JPH01101430A - Method for detecting flow state of air flow on body-installed pedestal - Google Patents

Method for detecting flow state of air flow on body-installed pedestal

Info

Publication number
JPH01101430A
JPH01101430A JP25830887A JP25830887A JPH01101430A JP H01101430 A JPH01101430 A JP H01101430A JP 25830887 A JP25830887 A JP 25830887A JP 25830887 A JP25830887 A JP 25830887A JP H01101430 A JPH01101430 A JP H01101430A
Authority
JP
Japan
Prior art keywords
pedestal
airflow
temperature
air flow
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25830887A
Other languages
Japanese (ja)
Inventor
Toshio Koshihara
腰原 敏夫
Hirohiko Yamada
山田 大彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP25830887A priority Critical patent/JPH01101430A/en
Publication of JPH01101430A publication Critical patent/JPH01101430A/en
Pending legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Abstract

PURPOSE:To detect the state of the air flow as a temperature distribution by generating a temperature difference between the top surface of the pedestal and air flow and photographing the top surface of the pedestal by an infrared- ray camera. CONSTITUTION:A body 1 such as a building model is installed on the top surface 2a of the pedestal 2. Hot water 4 is put in the pedestal 2 and allowed by a pump 5 to flow so as to heat the pedestal 2 uniformly. The air flow 3 having the temperature difference from the top surface 2a of the pedestal is blown to the body 1. The area where the air flow 3 flows in contact with the tops surface 2a of the pedestal is cooled with the air flow to become low in temperature. The infrared camera 6 photographes the top surface 2a of the pedestal to detect the separation position of the air flow and the position of a vortex as an image pattern corresponding to the temperature difference. Then the state of the air flow is easily and accurately detected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、台座上に設置の物体に吹き付けた気流の、
台座上における流れ状況を検出するための方法に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is directed to
The present invention relates to a method for detecting flow conditions on a pedestal.

〔従来の技、術〕[Traditional techniques, techniques]

立体構造物の構造解析やビル風の検討、大気汚染の予測
などに際して、水平板等の台座上に設置の物体に気流を
吹き付けたときの台座上における気流の流れ状況番知る
こと、は、極めて重要である。
When analyzing the structure of a three-dimensional structure, examining building winds, or predicting air pollution, it is extremely important to know the flow status of the airflow on the pedestal when airflow is blown onto an object installed on the pedestal, such as a horizontal plate. is important.

台座上に設置の円柱等の物体に吹き付けた気流の、台座
上における流れ状況を検出する方法として、従来一般に
用いられている方法には、油膜法および電解腐食法など
がある(朝食書店「流れの可視化ハンドブック」92頁
以下(油膜法)および123頁以下(電解腐食法))。
The oil film method and the electrolytic corrosion method are methods that have been commonly used to detect the state of the air flow on the pedestal when it is blown onto an object such as a cylinder installed on the pedestal. ``Visualization Handbook'' (pages 92 and below (oil film method) and pages 123 and below (electrolytic corrosion method)).

油膜法は、円柱等の物体を設置の台座および物体の表面
に油と顔料の混合物(油膜)を塗布して気流等の流れ中
に置き、そのとき油膜に働く流体力の作用によって油膜
に現われる縞、筋状の模様を調べることにより、台座表
面等での流れの状況を検・出する方法である。
In the oil film method, a mixture of oil and pigment (oil film) is applied to the pedestal and surface of the object, such as a cylinder, and placed in a stream of air, etc. At that time, an oil film appears due to the action of fluid force acting on the oil film. This is a method of detecting the flow situation on the surface of a pedestal, etc. by examining striped or streaky patterns.

一方、電解腐食法は直接的には水流の流れ状況を検出す
る方法である突、水流での知見を利用して気流の流れ状
況を知ることが行なわれている。
On the other hand, the galvanic corrosion method is a method of directly detecting the flow condition of water current, and the knowledge of water flow is used to determine the flow condition of air current.

電解腐食法では、例えば黄銅製の台座および物体の表面
にハンダを溶着したものを水流中に置き、これを陽極と
して使用し水を直流によりミ気分層する。すると、ハン
ダ面上に流線に沿って腐食による筋模様が現われるので
、その筋模様を調べることにより、台座表面等での流れ
の状況を検出するものである。
In the electrolytic corrosion method, for example, a brass base and an object with solder welded to the surface are placed in a stream of water, used as an anode, and the water is divided into layers using a direct current. Then, streaks due to corrosion appear on the solder surface along the streamlines, and by examining the streaks, the state of flow on the surface of the pedestal, etc. can be detected.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記油膜法には次のような問題点がある
However, the oil film method has the following problems.

(1)油膜の塗布に高度な専門的技術を要し、また結果
の判断にも高度な専門的技術を必要とする。
(1) Highly specialized techniques are required to apply the oil film, and highly specialized techniques are also required to judge the results.

また油膜の材質選択などに専門的知識を必要とする。Also, specialized knowledge is required for selecting the material for the oil film.

(2)  一般に気流等の流れに対して油膜に発生する
模様の応答が悪く、検出精度に劣る。
(2) In general, the pattern generated on an oil film has a poor response to the flow of air or the like, resulting in poor detection accuracy.

(3)油膜に遠心力が働く場合、重力による影響がある
場合などには、結果にその影響が入り、正確な検出はで
きない。
(3) If centrifugal force acts on the oil film, or if there is an influence from gravity, the results will be affected and accurate detection will not be possible.

(4)油による周辺への汚れなどがあシ、検出作業が一
般に面倒である。また、検出作業を繰シ返すような場合
には、油膜の塗布を何回か繰シ返して行なう必要があシ
、この点でも面倒である。
(4) Oil can stain the surrounding area, and detection work is generally troublesome. Further, when the detection work is repeated, it is necessary to apply the oil film several times, which is also troublesome.

(5)適用できる流速は1m/秒以上であシ、これより
低速流には適さない。
(5) The applicable flow velocity is 1 m/sec or more, and it is not suitable for lower velocity flows.

(6)台座等の表面の仕上げ精度が結果に大きく影響を
与え易いため、注意が必要である。
(6) Care must be taken as the finishing accuracy of the surface of the pedestal etc. tends to greatly affect the results.

電解腐食法は上述したように直接的には水流について適
用される方法であるが、次のような問題点がある。
As mentioned above, the galvanic corrosion method is a method that is directly applied to water flow, but it has the following problems.

(1)適用できる水流の範囲が0.01〜0.1 m 
/秒の流速のものに誤られている。
(1) Applicable water flow range is 0.01 to 0.1 m
It is mistaken for a flow rate of /sec.

(2)水を流し、電気分解を行なうなど検出方法自体が
複雑で、作業が面倒であり、専門的な技術が必要である
(2) The detection method itself, which involves running water and performing electrolysis, is complicated, laborious, and requires specialized techniques.

(3)  電気分解がI・ンダ面表面に一様でなく、流
線に沿ってi状に行なわれる理由が充分に解明されてい
ない。
(3) The reason why electrolysis is not uniform on the I/D surface but is carried out in an i-shape along the streamlines has not been fully elucidated.

(4)剥離線付近の流速が零になる箇所では1重力の影
響を受は易い。
(4) Areas near the separation line where the flow velocity becomes zero are easily affected by 1 gravity.

(5)台座等の表面に溶着したハンダ面をむらなく滑ら
かに仕上げる必要があり、精度の確保が難しく高度の技
術を必要とする。
(5) It is necessary to finish the solder surface welded to the surface of the pedestal etc. evenly and smoothly, making it difficult to ensure accuracy and requiring advanced technology.

この発明は、上述の現状に鑑み、台座上に設置の物体に
吹き付けた気流の、台座上における流れ状況を、容易且
つ精度良く検出することができる方法を目的とするもの
である。
In view of the above-mentioned current situation, the object of the present invention is to provide a method that can easily and accurately detect the flow condition on the pedestal of the airflow blown onto an object installed on the pedestal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、台座上に設置の物体に吹き付けた気流の、
前記台座上における流れ状況を検出する方法において、 前興台座上面と前記気流との間に相対的に温度差を付け
て、前記気流を前□記物体に吹き付ける一方、この状態
下で前記台座上面を赤外線カメラにより撮影し、かくし
て、前記台座上での前記気流の流れ状況を前記台座上面
の赤外線画像上に温度分布として検出することに特徴を
有するものである。
This invention is based on the air flow blown onto an object installed on a pedestal.
In the method of detecting the flow condition on the pedestal, a relative temperature difference is created between the upper surface of the pedestal and the airflow, and the airflow is blown onto the object, while under this condition, the upper surface of the pedestal is is photographed by an infrared camera, and the flow condition of the air current on the pedestal is thus detected as a temperature distribution on an infrared image of the upper surface of the pedestal.

以下、この発明の検出方法について詳述する。The detection method of the present invention will be described in detail below.

第1図は、この発明の検出方法の一実施態様を示す説明
図であ、る。
FIG. 1 is an explanatory diagram showing one embodiment of the detection method of the present invention.

第1図において、1は物体、2は物体1を設置の台座で
ある。物体lは、これに吹き付けた気流3の、台座2上
での流れ状況を検出したい対象物である。物体lは、こ
の例では円柱体からなっているが、楕円体、円錐体、角
柱体、球体など、どんな物体、立体、構造物でも可能で
ある。実際の構造物の縮小模型であってもよい。物体1
は、できるだけ熱を伝えにくい材質のものとして、台座
2の上面2aの温度の影響を材質的にできるだけ受けな
いようにする。物体lの材質としては、例えば木材、硬
質ウレタン等が掲げられる。このような物体lを台座2
上に所望の姿勢に、例えば図のように直立に設置する。
In FIG. 1, 1 is an object, and 2 is a pedestal on which the object 1 is installed. The object 1 is an object on which the flow condition of the airflow 3 blown onto the pedestal 2 is to be detected. Although the object l is a cylinder in this example, it can be any object, solid, or structure, such as an ellipsoid, a cone, a prism, or a sphere. It may be a scaled model of an actual structure. Object 1
is made of a material that conducts heat as little as possible so that it is not affected by the temperature of the upper surface 2a of the pedestal 2 as much as possible. Examples of the material of the object 1 include wood, hard urethane, and the like. Place such an object l on pedestal 2
Place it on top in the desired position, for example upright as shown.

台座2は、物体1の周辺で台座2の形状が小さいことに
よる気流3の流れの乱れ発生がないようにするために、
充分に広い形状としである。台座2の上面2aは、そこ
での気流3の流れ状況を調べたい表面形状をとっておシ
、この例では水平面になっているが、傾斜面であろうと
、曲面であろうと、凹凸面であろうと可能である。台座
2は、台座2上での気流3の流れ状況を検出し易いよう
にするために、鋼板のような熱伝導率の大きい、熱を伝
え易い材料ではなく、例えばグラスチックのような熱伝
導率の小さい、熱を伝えにくい材料で形成することが好
ましい。
The pedestal 2 is designed to prevent turbulence of the airflow 3 around the object 1 due to the small shape of the pedestal 2.
It has a sufficiently wide shape. The upper surface 2a of the pedestal 2 has a surface shape on which you want to examine the flow condition of the airflow 3. Although it is a horizontal surface in this example, it may be an inclined surface, a curved surface, or an uneven surface. It is possible to be deaf. In order to make it easier to detect the flow condition of the airflow 3 on the pedestal 2, the pedestal 2 is made of a heat-conducting material such as glass instead of a material with high thermal conductivity such as a steel plate that easily transmits heat. It is preferable to use a material that has a low heat conductivity and is difficult to conduct heat.

このような台座2の上面2aの温度を上昇させて、吹き
付ける気流3の温度よシも高くする。その温度上昇手段
は何んでも可能である。この例では、台座2を水平台状
の函体に形成して、台座2の中空部2b内に温水4を注
入し、これによって行なっている。この場合、台座2の
上面2aの各部で温度差が付くのを防止するため、中空
部2b内に一ング5等を設置して、温水4を流動させる
ことが好ましい。
By increasing the temperature of the upper surface 2a of such a pedestal 2, the temperature of the airflow 3 blown is also increased. Any means for increasing the temperature is possible. In this example, the pedestal 2 is formed into a horizontal pedestal-like box, and hot water 4 is injected into the hollow part 2b of the pedestal 2. In this case, in order to prevent temperature differences from forming at various parts of the upper surface 2a of the pedestal 2, it is preferable to install a ring 5 or the like in the hollow part 2b to allow the hot water 4 to flow.

なお、温度上昇手段として台座2外の外部加熱器を用い
て、台座2の上面2aの一様加熱によ多温度上昇させる
ときには、台座2は面体である必要はなく板体でよい。
Note that when an external heater outside the pedestal 2 is used as a temperature raising means to raise the temperature by uniformly heating the upper surface 2a of the pedestal 2, the pedestal 2 does not need to be a face piece and may be a plate.

上面2aの背面からの温風による一様加熱のときも同様
である。なおまた、一般的ではないが1台座2の上面2
aの温度を上昇させる代りに、吹き付ける気流3として
上面2aの温度よシも低いものを用い、これにより気流
3に対して上面2aの温度を相対的に高いものとするこ
とも可能である。気流3の温度に対する上面2aの温度
差は、上面2aを撮影する赤外線カメラ6の温度分解能
や検出精度に与える温度の影響等を考慮して、適宜決定
する。
The same applies to the case of uniform heating by hot air from the back side of the upper surface 2a. Furthermore, although it is not common, the upper surface 2 of 1 pedestal 2
Instead of increasing the temperature of the airflow 3, it is also possible to use an airflow 3 that is lower in temperature than the upper surface 2a, thereby making the temperature of the upper surface 2a relatively higher than that of the airflow 3. The temperature difference of the upper surface 2a with respect to the temperature of the airflow 3 is appropriately determined in consideration of the influence of temperature on the temperature resolution and detection accuracy of the infrared camera 6 that photographs the upper surface 2a.

以上のように、気流3に対して台座2の上面2aの温度
を相対的に高くしたならば、その台座2上の物体1に一
方向から気流3を吹き付ける。気流3を物体1に吹き付
けるには、一般的には風洞を利用し、物体lを設置の台
座2を風洞内に収容して行なえばよい。気流3の速度お
よび上下方向の速度分布等は、検出目的に応じて適宜決
定する。
As described above, once the temperature of the upper surface 2a of the pedestal 2 is made relatively high with respect to the airflow 3, the airflow 3 is blown onto the object 1 on the pedestal 2 from one direction. In order to blow the airflow 3 onto the object 1, generally a wind tunnel may be used and the object 1 may be placed on the pedestal 2 accommodated in the wind tunnel. The velocity of the airflow 3, the velocity distribution in the vertical direction, etc. are determined as appropriate depending on the purpose of detection.

すると、台座2の上面2aの、気流3が接触して流れる
領域は、気流3による冷却によって低温となシ、これと
接する気流3が非接触の温度が相対的に高い領域と区別
して、赤外線カメラ6に感知される。従って、この状態
下で台座2の上方の適当な位置から赤外線カメラ6で上
面2aを撮影すれば、上面2a上での気流3の流れ状況
が上面2aの赤外線画像上に、低温の画像部分と高温の
画像部分とがなす画像模様として検出される。こ、れか
ら、台座2の上面2a上での気流3の剥離位置や、その
前方に発生する気流の剥離位置を示す馬蹄形渦の位置、
後方に発生するアーチ渦の位置などが、その画像模様に
おける低温の画像部分と高温の画像部分の境の温度急変
位置として、知ることができる。
Then, the area on the upper surface 2a of the pedestal 2 where the airflow 3 comes in contact with and flows through is cooled by the airflow 3 and becomes low temperature, and the airflow 3 in contact with this area is distinguished from the area where the temperature is relatively high without contact, and infrared rays are emitted. It is sensed by camera 6. Therefore, if the upper surface 2a is photographed with the infrared camera 6 from an appropriate position above the pedestal 2 under this condition, the flow condition of the airflow 3 on the upper surface 2a will be shown on the infrared image of the upper surface 2a as a low-temperature image area. It is detected as an image pattern formed by high temperature image parts. From this, the position of the horseshoe-shaped vortex indicating the separation position of the airflow 3 on the upper surface 2a of the pedestal 2 and the separation position of the airflow generated in front of it,
The position of the arch vortex generated in the rear can be known as the position of sudden temperature change at the boundary between the low-temperature image part and the high-temperature image part in the image pattern.

なお、以上の場合、第2図に示すように、物体1を設置
の台座2を90度傾けて垂直に設置し、台座2の上面2
aを赤外線カメラ6により側方から撮影することができ
る。この場合、気流3は紙面に垂直方向に物体lに吹き
付けられる。
In the above case, as shown in FIG. 2, the object 1 is installed vertically with the pedestal 2 tilted 90 degrees,
a can be photographed from the side with an infrared camera 6. In this case, the airflow 3 is blown onto the object l in a direction perpendicular to the plane of the paper.

第1図に示す方法によって気流3の流れ状況を検出した
赤外線画像の1例を、第3図に示す。第3図において、
7は台座2の上面2aの赤外線画像、′8は上面2aの
赤外線画像7上に表示された物体1(円柱である)の画
像、9は上面2aの赤外線画像上に表わ7.れた画像模
様における低温の画像部分、lOは同じく、高温の画像
部分、11はこれら画像部分9,100境の温度急変位
置のラインである。気流3は第3図に示す′位置関係に
おいて左方向から物体lに吹き付けられている。
FIG. 3 shows an example of an infrared image obtained by detecting the flow condition of the airflow 3 by the method shown in FIG. 1. In Figure 3,
7 is an infrared image of the upper surface 2a of the pedestal 2, '8 is an image of the object 1 (which is a cylinder) displayed on the infrared image 7 of the upper surface 2a, and 9 is an infrared image displayed on the infrared image of the upper surface 2a. Similarly, 10 is a low-temperature image portion in the image pattern, and 11 is a line at a temperature sudden change position between these image portions 9,100. The airflow 3 is blown onto the object l from the left in the positional relationship shown in FIG.

上記の赤外線画像7上の温度急変位置のライン11は、
物体lの前方から物体1を取シ巻いて後方に延びている
が、このライン11が台座2の上面2・a上での気流3
の剥離位置であシ、赤外線画像7から気流3の剥離位置
を知ることができることが判る。なお、低温、高温の画
像部分9,10は、気流3の風下方向に行くに従って、
その表示温度の差が徐々に小さくなるので、温度急変位
置は不明確になる。また、気流3の風下方向上では気流
3の速度等の関係によって、赤外線画像7上に馬蹄形渦
などの画像模様が表われる。
The line 11 of the temperature sudden change position on the above infrared image 7 is
The line 11 extends from the front of the object 1 to the rear, wrapping around the object 1, and this line 11 is the airflow 3 on the upper surface 2.a of the pedestal 2.
It can be seen that the separation position of the airflow 3 can be determined from the infrared image 7. It should be noted that the image parts 9 and 10 of low temperature and high temperature change as they go downwind of the airflow 3
As the difference in the displayed temperatures gradually decreases, the location of the sudden temperature change becomes unclear. Further, in the leeward direction of the airflow 3, an image pattern such as a horseshoe-shaped vortex appears on the infrared image 7 depending on the speed of the airflow 3, etc.

以上の実施態様では、気流3に対して台座2の上面2a
の温度を相対的に高くして、気流3を台座2上に設置の
物体lに吹き付けた場合を例にとって説明したが、この
発明はこれに限られ”ず、気流3に対して台座2の上面
2aの温度を相対的に低くして、気流3を物体1に吹き
付けてもよい。
In the above embodiment, the upper surface 2a of the pedestal 2 is
The explanation has been given by taking as an example a case in which the temperature of the airflow 3 is made relatively high and the airflow 3 is blown onto the object l installed on the pedestal 2, but the present invention is not limited to this. The airflow 3 may be blown onto the object 1 while keeping the temperature of the upper surface 2a relatively low.

気流3に対して台座2の上面2aの温度を相対的に低く
するためには1台座2の中空部2b内に気流3よりも温
度の低い冷水を注入したシ、台座2外の外部の冷却器に
より上面2aを冷却する方法が採れ、また気流3として
上面2aよシも温度の高いもΦを用いる方法を採ること
もできる。気流3に対して台座2の上面2aの温度を相
対的に低くして気流3を物体1に吹き付けた場合には、
上面2aの気流3が接触して流れる領域および非接触で
流れる領域の温度は上述したのとは高低が逆になるが、
同様に、上面2aの赤外線画像上にそれらの領域の画像
部分がなす画像模様として、上面2a上での気流3の流
れ状況が検出される。
In order to lower the temperature of the upper surface 2a of the pedestal 2 relative to the airflow 3, 1) Inject cold water with a lower temperature than the airflow 3 into the hollow part 2b of the pedestal 2, and cool the outside of the pedestal 2. A method can be adopted in which the upper surface 2a is cooled by a container, and a method can also be adopted in which the upper surface 2a has a higher temperature than the upper surface 2a as the air flow 3. When the temperature of the upper surface 2a of the pedestal 2 is made relatively lower than the airflow 3 and the airflow 3 is blown onto the object 1,
The temperature of the region where the airflow 3 flows in contact with the upper surface 2a and the region where it flows without contact is opposite in height to that described above,
Similarly, the flow condition of the airflow 3 on the upper surface 2a is detected as an image pattern formed by the image portions of those regions on the infrared image of the upper surface 2a.

〔発明の効果〕〔Effect of the invention〕

この発明は以上のように構成されるので、次のような効
果を有する。
Since the present invention is configured as described above, it has the following effects.

(1)台座上に設置の種々の対象物体に吹き付けた気流
の、台座上における流れ状況を台座上面の赤外線画像上
に、容易に検出することができ1台座上での気流の剥離
位置や馬蹄形渦、アーチ渦等の位置を、赤外線画像上の
温度急変位置として、極めて容易且つ明確に知ることが
できる。これらの位置の特定は素人にも可能で、専門的
判断をほとんど必要としない。
(1) The flow conditions on the pedestal of the airflow blown onto various target objects installed on the pedestal can be easily detected on the infrared image on the top surface of the pedestal, and the separation position of the airflow on the pedestal and the horseshoe shape can be easily detected. The positions of vortices, arch vortices, etc. can be known very easily and clearly as positions of sudden temperature changes on an infrared image. Identifying these positions is possible even for amateurs and requires little professional judgment.

(2)検出方法そのものが特に高度な技術や特殊な機器
を必要、とせず、誰れでも容易に流れ状況の検出ができ
る。
(2) The detection method itself does not require particularly advanced technology or special equipment, and anyone can easily detect the flow situation.

(3)  対象物体の形状や台座上面の形状によらずに
、同じ方法で対応できる。例えば任意の形状の物体が不
陸のある凹凸した台座上にある場合でも。
(3) The same method can be used regardless of the shape of the target object or the shape of the top surface of the pedestal. For example, even if an object of arbitrary shape is placed on an uneven pedestal.

、全く同じ方法で台座上での気流の流れ状況を検出する
ことができる。従って、山など起伏のある地盤上にある
構造物廻シの地盤付近の風の分布状況や、街中のピルに
囲まれた地上の風の分布状況の調査などにも利用できる
, the airflow situation on the pedestal can be detected in exactly the same way. Therefore, it can also be used to investigate the distribution of wind near the ground of structures located on uneven ground such as mountains, and the distribution of wind on the ground surrounded by pillars in the city.

(4)結果を赤外線カメラの付属装置によりビデオテー
プやフロッピーデスクなどに直接画像として記録でき、
結果が判)易い。
(4) The results can be recorded directly as an image on a videotape or floppy disk using an attached device of the infrared camera.
The results are easy to understand.

(5)その他、従来技術の問題点がほとんど解決できる
他、赤外線カメラでの撮影による検出の特長、例えば非
接触、遠隔での検出などが生かせる。
(5) In addition to solving most of the problems of the prior art, the advantages of detection by photographing with an infrared camera, such as non-contact and remote detection, can be utilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の検出方法の一実施態様を示す説明
図、WE2図は、この発明の検出方法での撮影方向の他
−の例を示す説明図、!3図は、第1図の方法で気流の
流れ状況を検出した赤外線画像の1例を模式的に示す平
面図である。図面におりて、 1・・・物体、     2・・・台座。 2a・・・上面、     3・・・気流。 4・・・温水、      6・・・赤外線カメラ、7
・・・上面の赤外線画像、8・・・物体の画像、9・・
・低温の画像部分、lO・・・高温の画像部分。 11・・・温度急変位置のライン。 夛1図 第2図
FIG. 1 is an explanatory diagram showing one embodiment of the detection method of the present invention, and FIG. WE2 is an explanatory diagram showing another example of the photographing direction in the detection method of the present invention. FIG. 3 is a plan view schematically showing an example of an infrared image obtained by detecting the airflow state using the method shown in FIG. In the drawing, 1...object, 2...pedestal. 2a...Top surface, 3...Airflow. 4...Hot water, 6...Infrared camera, 7
... Infrared image of the top surface, 8... Image of object, 9...
・Low temperature image area, lO...high temperature image area. 11...Line at the position of sudden temperature change. Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  台座上に設置の物体に吹き付けた気流の、前記台座上
における流れ状況を検出する方法において、前記台座上
面と前記気流との間に相対的に温度差を付けて、前記気
流を前記物体に吹き付ける一方、この状態下で前記台座
上面を赤外線カメラにより撮影し、かくして、前記台座
上での前記気流の流れ状況を前記台座上面の赤外線画像
上に温度分布として検出することを特徴とする、物体設
置の台座上での気流の流れ状況検出方法。
In the method for detecting the flow condition on the pedestal of an airflow blown onto an object installed on the pedestal, the airflow is blown onto the object while creating a relative temperature difference between the upper surface of the pedestal and the airflow. On the other hand, the object installation is characterized in that the top surface of the pedestal is photographed by an infrared camera under this condition, and thus the flow condition of the air current on the pedestal is detected as a temperature distribution on the infrared image of the top surface of the pedestal. A method for detecting airflow conditions on a pedestal.
JP25830887A 1987-10-15 1987-10-15 Method for detecting flow state of air flow on body-installed pedestal Pending JPH01101430A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25830887A JPH01101430A (en) 1987-10-15 1987-10-15 Method for detecting flow state of air flow on body-installed pedestal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25830887A JPH01101430A (en) 1987-10-15 1987-10-15 Method for detecting flow state of air flow on body-installed pedestal

Publications (1)

Publication Number Publication Date
JPH01101430A true JPH01101430A (en) 1989-04-19

Family

ID=17318447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25830887A Pending JPH01101430A (en) 1987-10-15 1987-10-15 Method for detecting flow state of air flow on body-installed pedestal

Country Status (1)

Country Link
JP (1) JPH01101430A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327766A (en) * 1986-07-22 1988-02-05 Mitsui Eng & Shipbuild Co Ltd Visualizing apparatus for flow of fluid

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6327766A (en) * 1986-07-22 1988-02-05 Mitsui Eng & Shipbuild Co Ltd Visualizing apparatus for flow of fluid

Similar Documents

Publication Publication Date Title
Gena et al. Qualitative and quantitative schlieren optical measurement of the human thermal plume
Kenning et al. Pool boiling heat transfer on a thin plate: features revealed by liquid crystal thermography
Zhang et al. Non-Boussinesq effect: Thermal convection with broken symmetry
BRPI0823078B1 (en) METHOD FOR DETECTING DEFECT IN MATERIAL AND SYSTEM FOR THE METHOD.
CN106017691A (en) Non-contact molten metal solution temperature continuous monitoring method and system
CN106018420A (en) Infrared quality detecting method for hollowing defects of outer wall
Volino et al. Use of simultaneous IR temperature measurements and DPIV to investigate thermal plumes in a thick layer cooled from above
JPH01101430A (en) Method for detecting flow state of air flow on body-installed pedestal
Cornwell et al. Heat transfer to bubbles under a horizontal tube
CN107127314B (en) A kind of continuous casting two cold section casting flow table face temperature intelligent measurement method
JP2006518032A (en) Inspection method of through-hole structure of member
Cho et al. Experimental mass (heat) transfer in and near a circular hole in a flat plate
Olsen et al. Stochastic estimation of large structures in an incompressible mixing layer
Croft The convective regime and temperature distribution above a horizontal heated surface
Capobianchi et al. A new technique for measuring the Fickian diffusion coefficient in binary liquid solutions
JPH01101465A (en) Detecting method for stripped position of air flow on body surface
Jonas et al. Two-dimensional velocity measurement by automatic analysis of trace particle motion
CN109029830A (en) Steel leakage detection system and method
Zhang et al. A laboratory observation of the surface temperature and velocity distributions on a wavy and windy air–water interface
JPH01180461A (en) Flow state detecting method for air current on surface of assembly of pedestal and installed body
Xu et al. The use of particle image velocimetry in the physical modeling of flow in electromagnetic or direct-chill casting of aluminum: part I. Development of the physical model
Henckels et al. Applications of infrared thermography in a hypersonic blowdown wind tunnel
Shlien et al. Velocity field measurements of a laminar thermal
Ling et al. A technique for processing transient heat transfer, liquid crystal experiments in the presence of lateral conduction
Bunker Airfoil leading edge impingement cooling including effects of film cooling bleed