JPH01100899A - Electron beam accelerating device - Google Patents

Electron beam accelerating device

Info

Publication number
JPH01100899A
JPH01100899A JP25462587A JP25462587A JPH01100899A JP H01100899 A JPH01100899 A JP H01100899A JP 25462587 A JP25462587 A JP 25462587A JP 25462587 A JP25462587 A JP 25462587A JP H01100899 A JPH01100899 A JP H01100899A
Authority
JP
Japan
Prior art keywords
electromagnet
electron beam
focusing
electron beams
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25462587A
Other languages
Japanese (ja)
Inventor
Toshinobu Suzuki
鈴木 敏允
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25462587A priority Critical patent/JPH01100899A/en
Publication of JPH01100899A publication Critical patent/JPH01100899A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE:To increase the energy density of electron beams without increasing the space by providing plural accelerators parallel, and furnishing focus magnets divided into plural parts responding to the accelerators and a single emission magnet. CONSTITUTION:Electron beams 3a to 3e accelerated in accelerator tubes 4a to 4e arranged parallel and flowing parallel each other are injected to focus electromagnet groups 10a to 10e arranged on the tracks respectively, deflected into the focus directions, and reach to an emission electromagnet 11 along beam ducts 9a to 9e. The electron beams are emitted and deflected by this emission electromagnet 11. The electron beams are given emission and deflection angles same as the deflection angles of the focus directions by the focus electromagnets 10a, 10b, 10d, and 10e. As a result, the electron beams from the accelerator tube lines are made parallel by the emission electromagnet 11, lined up on the same line, and made into a single line of electron beam output proportional to the accelerator tube lines.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電子線などの荷電粒子を加速誘導し大出力
電子ビームを取出すための電子線加速装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electron beam accelerator for accelerating and guiding charged particles such as electron beams and extracting high-output electron beams.

〔従来の技術〕[Conventional technology]

従来この株の製雪として第6図に示すものがあった。図
において電子銃電源(1)から供給される高電圧によ゛
つて駆動される電子銃(2)より電子ビーム(3)が取
出される。電子ビーム(3)は加速管(4)で高いエネ
ルギーに加速される。加速管(4)にはマイクロ波源(
5)が、導波管(6)、サーキュレータ(7)、RF窓
(8)を介して接続されている。加速された電子ビーム
(3)はビームダクト(9)を通りターゲット(12)
を照射する。ターゲット(12)はターゲットチャンバ
(13)に格納されている。(14)は四極電磁石で、
第7図に示すように、各4個のボール(15)、コイル
(16)からなっている。
Conventionally, this strain was used to make snow as shown in Figure 6. In the figure, an electron beam (3) is taken out from an electron gun (2) driven by a high voltage supplied from an electron gun power source (1). The electron beam (3) is accelerated to high energy by an acceleration tube (4). The acceleration tube (4) has a microwave source (
5) are connected via a waveguide (6), a circulator (7), and an RF window (8). The accelerated electron beam (3) passes through the beam duct (9) and reaches the target (12).
irradiate. A target (12) is stored in a target chamber (13). (14) is a quadrupole electromagnet,
As shown in FIG. 7, each consists of four balls (15) and four coils (16).

以上の構成により、電子銃電源(1)によって発生され
た高電圧は電子銃(2)のカソードに印加され、電子ビ
ーム(3)が取出される。電子銃(2)より取出された
電子ビーム(3)は、加速管(4)に入射される。−方
、マイクロ波源(5)で発生した大出力マイクロ波電力
は、導波管(6)、サーキュレータ(7)およびRF窓
(8)を通して加速管(4)に伝送され、加速管(4)
が励振され、加速管(4)内に高周波加速電界が生じる
With the above configuration, the high voltage generated by the electron gun power source (1) is applied to the cathode of the electron gun (2), and an electron beam (3) is extracted. The electron beam (3) taken out from the electron gun (2) is incident on the acceleration tube (4). - On the other hand, the high-output microwave power generated by the microwave source (5) is transmitted to the acceleration tube (4) through the waveguide (6), circulator (7) and RF window (8).
is excited, and a high frequency accelerating electric field is generated within the accelerating tube (4).

加速管(4)に入射された電子ビーム(3)は、この高
周波加速電界により加速され、高エネルギー電子ビーム
として取出される。取出された電子ビーム(3)はビー
ムダクト(9)を通り四極電磁石(14)によって集束
され、ターゲラ) (12)に誘導される。
The electron beam (3) incident on the acceleration tube (4) is accelerated by this high frequency accelerating electric field and extracted as a high energy electron beam. The extracted electron beam (3) passes through a beam duct (9), is focused by a quadrupole electromagnet (14), and is guided to a target magnet (12).

いるので、複数個の電子線加速装置を用いてターゲット
にビームと集中するためには、1つのターゲットを中心
として周囲に複数個の加速器を放射状ニ並べ、その1つ
のターゲットに向けて複数個の加速器から電子線を打ち
込むようにする構造となるため、スペースを大きくとる
ことが必要であり、かつ、ターゲットが大きい場合に電
子ビームのエネルギー密度が上がらないなどの問題点か
あつた。
Therefore, in order to focus the beam on a target using multiple electron beam accelerators, multiple accelerators are arranged radially around one target, and multiple electron beam accelerators are aligned radially around one target. Since the structure is such that the electron beam is launched from an accelerator, it requires a large space, and there are also problems such as the energy density of the electron beam not increasing when the target is large.

この発明は上記のような問題点を除去するためになされ
たもので、スペースを大きくとることなく、電子ビーム
のエネルギー密度の大きい電子線加速装置を得ることを
目的とする。
This invention was made to eliminate the above-mentioned problems, and an object of the present invention is to obtain an electron beam accelerator with a high energy density of an electron beam without taking up a large space.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る電子線加速装置は、複数個の加速器を平
行配置し、それに対応して複数個に分割された集束磁石
と、単一の発散磁石とを備えている。
The electron beam accelerator according to the present invention includes a plurality of accelerators arranged in parallel, a focusing magnet divided into a plurality of pieces corresponding to the accelerators, and a single diverging magnet.

〔作 用〕[For production]

この発明においては、複数個の加速器から得られた複数
ラインの電子ビームが、1つのラインに集められる。
In this invention, multiple lines of electron beams obtained from multiple accelerators are collected into one line.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図〜第3図について説
明する。第1図において、電子銃電源(1)の高電圧出
力は、5つの電子銃(2a)〜(2e)に印加できるよ
うに接続され、それぞれの加速管(4a)〜(4e)は
平行配置されている。電子ビーム(3a)〜(3e)を
それぞれ通すビームダクト(9a)〜(9e)Kは集束
電磁石(10aL(10b)。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 3. In Figure 1, the high voltage output of the electron gun power supply (1) is connected so that it can be applied to five electron guns (2a) to (2e), and the respective acceleration tubes (4a) to (4e) are arranged in parallel. has been done. Beam ducts (9a) to (9e)K through which the electron beams (3a) to (3e) pass, respectively, are focusing electromagnets (10aL (10b)).

(10d )e (10e )が配置されている。これ
らの集束電磁石群(10a)〜(10e)は全体として
1つの焦点距離(角をもつようになっている。単一の発
散電磁石(11)は焦点距離(−F)をもった四極電磁
力マイクロ波の発生およびマイクロ波伝送回路は従来の
ものと同様である。
(10d)e (10e) is arranged. These focusing electromagnets (10a) to (10e) as a whole have one focal length (angle).The single diverging electromagnet (11) has a quadrupole electromagnet with a focal length (-F). The microwave generation and microwave transmission circuits are similar to conventional ones.

集束電磁石(10a)、(10b)、(10d)、(1
0e)は第3図に示すように、各ボール先端面は双曲線
に沿った形状で、かつ、それぞれのボールも全体として
ボール先端面の双曲線に一致するような双曲線に沿って
配列されている。
Focusing electromagnets (10a), (10b), (10d), (1
0e), as shown in FIG. 3, each ball tip surface has a shape along a hyperbola, and each ball is also arranged along a hyperbola that coincides with the hyperbola of the ball tip surface as a whole.

その他、第6図におけると同一符号は同一部分を示して
いる。
In addition, the same reference numerals as in FIG. 6 indicate the same parts.

次に動作について説明する。集束電磁石群(10a)〜
(10e)のそれぞれを同一の起磁力で励磁すると、こ
の電磁石群(10a)〜(xoe)はボールギャップの
磁界が、第7図に示した従来の集束電磁石として用いら
れている四極電磁石(14)と同じ磁界分布となる。す
なわち第7図に示すX軸あるいはY軸に沿った長さに比
例した磁界分布と同じ磁界分布が第3図に示した集束電
磁石(10a)〜(10e)のボールのギャップの中心
に発生する。
Next, the operation will be explained. Focusing electromagnet group (10a) ~
(10e) are excited by the same magnetomotive force, the electromagnets (10a) to (xoe) are arranged so that the magnetic field of the ball gap is the quadrupole electromagnet (14) used as the conventional focusing electromagnet shown in FIG. ) has the same magnetic field distribution. That is, the same magnetic field distribution as the magnetic field distribution proportional to the length along the X-axis or Y-axis shown in FIG. 7 is generated at the center of the gap between the balls of the focusing electromagnets (10a) to (10e) shown in FIG. .

集束電磁石群(10a)〜(10e)の対向するボール
のギャップの中心を通って紙面に垂直に入つ【来た電子
ビーム(3a)〜(3e)は、集束電磁石群(10a)
〜(10e)の対向するボールギャップの中心でX軸あ
るいはY軸の長さに比例して軸に沿った力を受け、集束
電磁石群(30a)〜(10e)を出た後、焦点(F)
に集束、または焦点(F)から発射されたように発散す
る。すなわち、集束電磁石(10a)〜(10e)は′
電子ビームに対し、光の場合の凸または凹レンズのよう
な役割をする。
The electron beams (3a) to (3e) enter the focusing electromagnet group (10a) perpendicularly to the plane of the paper through the center of the gap between the opposing balls of the focusing electromagnet group (10a) to (10e).
-(10e) receive a force along the axis in proportion to the length of the X-axis or Y-axis at the center of the opposing ball gap, and after exiting the focusing electromagnet group (30a)-(10e), the focal point (F )
It converges to or diverges as if it were launched from a focal point (F). That is, the focusing electromagnets (10a) to (10e) are '
For electron beams, it acts like a convex or concave lens for light.

第1図において、平行に並んだ加速管(4a)〜(4e
)で加速された互いに平行に走る電子ビーム(3a)〜
(3C)は、それぞれの軌道中に配置されている集束電
磁石群(10a)〜(10e)に入射され、集束方向に
偏向され、ビームダクト(9a)〜(9e)K沿って発
散電磁石(11)に達する。この発散電磁石(11’)
ICよって電子ビームは発散偏向される。
In Figure 1, acceleration tubes (4a) to (4e) arranged in parallel
) Electron beams running parallel to each other (3a) ~
(3C) is incident on the focusing electromagnet groups (10a) to (10e) arranged in the respective orbits, is deflected in the focusing direction, and is directed along the beam ducts (9a) to (9e)K to the diverging electromagnet (11 ). This divergent electromagnet (11')
The electron beam is divergently deflected by the IC.

集束電磁石群(10a”)、(10b)、(10d)、
(10e)によって集束方向の偏向角度と同じ角度の発
散偏向角度が電子ビームに与えられるので、各加速管ラ
インから入って来た電子ビームは発散電磁石(11)で
平行になり、同一ライン上K並び、1本のビームライン
として加速管のラインに比例した電子ビーム出力を得る
ことができる。
Focusing electromagnet group (10a”), (10b), (10d),
(10e) gives the electron beam a divergent deflection angle that is the same as the deflection angle in the focusing direction, so the electron beams coming from each accelerator tube line are made parallel by the divergent electromagnet (11), and K By arranging them in line, it is possible to obtain an electron beam output proportional to the line of the accelerator tubes as a single beam line.

第4図は電子ビームを光線(3f)に、集束電磁石を凸
レンズ(10f)に、発散電磁石を凹レンズ(llf)
に置きかえたときの光線(3f)の軌道を示したもので
、この発明の原理を光に置きかえた説明図である。(1
7)は中心軸を示している。
Figure 4 shows the electron beam as a light beam (3f), the focusing electromagnet as a convex lens (10f), and the diverging electromagnet as a concave lens (llf).
This is an explanatory diagram showing the trajectory of the light beam (3f) when the principle of the present invention is replaced with light. (1
7) indicates the central axis.

なお、上記実施例では集束電磁石にボール先端部の形状
を双曲線とし、かつ、双曲線に沿った各ボールの配列と
したが、その代りに、第5図に示すように、各ビームラ
イン(3aL(3bL(3cL(3d)A3e>に対応
した各集束電磁石(toa)。
In the above embodiment, the shape of the tip of the ball in the focusing electromagnet was made into a hyperbola, and each ball was arranged along the hyperbola. Instead, as shown in FIG. Each focusing electromagnet (TOA) corresponding to 3bL (3cL (3d) A3e>).

(10bL(10dL(10e)の磁極中心の間隔が双
曲線に沿うようにしたものに置きかえてもよい。この場
合、集束電磁石の電子ビーム軌道に沿う方向の厚さが焦
点距離(巧に比べて充分小さければ、収差を小さくする
ことができる。
(10 bL (10 dL (10 e)) may be replaced with one in which the spacing between the magnetic pole centers is along a hyperbola. In this case, the thickness of the focusing electromagnet in the direction along the electron beam trajectory is If it is small, aberrations can be reduced.

また、集束電磁石は偏向電磁石または偏向永久研石でも
よく、発散電磁石は発散永久磁石でもよい。
Further, the focusing electromagnet may be a bending electromagnet or a bending permanent magnet, and the diverging electromagnet may be a diverging permanent magnet.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、複数個の電子加速器
のビームラインを平行に並べ、これらのビームラインの
電子ビーム電流を1つのビームラインに集めるよう、集
束電磁石と発散電磁石とを組合せて配置しているので、
空間を有効に活用でき、かつ、電子ビームのエネルギー
密度を大きくできる効果がある。
As described above, according to the present invention, the beam lines of a plurality of electron accelerators are arranged in parallel, and a focusing electromagnet and a diverging electromagnet are combined so that the electron beam currents of these beam lines are concentrated into one beam line. Since it is placed
This has the effect of making effective use of space and increasing the energy density of the electron beam.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの発明の一実施例を示し、第1図は
回路図、第2図は一部回路図、第3図は集束電磁石群の
配列を示す正面略図である。第4図は当該実施例におけ
る電子ビーム集束を光に対応して示した説明図、第5図
は他の実施例に係る集束電磁石群の配列を示す正面略図
、第6図は従来の電子線加速装置の回路図、第7図は第
6図における四極電磁石のボール配列を示す正面略図で
ある。 (1)・・電子銃電源、(2a)〜(2e)・拳電子銃
、(3a)〜(3e)や・電子ビーム、(4a)〜(4
e)・Q加速管、(9a)〜(9e)・・ビームダクト
、(10aL(10bL(10d)、(10e)・・集
束電磁石、(11)・・発散電磁石。 なお、各図中、同一符号は同−又は相当部分を示す。 代理人  t  a  a  a ’、、、、、、 ;
。 昂1図 PIF)2図
1 to 3 show an embodiment of the present invention, in which FIG. 1 is a circuit diagram, FIG. 2 is a partial circuit diagram, and FIG. 3 is a schematic front view showing the arrangement of a group of focusing electromagnets. FIG. 4 is an explanatory diagram showing electron beam focusing in this embodiment in correspondence with light, FIG. 5 is a schematic front view showing the arrangement of a group of focusing electromagnets according to another embodiment, and FIG. 6 is a conventional electron beam FIG. 7, a circuit diagram of the accelerator, is a schematic front view showing the ball arrangement of the quadrupole electromagnet in FIG. 6. (1)... Electron gun power supply, (2a) - (2e) - Pistol electron gun, (3a) - (3e), and - Electron beam, (4a) - (4
e)・Q accelerator tube, (9a) to (9e)...beam duct, (10aL (10bL(10d), (10e)...focusing electromagnet, (11)...divergent electromagnet. Note that the same in each figure Symbols indicate the same or equivalent parts.
. Figure 1 PIF) Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)複数個の加速器と、この加速器に対応して複数個
に分割された集束磁石群と、1つの発散磁石とを備え、
前記複数個の加速器から得られた複数ラインの加速ビー
ムを、前記複数個に分割された集束磁石群と前記1つの
発散磁石との組合せにより1つのビームラインとするよ
うにしてなる電子線加速装置。
(1) Equipped with a plurality of accelerators, a group of focusing magnets divided into a plurality of pieces corresponding to the accelerators, and one divergent magnet,
An electron beam accelerator configured to combine a plurality of lines of accelerated beams obtained from the plurality of accelerators into one beam line by combining the plurality of divided focusing magnet groups and the one diverging magnet. .
(2)集束電磁石でなる集束磁石と、発散電磁石でなる
発散磁石を備えた特許請求の範囲第1項記載の電子線加
速装置。
(2) An electron beam accelerator according to claim 1, comprising a focusing magnet made of a focusing electromagnet and a diverging magnet made of a diverging electromagnet.
(3)偏向電磁石でなる集束磁石を備えた特許請求の範
囲第1項記載の電子線加速装置。
(3) An electron beam accelerator according to claim 1, comprising a focusing magnet made of a bending electromagnet.
(4)偏向永久磁石でなる集束磁石と、発散永久磁石で
なる発散磁石とを備えた特許請求の範囲第1項記載の電
子線加速装置。
(4) An electron beam accelerator according to claim 1, comprising a focusing magnet made of a deflecting permanent magnet and a diverging magnet made of a diverging permanent magnet.
JP25462587A 1987-10-12 1987-10-12 Electron beam accelerating device Pending JPH01100899A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25462587A JPH01100899A (en) 1987-10-12 1987-10-12 Electron beam accelerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25462587A JPH01100899A (en) 1987-10-12 1987-10-12 Electron beam accelerating device

Publications (1)

Publication Number Publication Date
JPH01100899A true JPH01100899A (en) 1989-04-19

Family

ID=17267626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25462587A Pending JPH01100899A (en) 1987-10-12 1987-10-12 Electron beam accelerating device

Country Status (1)

Country Link
JP (1) JPH01100899A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016284A (en) * 2011-06-30 2013-01-24 Quan Japan Inc Charged particle accelerator and method of accelerating charged particle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013016284A (en) * 2011-06-30 2013-01-24 Quan Japan Inc Charged particle accelerator and method of accelerating charged particle

Similar Documents

Publication Publication Date Title
JP4008030B2 (en) Method for extracting charged particles from isochronous cyclotron and apparatus applying this method
JPS63218200A (en) Superconductive sor generation device
EP2954549B1 (en) Method and apparatus for generation of a uniform-profile particle beam
US5198674A (en) Particle beam generator using a radioactive source
US6744225B2 (en) Ion accelerator
CN114752909A (en) Ion implantation method for improving ionization rate of ions
US9230789B2 (en) Printed circuit board multipole for ion focusing
KR101809090B1 (en) An beam line appratus of bron Neutron capture therapy system
US20110192973A1 (en) Apparatus for transmission of energy and/or for transportation of an ion as well as a particle beam device having an apparatus such as this
US4623847A (en) Method and apparatus for storing an energy-rich electron beam in a race-track microtron
JPH01100899A (en) Electron beam accelerating device
JPH0660840A (en) Magnetic quadrupole lens and ion-beam accelerating and decelerating devices using it
US4128764A (en) Collective field accelerator
US20160020064A1 (en) Apparatus for focusing and for storage of ions and for separation of pressure areas
JPH056799U (en) SOR device
EP0229045B1 (en) Method and apparatus for storing an energy-rich electron beam in a race-track microtron
JPH0319664B2 (en)
EP0209398B1 (en) A charged particle apparatus
JPS61183900A (en) Fast atomic beam source
RU2278439C1 (en) Klystron
JPH0636735A (en) Substrate manufacturing device by polyvalent ion implanting method and manufacture of substrate
Brandão et al. Development of an Imaging System for an Electron Spectrometer for laser-accelerated electrons
Lee et al. Conceptual design of bend, compression and final focus components of ILSE
JPH097798A (en) Accelerating tube and accelerator
Pozwolski A compact laser-driven accelerator of macroparticles