JPH01100065A - Silicon carbide whisker-reinforced silicon nitride sintered compact and production thereof - Google Patents

Silicon carbide whisker-reinforced silicon nitride sintered compact and production thereof

Info

Publication number
JPH01100065A
JPH01100065A JP62258106A JP25810687A JPH01100065A JP H01100065 A JPH01100065 A JP H01100065A JP 62258106 A JP62258106 A JP 62258106A JP 25810687 A JP25810687 A JP 25810687A JP H01100065 A JPH01100065 A JP H01100065A
Authority
JP
Japan
Prior art keywords
sintered body
weight
silicon nitride
average length
silicon carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62258106A
Other languages
Japanese (ja)
Other versions
JP2613402B2 (en
Inventor
Masaru Matsubara
優 松原
Akiyasu Okuno
奥野 晃康
Shoichi Watanabe
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP62258106A priority Critical patent/JP2613402B2/en
Publication of JPH01100065A publication Critical patent/JPH01100065A/en
Application granted granted Critical
Publication of JP2613402B2 publication Critical patent/JP2613402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride

Abstract

PURPOSE:To obtain the titled sintered compact having excellent folding endurance (at ordinary and high temperature), fracture toughness and oxidation resistance, etc., by sintering and molding a blend composition of a specific SiC whisker with a specific Si3N4 in the presence of oxide of rare earth elements. CONSTITUTION:5-40wt.% SiC whisker having 5-30mu average length, 0.2-5mu average diameter, 2-150 aspect ratio, <=1.0wt.% content of cation impurity (e.g. Al) and SiO2 and 95-60wt.% Si3N4 powder having >=90% alpha ratio are pulverized and blended in the presence of 5-30wt.% one or more oxide (e.g. Y2O3) of rare earth elements used as a sintering auxiliary until the above- mentioned SiC whisker is uniformly dispersed in the range of 5-30mu average length and then molded and sintered under reduction atmosphere or inert gas non-oxidative atmosphere at 1,650-1,850 deg.C until ratio of Si3N4 becomes <=40wt.% to provide the titled sintered compact.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は炭化珪素ウィスカーを用いて強化した窒化珪素
系複合材料に関し、特に高温での強度および耐クリープ
性に優れた窒化珪素質焼結体とその製造方法に関し、セ
ラミックロータやセラミックバルブ等の自動車エンジン
部材やガスタービンロータ等の高温構造部材に広く有用
な複合材料とその製造方法を提供するのである。 (従来の技術) 炭化珪素焼結体や窒化珪素(SiJ*)を主成分とする
窒化珪素系焼結体は、原子の結合様式が共有結合を主体
としており、機械的強度、耐酸化性、耐摩耗性、耐衝撃
性、耐食性等の特性に優れているため、特に自動車エン
ジン部品やガスタービンロータ等の高温構造部材や切削
工具材料として実用化が始まっている。 しかしこのような優れた特徴をもっているにもかかわら
ず、金属と比較すると品質安定性や均質性に乏しく、信
顛性の向上や高特性という視点から、窒化珪素系セラミ
ックスに於いても一層の高靭性化が望まれている。 ところで、窒化珪素や炭化珪素はともに共有結合を主体
とした化合物であって難焼結材とされている。従って、
窒化珪素や炭化珪素はそれ単独に焼結させるのではなく
、通常焼結助剤を数%乃至数十%添加することにより、
低融点化合物を形成させ焼結を促進しており、添加した
焼結助剤は粒界のガラス相あるいは結晶相として焼結後
に残存するか、窒化珪素の結晶中に固溶し残存する。 しかしながら、このようにして得られる焼結体は、焼結
助剤として添加したA1tO3+YzO++LazOa
。 MgO,Ca(L希土類元素酸化物などが、前記したよ
うに低融点化合物を形成して焼結を促進せしめるという
利点がある反面、この低融点化合物が原因となり焼結体
の高温における機械的強度が低下するという欠点がある
ことから、焼結助剤の種類の検討やその量を出来るだけ
少なくするなどの検討がなされているが、高温時の機械
的強度低下の欠点は未だ解決されていないのが現状であ
る。 この対策としてセラミックスにSiCウィスカーを複合
化して改良されたセラミックス焼結体を得る各種の試み
が行われている。 例えば特公昭58−51911号はSi3NaとSiC
ウィスカー混合物のペーストを用いて板状に成形したも
のを積層し、加圧焼結する製造方法であり、粉末状態で
焼結する方法を示唆していない。 特公昭60−35316号は5isNa中に導電性のあ
る繊維状SiCを分散させることにより高い電気伝導性
を与え、放電加工可能なSi3N、焼結体を提供するも
のであるが、SiC繊維は10〜500μm程度の比較
的長繊維のものを均一に分散させる必要のあるところか
ら、混合技術上SiC繊維の集塊に留意しなければなら
ず、集塊に基づく焼結不良、延いては信顛性の低下のお
それがあり、かつ又、室温強度、高温強度に一層の改善
が求められるところである。 又、特開昭59−102862号は前記した特公昭60
−35316号の延長線上の発明で、Si3Na中に導
電性のある繊維状SiCとともに特定の導電性を有する
無機粉末を分散させ、電気伝導性を高めるものであるが
、特公昭60−35316号同様な問題を有し、特に高
温強度は改善の余地のあるものと考えられる。 特開昭60−200863号はSiCウィスカーと、4
・族、5・晶化物並びに窒化物を含有し、残りがSi3
N、からなる組成のセラミックスであって、鉄との親和
性を低下し、鉄との摩擦を生じる用途での摩耗の進行を
防止できるものであるが、高温1200℃の抗折力は5
0kg/mm”内外に留まるために、なお−層の向上が
求められるものである。 特公昭60−55469号は窒化珪素粉末の分散液と繊
維状炭化珪素結晶の分散液とを、それぞれフィルターを
通過させた後、前者に対し後者が5〜50重量%となる
ように混合し、成形、焼結する方法であり、粉末を成形
焼結するのに比して手数がかかり面倒である。 特開昭60−246268号および特開昭61−291
463号はサイアロン系母材に SiCウィスカー等を
加えたもので前者はβ−サイアロン、後者はグーサイア
ロンであり窒化珪素系母材にSiCウィスカーを加えた
焼結体に関するものではない。 (発明が解決すべき問題点) 上記の如(Si3N4系のセラミックスにSiCウィス
カーを分散した複合材は未だ十分に実用化できるまでに
至らず、なお−層の高靭性化が期待されるとともに10
00℃以上の高温下での使用にはいまだ不十分なもので
あった。即ち、上記においてサイアロン基セラミックは
高靭性であるものの、1000℃以上の高温では強度劣
化や耐酸化性が悪く、又窒化珪素(サイアロンを除く)
基セラミックは高温特性がサイアロン基セラミックに比
べて優れているものの靭性が低い等高温構造材料として
使用するには問題があった。 (問題点を解決するための手段) 本発明者らはこの点について鋭意検討の結果窒化珪素質
焼結体の高温時における機械的特性が、その結晶相、粒
界相の形態によることが大きく、特に靭性や高温におけ
る強度を高めるには特定のSiCウィスカーが焼結体の
中で相当の長さを有したま\、均一に分散することと、
Si3N4中のα−Si3Nnの割合即ちα率がある値
以下である場合に好ましい特性の焼結体が得られるとの
知見に基いたものであり、その概要は以下のとおりであ
る。 即ち第1の発明は平均長さ5〜30μmのSiCウィス
カー5〜40重量%、希土類元素酸化物の1種以上5〜
30重量%、残部が窒化珪素からなる配合組成物を成形
し焼結された窒化珪素質焼結体であって、焼結後のSi
Jmのα率が40重重量以下であることを特徴とする炭
化珪素ウィスカー強化窒化珪素質焼結体にして、第2の
発明は上記焼結体を製造するために平均長さが30μm
以下のSiCウィスカー5〜40重量%と、希土類元素
酸化物の1種以上の粉末5〜30重量%、残部がα率9
0重量%以上の5isNa粉末とを該SiCウィスカー
の平均長さが5〜30μmの範囲で均一に分散するよう
に粉砕混合し成形した後、非酸化性雰囲気下で1650
〜1850℃の温度で、SiJ、の冴率が40重量%以
下になるまで焼結することを特徴とする炭化珪素ウィス
カー強化窒化珪素質焼結体の製造方法である。なお成形
焼結にあたっては所定の配合q組成物を必要に応じ金型
成形、静水圧成形および射出成形した後還元または不活
性ガス雰囲気中でホットプレス、常圧焼結、ガス圧焼結
及び熱間静水圧焼結することによって行うことができる
。 なお本発明で用いられるSiCウィスカーはそれ自体常
温から高温まで硬度や強度が高(、焼結後もウィスカー
の形状のままで組織内に均一に分散していることよって
セラミックスの高温強度を向上し、破壊靭性を大きくし
、かつ、硬くするものである。 本発明で用いられる出発原料としてのSiCウィスカー
としては平均直径0.2〜5μm1平均長さ5〜30μ
mでアスペクト比2〜150のものが望ましい。又、こ
のウィスカーは、A 1 *  Ca 、 Mg+Ni
 +  Fe、Mn、Coo  Cr等のカチオン不純
物やSi0g含有量が 1.0重量%以下で、クビレや
枝分れおよび面欠陥等が少ないヒゲ状結晶のものが高靭
性の緻密な焼結体を得る上で好ましい。 SiCウィスカーの添加量を5〜40重量%とする理由
は、SiCウィスカーが5重量%より少ない場合はセラ
ミック焼結体にウィスカー添加の効果が殆どないため、
強度、靭性の向上が見られず、逆に40重量%を越える
場合はウィスカーの異方性によって均一分散性が低下し
焼結性も著しく低下するためであり、より好ましくは1
0〜30重量%添加するのがよい、なお、本発明で使用
するSiCウィスカーは焼結後もウィスカー形状で焼結
体中に残留するものである。 又SiCウィスカーは粉砕、混合、成形、焼結後も平均
長さが5〜30μmであることが必要であり、その理由
は、平均長さが5μmより短い場合はウィスカーの添加
効果が見られず、強度や靭性の向上が認められないため
であり、30μmより長い場合は、焼結性の低下やウィ
スカー同士の凝集が著しくなり、焼結体中に生成する凝
集部分が欠陥となって強度の低下をもたらすためであり
、更に好ましくは5〜20μ−であることがより高靭性
、高°  強度を保持する点で好ましい。 希土類元素の酸化物は焼結助剤として働くとともに、焼
結体中でガラス相を形成し、緻密体を構成する添加量は
5〜30重量%である。 希土類元素の酸化物が5重量%未満では生成するガラス
相(液相)が少な過ぎるため、焼結助剤としての効果が
なく緻密化されず、又、30重量%を超える場合は過度
に窒化珪素が粒成長して却って焼結性が阻害され強度劣
化を招いたり、ガラス相の生成量の増大に伴い、高温で
の機械的強度や耐酸化性等の高温特性が劣化するため上
記範囲が好ましい、より好ましくは10〜25重量%で
ある。 焼結体中の5isNaのα率を40重量%以下とする理
由は、α率が40重量%より多い焼結体は強度や靭性が
低い為であり、高強度、高靭性な焼結体を得るためには
α率が40重量%以下が好ましく、更に好ましくはα率
が20重重景以下の焼結体である。 (実施例) 以下、本発明の実施例について説明する。 実施例1 平均粒径0.Bttm  ex率90重量%の5ixN
a粉末64重景%と、平均粒径1.2.crmのYzO
z粉末6.4重量%と、平均粒径2μmmのLaz03
粉末9.6重量%に、平均直径0.5μmで平均長さの
異なる市販のSiCウィスカー20重量%を加え、エタ
ノール溶媒中でスターラーで攪拌しながら1時間超音波
照射して混合した後、乾燥し、造粒して素地粉末を得た
。 次にこの素地粉末を黒鉛型中で焼結温度1800℃。 圧力200kg/aJ、  1時間ホットプレスし焼結
体を得た。 得られた焼結体は4 w X 3 vnr x 4 Q
 Hの寸法の試験片に研磨加工した後、密度およびJI
S−R1601により抗折強度を測定した。 また、焼結体を鏡面研磨し、光学顕微鏡で観察すること
により、すべての配合組成物において添加したSiCウ
ィスカーは配合時の形状が変わることなく存在している
ことを確認した。一方得られ・た焼結体のX線回折や、
化学分析及びカーボン定7量を行うことによりSiCウ
ィスカーは殆ど配合組成のまま存在していることも確認
した。 本実施例によって得られた焼結体の結果を第1表に示す
が、添加するSiCウィスカーの平均長さが30μmよ
り長いとウィスカー同士の凝集が著しくなり焼結体中で
の均一分散性が悪化して焼結性の低下および凝集部分が
欠陥となるため強度の低下を招くことが判った。また第
1表には得られた焼結体の比抵抗を測定した結果も併記
した。 実施例2 平均長さ30μmのSiCウィスカーをあらかじめ粉砕
して、平均長さを第2表に示す様に変えたウィスカーを
用いる以外は実施例1と同様にして素地粉末を得た。 次にこの素地粉末を黒鉛型中で焼結温度1800℃。 200 kg / aJの圧力で、1時間ホットプレス
して十分に緻密な焼結体を得た。 得られた焼結体については実施例1と同様にして抗折強
度を測定し、さらに押し込み荷重30kgでのインデン
ティジョン・マイクロッラフチャー法(1M法)により
破壊靭性値を測定した。 本実施例によって得られた焼結体の結果を第3表に示す
が、得られた焼結体中に分散して存在するウィスカーの
平均長さは5μm以上でないとその添加効果はなく、強
度および破壊靭性は向上しないことが判った。 実施例1および2の結果より焼結体に存在すべきウィス
カーの平均長さは5〜30μmの範囲でなければその添
加効果がないことが判る。 実施例3 平均長さ30μmのSiCウィス・カーと、平均粒径0
.6μmのSi3N4粉末と、平均粒径2μm以下の 
YzOx  、 Lag’s 、 CeO,%dlOx
 、 SmzOzから選ばれた1種以上の希土類元素酸
化物及び比較実験として平均粒径1μmのα−^120
3と平均粒径0.5μmのAl1Nを第4表に示す様な
組成に配合したものを各々エタノール溶媒中で16時間
ボールミルで粉砕し混合した後、乾燥、造粒して素地粉
末を得た。 次にこの素地粉末を黒鉛型中で第4表に示すような焼結
条件でホットプレスして焼結体を得た。 得られた焼結体は実施例2と同様にして室温での抗折強
度と破壊靭性値を測定した。さらに、1300℃大気中
における抗折強度と1300℃大気中で100時間酸化
させた時の重量変化から耐酸化性を評価した。また焼結
体中のα−5i3L含有量については便宜的にX線回折
による回折ピーク高さ(α相ピーク高さIα、β相ビー
ク高さIβ)から以下の式によって求めた。 Iα(16り+Iα(冨Il+)
(Field of Industrial Application) The present invention relates to a silicon nitride-based composite material strengthened using silicon carbide whiskers, and in particular to a silicon nitride-based sintered body with excellent strength and creep resistance at high temperatures and a method for producing the same. The present invention provides a composite material that is widely useful for automobile engine parts such as rotors and ceramic valves, and high-temperature structural parts such as gas turbine rotors, and a method for manufacturing the same. (Prior art) Silicon carbide sintered bodies and silicon nitride-based sintered bodies whose main component is silicon nitride (SiJ*) mainly have covalent bonds as their atomic bonds, and have excellent mechanical strength, oxidation resistance, Because it has excellent properties such as wear resistance, impact resistance, and corrosion resistance, it has begun to be put to practical use, especially as a material for high-temperature structural members such as automobile engine parts and gas turbine rotors, and cutting tool materials. However, despite having these excellent characteristics, compared to metals, they lack quality stability and homogeneity, and from the perspective of improving reliability and high properties, silicon nitride ceramics are being developed with even higher quality. Toughness is desired. By the way, silicon nitride and silicon carbide are both compounds mainly composed of covalent bonds, and are considered to be difficult-to-sinter materials. Therefore,
Silicon nitride and silicon carbide are not sintered alone, but usually by adding several percent to several tens of percent of a sintering aid.
Sintering is promoted by forming a low melting point compound, and the added sintering aid remains after sintering as a glass phase or crystalline phase at the grain boundaries, or remains as a solid solution in the crystals of silicon nitride. However, the sintered body obtained in this way does not contain A1tO3+YzO++LazOa added as a sintering aid.
. MgO, Ca (L rare earth element oxides, etc.) have the advantage of forming low melting point compounds and accelerating sintering as described above, but on the other hand, these low melting point compounds cause a decrease in the mechanical strength of the sintered body at high temperatures. Since there is a disadvantage of a decrease in mechanical strength, studies have been made to consider the type of sintering aid and to reduce its amount as much as possible, but the disadvantage of a decrease in mechanical strength at high temperatures has not yet been resolved. As a countermeasure to this problem, various attempts have been made to obtain improved ceramic sintered bodies by compounding SiC whiskers with ceramics.
This is a manufacturing method in which plates formed using a paste of a whisker mixture are laminated and sintered under pressure, and does not suggest a method of sintering in a powder state. Japanese Patent Publication No. 60-35316 provides high electrical conductivity by dispersing conductive fibrous SiC in 5isNa, and provides a sintered body of Si3N that can be processed by electrical discharge. Since it is necessary to uniformly disperse relatively long fibers of about ~500 μm, care must be taken to avoid agglomeration of SiC fibers due to mixing technology, which can lead to poor sintering and even reliability. There is a risk of a decrease in properties, and further improvements are required in room temperature strength and high temperature strength. In addition, JP-A No. 59-102862 is the above-mentioned JP-A-60
This invention is an extension of No. 35316, which improves electrical conductivity by dispersing conductive fibrous SiC and inorganic powder with specific conductivity in Si3Na. However, it is thought that there is room for improvement, especially in high-temperature strength. JP-A No. 60-200863 discloses SiC whiskers and 4
・Group 5・Contains crystallized products and nitrides, and the rest is Si3
It is a ceramic with a composition consisting of N, which reduces its affinity with iron and can prevent the progression of wear in applications that cause friction with iron, but the transverse rupture strength at a high temperature of 1200°C is
In order to stay within the range of 0 kg/mm, it is necessary to further improve the layer. In Japanese Patent Publication No. 60-55469, a dispersion of silicon nitride powder and a dispersion of fibrous silicon carbide crystals were each filtered. After passing through the powder, the latter is mixed at 5 to 50% by weight relative to the former, and then molded and sintered, which is more time-consuming and troublesome than molding and sintering the powder. Publication No. 60-246268 and Japanese Patent Publication No. 61-291
No. 463 is a product in which SiC whiskers, etc. are added to a sialon base material, the former being β-sialon and the latter being goose sialon, and does not relate to a sintered body in which SiC whiskers are added to a silicon nitride base material. (Problems to be solved by the invention) As mentioned above, composite materials in which SiC whiskers are dispersed in Si3N4-based ceramics have not yet been fully put into practical use.
It was still insufficient for use at high temperatures of 00°C or higher. That is, although the sialon-based ceramics mentioned above have high toughness, their strength deteriorates and their oxidation resistance is poor at high temperatures of 1000°C or higher, and silicon nitride (excluding sialon)
Although base ceramics have better high-temperature properties than sialon-based ceramics, they have problems such as low toughness when used as high-temperature structural materials. (Means for Solving the Problem) The present inventors conducted extensive studies on this point and found that the mechanical properties of a silicon nitride sintered body at high temperatures largely depend on the morphology of its crystal phase and grain boundary phase. In particular, in order to improve toughness and strength at high temperatures, specific SiC whiskers must have a considerable length in the sintered body and be uniformly dispersed;
This is based on the knowledge that a sintered body with preferable characteristics can be obtained when the proportion of α-Si3Nn in Si3N4, that is, the α ratio, is below a certain value, and the outline thereof is as follows. That is, the first invention includes 5 to 40% by weight of SiC whiskers with an average length of 5 to 30 μm, and 5 to 40% by weight of one or more rare earth element oxides.
A silicon nitride sintered body formed by molding and sintering a blended composition consisting of 30% by weight and the balance being silicon nitride, the silicon nitride sintered body is
A silicon carbide whisker-reinforced silicon nitride sintered body characterized in that the α ratio of Jm is 40% by weight or less, and the second invention provides a silicon carbide whisker-reinforced silicon nitride sintered body having an average length of 30 μm in order to produce the sintered body.
5 to 40% by weight of the following SiC whiskers, 5 to 30% by weight of powder of one or more rare earth element oxides, and the balance is α rate 9
0% by weight or more of 5isNa powder is pulverized and mixed so that the average length of the SiC whiskers is uniformly dispersed in the range of 5 to 30 μm, and then molded.
This is a method for producing a silicon carbide whisker-reinforced silicon nitride sintered body, which is characterized by sintering at a temperature of ~1850°C until the sintering rate of SiJ becomes 40% by weight or less. For molding and sintering, the predetermined composition is molded with a mold, isostatically pressed, and injection molded as necessary, followed by hot pressing, normal pressure sintering, gas pressure sintering, and heating in a reducing or inert gas atmosphere. This can be done by isostatic sintering. The SiC whiskers used in the present invention have high hardness and strength from room temperature to high temperatures (and even after sintering, they remain in the whisker shape and are uniformly dispersed within the structure, improving the high-temperature strength of ceramics. , which increases fracture toughness and hardness.SiC whiskers as a starting material used in the present invention have an average diameter of 0.2 to 5 μm and an average length of 5 to 30 μm.
m and an aspect ratio of 2 to 150 is desirable. Also, this whisker is A1*Ca, Mg+Ni
+ Cation impurities such as Fe, Mn, Coo Cr, etc. and Si0g content are 1.0% by weight or less, and whisker-like crystals with few cracks, branches, and surface defects, etc., are highly tough and dense sintered bodies. preferred in terms of obtaining The reason why the amount of SiC whiskers added is 5 to 40% by weight is that if the amount of SiC whiskers is less than 5% by weight, there is almost no effect of adding whiskers to the ceramic sintered body.
This is because no improvement in strength and toughness is observed, and on the contrary, if the content exceeds 40% by weight, the uniform dispersibility decreases due to the anisotropy of the whiskers, and the sinterability also decreases significantly.
The SiC whisker used in the present invention is preferably added in an amount of 0 to 30% by weight, and remains in the sintered body in the form of a whisker even after sintering. Furthermore, it is necessary for SiC whiskers to have an average length of 5 to 30 μm even after pulverization, mixing, molding, and sintering, and the reason is that if the average length is shorter than 5 μm, the effect of whisker addition cannot be seen. This is because no improvement in strength or toughness is observed, and if the length is longer than 30 μm, the sinterability will deteriorate and the agglomeration of whiskers will become significant, and the agglomerated portions generated in the sintered body will become defects and reduce the strength. It is more preferable to have a particle diameter of 5 to 20 μm in order to maintain high toughness and high strength. The rare earth element oxide functions as a sintering aid, forms a glass phase in the sintered body, and is added in an amount of 5 to 30% by weight to form a dense body. If the rare earth element oxide content is less than 5% by weight, too little glass phase (liquid phase) will be produced, so it will not be effective as a sintering aid and will not be densified, and if it exceeds 30% by weight, excessive nitridation will occur. The above range may cause grain growth of silicon, which actually inhibits sinterability and causes strength deterioration, and increases in the amount of glass phase produced, which deteriorates high-temperature properties such as mechanical strength and oxidation resistance. Preferably, it is more preferably 10 to 25% by weight. The reason why the α ratio of 5isNa in the sintered body is set to 40% by weight or less is that a sintered body with an α ratio of more than 40% by weight has low strength and toughness. In order to obtain a sintered body, the α ratio is preferably 40% by weight or less, and more preferably the α ratio is 20% by weight or less. (Example) Examples of the present invention will be described below. Example 1 Average particle size 0. Bttm ex rate 90% by weight 5ixN
a powder of 64% and an average particle size of 1.2. crm's YzO
Laz03 with 6.4% by weight of z powder and an average particle size of 2 μmm
20% by weight of commercially available SiC whiskers having an average diameter of 0.5 μm and different average lengths were added to 9.6% by weight of the powder, mixed by ultrasonic irradiation for 1 hour while stirring with a stirrer in an ethanol solvent, and then dried. Then, it was granulated to obtain a base powder. Next, this base powder was sintered in a graphite mold at a temperature of 1800°C. A sintered body was obtained by hot pressing at a pressure of 200 kg/aJ for 1 hour. The obtained sintered body is 4 w x 3 vnr x 4 Q
After polishing the test piece with the size of H, the density and JI
The bending strength was measured using S-R1601. Furthermore, by mirror-polishing the sintered bodies and observing them with an optical microscope, it was confirmed that the SiC whiskers added in all the blended compositions were present without changing the shape at the time of blending. On the other hand, X-ray diffraction of the obtained sintered body,
It was also confirmed by chemical analysis and carbon quantitative analysis that the SiC whiskers were present with almost the same composition. The results of the sintered body obtained in this example are shown in Table 1. If the average length of the SiC whiskers added is longer than 30 μm, the agglomeration of the whiskers becomes significant and the uniform dispersion in the sintered body becomes poor. It has been found that this deteriorates the sinterability and causes defects in the agglomerated portions, resulting in a decrease in strength. Table 1 also shows the results of measuring the specific resistance of the obtained sintered bodies. Example 2 A base powder was obtained in the same manner as in Example 1, except that SiC whiskers with an average length of 30 μm were crushed in advance and whiskers with average lengths changed as shown in Table 2 were used. Next, this base powder was sintered in a graphite mold at a temperature of 1800°C. A sufficiently dense sintered body was obtained by hot pressing for 1 hour at a pressure of 200 kg/aJ. The flexural strength of the obtained sintered body was measured in the same manner as in Example 1, and the fracture toughness value was further measured by the indentation microrcture method (1M method) at an indentation load of 30 kg. The results of the sintered body obtained in this example are shown in Table 3. Unless the average length of the whiskers dispersed in the sintered body obtained is 5 μm or more, there is no effect of the addition, and the strength of the sintered body is It was found that the fracture toughness did not improve. From the results of Examples 1 and 2, it can be seen that the addition of whiskers has no effect unless the average length of the whiskers to be present in the sintered body is within the range of 5 to 30 μm. Example 3 SiC whiskers with an average length of 30 μm and an average particle size of 0
.. 6μm Si3N4 powder and average particle size of 2μm or less
YzOx, Lag's, CeO,%dlOx
, one or more rare earth element oxides selected from SmzOz and α-^120 with an average particle size of 1 μm as a comparative experiment.
3 and Al1N with an average particle size of 0.5 μm were blended into the composition shown in Table 4, each of which was ground and mixed in an ethanol solvent using a ball mill for 16 hours, then dried and granulated to obtain a base powder. . Next, this base powder was hot pressed in a graphite mold under the sintering conditions shown in Table 4 to obtain a sintered body. The obtained sintered body was subjected to measurements of bending strength and fracture toughness at room temperature in the same manner as in Example 2. Furthermore, the oxidation resistance was evaluated from the bending strength at 1300°C in the atmosphere and the weight change when oxidized for 100 hours at 1300°C. Further, the α-5i3L content in the sintered body was conveniently determined from the diffraction peak heights (α phase peak height Iα, β phase peak height Iβ) by X-ray diffraction using the following formula. Iα (16ri + Iα (Ten Il +)

【名工試:鈴木、菅野; Si3N、中のα分率簡易定
量法(窯業製会誌;92 (8)1984)参照】また
得られた焼結体を鏡面研磨し、光学顕微鏡で観察した結
果、すべての焼結体中に存在するSiCウィスカーの平
均長さは5〜15μmであることが判った。 本実施例によって得られた焼結体の結果を第4表に示す
が、これらの結果から焼結体中のα−5i3N4が40
重量%以下でSiCウィスカーを5〜40重量%含有し
た炭化珪素ウィスカー強化窒化珪素質焼結体は靭性が高
く、かつ1300℃の高温においてもサイアロンを母材
とする焼結体に比べて強度や耐酸化性に優れた材料であ
り、高温構造材料として十分に満足できる特性を有して
いることが判った。 第1表 (発明の効果) 本発明は前記実施例の内容から明らかなとおり抗折強度
(常温、高温)、破壊靭性および耐酸化性、硬度などの
特性に優れた焼結体とその製造方法を提供するものであ
り、自動車エンジン部材や高温構造部材に広く有用な材
料を提供するものである。
[Refer to Master Craftsman Examination: Suzuki, Kanno; Simple Quantification Method of α Fraction in Si3N (Ceramic Industry Journal; 92 (8) 1984)] Also, as a result of mirror polishing the obtained sintered body and observing it with an optical microscope, The average length of SiC whiskers present in all sintered bodies was found to be 5-15 μm. The results of the sintered body obtained in this example are shown in Table 4, and these results show that α-5i3N4 in the sintered body is 40
A silicon carbide whisker-reinforced silicon nitride sintered body containing 5 to 40% by weight of SiC whiskers has high toughness, and even at a high temperature of 1300°C, it has higher strength than a sintered body made of sialon as a base material. It was found that the material has excellent oxidation resistance and has sufficiently satisfactory characteristics as a high-temperature structural material. Table 1 (Effects of the Invention) As is clear from the above examples, the present invention provides a sintered body with excellent properties such as flexural strength (room temperature and high temperature), fracture toughness, oxidation resistance, and hardness, and a method for producing the same. This provides a material that is widely useful for automobile engine parts and high-temperature structural parts.

Claims (1)

【特許請求の範囲】 1)平均長さ5〜30μmのSiCウィスカー5〜40
重量%と、希土類元素酸化物の1種以上5〜30重量%
と、残部が窒化珪素とからなる配合組成物を成形し焼結
された窒化珪素質焼結体であって、焼結体中のSi_3
N_4のα率が40重量%以下であることを特徴とする
炭化珪素ウィスカー強化窒化珪素質焼結体。 2)平均長さ5〜20μmのSiCウィスカーが10〜
30重量%であることを特徴とする特許請求の範囲第1
項記載の炭化珪素ウィスカー強化窒化珪素質焼結体。 3)希土類元素酸化物の1種以上が10〜25重量%で
あることを特徴とする特許請求の範囲第1項または第2
項記載の炭化珪素ウィスカー強化窒化珪素質焼結体。 4)焼結体中のSi_3N_4のα率が20重量%以下
であることを特徴とする特許請求の範囲第1項または第
3項記載の炭化珪素ウィスカー強化窒化珪素質焼結体。 5)平均長さが30μm以下のSiCウィスカー5〜4
0重量%と、希土類元素酸化物の1種以上の粉末5〜3
0重量%と、残部がα率90重量%以上のSi_3N_
4粉末とを、該SiCウィスカーの平均長さが5〜30
μmの範囲で均一に分散するまで粉砕混合し、成形した
後、非酸化性雰囲気下で1650℃〜1850℃の温度
でSi_3N_4のα率が40重量%以下になるまで焼
結することを特徴とする炭化珪素ウィスカー強化窒化珪
素質焼結体の製造方法。 6)平均長さが30μm以下のSiCウィスカー10〜
30重量%と、希土類元素酸化物の1種以上の粉末10
〜25重量%と、残部がα率90重量%以上のSi_3
N_4粉末とを、該SiCウィスカーの平均長さが5〜
20μmの範囲で均一に分散するまで粉砕混合すること
を特徴とする特許請求の範囲第5項記載の炭化珪素ウィ
スカー強化窒化珪素質焼結体の製造方法。 7)焼結体中のSi_3N_4のα率が20重量%以下
になるまで焼結することを特徴とする特許請求の範囲第
5項または第6項記載の炭化珪素ウィスカー強化窒化珪
素質焼結体の製造方法。
[Claims] 1) 5 to 40 SiC whiskers with an average length of 5 to 30 μm
5-30% by weight of one or more rare earth element oxides
A silicon nitride-based sintered body is formed by molding and sintering a blended composition consisting of , and the remainder is silicon nitride, and the Si_3 in the sintered body is
A silicon carbide whisker-reinforced silicon nitride sintered body, characterized in that the alpha ratio of N_4 is 40% by weight or less. 2) 10 to 10 SiC whiskers with an average length of 5 to 20 μm
Claim 1 characterized in that the amount is 30% by weight.
A silicon carbide whisker-reinforced silicon nitride sintered body as described in 2. 3) Claim 1 or 2, characterized in that the content of one or more rare earth element oxides is 10 to 25% by weight.
A silicon carbide whisker-reinforced silicon nitride sintered body as described in 2. 4) The silicon carbide whisker-reinforced silicon nitride sintered body according to claim 1 or 3, wherein the α ratio of Si_3N_4 in the sintered body is 20% by weight or less. 5) SiC whiskers 5 to 4 with an average length of 30 μm or less
0% by weight and one or more powders of rare earth element oxides 5-3
0% by weight and the remainder is Si_3N_ with an α rate of 90% by weight or more
4 powder and the average length of the SiC whiskers is 5 to 30.
It is characterized by pulverizing and mixing until it is uniformly dispersed in the μm range, molding, and then sintering at a temperature of 1650°C to 1850°C in a non-oxidizing atmosphere until the α ratio of Si_3N_4 becomes 40% by weight or less. A method for producing a silicon carbide whisker-reinforced silicon nitride sintered body. 6) 10 to 10 SiC whiskers with an average length of 30 μm or less
30% by weight and one or more powders of rare earth element oxides 10
~25% by weight, and the remainder is Si_3 with an α rate of 90% by weight or more
N_4 powder, the average length of the SiC whiskers is 5~
6. The method for producing a silicon carbide whisker-reinforced silicon nitride sintered body according to claim 5, wherein pulverization and mixing are performed until uniformly dispersed in a range of 20 μm. 7) The silicon carbide whisker-reinforced silicon nitride sintered body according to claim 5 or 6, wherein the sintered body is sintered until the α ratio of Si_3N_4 in the sintered body becomes 20% by weight or less. manufacturing method.
JP62258106A 1987-10-13 1987-10-13 Silicon carbide whisker reinforced silicon nitride sintered body and method for producing the same Expired - Lifetime JP2613402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258106A JP2613402B2 (en) 1987-10-13 1987-10-13 Silicon carbide whisker reinforced silicon nitride sintered body and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258106A JP2613402B2 (en) 1987-10-13 1987-10-13 Silicon carbide whisker reinforced silicon nitride sintered body and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01100065A true JPH01100065A (en) 1989-04-18
JP2613402B2 JP2613402B2 (en) 1997-05-28

Family

ID=17315583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258106A Expired - Lifetime JP2613402B2 (en) 1987-10-13 1987-10-13 Silicon carbide whisker reinforced silicon nitride sintered body and method for producing the same

Country Status (1)

Country Link
JP (1) JP2613402B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289054A (en) * 1985-05-10 1986-12-19 ドラゴコ・ゲルベルデインク・アンド・コムパニ−・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Manufacture of 4,4,7-trimethyl-3,4,7,8-tetrahydro- 2(6h)-naphthalene-one in purified form or in mixture of 3,5,5-trimethyl-4-butenylidene-cyclo-2-hexene-1-one

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289054A (en) * 1985-05-10 1986-12-19 ドラゴコ・ゲルベルデインク・アンド・コムパニ−・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング Manufacture of 4,4,7-trimethyl-3,4,7,8-tetrahydro- 2(6h)-naphthalene-one in purified form or in mixture of 3,5,5-trimethyl-4-butenylidene-cyclo-2-hexene-1-one

Also Published As

Publication number Publication date
JP2613402B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JP3198662B2 (en) Silicon nitride based sintered body and method for producing the same
EP0780351B1 (en) Aluminum nitride sintered body and method for manufacturing the same
CN1064260A (en) With the fine and close self-reinforced silicon nitride ceramic that does not have the preparation of pressure or low-pressure gas sintering process
JP2002097005A5 (en)
KR970001266B1 (en) Silicon nitride sintered body
JPH01252582A (en) Electrically conductive ceramic sintered compact
JPH02160669A (en) Silicon nitride-silicon carbide multiple sintered compact and production thereof
JPH09268069A (en) Highly heat conductive material and its production
US5302329A (en) Process for producing β-sialon based sintered bodies
JPH01100065A (en) Silicon carbide whisker-reinforced silicon nitride sintered compact and production thereof
JP2002513374A (en) Gas pressure sintered silicon nitride with high strength and stress rupture resistance
JP3145519B2 (en) Aluminum nitride sintered body
JPH02302368A (en) Silicon carbide sintered compact having high toughness and its production thereof
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JP3586784B2 (en) Nitrogen-containing ceramic composite material and method for producing the same
JPS62875B2 (en)
JPH01203260A (en) Production of silicon carbide whisker reinforced ceramics
JP2652046B2 (en) Fiber reinforced composite sintered body
JP2726694B2 (en) Conductive silicon carbide sintered body and method for producing the same
JPH11322438A (en) High thermal conductive silicon nitride sintered compact and its production
JPS6230666A (en) High toughenss silicon nitride sintered body and manufacture
JP3216973B2 (en) Silicon nitride sintered body and method for producing the same
JP2592267B2 (en) Sialon reinforced with silicon carbide whiskers
JPS598670A (en) High tenacity silicon nitride base sintered body
JPS63260869A (en) Silicon carbide whisker reinforced composite material