JPH0660840A - Magnetic quadrupole lens and ion-beam accelerating and decelerating devices using it - Google Patents
Magnetic quadrupole lens and ion-beam accelerating and decelerating devices using itInfo
- Publication number
- JPH0660840A JPH0660840A JP4212835A JP21283592A JPH0660840A JP H0660840 A JPH0660840 A JP H0660840A JP 4212835 A JP4212835 A JP 4212835A JP 21283592 A JP21283592 A JP 21283592A JP H0660840 A JPH0660840 A JP H0660840A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- lens
- exhaust pipe
- vacuum exhaust
- quadrupole lens
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000010884 ion-beam technique Methods 0.000 title claims abstract description 34
- 239000002245 particle Substances 0.000 claims description 13
- 230000007246 mechanism Effects 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 3
- 229910052751 metal Inorganic materials 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 2
- 239000011810 insulating material Substances 0.000 claims 1
- 230000009471 action Effects 0.000 description 9
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Particle Accelerators (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はRFQ(Radio F
requency Quadrupole;高周波四重
極)イオン加速器等のような高周波線形イオン加速器を
利用したイオン打ち込み装置、特に、数ミリアンペアか
ら数百ミリアンペアの桁の大電流領域の高エネルギーイ
オンビームを発生させることのできるイオン打ち込み装
置に用いる四重極レンズ、これを用いたイオンビーム加
速装置並びにイオンビーム減速装置に関する。The present invention relates to RFQ (Radio F
An ion implanter using a high-frequency linear ion accelerator such as a frequency quadrupole ion accelerator, which can generate a high-energy ion beam in a large current region of several milliamperes to several hundreds of milliamperes. The present invention relates to a quadrupole lens used in an ion implantation device, an ion beam acceleration device and an ion beam deceleration device using the same.
【0002】[0002]
【従来の技術】磁気四重極レンズの構成は、従来、プロ
シーディングス・オブ・ザ・セブンス・シンポジウム・
オン・アクセラレイター・サイエンス・アンド・テクノ
ロジー、オオサカ、ジャパン(1989)第45頁から
第47頁(Proceedings of the 7
th Symposium on Accelerat
or Science and Technolog
y, Osaka, Japan(1989) pp4
5−47)の中にあるFig.3(b)の写真に示され
ているようなものであった。これは、磁気回路を形成す
るヨークにコイルを巻き、レンズ内に円筒の真空排気管
を挿入した構造のものである。2. Description of the Related Art The structure of a magnetic quadrupole lens has conventionally been the Proceedings of the Seventh Symposium.
On Accelerator Science and Technology, Osaka, Japan (1989), pages 45-47 (Proceedings of the 7)
th Symposium on Accelerat
or Science and Technology
y, Osaka, Japan (1989) pp4
Fig. 5-47). It was as shown in the photograph of 3 (b). This has a structure in which a coil is wound around a yoke forming a magnetic circuit, and a cylindrical vacuum exhaust pipe is inserted into the lens.
【0003】一方、上記のような磁気四重極レンズを二
個以上ビームの進行方向に並べた多段型の磁気四重極レ
ンズの構成は、例えば、二段型の磁気四重極レンズの場
合で示すと、従来はプロシーディングス・オブ・ザ・セ
ブンス・シンポジウム・オン・アクセラレイター・サイ
エンス・アンド・テクノロジー・オオサカ・ジャパン
(1989)第65頁から第67頁(Proceedi
ngs of the7th Symposium o
n Accelerator Scienceand
Technology, Osaka, Japan
(1989)pp65−67)の中にあるFig.1の
Q1とQ2の位置関係、或いはQ3とQ4の位置関係に
あった。これは、全く同等の磁気四重極レンズを単に並
べているために、ヨークに巻いたコイル同士が干渉し合
い、レンズ間距離を小さくするにも限度があった。On the other hand, the structure of a multi-stage magnetic quadrupole lens in which two or more magnetic quadrupole lenses as described above are arranged in the beam traveling direction is, for example, in the case of a two-stage magnetic quadrupole lens. In the past, Proceedings of the Seventh Symposium on Accelerator Science and Technology Osaka Japan (1989), pages 65 to 67 (Proceedi).
ngs of the7th Symposium o
n Accelerator Science and
Technology, Osaka, Japan
(1989) pp65-67). There was a positional relationship between Q1 and Q2 or a positional relationship between Q3 and Q4. This is because the magnetic quadrupole lenses that are exactly the same are simply arranged, so that the coils wound around the yokes interfere with each other, and there is a limit in reducing the distance between the lenses.
【0004】[0004]
【発明が解決しようとする課題】上記従来技術では、磁
気四重極レンズの磁極が真空排気管の外にあるため、真
空排気管の直径を大きくする場合には、直径の小さい時
と同等の磁場強度を得るには、コイルの巻き数かコイル
に流す電流を大幅に増大しなければならないという問題
点があった。これを、図及び数式を用いて説明する。In the above-mentioned prior art, since the magnetic pole of the magnetic quadrupole lens is located outside the vacuum exhaust pipe, when the diameter of the vacuum exhaust pipe is increased, it is the same as when the diameter is small. In order to obtain the magnetic field strength, there has been a problem that the number of turns of the coil or the current flowing through the coil must be greatly increased. This will be described using figures and mathematical formulas.
【0005】従来の磁気四重極レンズを軸方向から見た
概略図を、図4に示す。図4の場合は上下方向に発散、
左右方向に収束作用がある場合である。この時、磁極6
は収束発散方向から45°傾いた方向にある。また真空
排気管2は各磁極に接するように挿入される。従来の方
式でレンズ内に挿入する真空排気管の直径を拡大する場
合には、図3に示すような構造となる。一方、磁気四重
極レンズのレンズ強度:Kは次式の関係にある。FIG. 4 shows a schematic view of a conventional magnetic quadrupole lens as viewed from the axial direction. In the case of FIG. 4, divergence in the vertical direction,
This is the case where there is a converging action in the left-right direction. At this time, the magnetic pole 6
Is in a direction inclined by 45 ° from the direction of convergence and divergence. The vacuum exhaust pipe 2 is inserted so as to contact each magnetic pole. When the diameter of the vacuum exhaust pipe to be inserted into the lens is enlarged by the conventional method, the structure is as shown in FIG. On the other hand, the lens strength K of the magnetic quadrupole lens has the following relationship.
【0006】[0006]
【数1】K∝NI/a2 但し、Nはコイルの巻数、Iはコイルに流す電流値、a
はレンズの半径(真空排気管が磁極に接している場合
は、真空排気管の半径)である。[Equation 1] K∝NI / a 2 where N is the number of turns of the coil, I is the value of current flowing in the coil, and a
Is the radius of the lens (the radius of the vacuum exhaust pipe when the vacuum exhaust pipe is in contact with the magnetic pole).
【0007】従って、図3のように、真空排気管の直径
を拡大した場合に、同等のレンズ強度を保つには、Nあ
るいはIをa2に比例して増大させる必要があるので、
装置或いは電力の増大が伴ってしまう。Therefore, as shown in FIG. 3, when the diameter of the vacuum exhaust pipe is increased, it is necessary to increase N or I in proportion to a 2 in order to maintain the same lens strength.
This is accompanied by an increase in equipment or power.
【0008】真空排気管の直径を拡大する理由は、図9
に示すように、主に像倍率を小さくするためである。図
9はイオンビームの軌道計算例である。イオンビームは
図の左側から出射され、質量分離器、三段型磁気四重極
レンズを通って収束される。図9(a)は図9(b)に
比べて像倍率が小さい(縮小率が大きい)場合の計算例
であるが、図9(b)が直径77mmの真空排気管内に
ビームが収まっているのに対して、図9(a)の場合に
は排気管内にビームが収まっていないことが分かる。こ
れは、像倍率を小さくするために磁気四重極レンズの磁
場強度を大きくした結果であるが、この時にビーム強度
を減少させることなく輸送するためには、真空排気管の
直径を拡大することが必要となる。The reason for increasing the diameter of the vacuum exhaust pipe is as shown in FIG.
This is mainly for reducing the image magnification, as shown in FIG. FIG. 9 is an example of ion beam trajectory calculation. The ion beam is emitted from the left side of the figure, and is focused through the mass separator and the three-stage magnetic quadrupole lens. FIG. 9A is a calculation example in the case where the image magnification is smaller (the reduction ratio is larger) than that in FIG. 9B. In FIG. 9B, the beam is contained in the vacuum exhaust pipe having a diameter of 77 mm. On the other hand, in the case of FIG. 9A, it can be seen that the beam is not contained in the exhaust pipe. This is a result of increasing the magnetic field strength of the magnetic quadrupole lens in order to reduce the image magnification, but at this time, in order to transport without reducing the beam strength, the diameter of the vacuum exhaust pipe must be increased. Is required.
【0009】また、多段型の磁気四重極レンズの場合
は、個々のレンズ間距離が大きい程ビームの損失が大き
く、大電流のビームを収束するにはレンズ間距離を小さ
くすることが必要となる。これを図9(a)を使って説
明すると、距離Dを持つレンズ間ではビームは直進する
ので、図に示すような発散過程にあるビームの場合に
は、距離が広がるほど中心から遠ざかってしまう。その
結果、この場合にはQ1、Q2レンズ間でビームは排気
管に当たってしまい、ビーム強度が減少してしまう。そ
こでQ1、Q2レンズ間の距離をゼロにできれば、図か
らも分かるように、同一排気管でビーム損失がなく輸送
することができる。しかし上述したような従来構成で
は、ヨークに巻いたコイル同士が干渉し合い、レンズ間
距離を小さくするのにも限度があり、大電流のビームを
損失なく収束するのが難しいという問題点があった。In the case of a multi-stage magnetic quadrupole lens, the larger the distance between the individual lenses is, the larger the beam loss is. Therefore, it is necessary to reduce the distance between the lenses in order to converge the beam of large current. Become. This will be described with reference to FIG. 9A. Since the beam travels straight between the lenses having the distance D, in the case of a beam in a diverging process as shown in the figure, the beam becomes farther from the center as the distance increases. . As a result, in this case, the beam hits the exhaust pipe between the Q1 and Q2 lenses, and the beam intensity decreases. Therefore, if the distance between the Q1 and Q2 lenses can be set to zero, as can be seen from the figure, the same exhaust pipe can be transported without beam loss. However, in the above-described conventional configuration, the coils wound around the yokes interfere with each other, and there is a limit in reducing the distance between the lenses, which makes it difficult to converge a large current beam without loss. It was
【0010】本発明の目的は、数ミリアンペアから数百
ミリアンペアの桁の大電流領域の荷電粒子ビームを、直
径10mm以下の領域に収束させることができるコンパ
クトな磁気四重極レンズを提供することにある。An object of the present invention is to provide a compact magnetic quadrupole lens capable of converging a charged particle beam in a large current region of the order of several milliamps to several hundreds of milliamps into a region having a diameter of 10 mm or less. is there.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
に、磁気四重極レンズの磁極先端を真空排気管内部に挿
入したものである。To achieve the above object, the magnetic pole tip of a magnetic quadrupole lens is inserted inside a vacuum exhaust pipe.
【0012】すなわち、本発明は、荷電粒子ビームを通
過させるための真空排気管、該真空排気管を囲み磁気回
路を構成するヨーク、該ヨーク内側に取付けられた4本
の磁極、および該各磁極に巻かれ磁場を発生させるコイ
ルからなる磁気四重極レンズにおいて、前記4本の磁極
の先端を前記真空排気管の内部に挿入した構造とするこ
とを特徴とする磁気四重極レンズに関する。That is, according to the present invention, a vacuum exhaust pipe for passing a charged particle beam, a yoke that surrounds the vacuum exhaust pipe and constitutes a magnetic circuit, four magnetic poles mounted inside the yoke, and each magnetic pole. A magnetic quadrupole lens comprising a coil wound around a coil to generate a magnetic field, wherein the tips of the four magnetic poles are inserted into the vacuum exhaust pipe.
【0013】また、荷電粒子ビームの進行方向に2段以
上並べた多段型の磁気四重極レンズとする場合には、各
レンズの磁極に巻いたコイルが隣同士干渉しないように
するため、隣合う一方のレンズでは磁極の先端側にコイ
ルを巻き、他方のレンズでは磁極の付け根側にコイルを
巻きつける構造とする。Further, in the case of a multi-stage type magnetic quadrupole lens in which two or more stages are arranged in the traveling direction of the charged particle beam, the coils wound around the magnetic poles of the respective lenses are arranged so as not to interfere with each other. A coil is wound around the tip side of the magnetic pole in one of the lenses that meet, and a coil is wound around the root side of the magnetic pole in the other lens.
【0014】更に各四重極レンズの距離が変更できるよ
うにするため、真空排気管内の4本の磁極先端がビーム
進行方向に可動となる機構を設ける。Further, in order to be able to change the distance of each quadrupole lens, a mechanism is provided in which the tips of the four magnetic poles in the vacuum exhaust tube are movable in the beam traveling direction.
【0015】[0015]
【作用】磁気四重極レンズの磁極先端を真空排気管内部
に挿入すると、ビームの収束・発散作用を妨げることな
く、レンズ強度を増大することができる。このビームの
収束・発散作用を妨げないという作用は、静電四重極レ
ンズにはなく、磁気四重極レンズで初めて効果を発揮す
るものである。以下、図8を使って詳細に説明する。When the magnetic pole tip of the magnetic quadrupole lens is inserted into the vacuum exhaust tube, the lens strength can be increased without disturbing the beam converging / diverging action. The action of not hindering the beam converging / diverging action is effective only for the magnetic quadrupole lens, not for the electrostatic quadrupole lens. Hereinafter, a detailed description will be given with reference to FIG.
【0016】図8は静電四重極レンズを軸方向から見た
図である。静電四重極レンズの場合には、図にも示した
ように、ビームの収束・発散作用の方向と電極の方向が
一致しているため、レンズ強度を強くするとビームが電
極9に当たってしまう。これに対し磁気四重極レンズの
場合には、ビームの収束・発散作用の方向と磁極の方向
が丁度45°ずれているため、レンズ強度を強くしても
ビームは磁極に当たらずに、強いレンズ作用を受けるこ
とができる。FIG. 8 is a view of the electrostatic quadrupole lens as viewed from the axial direction. In the case of the electrostatic quadrupole lens, as shown in the figure, the direction of the beam converging / diverging action coincides with the direction of the electrode. Therefore, if the lens strength is increased, the beam hits the electrode 9. On the other hand, in the case of a magnetic quadrupole lens, the direction of the beam converging / diverging action and the direction of the magnetic pole deviate from each other by exactly 45 °. Therefore, even if the lens strength is increased, the beam does not hit the magnetic pole and is strong. It can be affected by the lens.
【0017】本発明においては、磁気四重極レンズの磁
極先端を真空排気管内部に挿入する構造としたことによ
って、コイルの巻き数やコイルに流す電流を大幅に増加
することなく、真空排気管の直径を大きくすることがで
きる。In the present invention, since the magnetic pole tip of the magnetic quadrupole lens is inserted inside the vacuum exhaust pipe, the vacuum exhaust pipe is not significantly increased in the number of turns of the coil and the current flowing through the coil. The diameter of can be increased.
【0018】また、本発明では、多段型の磁気四重極レ
ンズの場合に、各レンズの磁極に巻かれるコイルが隣同
士干渉しない構造であるので、個々のレンズ間距離を小
さくすることができ、その結果大電流のビームを損失な
く収束することができる。Further, according to the present invention, in the case of a multi-stage type magnetic quadrupole lens, the coils wound around the magnetic poles of each lens do not interfere with each other, so that the distance between the individual lenses can be reduced. As a result, a large current beam can be focused without loss.
【0019】[0019]
【実施例】本発明の一実施例を図1及び図2を用いて説
明する。図1は本発明に基づく磁気四重極レンズを軸方
向から見た概略図である。また、図2は本発明の第一実
施例を横方向から見た概略図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic view of a magnetic quadrupole lens according to the present invention as viewed from the axial direction. FIG. 2 is a schematic view of the first embodiment of the present invention viewed from the lateral direction.
【0020】本レンズの構成は、磁気回路を構成する円
筒形のヨーク4の内側に四本の磁極6を取り付ける。こ
の時、ヨーク4と磁極6とは一体物でもよい。コイル5
a,5b,5c,5dは、各磁極6に固定具等で取り付
け、自重でずれないようにする。磁極6の先端は、円形
の真空排気管2の外側と接するように円弧形状に加工す
る。先端磁極3は各磁極6の延長上に、磁極3と磁極6
とで真空排気管2を挟むように設置する。この時、先端
磁極3の真空排気管2の内側に接する部は真空排気管に
あわせて円弧形状に加工しておく。先端磁極3の先端形
状は理想的には双曲線形状に加工されるが、通常は近似
的に円形加工される。In the construction of this lens, four magnetic poles 6 are attached inside a cylindrical yoke 4 which constitutes a magnetic circuit. At this time, the yoke 4 and the magnetic pole 6 may be integrated. Coil 5
The a, 5b, 5c, and 5d are attached to each magnetic pole 6 with a fixture or the like so that they will not be displaced by their own weight. The tip of the magnetic pole 6 is processed into an arc shape so as to contact the outside of the circular vacuum exhaust pipe 2. The tip magnetic pole 3 is formed by extending the magnetic poles 3 and 6 on the extension of each magnetic pole 6.
And the vacuum exhaust pipe 2 are sandwiched between and. At this time, the portion of the tip magnetic pole 3 that contacts the inside of the vacuum exhaust pipe 2 is processed into an arc shape in accordance with the vacuum exhaust pipe. The tip shape of the tip magnetic pole 3 is ideally processed into a hyperbolic shape, but is usually approximately circularly processed.
【0021】図1のNS極性になるようにコイル5a,
5b,5c,5dに電流を流し、荷電粒子ビームとして
イオンビーム1を真空排気管2の中心部分の紙面手前か
ら紙面裏側への方向に入射すると、イオンビーム1は、
図1に示すような収束・発散作用を受ける。この時、上
述の様にビームの収束・発散作用の方向と磁極の方向が
丁度45°ずれているため、レンズ強度を強くしても、
ビームは磁極に当たらずに、強いレンズ作用を受けるこ
とができる。同等のレンズ強度を得る場合、従来の磁気
四重極レンズでは図4に示すような構成となり、明らか
に真空排気管2の直径が小さいために、真空排気管2の
内壁にビームが当り、ビーム損失が起きてしまうことが
わかる。The coils 5a, so as to have the NS polarity shown in FIG.
When a current is applied to 5b, 5c, and 5d and the ion beam 1 as a charged particle beam is incident in the direction from the front side of the paper surface to the back side of the paper surface at the central portion of the vacuum exhaust tube 2, the ion beam 1 is
It is subjected to the convergence / divergence action as shown in FIG. At this time, as described above, since the direction of the beam converging / diverging action and the direction of the magnetic pole are deviated from each other by 45 °, even if the lens strength is increased,
The beam can be subjected to a strong lens action without hitting the magnetic pole. In order to obtain the same lens strength, the conventional magnetic quadrupole lens has a configuration as shown in FIG. 4, and since the diameter of the vacuum exhaust pipe 2 is obviously small, the beam hits the inner wall of the vacuum exhaust pipe 2, You can see that a loss will occur.
【0022】本発明の別の実施例を図5を用いて説明す
る。図1の実施例の場合には、磁極6と先端磁極3がそ
れぞれ真空排気管2の外部と内部とで分離していたが、
これに対して本実施例の特徴は、磁極6は磁極先端まで
一体もので構成されていることである。これに伴って本
実施例では、本発明の目的である大電流領域のイオンビ
ームを収束させるために、磁極6に真空排気管2を接合
させたものである。接合方法には、溶接、接着剤等によ
る方法の他、Oリング等の真空シールによる方法などが
考えられる。どの方法でも、同等の本発明効果がある。
図5では、溶接による方法の一実施例を示した。Another embodiment of the present invention will be described with reference to FIG. In the case of the embodiment shown in FIG. 1, the magnetic pole 6 and the tip magnetic pole 3 are separated inside and outside the vacuum exhaust pipe 2, respectively.
On the other hand, the feature of this embodiment is that the magnetic pole 6 is integrally formed up to the magnetic pole tip. Along with this, in the present embodiment, the vacuum exhaust pipe 2 is joined to the magnetic pole 6 in order to focus the ion beam in the large current region which is the object of the present invention. As a joining method, a method using a vacuum seal such as an O-ring can be considered in addition to a method using welding, an adhesive, or the like. Any method has the same effect of the present invention.
FIG. 5 shows an embodiment of the welding method.
【0023】本発明の別の実施例を図6を用いて説明す
る。図6は、図1のような円形のヨークの代わりに四角
形状のヨークを使用し、更に後述のレールガイド7が容
易に取り付けられるように、真空排気管2も四角形状に
したものである。図6の(a)は軸方向から見た概略図
であり、(b)は(a)のA−A線断面図である。本実
施例は、真空排気管2内の先端磁極3がビーム1の進行
方向に、可動となるような機構として、真空排気管2の
内壁にレールガイド7を設けたものである。このレール
ガイドにより、特に、多段型の磁気四重極レンズの場合
には、各磁気四重極レンズ間の距離が変えられるため、
全体のレンズ特性を容易に変えることができる。Another embodiment of the present invention will be described with reference to FIG. In FIG. 6, a quadrangular yoke is used instead of the circular yoke shown in FIG. 1, and the vacuum exhaust pipe 2 is also quadrangular so that a rail guide 7 described later can be easily attached. 6A is a schematic view seen from the axial direction, and FIG. 6B is a sectional view taken along line AA of FIG. In this embodiment, a rail guide 7 is provided on the inner wall of the vacuum exhaust pipe 2 as a mechanism that allows the tip magnetic pole 3 in the vacuum exhaust pipe 2 to move in the traveling direction of the beam 1. With this rail guide, especially in the case of a multi-stage magnetic quadrupole lens, the distance between each magnetic quadrupole lens can be changed,
The overall lens characteristics can be easily changed.
【0024】本発明の別の実施例を図7を用いて説明す
る。図7の(a)は軸方向から見た概略図、(b)は
(a)のA−A線断面図である。図6はレールガイド7
でそれぞれの先端磁極3を支持していたが、本図7で
は、四本の先端磁極3をまとめて支持できるように、各
磁極間を絶縁物或いは非磁性金属の支持具8で支えたも
のである。これは、支持具8を鉄等の磁性体で構成する
と、そこに磁気回路ができてしまい、コイル5で生成し
た磁場がビーム1に寄与しなくなるからである。また、
先端磁極3と支持具8の接続は、ボルト締め或いは接着
剤で固定する。Another embodiment of the present invention will be described with reference to FIG. 7A is a schematic view seen from the axial direction, and FIG. 7B is a sectional view taken along the line AA of FIG. Figure 6 shows the rail guide 7
Although each tip magnetic pole 3 is supported by, the present embodiment supports the four tip magnetic poles 3 together by supporting each pole with an insulator or a non-magnetic metal support tool 8. Is. This is because if the supporting member 8 is made of a magnetic material such as iron, a magnetic circuit will be formed there, and the magnetic field generated by the coil 5 will not contribute to the beam 1. Also,
The tip magnetic pole 3 and the support 8 are connected by bolting or fixing with an adhesive.
【0025】また、4個の先端磁極3を固定した支持具
8は真空排気管2の内側に接するように精度よく製作
し、がたのないようにする。更にビーム1の進行方向の
真空排気管内径も同一となるように精度よく製作し、支
持具8が真空排気管2のビーム進行方向に可動となるよ
うにする。Further, the support tool 8 to which the four tip magnetic poles 3 are fixed is accurately manufactured so as to be in contact with the inner side of the vacuum exhaust pipe 2 so that there is no rattling. Further, the inner diameter of the vacuum exhaust pipe in the advancing direction of the beam 1 is accurately manufactured so that the supporting member 8 is movable in the beam advancing direction of the vacuum exhaust pipe 2.
【0026】本発明の別の実施例を図10を用いて説明
する。本実施例は、上述した図1、図5、図6、図7等
の単体の磁気四重極レンズを3段組み合わせた、所謂三
段型の磁気四重極レンズの場合の実施例である。本実施
例は、各磁極に巻いたコイル5が隣同士干渉しないよう
に、コイル5の巻き付け位置に段差がつくように取り付
けたものである。従来の三段型の磁気四重極レンズで
は、図11に示すように、隣同士のコイル5が同位置に
あるため、この場合の各レンズ間の距離(=D2)が広
くなってしまう。これに対し、本発明の図10の実施例
では、各レンズ間の距離は図に示すD1のようになり、
最短距離で比較すると、D1は従来のD2に比べて約1/
2の距離にできる。また、図10において、コイル5が
隣のヨーク4と接触する箇所を削れば、更に距離D1を
短くできる。本実施例は三段型であるが、本方式は二段
以上の磁気四重極レンズに有効である。本実施例では、
各単体の磁気四重極レンズが大電流領域のイオンビーム
を収束させることができ、更に、それを多段に組んだ場
合の磁気四重極レンズシステムにおいても大電流領域の
イオンビームを収束させることができるという、二重の
効果がある。Another embodiment of the present invention will be described with reference to FIG. The present embodiment is an embodiment in the case of a so-called three-stage type magnetic quadrupole lens in which the single magnetic quadrupole lenses shown in FIGS. 1, 5, 6 and 7 are combined in three stages. . In the present embodiment, the coils 5 wound around the respective magnetic poles are mounted so that the winding positions of the coils 5 have steps so that the coils 5 do not interfere with each other. In the conventional three-stage type magnetic quadrupole lens, as shown in FIG. 11, since the adjacent coils 5 are at the same position, the distance (= D 2 ) between the lenses in this case becomes wide. . On the other hand, in the embodiment of FIG. 10 of the present invention, the distance between the lenses is as shown by D 1 in the figure,
When compared at the shortest distance, D 1 is about 1 / about that of conventional D 2.
Can be a distance of 2. Further, in FIG. 10, the distance D 1 can be further shortened by removing the portion where the coil 5 contacts the adjacent yoke 4. Although this embodiment is a three-stage type, this system is effective for a magnetic quadrupole lens having two or more stages. In this embodiment,
Each single magnetic quadrupole lens can focus the ion beam in the large current region, and also in the magnetic quadrupole lens system when it is assembled in multiple stages, it can also focus the ion beam in the large current region. It has the dual effect of being able to
【0027】図12は、本発明にかかる多段型磁気四重
極レンズをイオンビーム加速装置に応用した概略図であ
る。図12において、イオン源10より出たイオンビー
ムは質量分離器11を経て、多段型磁気四重極レンズ1
2に入射し、多段型磁気四重極レンズ12から出射した
イオンビームは、四重極粒子加速器13に入射して大電
流の高エネルギービームとなり、イオン打ち込み室14
に送られる。FIG. 12 is a schematic diagram in which the multistage magnetic quadrupole lens according to the present invention is applied to an ion beam accelerator. In FIG. 12, the ion beam emitted from the ion source 10 passes through the mass separator 11, and then the multistage magnetic quadrupole lens 1
The ion beam that is incident on the beam No. 2 and is emitted from the multi-stage magnetic quadrupole lens 12 is incident on the quadrupole particle accelerator 13 and becomes a high-current high-energy beam.
Sent to.
【0028】図12において、四重極粒子加速器13の
代わりに、直流減速器などの四重極粒子減速器を配置す
れば、イオンビーム減速装置となる。In FIG. 12, if a quadrupole particle decelerator such as a DC decelerator is arranged instead of the quadrupole particle accelerator 13, an ion beam deceleration device is obtained.
【0029】[0029]
【発明の効果】本発明によれば、磁気四重極レンズでイ
オンビームを収束させる際に、発生させた磁場を最大限
に利用することができ、更にビーム輸送中の電流値の減
少を最小限に抑えることができる。このため、本発明に
よれば、数ミリアンペアから数百ミリアンペアの桁の大
電流領域のイオンビームを、直径10mm以下の領域に
収束させることができるコンパクトな磁気四重極レンズ
を提供することができる。According to the present invention, when the ion beam is converged by the magnetic quadrupole lens, the generated magnetic field can be utilized to the maximum extent, and further, the decrease of the current value during the beam transportation can be minimized. You can keep it to the limit. Therefore, according to the present invention, it is possible to provide a compact magnetic quadrupole lens capable of converging an ion beam in a large current region on the order of several milliamperes to several hundred milliamperes into a region having a diameter of 10 mm or less. .
【0030】本発明により、大電流領域でイオンビーム
を収束させることができるコンパクトな磁気四重極レン
ズが提供できるので、半導体製造装置として利用できる
大電流の高エネルギーイオンビーム加速装置、或いはイ
オンビーム蒸着用の大電流イオンビーム減速装置が実現
できる。According to the present invention, a compact magnetic quadrupole lens capable of converging an ion beam in a large current region can be provided. Therefore, a high current high energy ion beam accelerator or an ion beam which can be used as a semiconductor manufacturing apparatus can be provided. A high current ion beam deceleration device for vapor deposition can be realized.
【0031】本発明により、半導体装置の大量生産工程
にMeVイオンビームが利用できるようになるばかりで
はなく、金属、セラミックス等の材料表層改質を短時間
で行える大量生産用イオン処理装置が実現できる。According to the present invention, not only the MeV ion beam can be used in the mass production process of semiconductor devices, but also an ion treatment device for mass production capable of modifying the surface layer of materials such as metals and ceramics in a short time can be realized. .
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の第一実施例を軸方向から見た概略図で
ある。FIG. 1 is a schematic view of a first embodiment of the present invention viewed from an axial direction.
【図2】本発明の第一実施例を横方向から見た概略図で
ある。FIG. 2 is a schematic view of the first embodiment of the present invention viewed from the lateral direction.
【図3】従来の磁気四重極レンズを軸方向から見た概略
図である。FIG. 3 is a schematic view of a conventional magnetic quadrupole lens as viewed from the axial direction.
【図4】従来の磁気四重極レンズを横方向から見た概略
図である。FIG. 4 is a schematic view of a conventional magnetic quadrupole lens viewed from the lateral direction.
【図5】本発明の第二実施例を示す概略図である。FIG. 5 is a schematic view showing a second embodiment of the present invention.
【図6】本発明の第三実施例を示す概略図であり、
(a)は軸方向から見た図、(b)は(a)のA−A線
断面図である。FIG. 6 is a schematic view showing a third embodiment of the present invention,
(A) is the figure seen from the axial direction, (b) is the sectional view on the AA line of (a).
【図7】本発明の第四実施例を示す概略図であり、
(a)は軸方向から見た図、(b)は(a)のA−A線
断面図である。FIG. 7 is a schematic view showing a fourth embodiment of the present invention,
(A) is the figure seen from the axial direction, (b) is the sectional view on the AA line of (a).
【図8】静電四重極レンズを示す図である。FIG. 8 is a diagram showing an electrostatic quadrupole lens.
【図9】イオンビーム軌道計算例を示す図である。FIG. 9 is a diagram showing an example of ion beam trajectory calculation.
【図10】本発明を三段型の磁気四重極レンズに応用し
た時の配置図である。FIG. 10 is a layout diagram when the present invention is applied to a three-stage magnetic quadrupole lens.
【図11】従来の三段型磁気四重極レンズの配置図であ
る。FIG. 11 is a layout view of a conventional three-stage magnetic quadrupole lens.
【図12】本発明にかかるイオンビーム加速装置の構成
を示す概略図である。FIG. 12 is a schematic diagram showing a configuration of an ion beam accelerator according to the present invention.
1 イオンビーム 2 真空排気管 3 先端磁極 4 ヨーク 5 コイル 6 磁極 7 レールガイド 8 支持具 9 電極 10 イオン源 11 質量分離器 12 多段型磁気四重極レンズ 13 四重極粒子加速器 14 イオン打ち込み室 1 Ion beam 2 Vacuum exhaust pipe 3 Tip magnetic pole 4 Yoke 5 Coil 6 Magnetic pole 7 Rail guide 8 Support 9 Electrode 10 Ion source 11 Mass separator 12 Multi-stage magnetic quadrupole lens 13 Quadrupole particle accelerator 14 Ion implantation chamber
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/265 H05H 7/04 9014−2G (72)発明者 袴田 好美 茨城県日立市久慈町4026番地 株式会社日 立製作所日立研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication H01L 21/265 H05H 7/04 9014-2G (72) Inventor Yoshimi Hakada 4026 Kujimachi, Hitachi City, Ibaraki Prefecture Address: Hitachi Research Laboratory, Hiritsu Manufacturing Co., Ltd.
Claims (6)
排気管、該真空排気管を囲み磁気回路を構成するヨー
ク、該ヨーク内側に取付けられた4本の磁極、および該
各磁極に巻かれ磁場を発生させるコイルを有する磁気四
重極レンズにおいて、前記4本の磁極の先端を前記真空
排気管の内部に挿入した構造とすることを特徴とする磁
気四重極レンズ。1. A vacuum exhaust pipe for passing a charged particle beam, a yoke which surrounds the vacuum exhaust pipe and constitutes a magnetic circuit, four magnetic poles mounted inside the yoke, and a magnetic field wound around each magnetic pole. In a magnetic quadrupole lens having a coil for generating a magnetic quadrupole lens, the tips of the four magnetic poles are inserted into the vacuum exhaust pipe.
いて、真空排気管内の4本の磁極先端がビームの進行方
向に可動となるような機構を設けたことを特徴とする磁
気四重極レンズ。2. The magnetic quadrupole lens according to claim 1, wherein a mechanism is provided such that four magnetic pole tips in the vacuum exhaust pipe are movable in a beam traveling direction. Polar lens.
いて、真空排気管内の4本の磁極先端同士を絶縁物或い
は非磁性金属等の非磁性材料の支持具で固定し、かつ、
荷電粒子ビームの進行方向に可動となるような機構を設
けたことを特徴とする磁気四重極レンズ。3. The magnetic quadrupole lens according to claim 1, wherein the four magnetic pole tips in the vacuum exhaust pipe are fixed by a support made of an insulating material or a nonmagnetic material such as a nonmagnetic metal, and
A magnetic quadrupole lens having a mechanism that is movable in the traveling direction of a charged particle beam.
四重極レンズを荷電粒子ビームの進行方向に2段以上並
べるとともに、各レンズの磁極に巻いたコイルが隣同士
干渉しないように、隣り合う一方のレンズでは磁極の先
端側にコイルを巻き、他方のレンズでは磁極の付け根側
にコイルを巻きつけたことを特徴とする多段型の磁気四
重極レンズ。4. The magnetic quadrupole lens according to claim 1 is arranged in two or more stages in the traveling direction of the charged particle beam, and the coils wound around the magnetic poles of the lenses do not interfere with each other. A multi-stage magnetic quadrupole lens characterized in that one adjacent lens has a coil wound around the tip of the magnetic pole, and the other lens has a coil wound around the base of the magnetic pole.
で挿入し、これをイオンビームの進行方向に2段以上並
べ、かつ、各レンズに巻いたコイルが隣同士干渉しない
ようにコイルを巻きつけた多段型の磁気四重極レンズか
ら出射したイオンビームを四重極粒子加速器に入射して
大電流の高エネルギーイオンビームを得ることを特徴と
するイオンビーム加速装置。5. A magnetic quadrupole tip is inserted into the inside of a vacuum exhaust pipe, the magnetic quadrupole tip is arranged in two or more stages in the traveling direction of the ion beam, and the coils wound around each lens do not interfere with each other. An ion beam accelerating device characterized in that an ion beam emitted from a multi-stage magnetic quadrupole lens having a coil is incident on a quadrupole particle accelerator to obtain a high-energy high-energy ion beam.
で挿入し、これをイオンビームの進行方向に2段以上並
べ、かつ、各レンズに巻いたコイルが隣同士干渉しない
ようにコイルを巻きつけた多段型の磁気四重極レンズか
ら出射したイオンビームを四重極粒子減速器に入射して
大電流の低エネルギーイオンビームを得ることを特徴と
するイオンビーム減速装置。6. A magnetic quadrupole tip is inserted into the inside of a vacuum exhaust pipe, and the magnetic quadrupole tip is arranged in two or more stages in the traveling direction of the ion beam, and the coils wound around each lens do not interfere with each other. An ion beam decelerating device, characterized in that an ion beam emitted from a multi-stage magnetic quadrupole lens having a coil is incident on a quadrupole particle decelerator to obtain a high-current low-energy ion beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4212835A JPH07118287B2 (en) | 1992-08-10 | 1992-08-10 | Magnetic quadrupole lens, ion beam accelerator and ion beam decelerator using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4212835A JPH07118287B2 (en) | 1992-08-10 | 1992-08-10 | Magnetic quadrupole lens, ion beam accelerator and ion beam decelerator using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0660840A true JPH0660840A (en) | 1994-03-04 |
JPH07118287B2 JPH07118287B2 (en) | 1995-12-18 |
Family
ID=16629143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4212835A Expired - Fee Related JPH07118287B2 (en) | 1992-08-10 | 1992-08-10 | Magnetic quadrupole lens, ion beam accelerator and ion beam decelerator using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07118287B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007504622A (en) * | 2003-09-03 | 2007-03-01 | アクセリス テクノロジーズ インコーポレーテッド | Unipolar electrostatic quadrupole lens and switching method for charged beam transport |
JP2007287365A (en) * | 2006-04-13 | 2007-11-01 | Jeol Ltd | Multipole lens and multipole lens manufacturing method |
CN102208226A (en) * | 2011-05-10 | 2011-10-05 | 中国科学院近代物理研究所 | High-accuracy three-combination quadrupole lens |
WO2012153599A1 (en) * | 2011-05-11 | 2012-11-15 | 住友重機械工業株式会社 | Charged particle beam radiating device |
CN104851471A (en) * | 2015-05-18 | 2015-08-19 | 北京大学 | Three-unit magnetic quadrupole lens system and manufacturing method thereof |
JP2015153565A (en) * | 2014-02-13 | 2015-08-24 | 日本電子株式会社 | Method of manufacturing multipole lens, multipole lens, and charged particle beam device |
KR20200130859A (en) * | 2019-03-27 | 2020-11-20 | 화중과기대 | Electronic irradiation system |
CN114068269A (en) * | 2020-07-31 | 2022-02-18 | 通用电气公司 | System and method for electron beam focusing in electron beam additive manufacturing |
US11483919B2 (en) | 2019-03-27 | 2022-10-25 | Huazhong University Of Science And Technology | System of electron irradiation |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5946448U (en) * | 1983-07-22 | 1984-03-28 | 池上 栄胤 | Variable dispersion power device in particle beam optical system |
JPH01115040A (en) * | 1987-10-28 | 1989-05-08 | Shimadzu Corp | Focusing deflection device of charged particle beam |
-
1992
- 1992-08-10 JP JP4212835A patent/JPH07118287B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5946448U (en) * | 1983-07-22 | 1984-03-28 | 池上 栄胤 | Variable dispersion power device in particle beam optical system |
JPH01115040A (en) * | 1987-10-28 | 1989-05-08 | Shimadzu Corp | Focusing deflection device of charged particle beam |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007504622A (en) * | 2003-09-03 | 2007-03-01 | アクセリス テクノロジーズ インコーポレーテッド | Unipolar electrostatic quadrupole lens and switching method for charged beam transport |
JP2007287365A (en) * | 2006-04-13 | 2007-11-01 | Jeol Ltd | Multipole lens and multipole lens manufacturing method |
CN102208226A (en) * | 2011-05-10 | 2011-10-05 | 中国科学院近代物理研究所 | High-accuracy three-combination quadrupole lens |
WO2012153599A1 (en) * | 2011-05-11 | 2012-11-15 | 住友重機械工業株式会社 | Charged particle beam radiating device |
US8866109B2 (en) | 2011-05-11 | 2014-10-21 | Sumitomo Heavy Industries, Ltd. | Charged-particle beam irradiation device |
JP2015153565A (en) * | 2014-02-13 | 2015-08-24 | 日本電子株式会社 | Method of manufacturing multipole lens, multipole lens, and charged particle beam device |
CN104851471A (en) * | 2015-05-18 | 2015-08-19 | 北京大学 | Three-unit magnetic quadrupole lens system and manufacturing method thereof |
KR20200130859A (en) * | 2019-03-27 | 2020-11-20 | 화중과기대 | Electronic irradiation system |
EP3749065A4 (en) * | 2019-03-27 | 2021-09-01 | Huazhong University of Science and Technology | Electron radiation system |
US11483919B2 (en) | 2019-03-27 | 2022-10-25 | Huazhong University Of Science And Technology | System of electron irradiation |
CN114068269A (en) * | 2020-07-31 | 2022-02-18 | 通用电气公司 | System and method for electron beam focusing in electron beam additive manufacturing |
Also Published As
Publication number | Publication date |
---|---|
JPH07118287B2 (en) | 1995-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7199373B2 (en) | Particle-optic electrostatic lens | |
US6798141B2 (en) | Plasma accelarator arrangement | |
CN102468104B (en) | With the charged particle source of integrated static energy filter | |
US6403967B1 (en) | Magnet system for an ion beam implantation system using high perveance beams | |
JPS63502707A (en) | Masked ion beam lithography system and method | |
JPS5871545A (en) | Variable forming beam electron optical system | |
EP2478546B1 (en) | Distributed ion source acceleration column | |
JP3325982B2 (en) | Magnetic field immersion type electron gun | |
JPH0660840A (en) | Magnetic quadrupole lens and ion-beam accelerating and decelerating devices using it | |
CA1214577A (en) | Focused ion beam column | |
JPS62108438A (en) | High current mass spectrometer employing space charge lens | |
JPH01319236A (en) | Field emission electron gun | |
EP0150089A1 (en) | Charged-particle optical systems | |
JPH0766767B2 (en) | Charged particle device and its focusing lens | |
JP3098360B2 (en) | Single / tandem acceleration dual-purpose ion accelerator | |
JPH09102291A (en) | Objective lens and charge particle beam device | |
JPH0636735A (en) | Substrate manufacturing device by polyvalent ion implanting method and manufacture of substrate | |
WO2022123821A1 (en) | Laser ion source, circular accelerator, and particle therapy system | |
JPH0636734A (en) | Manufacture of substrate by ion implanting method | |
JP2023130113A (en) | Mass separation device, transport apparatus, and linear accelerator | |
JP2007234508A (en) | Mass filter for ion beam and ion beam device | |
JP2838738B2 (en) | Electron cyclotron resonance ion source | |
JPH0552639B2 (en) | ||
JPH04209500A (en) | Ion beam acceleration and deceleration unit | |
JP3341497B2 (en) | High frequency type charged particle accelerator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |