JPH097798A - Accelerating tube and accelerator - Google Patents

Accelerating tube and accelerator

Info

Publication number
JPH097798A
JPH097798A JP15773795A JP15773795A JPH097798A JP H097798 A JPH097798 A JP H097798A JP 15773795 A JP15773795 A JP 15773795A JP 15773795 A JP15773795 A JP 15773795A JP H097798 A JPH097798 A JP H097798A
Authority
JP
Japan
Prior art keywords
accelerating
accelerating tube
tube
electron emission
secondary electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15773795A
Other languages
Japanese (ja)
Inventor
Hiroshi Akiyama
秋山  浩
Masatsugu Nishi
政嗣 西
Hiroshi Matsumoto
浩 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15773795A priority Critical patent/JPH097798A/en
Publication of JPH097798A publication Critical patent/JPH097798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)

Abstract

PURPOSE: To obtain an accelerating tube which suppresses a dark current generated in the accelerating tube, and has a high electric field and little dark current. CONSTITUTION: When a high-frequency wave power 1 is inputted to the inside of an accelerating tube 20 through a waveguide 2 and a combined window 3, an accelerating high-frequency wave electric field shown in an electric line of force 5 is generated in an accelerating tube combining unit 4 by the high-frequency wave power 1. By the generated high-frequency wave electric field, electrons are drawn out and accelerated by the field emission from the metal of the inner wall surface of the accelerating tube 20, and the electrons strike to the inner wall of the accelerating tube 20 so as to generate the secondary electrons. As the material of the parts 4a, 22a, and the like of their striking, a material 9 whose secondary electron emission coefficient is smaller than '1' is used. Consequently, the number of the generated secondary electrons is made fewer than the number of the striking electrons, and the breeding of the electrons can be suppressed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は荷電粒子を加速する加速
器に係り、特に、2次電子放出の少ない加速管とこれを
用いた加速器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an accelerator for accelerating charged particles, and more particularly to an accelerator tube with a small amount of secondary electron emission and an accelerator using the same.

【0002】[0002]

【従来の技術】近年、 大電力高周波源の開発が進展
し、最近ではピーク電力100MWのクライストロンが
開発されている。これに伴い、加速管へ導入される高周
波電力は増大している。このため、加速管の加速電界強
度は従来になく大きくすることが可能となっている。
2. Description of the Related Art In recent years, development of high-power high-frequency sources has progressed, and recently, a klystron having a peak power of 100 MW has been developed. Along with this, the high frequency power introduced into the acceleration tube is increasing. Therefore, the accelerating electric field strength of the accelerating tube can be made larger than ever before.

【0003】例えば、日本で提案されている素粒子研究
用の衝突型線形加速器JLC(Japan Linea
r collider)の場合、「リニアコライダーの
物理−JLC−I−」(“平成5年度科学研究費補助金
(総合研究A)研究成果報告書”)梶川によれば、電子
または陽電子のエネルギーとして250GeVを実現す
るには、加速管の長さを25kmにする必要があり、1
m当たりの加速電界強度を22MV/mにすることが計
画されている。現在、高エネルギー物理学研究所で稼動
中の電子線形加速器の加速勾配は約8MV/mであり、
JLCで要求されている加速電界強度はこの約3倍であ
る。
For example, a collision-type linear accelerator JLC (Japan Linea) proposed in Japan for studying elementary particles is proposed.
In the case of r collider), according to Kajikawa, "Geometry of Linear Collider-JLC-I-"("Fiscal 1993 Grant-in-Aid for Scientific Research (General Research A) Research Results Report") To achieve this, the length of the accelerating tube must be 25km. 1
It is planned to set the accelerating electric field strength per m to 22 MV / m. The acceleration gradient of the electron linear accelerator currently in operation at the High Energy Physics Laboratory is about 8 MV / m,
The accelerating electric field strength required by JLC is about three times this.

【0004】JLCでは、将来にわたりビームのエネル
ギーを高めて行くことが計画されており、その場合に
は、加速電界強度をさらに高くしなければならない。こ
のような素粒子研究用の加速器だけでなく、物性研究
用、医療用、放射光リングの入射器などの線形加速器に
おいても、加速電界強度を高めることは重要である。加
速電界強度を高くすることができれば、必要なビームの
エネルギーを得るために加速管の長さを短くすることが
でき、加速器全体を小型化することが可能となる。
In the JLC, it is planned to increase the energy of the beam in the future, and in that case, the accelerating electric field strength must be further increased. It is important to increase the accelerating electric field strength not only in such an accelerator for particle research, but also in linear accelerators such as those for physical properties research, medical use, and injectors for synchrotron radiation rings. If the accelerating electric field strength can be increased, the length of the accelerating tube can be shortened in order to obtain the required beam energy, and the entire accelerator can be downsized.

【0005】このように、加速器全体を小型化すること
ができれば施設規模を縮小でき、コストを引き下げるこ
とができるが、従来は、加速管の加速電界強度を高める
ことは困難であった。図5は、従来技術による加速管の
縦断面図であり、加速管20は、シリンダ21と、この
シリンダ21内に整列して設けられた多数の中空ディス
ク22と、端部に設けられた結合器4と、該結合器4に
結合窓3を通して連結された導波管2とを備えてなる。
高周波電力1が導波管2,結合窓3を通して結合器4に
導入されると、加速管内には、導入された高周波電力1
により、電気力線5で示されるような加速電界が発生す
る。
As described above, if the entire accelerator can be downsized, the facility scale can be reduced and the cost can be reduced, but conventionally, it was difficult to increase the accelerating electric field strength of the accelerating tube. FIG. 5 is a longitudinal sectional view of an accelerating tube according to the related art. The accelerating tube 20 includes a cylinder 21, a plurality of hollow disks 22 aligned in the cylinder 21, and a coupling provided at an end thereof. And a waveguide 2 connected to the coupler 4 through a coupling window 3.
When the high frequency power 1 is introduced into the coupler 4 through the waveguide 2 and the coupling window 3, the introduced high frequency power 1
As a result, an accelerating electric field as shown by electric lines of force 5 is generated.

【0006】上述した様に、高エネルギーを得るために
この加速電界強度を高くすると、加速管内表面の電界が
高くなり、管内表面から電界放出により電子6が放出さ
れる。放出された電子6は、電気力線5で示されるよう
な加速電界により加速され、ディスク22に衝突する
と、2次電子7が放出される。加速管20の材質として
は、通常、銅が用いられる。銅は、2次電子放出係数が
“1.28”と“1”よりも高いため、衝突した電子1
個当り1.28個の2次電子が放出され、加速管内に発
生する電子数は指数的に増大する。このようにして放出
された電子による電流を暗電流と呼ぶ。加速管内壁の電
界が高くなると、電界放出により発生する電子数が増大
し、暗電流が増加してしまう。
As described above, when the accelerating electric field strength is increased in order to obtain high energy, the electric field on the inner surface of the accelerating tube becomes high, and the electrons 6 are emitted from the inner surface of the tube by field emission. The emitted electrons 6 are accelerated by an accelerating electric field as shown by electric lines of force 5, and when colliding with the disk 22, secondary electrons 7 are emitted. Copper is usually used as the material of the acceleration tube 20. Since the secondary electron emission coefficient of copper is "1.28", which is higher than "1", the collision electron 1
1.28 secondary electrons are emitted per piece, and the number of electrons generated in the accelerating tube exponentially increases. The current caused by the electrons thus emitted is called a dark current. When the electric field on the inner wall of the accelerating tube is increased, the number of electrons generated by field emission is increased and the dark current is increased.

【0007】[0007]

【発明が解決しようとする課題】上述した従来技術は、
結合器の部分で発生した電子が加速管内壁に衝突した場
合、加速管の材質が2次電子放出係数が“1”よりも大
きい銅のため、電子の増殖を抑制することができない。
そのため、本来必要である電子ビーム以外の2次電子が
発生し、この2次電子が最終的にビームを利用する時に
ノイズになるという問題が生じる。また、暗電流となる
2次電子が加速管内で加速されてしまい、加速管内の高
周波電力を無駄に消費することで、必要な電子ビームの
加速効率を悪化させるという問題も生じる。
The prior art described above is
When the electrons generated in the coupler collide with the inner wall of the accelerating tube, the material of the accelerating tube is copper whose secondary electron emission coefficient is larger than "1", so that electron multiplication cannot be suppressed.
Therefore, secondary electrons other than the electron beam, which is originally necessary, are generated, and this secondary electron causes noise when the beam is finally used. In addition, secondary electrons, which become dark current, are accelerated in the accelerating tube, which wastefully consumes high-frequency power in the accelerating tube, resulting in a problem that the required electron beam acceleration efficiency is deteriorated.

【0008】本発明の目的は、2次電子の放出を少なく
してノイズを低減し加速効率を向上させることのできる
加速管とこれを用いた加速器を提供することにある。
An object of the present invention is to provide an accelerating tube which can reduce noise by reducing emission of secondary electrons and improve acceleration efficiency, and an accelerator using the accelerating tube.

【0009】[0009]

【課題を解決するための手段】上記目的は、結合器内壁
の一部または全体、更に、それに続く少なくとも2つの
ディスクに2次電子放出係数が“1”よりも小さい材質
を用いることで、達成される。
The above object is achieved by using a material having a secondary electron emission coefficient of less than "1" for a part or all of the inner wall of the coupler and at least two disks following the inner wall. To be done.

【0010】[0010]

【作用】電界放出により発生する電子が衝突する箇所の
材質が、2次電子放出係数“1”より小さい材質のた
め、暗電流の原因となる電子の増大が抑制される。従っ
て、高周波電力が無駄に消費されることがなく、効率的
に荷電粒子の加速が可能となる。
Since the material of the portion where the electrons generated by the field emission collide is smaller than the secondary electron emission coefficient "1", the increase of the electron causing the dark current is suppressed. Therefore, the high frequency power is not wastefully consumed, and the charged particles can be efficiently accelerated.

【0011】[0011]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図3は、本発明の一実施例に係る線形加速器の
構成図である。図3において、電子銃25の電子ビーム
出力側に、4つの加速管20a,20b,20c,20
dが直列に接続されており、各接続部分には、電子ビー
ムの発散を抑制する収束用磁石26a,26b,26
c,26dが設けられている。各加速管20a,20
b,20c,20d内には、線形加速器の制御装置27
の指令を受けたクライストロン28a,28b(29
a,29bはクライストロン用電源)からの高周波電力
が各加速管の電力入力端である導波管2a,2b,2
c,2dを通して供給されており、各加速管20a〜2
0dの内部に電子ビーム加速用の高周波電界が発生して
いる。尚、図示する例は、加速管を4つ接続したが、長
い線形加速器が必要な場合には、同様の加速管を数十,
数百,数千のオーダで接続すればよい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 3 is a configuration diagram of a linear accelerator according to an embodiment of the present invention. In FIG. 3, four acceleration tubes 20a, 20b, 20c, 20 are provided on the electron beam output side of the electron gun 25.
d are connected in series, and converging magnets 26a, 26b, 26 for suppressing the divergence of the electron beam are provided at the respective connecting portions.
c and 26d are provided. Each acceleration tube 20a, 20
b, 20c, and 20d include a controller 27 for the linear accelerator.
Klystron 28a, 28b (29
a and 29b are high-frequency power from the klystron power supply) and waveguides 2a, 2b and 2 which are power input ends of the respective acceleration tubes.
c, 2d, and each of the acceleration tubes 20a-2
A high frequency electric field for electron beam acceleration is generated inside 0d. In the example shown in the figure, four accelerating tubes are connected, but when a long linear accelerator is required, several tens of similar accelerating tubes are used.
You can connect on the order of hundreds or thousands.

【0012】線形加速器の制御装置27の指令を受けて
電子銃用高電圧電源24から電子銃25に高電圧が印加
されると、電子ビームが電子銃25から引き出され、1
段目の加速管20a内に入力される。加速管20a内に
入力した電子ビームは、加速管内部の高周波電界により
加速されて2段目の加速管20b内に出射される。以
後、同様にして2段目,3段目,4段目の各加速管20
b〜20cで順次加速された電子ビームは、4段目の加
速管20dの出力端から出射される。
When a high voltage is applied to the electron gun 25 from the electron gun high-voltage power source 24 in response to a command from the linear accelerator control device 27, an electron beam is extracted from the electron gun 25 and 1
It is input into the acceleration tube 20a of the stage. The electron beam input into the accelerating tube 20a is accelerated by the high frequency electric field inside the accelerating tube and is emitted into the accelerating tube 20b of the second stage. After that, similarly, each of the second, third, and fourth accelerating tubes 20
The electron beams sequentially accelerated by b to 20c are emitted from the output end of the fourth stage acceleration tube 20d.

【0013】図1は、本発明の第1実施例に係る加速管
の要部縦断面図である。図1において、導波管2,結合
窓3を通して高周波電力1が加速管20に入力すると、
この高周波電力1により、加速管結合器4内には、電気
力線5で示されるような加速高周波電界が発生する。発
生した高周波電界により、加速管を構成する金属中より
電子が電界放出により引き出され加速される。加速され
た電子は、加速管内壁に衝突し、2次電子を発生させ
る。
FIG. 1 is a longitudinal sectional view of an essential part of an accelerating tube according to a first embodiment of the present invention. In FIG. 1, when the high frequency power 1 is input to the acceleration tube 20 through the waveguide 2 and the coupling window 3,
This high-frequency power 1 causes an accelerating high-frequency electric field as shown by electric lines of force 5 in the accelerating tube coupler 4. Due to the generated high frequency electric field, electrons are extracted from the metal forming the accelerating tube by field emission and accelerated. The accelerated electrons collide with the inner wall of the acceleration tube to generate secondary electrons.

【0014】そこで、本実施例では、加速管結合器4の
角部4aのように高電界となる部分や、ディスク22の
内周縁部分22aに、2次電子放出係数が“1”よりも
小さい材質例えばチタン(2次電子放出計数“0.
9”)を用い、電子の増殖を抑制する。加速管20の全
ディスク22の内周縁にチタンを用いてもよいが、2次
電子放出を抑制するのに効果的なディスクのみに設ける
だけでもよい。尚、結合器4の全体を2次電子放出係数
の小さい材質で製造してもよい。
Therefore, in this embodiment, the secondary electron emission coefficient is smaller than "1" in a portion having a high electric field such as the corner portion 4a of the accelerating tube coupler 4 and the inner peripheral edge portion 22a of the disk 22. Material such as titanium (secondary electron emission count "0.
9 ″) to suppress the multiplication of electrons. Titanium may be used for the inner peripheral edge of all the disks 22 of the accelerating tube 20, but it may be provided only for the disk effective for suppressing the secondary electron emission. The entire coupler 4 may be made of a material having a small secondary electron emission coefficient.

【0015】図1に示す例では、結合器4側の2つのデ
ィスク22にだけチタンを設けている。本実施例では、
チタンをリング状に成形し、これを、角部4aやディス
ク内周部に嵌合固定させている。
In the example shown in FIG. 1, titanium is provided only on the two disks 22 on the coupler 4 side. In this embodiment,
Titanium is formed into a ring shape, which is fitted and fixed to the corner portion 4a and the inner peripheral portion of the disc.

【0016】図2は、本発明の第2実施例に係る加速管
の要部縦断面図である。本実施例では、結合器4の角部
やディスク内周縁部22aに、板状チタン9を、ろう付
けや半田付けで接合してある。勿論、チタンを他の方法
例えば拡散接合やコーティング等でこれらの部分に取り
付けてもよい。尚、上述した実施例では、2次電子放出
計数の低い材質としてチタンを例に説明したが、材質が
チタンに限らないことはいうまでもない。
FIG. 2 is a longitudinal sectional view of the main part of an accelerating tube according to the second embodiment of the present invention. In the present embodiment, the plate-shaped titanium 9 is joined to the corners of the coupler 4 and the disk inner peripheral edge 22a by brazing or soldering. Of course, titanium may be attached to these parts by other methods such as diffusion bonding or coating. Although titanium has been described as an example of the material having a low secondary electron emission count in the above-described embodiment, it goes without saying that the material is not limited to titanium.

【0017】図4は、本発明の第2実施例に係る加速管
の構成図である。図1において導波管2、結合窓3を通
して高周波電力1を入力する。入力した高周波電力1に
より加速管結合器4内には電気力線5に示されるような
加速高周波電界が発生する。発生した高周波電界により
金属中より電子が電界放出により引き出され加速され
る。加速された電子は対向した加速管内壁に衝突し2次
電子を発生させる。対向した加速管内壁の一部にチタン
の薄膜をコーティングする。コーティングした薄膜の厚
さは加速高周波の周波数により決まる表皮厚さ程度とす
る。例えば加速高周波が2.856GHzの場合、約
1.2μmである。チタンの2次電子放出係数は0.9
で1よりも小さいため発生する2次電子は衝突した電子
数よりも少ないために電子の増殖を抑制することができ
る。
FIG. 4 is a configuration diagram of an accelerating tube according to the second embodiment of the present invention. In FIG. 1, the high frequency power 1 is input through the waveguide 2 and the coupling window 3. The input high-frequency electric power 1 generates an accelerating high-frequency electric field in the accelerating tube coupler 4 as shown by electric lines of force 5. Due to the generated high frequency electric field, electrons are extracted from the metal by field emission and accelerated. The accelerated electrons collide with the inner wall of the facing acceleration tube to generate secondary electrons. A part of the inner wall of the acceleration tube facing each other is coated with a thin film of titanium. The thickness of the coated thin film is about the skin thickness determined by the frequency of the acceleration high frequency. For example, when the acceleration high frequency is 2.856 GHz, it is about 1.2 μm. The secondary electron emission coefficient of titanium is 0.9
Since the number of secondary electrons generated is smaller than 1, the number of secondary electrons generated is smaller than the number of colliding electrons, so that electron multiplication can be suppressed.

【0018】図5は、円形加速器の構成図である。上述
した実施例では、線形加速器の加速管の例として説明し
たが、円形加速器の加速管として図1,図2に示す加速
管を使用することも可能である。この図5に示す円形加
速器220は、図1に示した加速管20a,20bを2
段直列に接続した電子ビーム注入系からの電子ビーム
を、入射器221から円形軌道内に取り込んで周回さ
せ、放射光発生や、素粒子実験等に利用する。
FIG. 5 is a block diagram of a circular accelerator. In the above-described embodiment, the example of the accelerating tube of the linear accelerator has been described, but it is also possible to use the accelerating tube shown in FIGS. 1 and 2 as the accelerating tube of the circular accelerator. The circular accelerator 220 shown in FIG. 5 includes the accelerator tubes 20a and 20b shown in FIG.
An electron beam from an electron beam injection system connected in series is taken from an injector 221 into a circular orbit and circulated, and is used for synchrotron radiation generation, elementary particle experiments, and the like.

【0019】このように、2次電子放出の少ない加速管
を用いて加速器を構成することで、エネルギー利得が増
えるため、加速器全体の小形化を図ることが可能とな
る。
Since the energy gain is increased by constructing the accelerator using the accelerator tube that emits less secondary electrons, it is possible to reduce the size of the accelerator as a whole.

【0020】[0020]

【発明の効果】本発明によれば、高電界の加速管を暗電
流を極めて少なくしつつ、実現することができるため、
単位長さ当りのビームのエネルギー利得を増やし、加速
器全体の規模を縮小することが可能となる。
According to the present invention, since it is possible to realize an acceleration tube with a high electric field while reducing the dark current extremely,
It is possible to increase the energy gain of the beam per unit length and reduce the scale of the entire accelerator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係る加速管の要部縦断面
図である。
FIG. 1 is a longitudinal sectional view of an essential part of an acceleration tube according to a first embodiment of the present invention.

【図2】本発明の第2実施例に係る加速管の要部縦断面
図である。
FIG. 2 is a longitudinal sectional view of an essential part of an accelerating tube according to a second embodiment of the present invention.

【図3】図1,図2に示す加速管を適用した線形加速器
の構成図である。
FIG. 3 is a configuration diagram of a linear accelerator to which the accelerating tube shown in FIGS. 1 and 2 is applied.

【図4】図1,図2に示す加速管を適用した円形加速器
の構成図である。
FIG. 4 is a configuration diagram of a circular accelerator to which the accelerating tube shown in FIGS. 1 and 2 is applied.

【図5】従来の加速管の要部縦断面図である。FIG. 5 is a vertical cross-sectional view of a main part of a conventional acceleration tube.

【符号の説明】[Explanation of symbols]

1…高周波電力、2…導波管、3…結合孔、4…加速管
結合器、5…電気力線、6…電界放出電子、7…2次電
子、8…荷電粒子ビーム、9…チタン、20,20a,
20b,20c,20d…加速管、21…シリンダ、2
2…ディスク、22a…チタン。
DESCRIPTION OF SYMBOLS 1 ... High frequency power, 2 ... Waveguide, 3 ... Coupling hole, 4 ... Accelerating tube coupler, 5 ... Electric force line, 6 ... Field emission electron, 7 ... Secondary electron, 8 ... Charged particle beam, 9 ... Titanium , 20, 20a,
20b, 20c, 20d ... Accelerator tube, 21 ... Cylinder, 2
2 ... Disc, 22a ... Titanium.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 入射された荷電粒子ビームを、内部に導
入された高周波電力により加速して出射する加速管にお
いて、2次電子放出係数が“1”より小さい材質で製造
したことを特徴とする加速管。
1. An accelerating tube for accelerating an incident charged particle beam by high-frequency electric power introduced therein and emitting the accelerating electron beam, wherein the secondary electron emission coefficient is made of a material smaller than "1". Accelerator tube.
【請求項2】 高周波を導入する結合器と、該結合器に
連接され内部が複数のリング状ディスクで区画されたシ
リンダとを備え、入射された荷電粒子を前期高周波によ
り加速する加速管において、少なくとも、前記結合器内
部の角部と、該結合器側の2つの前記リング状ディスク
の内周縁部とを、2次電子放出係数が“1”より小さい
材質で製造したことを特徴とする加速管。
2. An accelerating tube, comprising: a coupler for introducing a high frequency wave; and a cylinder connected to the coupler and having an interior defined by a plurality of ring-shaped disks, wherein the charged particles are accelerated by the high frequency wave. At least the corners inside the coupler and the inner peripheral edges of the two ring-shaped disks on the coupler side are made of a material having a secondary electron emission coefficient smaller than "1". tube.
【請求項3】 入射された荷電粒子ビームを、内部に導
入された高周波電力により加速して出射する加速管にお
いて、内部壁面のうち、前記高周波電力により発生する
電界が集中して高電界となる部分の材質を、2次電子放
出係数が“1”より小さい材質で製造したことを特徴と
する加速管。
3. An accelerating tube for accelerating an incident charged particle beam by high-frequency electric power introduced therein and emitting the accelerated charged particle beam, the electric field generated by the high-frequency electric power is concentrated on the inner wall surface to become a high electric field. An accelerating tube characterized by being manufactured with a material having a secondary electron emission coefficient smaller than "1".
【請求項4】 入射された荷電粒子ビームを、内部に導
入された高周波電力により加速して出射する加速管にお
いて、内部壁面のうち、電界放出により内部で発生した
電子が移動して衝突する部分の材質を、2次電子放出係
数が“1”より小さい材質で製造したことを特徴とする
加速管。
4. In an accelerating tube for accelerating an incident charged particle beam by high-frequency power introduced therein and emitting the same, a portion of an inner wall surface where electrons generated inside due to field emission move and collide. An accelerating tube characterized by being manufactured from a material having a secondary electron emission coefficient smaller than "1".
【請求項5】 請求項1乃至請求項4のいずれかにおい
て、2次電子放出係数が“1”より小さい材質としてチ
タンまたはチタン合金を用いたことを特徴とする加速
管。
5. The accelerating tube according to claim 1, wherein titanium or titanium alloy is used as a material having a secondary electron emission coefficient smaller than “1”.
【請求項6】 請求項1乃至請求項5のいずれかにおい
て、2次電子放出係数が“1”より小さい材質を、内壁
部分所要箇所に拡散接合したことを特徴とする加速管。
6. The accelerating tube according to claim 1, wherein a material having a secondary electron emission coefficient smaller than “1” is diffusion-bonded to a required portion of the inner wall portion.
【請求項7】 請求項1乃至請求項5のいずれかにおい
て、2次電子放出係数が“1”より小さい材質を、内壁
部分所要箇所にろう付けまたは半田付けしたことを特徴
とする加速管。
7. The accelerating tube according to claim 1, wherein a material having a secondary electron emission coefficient smaller than “1” is brazed or soldered to a required portion of the inner wall portion.
【請求項8】 請求項1乃至請求項5のいずれかにおい
て、2次電子放出係数が“1”より小さい材質を、内壁
部分所要箇所にコーティングしたことを特徴とする加速
管。
8. The accelerating tube according to claim 1, wherein a material having a secondary electron emission coefficient smaller than “1” is coated on a required portion of the inner wall portion.
【請求項9】 請求項1乃至請求項8のいずれかに記載
の加速管複数を直列に接続すると共に、各加速管の接続
部分に設けた収束用磁石と、直列接続した加速管の一側
に設けた荷電粒子銃と、各加速管に高周波を供給するク
ライストロンと、前記荷電粒子銃から荷電粒子を出射さ
せると共に各クライストロンが同期した高周波電力を各
加速管に供給するように制御指令を出力する制御手段と
を備えることを特徴とする線形加速器。
9. A plurality of accelerating tubes according to any one of claims 1 to 8 are connected in series, and a focusing magnet provided at a connecting portion of each accelerating tube and one side of the accelerating tubes connected in series. , A klystron that supplies high-frequency waves to each accelerating tube, and a control command that causes charged particles to be emitted from the charged-particle gun and that high-frequency power synchronized by each klystron be supplied to each accelerating tube. And a control means for controlling the linear accelerator.
【請求項10】 荷電粒子ビームを周回させる円形加速
器において、該円形加速器の荷電粒子入射系に、請求項
1乃至請求項8のいずれかに記載の加速管を設けたこと
を特徴とする円形加速器。
10. A circular accelerator for orbiting a charged particle beam, wherein the charged particle injection system of the circular accelerator is provided with the accelerating tube according to any one of claims 1 to 8. .
JP15773795A 1995-06-23 1995-06-23 Accelerating tube and accelerator Pending JPH097798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15773795A JPH097798A (en) 1995-06-23 1995-06-23 Accelerating tube and accelerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15773795A JPH097798A (en) 1995-06-23 1995-06-23 Accelerating tube and accelerator

Publications (1)

Publication Number Publication Date
JPH097798A true JPH097798A (en) 1997-01-10

Family

ID=15656260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15773795A Pending JPH097798A (en) 1995-06-23 1995-06-23 Accelerating tube and accelerator

Country Status (1)

Country Link
JP (1) JPH097798A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239498A (en) * 2007-03-24 2008-10-09 Shinshu Univ Method for fractionating ace-inhibiting activity fraction from germinated fermented buckwheat
CN114126186A (en) * 2021-11-26 2022-03-01 中山大学 BBU (base band unit) restraining structure of high-current electron linear accelerator for nuclide preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008239498A (en) * 2007-03-24 2008-10-09 Shinshu Univ Method for fractionating ace-inhibiting activity fraction from germinated fermented buckwheat
CN114126186A (en) * 2021-11-26 2022-03-01 中山大学 BBU (base band unit) restraining structure of high-current electron linear accelerator for nuclide preparation

Similar Documents

Publication Publication Date Title
Granatstein et al. A quarter century of gyrotron research and development
US6593696B2 (en) Low dark current linear accelerator
US10212796B2 (en) X-ray pulse source and method for generating X-ray pulses
Dammertz et al. Development of multimegawatt gyrotrons for fusion plasma heating and current drive
JPH06181100A (en) Microtron electron accelerator
US6327339B1 (en) Industrial x-ray/electron beam source using an electron accelerator
Urakawa Development of a compact X-ray source based on Compton scattering using a 1.3 GHz superconducting RF accelerating linac and a new laser storage cavity
Ferrario et al. Advanced accelerator concepts
O'shea et al. Initial results from the Los Alamos photoinjector-driven free-electron laser
Nusinovich et al. The pasotron: Progress in the theory and experiments
Hayashi et al. High-power microwave generation using a ferroelectric cathode electron gun
JPH097798A (en) Accelerating tube and accelerator
McCowan et al. The Design of a 100-GHz CARM oscillator experiment
US5336972A (en) High brightness electron accelerator
Dammertz et al. Progress in the 10-MW ECRH system for the stellarator W7-X
Wang et al. Design study and modeling of multi-beam Klystron for Circular Electron Positron Collider
US20020149316A1 (en) Electron gun
Miller et al. A novel compact and portable linear accelerator electron beam system
US10910189B2 (en) Portable accelerator based X-ray source for active interrogation systems
Godlove et al. High-power free-electron lasers driven by RF linear accelerators
Braun Achievements and future plans of CLIC test facilities
Trofimov et al. Development of the gyrotron collector system with multistage energy recovery
Blau et al. High average power free-electron lasers
Hirshfield 120 MW, 800 MHz Magnicon for a Future Muon Collider
Behtouei et al. Relativistic approach to a low perveance high quality matched beam for a high efficiency Ka-Band klystron