R)]  aY = 2 μm1−V” (K F−θF +KR−9R)、
s’+ 4 μ’V・KF−KR−c(b・θF+a・
θR)−s + 4 p’V’KF・KR−c (θF
−θR)            [8)を得る(ただ
し、Sはラプラス演算子、K−Kt=。
By eliminating γ, i, we get [m-1-V'-, s"+ 2 p-V (m (a"
KF+ b”KR) +1゛K)・s + 4 c”K
F-KR・p"-2p-m-V" (a-KFb-K
R)] aY = 2 μm1-V” (K F-θF +KR-9R),
s'+ 4 μ'V・KF−KR−c(b・θF+a・
θR)-s + 4 p'V'KF・KR-c (θF
-θR) [8) (where S is the Laplace operator and K-Kt=.

+にρ、C■a+b)  。+ to ρ, C■a+b).

ここで、Sの二乗項は過渡応答の高周波成分であって、
通常無視し得るので零とおき、上式の両辺をμで除する
ことにより、 u = [V (m (a’KF+ b’KR) + 
l−K1・s −m−V’(a−KF−b−Kq)] 
av/2cmKF・KR(V (b・θF+a−θR)
−8+V’(θF−θR)−c−aY)       
   [1)を得る。
Here, the square term of S is the high frequency component of the transient response,
Since it can usually be ignored, by setting it to zero and dividing both sides of the above equation by μ, we get u = [V (m (a'KF + b'KR) +
l-K1・s-m-V'(a-KF-b-Kq)]
av/2cmKF・KR(V (b・θF+a−θR)
-8+V'(θF-θR)-c-aY)
[1] is obtained.

上記(1)式に、上記前後輪のコーナリングパワーKF
、KRの時間遅れ要素りを付加する場合、この時間遅れ
はハンドル操舵時に生ずる前後輪操舵の遅れとタイヤ横
滑り角変化に対するコーナリングフォースFF、FRの
遅れに起因するものであって、近似的には、ハンドル操
舵に対して前後輪操舵角θF、θRが遅れて変化するも
のとしてもよい。そこで上記(′2J式中のθF、θR
に時間遅れ要素りを付加して、δF=D・θF1δR=
D・θRと補正したδF、δRをθF、θRの代わりに
使用することにより、 u= [V (m (a’KF+b’KR)+ l−K
1−5−m−V’(a−KF−b−KR) ] aY/
2 c−Kr−・KR[V (b−δF+a−δR)−
8+V’(δF−δR)−c、avl つまり上記(2式を得る。
In the above equation (1), the cornering power KF of the front and rear wheels is expressed as
, KR time delay element is added, this time delay is due to the delay in front and rear wheel steering that occurs when steering the steering wheel, and the delay in cornering force FF and FR in response to changes in tire sideslip angle, and can be approximated as follows: , the front and rear wheel steering angles θF and θR may change with a delay with respect to steering wheel steering. Therefore, the above (θF, θR in the '2J formula)
Adding a time delay element to δF=D・θF1δR=
By using D・θR and corrected δF and δR in place of θF and θR, u= [V (m (a'KF+b'KR)+ l-K
1-5-m-V'(a-KF-b-KR) ] aY/
2 c-Kr-・KR[V (b-δF+a-δR)-
8+V'(δF-δR)-c, avl In other words, the above (2 formulas are obtained).

(作用) 以上の構成により、本発明では、車両の旋回走行時等に
おいて、記憶手段31に記憶された車両のスタビリテイ
ファクタと、運動状態検出手段51、操舵状態検出手段
37および車速検出手段53で検出された車両重心点の
横加速度a Y s前輪舵角θF1後輪舵角θRおよび
車速Vなどの変数とに応じて、車両の基本的な運動方程
式に基づき、摩擦係数演算手段41により、車両の動特
性に対応したタイヤと路面との間の路面摩擦係数μが算
出されるが、その場合、補正手段40により、上記記憶
手段31に記憶される前後輪のコーナリングパワーKF
、KRのハンドル操舵に対する時間遅れを補償すべく時
間遅れ要素りが付加される。
(Function) With the above configuration, in the present invention, when the vehicle is turning, etc., the stability factor of the vehicle stored in the storage means 31, the motion state detection means 51, the steering state detection means 37, and the vehicle speed detection means 53 can be used. Based on the vehicle's basic equation of motion, the friction coefficient calculating means 41 calculates, according to variables such as the detected lateral acceleration aYs of the vehicle center of gravity, front wheel steering angle θF1, rear wheel steering angle θR, and vehicle speed V. A road surface friction coefficient μ between the tires and the road surface corresponding to the dynamic characteristics of the vehicle is calculated. In this case, the correction means 40 calculates the cornering power KF of the front and rear wheels stored in the storage means 31.
, a time delay element is added to compensate for the time delay in steering the steering wheel of KR.

そして、近似的に前後輪舵角θF、θRに時間遅れ要素
りを付加してなる(2)式に基づいて路面摩擦係数μ値
が演算される。
Then, the road surface friction coefficient μ value is calculated based on equation (2), which is approximately obtained by adding a time delay element to the front and rear wheel steering angles θF and θR.

よって、ハンドル操舵に対する前後輪のコーナリングフ
ォースFF、FRの時間的な遅れが補正されて、路面摩
擦係数μの推定誤差が低減し、その車両の動特性に応じ
た変化が正確に検出される。
Therefore, the time delay in cornering forces FF and FR of the front and rear wheels with respect to steering wheel steering is corrected, the estimation error of the road surface friction coefficient μ is reduced, and changes in accordance with the dynamic characteristics of the vehicle are accurately detected.

そして、このように導出された路面摩擦係数μを車両の
旋回走行制御等に利用することにより、例えば圧雪路の
急旋回走行等においても安定した走行を行うことができ
る。
By utilizing the road surface friction coefficient μ derived in this way for controlling the turning movement of the vehicle, it is possible to perform stable driving even when driving, for example, in sharp turns on a snow-packed road.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は、本発明を適用した車両の4輪操舵装置の全体
構成を示し、2,2は車両の左右の前輪、3.3は左右
の後輪である。5は上記前輪2.2の舵角θFを調節す
る前輪操舵機構である。該前輪操舵機構5は、前輪2,
2を回転自在に支持するとともにジヨイント部6aを介
して車体に支持、された左右一対のナックル部材6,6
と、該ナックル部材6,6のナックルアーム部6b、6
bにそれぞれ一端が連結された左右一対のタイロッド8
.8と、該一対のタイロッド8,8の各他端同士をそれ
ぞれ両端で連結してなるラック軸9と、ハンドル4の回
転をピニオンおよびラック(いずれも図示せず)を介し
て上記ラック軸9の左右の移動に変換させるステアリン
グギヤ機構10とを主要部材として構成されている。
FIG. 2 shows the overall configuration of a four-wheel steering system for a vehicle to which the present invention is applied, where 2 and 2 are left and right front wheels of the vehicle, and 3.3 are left and right rear wheels of the vehicle. 5 is a front wheel steering mechanism that adjusts the steering angle θF of the front wheels 2.2. The front wheel steering mechanism 5 includes front wheels 2,
A pair of left and right knuckle members 6, 6 which rotatably support 2 and are supported on the vehicle body via a joint portion 6a.
and the knuckle arm portions 6b, 6 of the knuckle members 6, 6.
A pair of left and right tie rods 8 each having one end connected to b.
.. 8, a rack shaft 9 formed by connecting the other ends of the pair of tie rods 8, 8 at both ends, and a rack shaft 9 that controls the rotation of the handle 4 via a pinion and a rack (both not shown). The main component is a steering gear mechanism 10 that converts the left and right movement of the vehicle.

そして、該前輪操舵機構5において、ハンドル4が一定
の操舵角θで回転されると、ステアリングギヤ機構10
によりラック軸9を介してタイロッド8,8が左右方向
に移動し、その移動により、ナックル部材6,6がジヨ
イント部5a、5aの回りにそれぞれ回動させられて、
前輪2,2がフロントギヤ比Z(−θ/θF)に応じた
前輪舵角θFで転舵させられるようになされている。
In the front wheel steering mechanism 5, when the handle 4 is rotated at a constant steering angle θ, the steering gear mechanism 10
The tie rods 8, 8 are moved in the left and right direction via the rack shaft 9, and due to this movement, the knuckle members 6, 6 are rotated around the joint parts 5a, 5a, respectively.
The front wheels 2, 2 are steered at a front wheel steering angle θF corresponding to a front gear ratio Z (-θ/θF).

また、上記後輪3,3側には、左右の後輪3゜3を上記
前輪操舵機構5による前輪2,2の転舵に伴なって転舵
させるための後輪操舵機構12が設けられている。該後
輪操舵機構12は、上記前輪操舵機構5と同じ機能を有
する各要素、つまり一対のナックル部材13.13と、
タイロッド14.14と、ラック軸15とを有するとと
もに、該ラック軸15のラック部15aに先端のピニオ
ン部16aで噛合するピニオン軸16と、該ピニオン軸
16の他端に取付けられた傘歯車18と、該傘歯車18
に噛合する傘歯車19を出力軸に取付けてなるパルスモ
ータ20とを主要部材として構成されている。
Furthermore, a rear wheel steering mechanism 12 is provided on the rear wheels 3, 3 side for steering the left and right rear wheels 3°3 in accordance with the steering of the front wheels 2, 2 by the front wheel steering mechanism 5. ing. The rear wheel steering mechanism 12 includes elements having the same functions as the front wheel steering mechanism 5, that is, a pair of knuckle members 13.13,
A pinion shaft 16 which has a tie rod 14, 14 and a rack shaft 15, and which engages the rack portion 15a of the rack shaft 15 with a pinion portion 16a at its tip, and a bevel gear 18 attached to the other end of the pinion shaft 16. and the bevel gear 18
The main component is a pulse motor 20 having a bevel gear 19 attached to an output shaft that meshes with the motor.

そして、上記前輪操舵機構5による前輪舵角θFめ調節
に応じて、後述の制御ユニット21によりパルスモータ
20が駆動されると、パルスモータ20の回転駆動力が
2つの傘歯車19.18、ピニオン部16aおよびラッ
ク部15aを介してラック軸15の左右方向の運動に変
換されるようになされている。
Then, when the pulse motor 20 is driven by the control unit 21 (described later) in accordance with the adjustment of the front wheel steering angle θF by the front wheel steering mechanism 5, the rotational driving force of the pulse motor 20 is applied to the two bevel gears 19, 18, and the pinion. The movement is converted into a horizontal movement of the rack shaft 15 via the portion 16a and the rack portion 15a.

さらに、上記後輪操舵機構12のラック軸15には、そ
の車幅方向の往復運動をアシストするためのパワーシリ
ンダ23が配設されていて、該パワーシリンダ23は、
ラック軸15に一体的に取付けられたピストン23aと
、該ピストン23aによって仕切られる2つの油圧室2
3b、23Cとを有している。また、該油圧室23b、
23cはそれぞれ油圧通路24.25を介してコントロ
ールバルブ26に連通している。該コントロールバルブ
26は、油供給通路27および油戻し通路28を介して
ポンプ駆動用モータ30により回転駆動される油圧ポン
プ29に連通されている。
Further, a power cylinder 23 is disposed on the rack shaft 15 of the rear wheel steering mechanism 12 to assist in its reciprocating movement in the vehicle width direction.
A piston 23a integrally attached to the rack shaft 15, and two hydraulic chambers 2 partitioned by the piston 23a.
3b and 23C. Moreover, the hydraulic chamber 23b,
23c communicate with the control valve 26 via hydraulic passages 24, 25, respectively. The control valve 26 is communicated via an oil supply passage 27 and an oil return passage 28 with a hydraulic pump 29 that is rotationally driven by a pump drive motor 30.

上記コントロールバルブ26は、ピニオン軸16の回転
方向に応じてパワーシリンダ23の油圧室23b、23
cに対す名曲圧の供給を制御するものである。すなわち
、パルスモータ20の回転駆動力により後輪3.3を転
舵すべく、傘歯車18.19およびピニオン軸16を介
してラック軸15が車幅方向に移動させられるとき、後
輪3゜3の転舵方向に応じて、油圧供給通路27および
油戻し通路28と、i油圧通路24.25と、各油圧室
23b、23Cとの連通関係を切換え、パワーシリンダ
23の油圧室23b、23cに対する圧油の給排により
、ラック軸15の車幅方向の移動を助成し、後輪3,3
を所定の後輪舵角θRだけ転舵させるようになされてい
る。
The control valve 26 controls the hydraulic chambers 23b, 23 of the power cylinder 23 depending on the rotational direction of the pinion shaft 16.
This controls the supply of masterpiece pressure to c. That is, when the rack shaft 15 is moved in the vehicle width direction via the bevel gear 18.19 and the pinion shaft 16 in order to steer the rear wheel 3.3 by the rotational driving force of the pulse motor 20, the rear wheel 3.3 3, the communication relationship between the hydraulic supply passage 27, the oil return passage 28, the i hydraulic passage 24.25, and each hydraulic chamber 23b, 23C is switched, and the hydraulic chambers 23b, 23c of the power cylinder 23 are switched. The movement of the rack shaft 15 in the vehicle width direction is supported by supplying and discharging pressure oil to the rear wheels 3, 3.
The rear wheel is steered by a predetermined rear wheel steering angle θR.

次に、21は、上記パルスモータ20およびポンプ駆動
用モータ30を制御する制御ユニットであって、該制御
ユニット21には、下記各センサ51〜53の信号が入
力されている。すなわち、51は車両の旋回走行時等に
おいて車体に作用する車幅方向の力つまり横力から横加
速度aYを検出する運動状態検出手段としての横力セン
サ、52はハンドル舵角θから予め定められた所定のフ
ロントギヤ比Zに基づき前輪舵角θFを検出するための
舵角センサ、53は左方の前輪2の回転数に基づき車速
Vを検出する車速検出手段としての車速センサである。
Next, 21 is a control unit that controls the pulse motor 20 and the pump drive motor 30, and signals from the following sensors 51 to 53 are input to the control unit 21. That is, 51 is a lateral force sensor as a motion state detection means for detecting a lateral acceleration aY from a force in the vehicle width direction, that is, a lateral force, acting on the vehicle body when the vehicle is turning, etc., and 52 is a lateral force sensor that is predetermined from the steering wheel steering angle θ. A steering angle sensor 53 is a steering angle sensor for detecting a front wheel steering angle θF based on a predetermined front gear ratio Z, and a vehicle speed sensor 53 is a vehicle speed detecting means for detecting a vehicle speed V based on the rotation speed of the left front wheel 2.

そして、上記制御ユニット21は、第3図に示すように
、車両の重量m1車両の重心点と前輪軸との距離a11
側の重心点と後車輪との距離b1標準状態における前輪
および後輪のタイヤコーナリングパワーKF、KR,車
両のヨー慣性モーメントエなどの車両のスタビリテイフ
ァクタ、後述の路面摩擦係数μの演算式、転舵比特性な
どの制御に必要なデータを記憶する記憶手段としての記
憶部31と、外部スイッチSWの切換えを検知して、゛
車両の横滑り角βが零の制御を行う側になっているか否
か(後述する)を判別するとともに、その判別結果に応
じて上記記憶部31に設定されている路面摩擦係数μの
演算式を切換える切換器32と、該切換器32で選択さ
れた路面摩擦係数μの演算式に基づき上記各センサ類の
出力に応じて、路面とタイヤとの間の路面摩擦係数μを
演算する摩擦係数演算部33と、該摩擦係数演算部33
の出力に応じて記憶部31に記憶された転舵特性から適
正な転6舵特性を選択する転舵比特性選択部34と、該
転舵比特性選択部34で選択された転舵比Rの特性に基
づき転舵比Rつまり後輪舵角ORを演算するとともに、
上記摩擦係数演算部33における路面摩擦係数μの演算
のだめの後輪舵角θRを検出する機能を有する後輪舵角
演算部35と、該後輪舵角演算部35の出力を受け、上
記パルスモータ20およびポンプ駆動用モータ30を駆
動するためのパルス信号を形成するパルス信号形成部3
6と、該パルス信号形成部36から得られたパルス信号
に基づいてパルスモータ20およびポンプ駆動用30を
駆動する駆動部MCとで構成されている。ここで、上記
舵角センサ52および後輪舵角演算部35により、前後
輪舵角θF。
Then, as shown in FIG. 3, the control unit 21 controls the weight of the vehicle m1, the distance a11 between the center of gravity of the vehicle and the front wheel axle.
Distance b1 between the side center of gravity and the rear wheels; Tire cornering power KF, KR of the front and rear wheels in the standard state; stability factors of the vehicle such as the yaw moment of inertia of the vehicle; and the calculation formula for the road surface friction coefficient μ, which will be described later. The storage unit 31, which serves as a storage means for storing data necessary for control such as steering ratio characteristics, detects the switching of the external switch SW, and determines whether the side slip angle β of the vehicle is set to zero or not. a switch 32 that determines whether or not (described later) and switches the calculation formula for the road surface friction coefficient μ set in the storage unit 31 according to the result of the determination; a friction coefficient calculation unit 33 that calculates a road surface friction coefficient μ between the road surface and the tire according to the output of each of the sensors based on a calculation formula for the coefficient μ; and the friction coefficient calculation unit 33
a steering ratio characteristic selection section 34 that selects an appropriate steering characteristic from the steering characteristics stored in the storage section 31 according to the output of the steering ratio R selected by the steering ratio characteristic selection section 34; In addition to calculating the steering ratio R, that is, the rear wheel steering angle OR, based on the characteristics of
A rear wheel steering angle calculating section 35 having a function of detecting the rear wheel steering angle θR after calculating the road surface friction coefficient μ in the friction coefficient calculating section 33 receives the output of the rear wheel steering angle calculating section 35, and receives the output of the rear wheel steering angle calculating section 35, Pulse signal forming unit 3 that forms pulse signals for driving the motor 20 and pump drive motor 30
6, and a drive section MC that drives the pulse motor 20 and the pump drive 30 based on the pulse signal obtained from the pulse signal forming section 36. Here, the front and rear wheel steering angles θF are determined by the steering angle sensor 52 and the rear wheel steering angle calculating section 35.

ORなどの操舵状態を検出する操舵状態検出手段37が
構成されている。
A steering state detection means 37 is configured to detect a steering state such as OR.

そして、本発明の特徴として、上記記憶部31には、以
下のようにして定められた路面摩擦係数μの演算式が設
定されている。
As a feature of the present invention, an arithmetic expression for the road surface friction coefficient μ determined as follows is set in the storage unit 31.

すなわち、第4図に示すように、車両の旋回時において
タイヤに働く力の釣り合いから、下記に示す基本的な前
出の運動方程式(3)〜(7′)m−av−2Fp+2
FR 1、チー2 a−FF−2b−FR FF−μmKF(θF−β−a−7/V)FR−μ・K
R(θR−β+b・γ/V)ただし、 ■(戸十γ) 
=av 、(ここで、FF、FRはそれぞれ前輪2.後輪3のコ
ーナリングフォース、γはヨーレイトである)を得るが
、上記式(3)〜(7)からFF、FR,β、γ。
That is, as shown in Fig. 4, from the balance of forces acting on the tires when the vehicle turns, the basic equations of motion (3) to (7') m-av-2Fp+2 shown below are obtained.
FR 1, Chi 2 a-FF-2b-FR FF-μmKF (θF-β-a-7/V) FR-μ・K
R(θR-β+b・γ/V) However, ■(To 1 γ)
=av, (here, FF and FR are the cornering forces of the front wheel 2 and rear wheel 3, respectively, and γ is the yaw rate), but from the above equations (3) to (7), FF, FR, β, and γ.

テを消去すると、 [m−I−V″−s’+ 2−p−V (m (fKF
+ b;KR)+I−K)・s + 4 c’K r−
Kp−u’ −2μmm−V’ (a−K F−b−K
R)] aY” 2 μm1−V”CKF−tiF+KR・OR)−s”
+ 4 μ”V・KF−KR−C(b・θF+a・OR
)−s + 4 μ’V’KF・KR−C(θF−θR
) つまり前出の(8)式を得る(ただし、Sはラプラス演
算子、KmKF+kR,c−a+b)。
If we eliminate Te, we get [m-I-V''-s'+ 2-p-V (m (fKF
+ b; KR) + I-K)・s + 4 c'K r-
Kp-u'-2μmm-V' (a-K F-b-K
R)] aY” 2 μm1-V”CKF-tiF+KR・OR)-s”
+ 4 μ”V・KF−KR−C(b・θF+a・OR
)-s + 4 μ'V'KF・KR-C(θF-θR
) In other words, the above equation (8) is obtained (where S is the Laplace operator, KmKF+kR, c-a+b).

ここで、Sの二乗項は過渡応答の高周波成分であって、
通常無視し得るので零とおき、上式の両辺をμで除する
4とにより、 u= [V 1m (a”Kp +b’KR) + 1
−K)−s −m−V’(a−KF−b−KR) ] 
 aY/2 C−KF−KR(V (b・θp+a−θ
R)・s+V2(θF−θR)−c−aY) つまり前出の(1)式を得る。
Here, the square term of S is the high frequency component of the transient response,
Since it can usually be ignored, we set it to zero, and by dividing both sides of the above equation by μ, we get u=[V 1m (a”Kp +b'KR) + 1
-K)-s -m-V'(a-KF-b-KR) ]
aY/2 C-KF-KR(V (b・θp+a-θ
R)・s+V2(θF−θR)−c−aY) In other words, the above equation (1) is obtained.

すなわち、路面摩擦係数μが、車速V、重車両慣性質量
m、車両重心点と前輪軸間の距離a、車両重心点と後輪
軸間の距離す、標準状態における前輪2及び後輪3のコ
ーナリングパワーKF、KR,ヨー慣性モーメント■な
どのスタビリテイファクタおよび車両重心点の横加速度
aY、前輪舵角θF、後輪舵角θRおよび車速Vなどの
変数から求まることになる。
That is, the road surface friction coefficient μ is determined by vehicle speed V, heavy vehicle inertial mass m, distance a between the vehicle center of gravity and the front wheel axle, distance between the vehicle center of gravity and the rear wheel axle, and cornering of the front wheels 2 and rear wheels 3 in the standard state. It is determined from variables such as stability factors such as power KF, KR, and yaw moment of inertia (2), lateral acceleration aY at the center of gravity of the vehicle, front wheel steering angle θF, rear wheel steering angle θR, and vehicle speed V.

ここで、上記前後輪のコーナリングパワーKF。Here, the cornering power KF of the front and rear wheels mentioned above.

KRには時間遅れ要素りが付加されるが、この時間遅れ
は、ハンドル操舵時に生ずる前後輪操舵の遅れとタイヤ
横滑り角変化に対するコーナリングフォースFF、FR
の遅れに起因するものであって、近似的には、ハンドル
操舵に対して前後輪操舵角θF、θRが遅れて変化する
ものとしてもよい。そこで上記(2)式中のθF、θR
に一定の時定数τからなる時間遅れ要素D(ただし、D
−1/(1+τ))を付加して、δF=D・θF、δR
=D・ORと補正したδF、δRをθF、θRの代わり
に使用することにより、 −u−[V (m (a’Kp +b’KR) +l−
K1・s −m、V”(a−KF−b−KR) ] a
Y/2 C−KF・KR(V Cb・6F+a−6R)
・s+V’C6F−OR)−c−aY) つまり上記(2)式を得る。
A time delay element is added to KR, but this time delay is due to the delay in front and rear wheel steering that occurs when steering the steering wheel, and the cornering force FF and FR due to changes in tire sideslip angle.
Approximately, the front and rear wheel steering angles θF and θR may change with a delay relative to the steering wheel steering. Therefore, θF, θR in the above formula (2)
A time delay element D consisting of a constant time constant τ (however, D
-1/(1+τ)), δF=D・θF, δR
By using δF and δR corrected as =D・OR in place of θF and θR, -u-[V (m (a'Kp +b'KR) +l-
K1・s −m, V”(a-KF-b-KR) ] a
Y/2 C-KF・KR (V Cb・6F+a-6R)
-s+V'C6F-OR)-c-aY) In other words, the above equation (2) is obtained.

な詞、特に4輪操舵などでβを零とする制御を行うよう
なものでは、上記方程式(3)〜(力においてβ−0と
すれば、より簡単な式、 μ謔m−aY/2 (KF°θF+KR−OR−(av
/V’) Ca−Kp−b−KR) )     00
)または、 u−m−aY/2  (KF−δF+KR・OR−(a
v/V’) (a−KF−b−KR) )      
GDを得る。本実施例では、車両の制御の種類に応じて
、路面摩擦係数μを演算する基本的な運動方程式として
、上記(1)、 (2)または(至)、 01)式を上
記切換器32により切換えるようにしている。
In particular, in the case of control such as four-wheel steering where β is zero, the above equation (3) ~ (If β - 0 is set for force, a simpler formula, μ謔m−aY/2 (KF°θF+KR-OR-(av
/V') Ca-Kp-b-KR) ) 00
) or u-m-aY/2 (KF-δF+KR・OR-(a
v/V') (a-KF-b-KR))
Get GD. In this embodiment, the above-mentioned equations (1), (2), (to), and 01) are used by the switch 32 as the basic equation of motion for calculating the road surface friction coefficient μ, depending on the type of vehicle control. I'm trying to switch it up.

実際には、上記00)、 GD式を変形して、u−m−
aY/ ((KF +R−KR)(θ/Z)−(aY/
V’)(a−KF−b−KR) )   07!Jまた
は、 u=m−av/  t (KF +R−KR)  (δ
/2)−(aY/V’)(a−KF−b−KR)l  
  03)(ただし、δ=D・θ)として、ハンドル舵
角θ、転舵比Rの関数としている。
Actually, by transforming the above 00), GD formula, u-m-
aY/ ((KF +R-KR)(θ/Z)-(aY/
V') (a-KF-b-KR) ) 07! J or u=m-av/t (KF +R-KR) (δ
/2)-(aY/V')(a-KF-b-KR)l
03) (where δ=D・θ), it is a function of the steering wheel steering angle θ and the steering ratio R.

上記記憶部31には、上記転舵比特性選択部34で選択
すべき転舵比特性が設定されている。すなわち、この転
舵比特性は、第6図に示すように、基本的に、転舵比R
を車速Vが小さいときには逆位相側に、車速Vが大きい
ときには同位相側にそれぞれなるように連続的に変化さ
せる゛とともに、路面摩擦係数μの変化に応じて、3種
類の転舵比特性に切換えるものである。例えば、路面摩
擦係数μが標準的な値の時には、図中曲線r2のごとく
なるのに対し、路面摩擦係数μが比較的小さいときには
、図中曲線r1のごとく転舵比Rが同位相側に逆転する
車速V1の値を上記標準特性の同車速v2よりも低く、
逆に路面摩擦係数μが比較的大きいときには、図中曲線
r3のごとく位相逆転の車速値v3を高い側にそれぞれ
設定されてい、る。
In the storage section 31, steering ratio characteristics to be selected by the steering ratio characteristic selection section 34 are set. That is, as shown in FIG. 6, this steering ratio characteristic basically corresponds to the steering ratio R.
is continuously changed to the opposite phase side when the vehicle speed V is low, and to the same phase side when the vehicle speed V is high, and three types of steering ratio characteristics are changed according to changes in the road surface friction coefficient μ. It is something that can be switched. For example, when the road friction coefficient μ is a standard value, the curve r2 in the figure appears, whereas when the road friction coefficient μ is relatively small, the steering ratio R shifts to the same phase side as the curve r1 in the figure. The value of the reverse vehicle speed V1 is lower than the same vehicle speed V2 of the above standard characteristics,
Conversely, when the road surface friction coefficient μ is relatively large, the vehicle speed value v3 of the phase reversal is set to the higher side, as shown by the curve r3 in the figure.

次に、第5図は、上記摩擦係数演算部33において所定
のサンプリング周期ごとに行われる路面摩擦係数μの演
算手順を示す。まず、ステップS1で上記車速センサ5
3、横力センサ51、舵角センサ52および後輪舵角演
算部35の信号から車速v1車両重心点の横加速度a 
Y sハンドル舵角θ、転舵比Rを読取り、ステップS
2〜S4でそれぞれ車速V、横加速度a Y sハンド
ル舵角θが所定の設定値以上か否かを判別し、各判別が
YESであれば、順に進んで、ステップS5でさらにハ
ンドルの操舵速度θの絶対値+j+が車両が急旋回状態
となる所定の値0+  (#+ >0)よりも小さいか
否かを判別する。そして、その判別が1δ1くδ1であ
るYESのときには通常の走行状態にあると判断してス
テップS6に進み、上記(1)または(財)式(02)
式に変形したもの)に基づいて路面摩擦係数μを算出す
る。一方、上記ステップS5における判別が101≧0
1であるNoのときには、車両が急旋回状態にあると判
断し、ステップS7に移行して上記前後輪舵角θF、θ
Rに遅れ要素りを付加した値δF、δRを算出し、次に
、ステップS8で、δF、δRを使用した上記(2)ま
たはOD式(03)に変形したもの)に基づいて路面摩
擦係数μを算出する。
Next, FIG. 5 shows a procedure for calculating the road surface friction coefficient μ, which is performed at each predetermined sampling period in the friction coefficient calculating section 33. First, in step S1, the vehicle speed sensor 5
3. From the signals of the lateral force sensor 51, the steering angle sensor 52, and the rear wheel steering angle calculating section 35, calculate the vehicle speed v1 and the lateral acceleration a of the vehicle center of gravity.
Y s Read the steering wheel angle θ and steering ratio R, step S
In steps 2 to S4, it is determined whether the vehicle speed V, lateral acceleration a, Y, and steering angle θ are greater than or equal to predetermined set values, and if each determination is YES, the process proceeds in order, and further the steering speed of the steering wheel is determined in step S5. It is determined whether the absolute value +j+ of θ is smaller than a predetermined value 0+ (#+>0) at which the vehicle is in a sharp turning state. When the determination is YES, which is 1δ1 minus δ1, it is determined that the vehicle is in a normal running state, and the process proceeds to step S6.
The road surface friction coefficient μ is calculated based on the formula On the other hand, if the determination in step S5 is 101≧0
1 (No), it is determined that the vehicle is in a sharp turning state, and the process proceeds to step S7, where the front and rear wheel steering angles θF, θ are determined.
The values δF and δR are calculated by adding the delay element to R, and then, in step S8, the road surface friction coefficient is calculated based on the above (2) using δF and δR (or the one modified to OD formula (03)). Calculate μ.

一方、上記ステップ82〜S4における判別のいずれか
がNOlつまり車速Vの値、ハンドル舵角θの絶対値お
よび車両の横加速度aYの絶対値がそれぞれ設定値より
も低い場合には、上記(1)式などの演算式中で、右辺
の分母が零に近付き誤差が増大する虞れがあるため、路
面摩擦係数μの演算を行わずに、ステップS9で前回の
サンプリング時に推定した路面摩擦係数μの値を設定し
てステップ5lllに移行する。このステップSIOで
は、路面摩擦係数μが負か否かを判別し、判別がμく0
のYESであれば、路面摩擦係数μの特性からして不合
理であるのでステップSl+でμm0に再設定する一方
、ステップS7における判別がμ≧0のNoであるとき
にはそのままでステップS12に進む。
On the other hand, if any of the determinations in steps 82 to S4 above is NOl, that is, the value of the vehicle speed V, the absolute value of the steering wheel angle θ, and the absolute value of the vehicle lateral acceleration aY are lower than the set values, the above (1) ), there is a risk that the denominator on the right side approaches zero and the error increases, so instead of calculating the road surface friction coefficient μ, the road surface friction coefficient μ estimated at the previous sampling is used in step S9. The value of is set and the process moves to step 5lll. In this step SIO, it is determined whether the road surface friction coefficient μ is negative or not.
If YES, it is unreasonable considering the characteristics of the road surface friction coefficient μ, so it is reset to μm0 in step Sl+. On the other hand, if the determination in step S7 is No (μ≧0), the process directly proceeds to step S12.

そして、ステップS9では、制御を円滑に行うために、 μ′ −μ/(1+τ′ ・s )        (
14)(ただし、μ′はμを積分化処理した新しい積分
化摩擦係数、τ′は積分時定数、Sはラプラス演算子)
に基づき路面摩擦係数μの積分化処理を行って制御を終
了する。
Then, in step S9, in order to perform control smoothly, μ′ − μ/(1+τ′ ・s ) (
14) (where μ' is the new integrated friction coefficient obtained by integrating μ, τ' is the integration time constant, and S is the Laplace operator)
Based on this, the road surface friction coefficient μ is integrated and the control is terminated.

よって、上記ステップ82〜S5により、車両の走行状
態を検出する走行状態検出手段38が構成され、上記ス
テップS7により、上記記憶部31に記憶された前後輪
のコーナリングパワーKF。
Therefore, the steps 82 to S5 constitute the driving state detection means 38 that detects the driving state of the vehicle, and the cornering power KF of the front and rear wheels is stored in the storage section 31 in the step S7.

KRに時間遅れ要素りを付加する補正手段40が構成さ
れている。また、上記ステップS6により、車両の基本
的な運動方程式(1)に基づき路面摩擦係数μを演算す
る第1摩擦係数演算手段39が構成され、上記ステップ
S8により、上記走行状態検小手段38の出力を受け、
上記横力センサ51゜舵角センサ52、車速センサ53
、後輪舵角演算部35および補正手段40の出力値と記
憶部31の記憶内容とに応じて、上記(2式に基づき路
面摩擦係数μを演算する演算手段としての第2摩擦係数
演算手段41が構成されている。
A correction means 40 is configured to add a time delay element to KR. Further, the step S6 configures the first friction coefficient calculating means 39 that calculates the road surface friction coefficient μ based on the basic equation of motion (1) of the vehicle, and the step S8 configures the first friction coefficient calculation means 39 that calculates the road surface friction coefficient μ based on the basic equation of motion (1) of the vehicle. receive the output,
The above-mentioned lateral force sensor 51° steering angle sensor 52, vehicle speed sensor 53
, according to the output values of the rear wheel steering angle calculation section 35 and the correction means 40 and the stored contents of the storage section 31, the second friction coefficient calculation means as a calculation means for calculating the road surface friction coefficient μ based on the above (2 equations). 41 are configured.

車両の旋回走行時等に、各センサ51〜53の出力を受
けて、上記路面摩擦係数演算部33により、上記基本的
な運動方程式から導出された式(1)または(2)に基
づいて路面摩擦係数μが演算されると、上記転舵比特性
選択部34により、上記路面摩擦係数演算部33で算出
された路面摩擦係数μ(実際には積分化摩擦係数μ′)
の値の大小に応じて、予め上記記憶部31に設定された
第6図の転舵比特性曲線r1〜「3のうちいずれかが選
択される。次に、上記後輪舵角演算部35により、上記
転舵比選択部34で選択された転舵比、上記舵角センサ
52で検出された前輪舵角θFおよび上記車速センサ5
3で検出された車速Vの値に応じて、適切な後輪舵角θ
Rが演算される。さらに、パルス信号形成部36でその
演算値に応じたパルス信号が出力され、駆動部MCによ
り該パルス信号に応じて上記パルスモータ20およびポ
ンプ駆動用モータ30が駆動されて、後輪3.3が所定
−の舵角θRになるよう駆動される。
When the vehicle is turning, etc., the road surface friction coefficient calculation unit 33 receives the outputs of the sensors 51 to 53 and determines the road surface based on equation (1) or (2) derived from the basic equation of motion. When the friction coefficient μ is calculated, the steering ratio characteristic selection unit 34 selects the road surface friction coefficient μ (actually, the integrated friction coefficient μ′) calculated by the road surface friction coefficient calculation unit 33.
Depending on the magnitude of the value, one of the steering ratio characteristic curves r1 to r3 shown in FIG. 6 set in advance in the storage section 31 is selected. Accordingly, the steering ratio selected by the steering ratio selection section 34, the front wheel steering angle θF detected by the steering angle sensor 52, and the vehicle speed sensor 5
Appropriate rear wheel steering angle θ is determined according to the value of vehicle speed V detected in step 3.
R is calculated. Further, the pulse signal forming unit 36 outputs a pulse signal according to the calculated value, and the drive unit MC drives the pulse motor 20 and the pump drive motor 30 in accordance with the pulse signal. is driven to a predetermined - steering angle θR.

したがって、上記実施例では、車両の旋回走行時、タイ
ヤと路面との間の路面摩擦係数μを各検出手段で検出さ
れた車両重心点の横加速度aY。
Therefore, in the above embodiment, when the vehicle is turning, the road surface friction coefficient μ between the tires and the road surface is the lateral acceleration aY at the center of gravity of the vehicle detected by each detection means.

前輪舵角θF、後輪舵角θRおよび車速Vに応じて、基
本的な運動方程式から導出された(1)または  ・(
財)式に基づき演算するようにしたので、車両の運動状
態に応じた路面摩擦係数μの変化を速やかに検出するこ
とができる。
Depending on the front wheel steering angle θF, rear wheel steering angle θR, and vehicle speed V, (1) or ・(
Since the calculation is performed based on the equation (1), it is possible to quickly detect changes in the road surface friction coefficient μ depending on the state of motion of the vehicle.

加えて、車両が急旋回状態にあるなど車両の走行状態が
急激に変化するような所定条件にあるときには、上記記
憶部31に記憶される前後輪のコーナリングパワーKF
、KRに一定の時定数τからなる遅れ要素りを付加する
ようにしたので、ハンドル操舵に対する前後輪舵角θF
、θRの時間遅れやタイヤの横滑り角変化の遅れに起因
するコーナリングフォースFp、FRの時間的な遅れが
補正されて、路面摩擦係数μの推定誤差が低減し、その
結果、車両の動特性に応じた路面摩擦係数μめ変化を正
確に検出することができる。そして、このように導出さ
れた路面摩擦係数μを車両の旋回走行制御等に利用する
ことにより、例えば圧雪路の急旋回走行等においても安
定しん走行を行うことができるのである。
In addition, when the vehicle is in a predetermined condition where the running condition of the vehicle suddenly changes, such as when the vehicle is in a sharp turn, the cornering power KF of the front and rear wheels stored in the storage section 31 is changed.
, KR is added with a delay element consisting of a constant time constant τ, so that the front and rear wheel steering angle θF with respect to steering wheel steering is
, the time delay in cornering force Fp and FR caused by the time delay in θR and the delay in the tire sideslip angle change is corrected, the estimation error of the road surface friction coefficient μ is reduced, and as a result, the dynamic characteristics of the vehicle are It is possible to accurately detect the corresponding change in the road surface friction coefficient μ. By using the road surface friction coefficient μ derived in this way for controlling vehicle turning, it is possible to perform stable driving even when driving, for example, in sharp turns on a snow-packed road.

また、特に、上記実施例ではステップS9で演算された
路面摩擦係数μの積分化処理を行っているので、過渡応
答における路面摩擦係数μの微細な変動が平準化され、
より安定した旋回走行を行うことができるという著効を
有する。
In particular, in the above embodiment, since the road surface friction coefficient μ calculated in step S9 is integrated, minute fluctuations in the road surface friction coefficient μ in the transient response are smoothed out.
This has the remarkable effect of enabling more stable turning.

なお、上記実施例では、所定条件の時のみ時間遅れを補
正して路面摩擦係数μ値を計算するようにしたが、本発
明は上記実施例に限定されるものではなく、常にコーナ
リングパワーKF、KRに時間遅れ要素を付加するよう
にしてもよいことはいうまでもない。
In the above embodiment, the road surface friction coefficient μ value is calculated by correcting the time delay only under the predetermined conditions, but the present invention is not limited to the above embodiment, and the cornering power KF, It goes without saying that a time delay element may be added to KR.

次に、上記実施例の制御装置により、JWS車でβが零
となる旋回走行制御を行った実験例について、第7図〜
第12図に基づき説明する。第7図は、圧雪路(平均路
面摩擦係数μm0.2〜0゜3と推定されるいわゆる低
μ路)において、上記のようなハンドル操舵に対する前
後輪の時間遅れつまりタイヤの動特性を考慮せずに旋回
走行制御を行ったときのデータであって、第7図上図は
ハンドル舵角θの時間に対する変化、同下図は上記ハン
ドル舵角θの変化に対応する路面摩擦係数μの値の変化
特性を示す。また、第8図は同じ条件下でタイヤの動特
性を考慮し、−次遅れ系として処理したときのデータで
あって、同上図は便宜上θに所定の時定数からなる時間
遅れ要素を付加したθ’wmD・θについての舵角変化
、同下図は、そのときの路面摩擦係数μ変化の特性をそ
れぞれ示す。上記2つの図を比較すると、タイヤの動特
性を考慮しなかった場合、ハンドル舵角θの変化の谷に
対応する路面摩擦係数μのピーク点の位相がずれている
(第7図上下図参照)が、タイヤの動特性を考慮した場
合、ハンドル舵角θ′の変化特性の谷の位置と路面摩擦
係数μのピーク点の位置とが一致しており(第8図上下
図参照)、両者の位相が合っていることがわかる。また
、第7図下図に対し、第8図下図では、路面摩擦係数μ
の変化が緩やかで、特にμの大きなピークの部分がなだ
らかになっている。すなわち、ハンドル舵角θの操舵に
対して、実際には第8図上図のような時間遅れを持って
タイヤ特性が応答するものであり、このように処理する
ことにより、ハンドル操舵に対するタイヤ特性の時間遅
れを無視したために生じた路面摩擦係数μの推定値の変
動が平滑化されることがわかる。なお、ここで、上記実
施例における演算を中止すべきハンドル舵角θをごく微
小な値に設定し、実質的には、はとんど所定条件下でも
演算中止を行っていない。
Next, an experimental example in which the control device of the above embodiment was used to perform turning control in which β becomes zero in a JWS vehicle is shown in FIGS.
This will be explained based on FIG. Figure 7 shows how the time delay between the front and rear wheels relative to steering wheel steering, that is, the dynamic characteristics of the tires, is taken into consideration on a compacted snow road (a so-called low-μ road where the average road surface friction coefficient is estimated to be 0.2 to 0.3 μm). The upper figure in Figure 7 shows the change in the steering wheel angle θ over time, and the lower figure shows the value of the road friction coefficient μ corresponding to the change in the steering wheel angle θ. Indicates change characteristics. In addition, Figure 8 shows data when the dynamic characteristics of the tire are taken into account under the same conditions and processed as a -order lag system, and for convenience, in the same figure, a time lag element consisting of a predetermined time constant is added to θ. The figure below shows the characteristics of the change in the road surface friction coefficient μ at that time. Comparing the above two figures, we can see that the peak point of the road surface friction coefficient μ corresponding to the trough of the change in steering wheel angle θ is out of phase when the dynamic characteristics of the tires are not taken into consideration (see the top and bottom diagrams in Figure 7). ), when the dynamic characteristics of the tire are considered, the position of the valley of the change characteristic of the steering wheel steering angle θ′ and the position of the peak point of the road surface friction coefficient μ match (see the top and bottom diagrams in Figure 8), and both It can be seen that the phases match. In contrast to the lower diagram in Figure 7, the lower diagram in Figure 8 shows the road surface friction coefficient μ
The change in is gradual, especially the part where μ has a large peak. In other words, the tire characteristics actually respond to steering with the steering wheel steering angle θ with a time delay as shown in the upper diagram of FIG. It can be seen that fluctuations in the estimated value of the road surface friction coefficient μ caused by ignoring the time delay are smoothed out. Here, the steering wheel steering angle θ at which the calculation should be stopped in the above embodiment is set to a very small value, and the calculation is not actually stopped even under the predetermined conditions.

また、第9図および第10図は、上記第7図および第8
図と同様の走行条件で、路面摩擦係数μの演算を中止す
るθの値を上記よりも大きく設定した場合のデータを示
し、第9図はタイヤの動特性を考慮しなかったとき、第
10図はタイヤの動特性を考慮したときのもので、各図
の上図および下図は、それぞれ上記第7図および第8図
にそれぞれ対応する特性を示す。これらを比較すると、
上記演算式による演算を所定条件で中止するようにした
ことによる効果とともに、時間遅れ要素を付加したこと
によるピークの平滑化の効果が示されている。
In addition, Figures 9 and 10 are similar to Figures 7 and 8 above.
Figure 9 shows the data when the value of θ, at which the calculation of the road surface friction coefficient μ is stopped, is set larger than the above value under the same driving conditions as shown in the figure. The figures are taken in consideration of the dynamic characteristics of the tire, and the upper and lower figures in each figure show the characteristics corresponding to the above-mentioned Figures 7 and 8, respectively. Comparing these,
In addition to the effect of stopping the calculation based on the above formula under a predetermined condition, the peak smoothing effect of adding a time delay element is shown.

なお、上記第7〜第10図のデータは、いずれも積分化
処理を行い、かつそのときの積分時定数を比較的小さな
所定値に設定したときのものである。
Note that the data shown in FIGS. 7 to 10 above are obtained when the integration process is performed and the integration time constant is set to a relatively small predetermined value.

さらに、第11図および第12図は、ウェットコンクリ
ート路(平均路面摩擦係数μが0.6程度と推定される
いわゆる中μ路)での旋回走行制御を行ったデータを示
し、第11図は、上記演算中止を行わず、かつ積分化処
理の時定数を上記各図の場合と同様に小さく設定し、タ
イヤ動特性を考慮しなかったとき、第12図は、演算中
止を行い、かつ積分化処理の積分時定数を比較的大きく
設定し、タイヤ動特性を考慮したときのデータをそれぞ
れ示す。これらの図を比較すれば、積分時定数の増大効
果および演算中止効果とともに、タイヤ動特性を一次遅
れ系として処理したことによる路面摩擦係数μ推定の安
定効果が示されており、非常に安定した旋回走行制御を
行っていることがわかる。
Furthermore, Fig. 11 and Fig. 12 show data obtained when turning driving was controlled on a wet concrete road (so-called medium μ road where the average road surface friction coefficient μ is estimated to be about 0.6). , when the above calculation is not canceled and the time constant of the integration process is set small as in the case of each of the above figures, and tire dynamic characteristics are not taken into account, Figure 12 shows that the calculation is canceled and the integration process is The data shown below are obtained by setting the integral time constant of the conversion process to a relatively large value and taking tire dynamic characteristics into consideration. Comparing these figures shows that in addition to the effect of increasing the integral time constant and the effect of aborting calculations, the effect of stabilizing the estimation of the road surface friction coefficient μ by treating the tire dynamic characteristics as a first-order lag system is shown, making it extremely stable. It can be seen that turning control is being performed.

なお、本発明の適用は上記実施例のような4輪操舵の制
御のみに限定されるものではなく、例えば2輪操舵の制
御にも適用可能である。その場合、本発明の路面摩擦係
数検出装置で検出された路面摩擦係数μを利用して、低
摩擦係数を有する路面で走行する場合等に利用されるい
わゆるアンチロック・ブレーキ・システムに適用すれば
、旋回走行時等に実際の路面摩擦係数μの変化に対応し
たブレーキ力の制御を行うことができ、制御効果を向上
させることができるものである。
Note that the application of the present invention is not limited to the control of four-wheel steering as in the embodiments described above, but is also applicable to, for example, the control of two-wheel steering. In that case, the road surface friction coefficient μ detected by the road surface friction coefficient detection device of the present invention may be used to apply it to a so-called anti-lock braking system used when driving on a road surface with a low friction coefficient. It is possible to control the braking force in response to changes in the actual road surface friction coefficient μ during cornering, etc., thereby improving the control effect.

また、上記実施例に示すように、車両の基本的な運動方
程式(3)〜(7)から路面摩擦係数μを計算式を導き
出す場合、上述の(1)または(2)式、つまり下記の
一般関数、 p−G  (s)  ・av/H(s)  ・θに変形
するだけでなく、例えば、 μ−G’  (s)  ・γ/H(s)  ・θのよう
に、ヨーレイトγとハンドル舵角θとの関−数とするこ
ともできる。あるいは、 μmG’  (s)  ・β/H(s)  ・θのよう
に、横滑り角βとハンドル舵角θとの関数に変形するこ
ともでき、それらの変数γ、θまたはβ、θの値に応じ
て路面摩擦係数μを検出するとともに、補正手段40に
より、時間遅れ要素を付加するような構成とすることも
可能である。
In addition, as shown in the above example, when deriving the formula for calculating the road surface friction coefficient μ from the basic equations of motion (3) to (7) of the vehicle, the formula (1) or (2) described above, that is, the following In addition to transforming the general function p-G (s) ・av/H(s) ・θ, for example, μ-G' (s) ・γ/H(s) ・θ, the yaw rate γ and It can also be a function of the steering wheel steering angle θ. Alternatively, it can be transformed into a function of sideslip angle β and steering angle θ, such as μmG' (s) ・β/H(s) ・θ, and the values of these variables γ, θ or β, θ It is also possible to adopt a configuration in which the road surface friction coefficient μ is detected in accordance with the road surface friction coefficient μ, and a time delay element is added by the correction means 40.

(発明の効果) 以上説明したように、本発明の路面摩擦係数検出装置に
よれば、車両の旋回走行時等における横加速度、車輪の
舵角、車速、前後車輪のコーナリングパワー等の運転状
態に応じて、車両の運動方程式に基づきタイヤと路面と
の間の路面摩擦係数を演算するとき、前後輪のコーナリ
ングパワーの入力に所定の時定数からなる時間遅れ要素
を付加するようにしたので、ハンドル操舵に対する前後
輪舵角の時間遅れに起因する路面摩擦係数推定の時間遅
れが補正されて、急旋回走行時などにも車両の走行状態
の変化に対応して路面摩擦係数を正確に検、出すること
ができ、安定した車両の旋回走行制御等に供することが
できる。
(Effects of the Invention) As explained above, according to the road surface friction coefficient detection device of the present invention, driving conditions such as lateral acceleration, steering angle of wheels, vehicle speed, cornering power of front and rear wheels, etc. during turning of a vehicle can be detected. Accordingly, when calculating the road surface friction coefficient between the tires and the road surface based on the equation of motion of the vehicle, a time delay element consisting of a predetermined time constant is added to the input of the cornering power of the front and rear wheels. The time delay in estimating the road surface friction coefficient due to the time delay between the front and rear wheel steering angles relative to steering is corrected, and the road surface friction coefficient can be accurately detected and output in response to changes in vehicle driving conditions, even when driving around sharp turns. This can be used for stable vehicle turning control, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の構成を示すブロック図である。 第2図以下は本発明の実施例を示し、第2図は車両の全
体構成図、第3図は車両の制御装置の構成図、第4図は
車両が旋回走行時に作用する力の関係を示す図、第5図
は路面摩擦係数演算部における制御を示すフローチャー
ト図、第6図は記憶部に設定された選択されるべき転舵
比特性を示す図、第7図〜第10図はそれぞれ圧雪路に
おける実験データを示し、第7図は演算中止を行わずか
つ動特性を考慮しなかったとき、第8図は演算中止を行
わずかつ動特性を考慮したとき、第9図は演算中止を行
いかつ動特性を考慮しなかったとき、第10図は演算中
止を行いかつ動特性を考慮したときのデータを示す実験
結果図、第11図および第12図は中μ路における実験
データを示し、第11図は演算中止を行わずかつ動特性
を考慮しなかったとき、第12図は演算中止を行いかつ
動特性を考慮したときのデータをそれぞれ示す実験結果
・図である。 31・・・記憶部(記憶手段)、35・・・後輪舵角演
算部、37・・・操舵状態検出手段、39・・・第1摩
擦係数演算手段、40・・・補正手段、41・・・第2
摩擦係数演算手段(摩擦係数演算手段)、51・・・横
力センサ(運動状態検出手段)、52・・・舵角センサ
、53・・・車速センサ(車速検出手段)。 特 許 出 願 人   マツダ株式会社代  理  
人    弁理ギー前 1) 弘。 第2図 第1図 第6図 i位相 第9図 第7図 第8図
FIG. 1 is a block diagram showing the configuration of the present invention. Figure 2 and subsequent figures show embodiments of the present invention. Figure 2 is an overall configuration diagram of the vehicle, Figure 3 is a configuration diagram of the vehicle control device, and Figure 4 shows the relationship of forces that act when the vehicle turns. 5 is a flowchart showing the control in the road surface friction coefficient calculation section, FIG. 6 is a diagram showing the steering ratio characteristics to be selected set in the storage section, and FIGS. 7 to 10 are respectively Figure 7 shows the experimental data on a snow compacted road. Figure 7 shows when the calculation is not canceled and the dynamic characteristics are not taken into consideration. Figure 8 is when the calculation is not canceled and the dynamic characteristics are taken into account. Figure 9 is when the calculation is canceled and the dynamic characteristics are taken into account. Figure 10 shows the experimental results when the calculation was stopped and the dynamic characteristics were taken into account, and Figures 11 and 12 show the experimental data on the middle μ road. FIG. 11 is an experimental result diagram showing data when the calculation is not canceled and dynamic characteristics are not taken into consideration, and FIG. 12 is an experimental result diagram showing data when the calculation is canceled and the dynamic characteristics are taken into account. 31... Storage unit (storage means), 35... Rear wheel steering angle calculation unit, 37... Steering state detection means, 39... First friction coefficient calculation means, 40... Correction means, 41 ...Second
Friction coefficient calculation means (friction coefficient calculation means), 51... Lateral force sensor (motion state detection means), 52... Rudder angle sensor, 53... Vehicle speed sensor (vehicle speed detection means). Patent applicant Mazda Motor Corporation representative
Person Bengeri Mae 1) Hiroshi. Figure 2 Figure 1 Figure 6 i-phase Figure 9 Figure 7 Figure 8

Claims (1)

【特許請求の範囲】[Claims] (1)車両のタイヤと路面との間の摩擦係数μを検出す
る路面摩擦係数検出装置であって、車両重心点の横加速
度a_Y等の車両の運動状態を検出する運動状態検出手
段と、前後輪舵角θ_F、θ_Rなどの操舵状態を検出
する操舵状態検出手段と、車両の走行速度Vを検出する
車速検出手段と、車両の重量m、車両の重心点と前後輪
軸との距離a、b、標準状態における前輪および後輪の
タイヤコーナリングパワーK_F、K_R並びに車両の
ヨー慣性モーメントIなどの車両のスタビリティファク
タを記憶する記憶手段と、該記憶手段に記憶するコーナ
リングパワーK_F、K_Rに対して一定の時定数τか
らなる時間遅れ要素D{D=1/(1+τ・s)}を付
加する補正手段と、上記運動状態検出手段、操舵状態検
出手段、車速検出手段および補正手段の出力値と記憶手
段の記憶内容とに応じて、車両の基本的な運動方程式か
ら導出される式 μ=[V{m(a^2K_F+b^2K_R)+I・K
}・s−m・V^2(a・K_F−b・K_R)]a_
Y/2c・K_FK_R{V(b・δ_F+a・δ_R
)・s+V^2(δ_F−δ_R)−c・a_Y} (ただし、c=a+b、K=K_F+K_R、δ_F=
D・θ_F、δ_R=D・θ_R、sはラプラス演算子
)に基づき路面摩擦係数μを演算する摩擦係数演算手段
とを備えたことを特徴とする路面摩擦係数検出装置。
(1) A road surface friction coefficient detection device that detects the friction coefficient μ between the vehicle tires and the road surface, which includes a motion state detection means that detects the motion state of the vehicle such as the lateral acceleration a_Y of the vehicle center of gravity, and Steering state detection means for detecting steering states such as wheel steering angles θ_F and θ_R; vehicle speed detection means for detecting vehicle running speed V; vehicle weight m; distances a and b between the center of gravity of the vehicle and the front and rear wheel axes. , a storage means for storing stability factors of the vehicle such as tire cornering powers K_F, K_R of the front wheels and rear wheels in a standard state and yaw moment of inertia I of the vehicle, and for the cornering powers K_F, K_R stored in the storage means. a correction means for adding a time delay element D {D=1/(1+τ・s)} consisting of a constant time constant τ; output values of the motion state detection means, steering state detection means, vehicle speed detection means and correction means; Depending on the memory contents of the storage means, the formula μ=[V{m(a^2K_F+b^2K_R)+I・K] derived from the basic equation of motion of the vehicle
}・s−m・V^2(a・K_F−b・K_R)]a_
Y/2c・K_FK_R{V(b・δ_F+a・δ_R
)・s+V^2(δ_F−δ_R)−c・a_Y} (where c=a+b, K=K_F+K_R, δ_F=
A road surface friction coefficient detection device comprising: friction coefficient calculating means for calculating a road surface friction coefficient μ based on D·θ_F, δ_R=D·θ_R, s is a Laplace operator).
JP62260458A 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient Pending JPH01101441A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP62260458A JPH01101441A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient
DE8888117133T DE3877118T2 (en) 1987-10-15 1988-10-14 DEVICE FOR DETERMINING THE FRICTION FACTOR FOR VEHICLES.
EP88117133A EP0312096B1 (en) 1987-10-15 1988-10-14 Friction detecting device for vehicles
US07/260,890 US4951198A (en) 1987-10-15 1988-10-14 Friction detecting device for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62260458A JPH01101441A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Publications (1)

Publication Number Publication Date
JPH01101441A true JPH01101441A (en) 1989-04-19

Family

ID=17348226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62260458A Pending JPH01101441A (en) 1987-10-15 1987-10-15 Detecting device for road surface friction coefficient

Country Status (1)

Country Link
JP (1) JPH01101441A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092932A (en) * 1988-09-23 1992-03-03 Lerke Pavel P Method of producing active mineral additive for binding materials
RU217339U1 (en) * 2022-12-28 2023-03-28 Виталий Леонидович Махонин Installation for measuring the coefficient of adhesion during complex movement of a blocked automobile wheel with a road surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5092932A (en) * 1988-09-23 1992-03-03 Lerke Pavel P Method of producing active mineral additive for binding materials
RU217339U1 (en) * 2022-12-28 2023-03-28 Виталий Леонидович Махонин Installation for measuring the coefficient of adhesion during complex movement of a blocked automobile wheel with a road surface

Similar Documents

Publication Publication Date Title
US4951198A (en) Friction detecting device for vehicles
JP4670161B2 (en) Electric power steering device for automobile
JP3463415B2 (en) Vehicle yawing behavior control device
JP3179271B2 (en) Control method of front and rear wheel steering device
JPH0478668A (en) Rear wheel steering control method
EP1602559A2 (en) Vehicle steering apparatus and control method therefor
JPS6133746B2 (en)
JP2004352046A (en) Tire gripping degree estimating device and method, and running state control method
US20100211262A1 (en) Electric power steering device
JP4032985B2 (en) Vehicle motion control device
EP0363846B1 (en) Rear wheel-steering angle control-system for vehicle
JP2003081119A (en) Motor-driven power steering device for automobile
JPH06221968A (en) Road surface friction coefficient detection device
JP3626388B2 (en) Vehicle attitude control device
JPH01101441A (en) Detecting device for road surface friction coefficient
JP3060800B2 (en) Vehicle yawing momentum control system
JPH07144653A (en) Controller of quantity of yawing momentum of vehicle
JPH01101434A (en) Detecting device for road surface friction coefficient
JPH01101436A (en) Detecting device for road surface friction coefficient
JP3509198B2 (en) Brake control method and brake control device for vehicle provided with anti-skid brake device and rear wheel steering device
JP2717676B2 (en) Rear wheel steering control device for vehicle
JPH01101440A (en) Detecting device for road surface friction coefficient
JP2534277B2 (en) Steering control device for four-wheel drive vehicle
JPH01101439A (en) Detecting device for road surface friction coefficient
JP3660106B2 (en) Electric power steering device