JPH01100010A - Noncrystalline hydrogenated silicon fine particle film and production thereof - Google Patents

Noncrystalline hydrogenated silicon fine particle film and production thereof

Info

Publication number
JPH01100010A
JPH01100010A JP62258800A JP25880087A JPH01100010A JP H01100010 A JPH01100010 A JP H01100010A JP 62258800 A JP62258800 A JP 62258800A JP 25880087 A JP25880087 A JP 25880087A JP H01100010 A JPH01100010 A JP H01100010A
Authority
JP
Japan
Prior art keywords
film
hydrogenated silicon
hydrogen
fine particle
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62258800A
Other languages
Japanese (ja)
Inventor
Masao Sugata
菅田 正夫
Kazuaki Omi
近江 和明
Hisanori Tsuda
津田 尚徳
Hirotsugu Takagi
高木 博嗣
Yasuhiko Ishiwatari
恭彦 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62258800A priority Critical patent/JPH01100010A/en
Publication of JPH01100010A publication Critical patent/JPH01100010A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To provide the titled film containing noncrystalline hydrogenated silicon fine particles at or below a specified size, with its infrared absorption spectra specified to enable the emission of the bound hydrogen corresponding to the fine particle size by external energy. CONSTITUTION:The objective film contains noncrystalline hydrogenated silicon fine particles with a size of <=1mu, having such infrared absorption spectra as to give absorption in the range from 2,080-2,150cm<-1> with the absorption peak intensity near 2,000cm<-1> being <=50% of that in said range. This film contains great quantities of bound hydrogen, being capable of emitting such amount of bound hydrogen as to correspond to fine particle size by external energy. This film can be obtained, using a plasma CVD apparatus, by generating the discharge plasma or a gas containing silane and its derivative followed by jetting the resultant plasma product through a nozzle against the substrate taking advantage of pressure difference to effect deposition on it.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非晶質水素化シリコン超微粒子がもつ高濃度
の結合性水素含有、及び水素放出の容易性を利用した非
晶質水素化シリコン超微粒子凝集体からなる微粒子膜及
びその製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to amorphous hydrogenation using the high concentration of bound hydrogen contained in amorphous hydrogenated silicon ultrafine particles and the ease of hydrogen release. The present invention relates to a fine particle film made of silicon ultrafine particle aggregates and a method for producing the same.

〔従来の技術〕[Conventional technology]

SiH2結合及び高濃度の水素を含有する水素化シリコ
ンの微粒子としては、従来、特公昭62−32122号
公報、62−32121号公報等に示されるものがある
As fine particles of hydrogenated silicon containing SiH2 bonds and a high concentration of hydrogen, there are conventionally known particles shown in Japanese Patent Publications No. 62-32122, No. 62-32121, and the like.

これらの水素化シリコン微粒子はいずれも赤外吸収分光
法により、−(SiH2) 、 −2100cm−’付
近、=SiH22110cm−’付近、−3iH321
40cm−’付近の各基団を有する事が示されている。
All of these hydrogenated silicon fine particles were determined by infrared absorption spectroscopy to be -(SiH2), around -2100cm-', around =SiH22110cm-', and -3iH321
It is shown that each base group is around 40 cm-'.

また、−(SiH2)ゎ−、=SiH2及び少量の一3
iH3の各基団を含有する水素化シリコン微粒子の利用
法としては、特公昭62−32122号公報、62−3
2121号公報等において、水素の吸蔵及び放出に用い
る事が可能である事が示されている。
Also, -(SiH2)ゎ-, =SiH2 and a small amount of -3
As for the use of hydrogenated silicon fine particles containing each group of iH3, Japanese Patent Publication No. 62-32122, 62-3
2121, etc., it has been shown that it can be used for storing and desorbing hydrogen.

また、=Si−H結合(2000cm−’)が認められ
ず、=SiH2結合及び−SiH3結合のみを有する物
質が、特公昭62−32128号公報に記載されている
が、該物質は結晶粒子の表面のSi原子と結合した結合
水素(=SiH2、−8iH3)の他に非結含水素をS
i結晶格子内に多量に含んでおり、しかもSi結晶微粒
子である事を特徴としている。
In addition, a substance in which no =Si-H bond (2000 cm-') is recognized and has only =SiH2 bonds and -SiH3 bonds is described in Japanese Patent Publication No. 32128/1982, but this substance is In addition to bonded hydrogen (=SiH2, -8iH3) bonded to Si atoms on the surface, non-bonded hydrogen is S
It is characterized by being contained in a large amount in the i-crystal lattice and being Si crystal fine particles.

また、この物質はSiと化学結合していない水素原子を
単に100〜150℃に加熱しただけで追い出せるもの
であり、水素原子はSiと未結合の遊離水素を45〜7
0at%もの多量を含んでいるものである。
In addition, this material can drive out hydrogen atoms that are not chemically bonded to Si by simply heating them to 100 to 150°C, and the hydrogen atoms can drive out free hydrogen that is not bonded to Si by 45 to 7
It contains as much as 0 at%.

2100cm−’付近のピークを主体とする物質の作製
法としては、以下の方法が知られている。
The following method is known as a method for producing a substance mainly having a peak around 2100 cm-'.

1、SiH4とH2の混合ガスを高温で熱分解し、ガス
温度よりも低い基体温度に保持した基体上に均一膜を堆
積する方法、(HOMOCVD法と称している)、B、
A、5cottら、Appl、Phys。
1. A method of thermally decomposing a mixed gas of SiH4 and H2 at high temperature and depositing a uniform film on a substrate kept at a substrate temperature lower than the gas temperature (referred to as HOMOCVD method).B.
A, 5cott et al., Appl, Phys.

Lete、39. 74 (1982)2、基体温度を
低(し、グロー放電(GD)法によりSi 2 H6と
H2の混合ガスを分解して得る方法(低温−ジシラン−
GD法と呼ぶ事にする)J、Appl、Phys、58
.4658.1985゜3、基板温度を低(し、H2ガ
ス中でStツタ−ットをスパッタリング(sp)する方
法(低温−反応性SP法と呼ぶ事にする)特公昭62−
32122号公報、62−32121号公報等)ここで
、HOMOCVD法で得られる物質は通常の均一膜であ
り、赤外分光法(IR)の分析結果は2100cm−’
付近のピークの他に明らかに2000cm−’付近のピ
ーク(SiHと帰属される)を含んでいる。
Lete, 39. 74 (1982) 2, a method of lowering the substrate temperature and decomposing a mixed gas of Si 2 H 6 and H 2 by the glow discharge (GD) method (low temperature - disilane -
(referred to as GD method) J, Appl, Phys, 58
.. 4658.1985゜3, method of sputtering (sp) St in H2 gas while lowering the substrate temperature (referred to as low temperature-reactive SP method), Japanese Patent Publication No. 62-
(No. 32122, No. 62-32121, etc.) Here, the material obtained by the HOMOCVD method is a normal uniform film, and the analysis result of infrared spectroscopy (IR) is 2100 cm-'
In addition to nearby peaks, it clearly includes a peak around 2000 cm-' (attributed to SiH).

また、低温−ジシラン−GD法で得られる膜も通常の膜
であり、IR分析の結果は基板温度により変わる事が示
されている。
Further, the film obtained by the low temperature-disilane-GD method is also a normal film, and it has been shown that the results of IR analysis vary depending on the substrate temperature.

即ち、室温では2100cm−’付近のピークの他に明
らかに2000cm−’付近のピークを含んでいる。液
体窒素温度(77K)では2100cm−’付近のピー
クを主体とする様になるが、通常の膜である事に変わり
はない。
That is, at room temperature, in addition to the peak around 2100 cm-', it clearly includes a peak around 2000 cm-'. At liquid nitrogen temperature (77K), the peak mainly appears around 2100 cm-', but it is still a normal film.

低温−反応性SP法で得られる物質は、IR分析の結果
では2100cm−’ピークを主体とするものであるが
、得られるものはSi結晶微粒子である事が開示されて
いる。
Although the substance obtained by the low-temperature-reactive SP method mainly has a peak at 2100 cm-' according to the results of IR analysis, it is disclosed that the substance obtained is Si crystal fine particles.

〔発明が解決しようとしている問題点〕しかしながら、
上記従来例では、水素化シリコン中の水素量はガスクロ
マトグラフ法により求めた含有水素量(微粒子に吸蔵さ
れた水素量)と赤外吸収スペクトル法から求めた結合水
素量(Si−In結合として結合している水素量、n=
1.2.3)に差があり、かなりの量の水素は遊離水素
の形態で物質中に存在している(データ的に示されてい
る)水素化シリコン微粒子である。
[Problem that the invention is trying to solve] However,
In the conventional example above, the amount of hydrogen in silicon hydride is determined by the amount of hydrogen contained (the amount of hydrogen occluded in fine particles) determined by gas chromatography and the amount of bonded hydrogen (combined as Si-In bonds) determined by infrared absorption spectroscopy. amount of hydrogen, n=
1.2.3), a significant amount of hydrogen is present in the material in the form of free hydrogen (as shown by the data) in hydrogenated silicon fine particles.

従って、水素の吸蔵及び放出を目的とする水素の貯蔵材
料としては適当であるが、外部エネルギー(例えば、熱
、光、レーザ光、電子線、X線等)によって水素放出さ
せて利用する場合には次の欠点があった。
Therefore, it is suitable as a hydrogen storage material for the purpose of absorbing and desorbing hydrogen, but when using it by desorbing hydrogen using external energy (e.g., heat, light, laser light, electron beam, X-ray, etc.) had the following drawbacks.

1、膜状にしての利用は考える事が出来なかった。1. I could not think of using it in the form of a film.

2、遊離水素が微粒子中に存在する為、外部エネルギー
に対する水素放出が一様でなかった。
2. Since free hydrogen exists in the fine particles, hydrogen release in response to external energy was not uniform.

また、製法に関する従来例では、 1)HOMOCVD法では2100cm−’付近のピー
クを主体とする物質は得られておらず、2)低温−ジシ
ラン−GD法では2100cm””付近のピークを主体
とする物質を得るには基体を液体室温温度にして、かつ
ジシランを用いる必要があった。4)低温−反応性SP
法でも2100cm−’を主体とする物質を得るには基
体を液体窒素温度にする必要があった。
In addition, in conventional examples regarding manufacturing methods, 1) the HOMOCVD method does not yield a substance that mainly has a peak around 2100 cm-', and 2) the low-temperature-disilane-GD method produces a substance that mainly has a peak around 2100 cm''. Obtaining the material required the substrate to be at liquid room temperature and the use of disilane. 4) Low temperature-reactive SP
Even with this method, it was necessary to bring the substrate to liquid nitrogen temperature in order to obtain a substance mainly composed of 2100 cm-'.

また、従来例では次の欠点があった。Furthermore, the conventional example had the following drawbacks.

1、上述従来例では、通常の膜、または結晶微粒子を得
る事は出来ても、本発明の如く非晶質超微粒子膜を得る
事は出来ない欠点がある。
1. In the conventional example described above, although it is possible to obtain a normal film or a crystalline fine particle film, there is a drawback that an amorphous ultrafine particle film cannot be obtained as in the present invention.

2、また、低温−ジシラ、ンーGD法は液体窒素で基体
を冷却し、かつ、シランよりも極めて高価なジシランを
使用したときにのみ、2100cm−’付近のピークを
主体とする物質が得られているので、液体窒素温度に耐
えられ基体材料にのみ堆積可能である。例えばプラスチ
ック・フィルム等の液体窒素温度で脆(なる材料上に堆
積するのは難しい欠点があった。
2. In addition, in the low-temperature-disila-GD method, a substance with a peak around 2100 cm-' can only be obtained when the substrate is cooled with liquid nitrogen and disilane, which is much more expensive than silane, is used. Because it can withstand liquid nitrogen temperatures, it can only be deposited on substrate materials. The disadvantage is that it is difficult to deposit on materials that are brittle at liquid nitrogen temperatures, such as plastic films.

3、低温−反応性SP法では、液体窒素で基体を冷却し
たときにのみ2100cm−’を主体とする物質が得ら
れているので、液体窒素温度に耐えられる基体材料にの
み堆積可能である。
3. In the low-temperature-reactive SP method, a substance mainly composed of 2100 cm-' is obtained only when the substrate is cooled with liquid nitrogen, so it can be deposited only on substrate materials that can withstand liquid nitrogen temperature.

従って、低温−ジシラン=GD法と同様な欠点があった
Therefore, it had the same drawbacks as the low temperature-disilane=GD method.

そこで、本殉明の目的は、外部エネルギーによって水素
放出が可能な非晶質水素化シリコン微粒子を含む微粒子
膜を提供する事にある。
Therefore, the purpose of the present invention is to provide a fine particle film containing amorphous hydrogenated silicon fine particles capable of releasing hydrogen by external energy.

本発明の他の目的は、微粒子の大きさに応じた結合水素
放出能をもつ非晶質水素化シリコン微粒子を含む微粒子
膜を提供することにある。
Another object of the present invention is to provide a fine particle film containing amorphous hydrogenated silicon fine particles having a bonded hydrogen release ability depending on the size of the fine particles.

本発明の更に他の目的は、高速堆積が可能な新規な非晶
質水素化シリコン微粒子膜の製造方法を提供することに
ある。
Still another object of the present invention is to provide a novel method for producing amorphous hydrogenated silicon fine particle film that can be deposited at high speed.

〔問題点を解決するための手段及び作用〕上記の目的は
以下の本発明によって達成される。
[Means and effects for solving the problems] The above objects are achieved by the present invention as described below.

即ち本発明は、1μmの非晶質水素化シリコン微粒子を
含む微粒子膜であって、前記膜の赤外吸収スペクトルが
2080〜2150cm−’に吸収をもち、且つ200
0cm−1付近の吸収ピーク強度が2080〜2150
cm−’の吸収ピーク強度の50%以下であることを特
徴とする非晶質水素化シリコン微粒子膜である。
That is, the present invention provides a fine particle film containing 1 μm amorphous hydrogenated silicon fine particles, the infrared absorption spectrum of the film having absorption in the range of 2080 to 2150 cm-', and
Absorption peak intensity near 0 cm-1 is 2080-2150
The present invention is an amorphous hydrogenated silicon fine particle film characterized by an absorption peak intensity of 50% or less of cm-' absorption peak intensity.

更に本発明は、シラン及びその誘導体を含む気体の放電
プラズマを発生させ、それにより得られたプラズマ生成
物を圧力差を利用してノズルから基体に向けて噴出させ
て基体上に堆積させることを特徴とする非晶質水素化シ
リコン微粒子膜の製造方法である。
Furthermore, the present invention involves generating a discharge plasma of a gas containing silane and its derivatives, and ejecting the resulting plasma product from a nozzle toward a substrate using a pressure difference to deposit it on the substrate. This is a method for producing a characteristic amorphous hydrogenated silicon fine particle film.

本発明における非晶質水素化シリコン超微粒子の大きさ
は1000Å以下、望ましくは500Å以下である。
The size of the amorphous hydrogenated silicon ultrafine particles in the present invention is 1000 Å or less, preferably 500 Å or less.

上記超微粒子の形は特に重要ではないが、比較的法に近
く大きさの揃ったものを用いる方が効果的である。
Although the shape of the ultrafine particles is not particularly important, it is more effective to use particles that are relatively close to each other and of uniform size.

粒子の大きさの下限は不明であるが、透過型電子顕微鏡
(TEM)及び電界放射型走査電子顕微鏡(FE−3E
M)による観察結果では100Å以下、数十人の平均粒
径もつものであっても効果が認められた。
Although the lower limit of the particle size is unknown, it can be
According to the observation results obtained by M), the effect was observed even with particles having an average particle size of 100 Å or less, which is several dozen people.

本発明における非晶質水素化シリコン超微粒子及びその
凝集体は、特公昭62−32128号公報記載の物質と
は次の点において異なる。
The amorphous hydrogenated silicon ultrafine particles and their aggregates in the present invention differ from the substance described in Japanese Patent Publication No. 62-32128 in the following points.

1、ガスクロマド法により求めた含有水素量(超微粒子
及びその凝集体に含まれる水素量)と赤外分光(IR)
法から求めた結合水素量(Si−Hn結合として結合し
ている水素量、n=1゜2.3)はほぼ等しく、しかも
約70原子%の水素量を有していた。
1. Hydrogen content (hydrogen content contained in ultrafine particles and their aggregates) determined by gas chromad method and infrared spectroscopy (IR)
The amount of bonded hydrogen determined by the method (amount of hydrogen bonded as a Si--Hn bond, n=1°2.3) was almost the same, and the amount of hydrogen was about 70 atom %.

2、昇温ガスクロマド法により求めた水素放出温度は1
70〜450℃であった。また、450℃以上での水素
放出量は170〜450℃での水素放出量よりも少なか
った。(第2図) これはSiとHの結合が解離する状況を反映していると
思われる。
2. The hydrogen release temperature determined by the heating gas chromatography method is 1
The temperature was 70-450°C. Furthermore, the amount of hydrogen released at temperatures above 450°C was smaller than the amount released at temperatures of 170 to 450°C. (Figure 2) This seems to reflect the situation in which the bond between Si and H dissociates.

3、本発明による新規物質は赤外吸収分光法によるチャ
ート図(第3図)から−(”1Hz)、l +=SiH
2結合及びSiH3結合を含む超微粒子及びその凝集体
の膜であった。
3. The new substance according to the present invention is determined from the chart diagram (Figure 3) by infrared absorption spectroscopy: -("1Hz), l + = SiH
It was a film of ultrafine particles and their aggregates containing 2 bonds and SiH3 bonds.

4、また、X線回折によればStの結晶性を示すパター
ン(2θ二28°付近に見られるパターン)は小さいか
、またはほとんど見られず、微結晶または非晶質からな
るものであった。
4. Also, according to X-ray diffraction, the pattern indicating the crystallinity of St (the pattern seen around 2θ28°) was small or almost absent, and it was found to be composed of microcrystals or amorphous. .

5、シかも後述する本発明者らが提案する実施例の方法
によれば上述の物性を有する非晶質シリコンの超微粒子
及びその凝集体から成る膜を容易に得る事が出来ている
5. According to the method of the embodiment proposed by the present inventors, which will be described later, a film made of ultrafine amorphous silicon particles and their aggregates having the above-mentioned physical properties can be easily obtained.

本発明の非晶質水素化シリコン超微粒子凝集体膜は超微
粒子から形成される為、外部からエネルギーを照射して
加熱した場合、超微粒子が均一膜に比べ熱伝導性が極め
て悪い為、容易に水素放出温度に達して水素放出される
事を実験的に把んだ。
Since the amorphous hydrogenated silicon ultrafine particle aggregate film of the present invention is formed from ultrafine particles, it is easy to heat it by irradiating energy from the outside because the ultrafine particles have extremely poor thermal conductivity compared to a uniform film. It was experimentally determined that hydrogen is released when the hydrogen release temperature is reached.

この際に用いる外部エネルギーとしては照射により熱エ
ネルギーに変わり得るものであれば特に限定されるもの
ではなかった。
The external energy used in this case is not particularly limited as long as it can be converted into thermal energy by irradiation.

また、熱による水素放出特性の良好な本発明の新規な非
晶質水素化シリコン超微粒子及びその凝集体膜では、I
R法による測定結果から2100cm−’付近のピーク
鋭(、シかも単一ピークなもの程、水素放出が容易であ
る事が判った。特に、2000cm−’付近のピーク(
−SiH結合)強度I201Xlが2100cm−’付
近のピーク((SiH2) n−’)強度I 2100
の50%以下、即ちI 2000 / I 21000
 ≦0 、5のものが水素放出が容易であり、好ましく
はI 2100 / I 2+00≦0.3、更に好ま
しくはI 2000 / I 2100≦0.1である
べきである。
In addition, the novel amorphous hydrogenated silicon ultrafine particles of the present invention and their aggregate film, which have good hydrogen release characteristics due to heat, have I
From the measurement results using the R method, it was found that the sharper the peak around 2100 cm-' (or even a single peak), the easier the hydrogen release.Especially, the peak around 2000 cm-'
-SiH bond) intensity I201
50% or less, i.e. I 2000 / I 21000
≦0, 5, hydrogen release is easy, preferably I 2100 / I 2+00 ≦ 0.3, more preferably I 2000 / I 2100 ≦ 0.1.

以上が本発明で得られる非晶質水素化シリコン超微粒子
膜の特徴である。
The above are the characteristics of the amorphous hydrogenated silicon ultrafine particle film obtained by the present invention.

この様な物性をもつ物質は水素原子を結合状態で含んで
いるので通常の条件及び雰囲気では全く水素放出を起こ
さず、外部エネルギーを照射したときにのみ水素が放出
された。例えば熱エネルギーを用いた場合の例を第2図
に示した。
Since materials with such physical properties contain hydrogen atoms in a bonded state, they do not release hydrogen at all under normal conditions and atmospheres, and hydrogen is released only when irradiated with external energy. For example, an example in which thermal energy is used is shown in FIG.

第2図から判る様に、結合の解離によるものと判定され
る耐水素放出が起こっている。
As can be seen from FIG. 2, hydrogen-resistant release occurred, which was determined to be due to bond dissociation.

従って、本発明物質を用いれば外部エネルギー照射時に
のみ水素が放出されなので、安定な水素貯蔵材料として
使用出来る。
Therefore, when the substance of the present invention is used, hydrogen is released only when irradiated with external energy, so it can be used as a stable hydrogen storage material.

また、本発明で得られる微粒子膜、の微粒子は非晶質で
あるから多結晶質のものや結晶質のもの比べ、水素は各
粒子に均等に分散されているので各微粒子から水素を放
出させる事が出来る。
In addition, since the fine particles of the fine particle film obtained in the present invention are amorphous, compared to polycrystalline or crystalline ones, hydrogen is evenly dispersed in each particle, so hydrogen is released from each fine particle. I can do things.

即ち、微粒子の大きさに応じた水素放出領域のユニット
が負作れる。これは外部エネルギーによる高密度な情報
の書込みに利用出来る。
That is, it is possible to create a negative unit of hydrogen release area according to the size of the fine particles. This can be used to write high-density information using external energy.

本発明の非晶質水素化シリコン超微粒子及びその凝集体
から成る膜状物を得る製造方法としては、特開昭61−
221377号公報で開示している様なプラズマCVD
装置を利用した方法を用いる事が出来る。
As a manufacturing method for obtaining a film-like material comprising ultrafine amorphous hydrogenated silicon particles and their aggregates according to the present invention,
Plasma CVD as disclosed in Publication No. 221377
A method using a device can be used.

即ち、本発明の非晶質水素化シリコン超微粒子及びその
凝集体から成る膜状物を得る装置としては、例えば第1
図に示す装置を使用する事が出来る。
That is, as an apparatus for obtaining a film-like material made of ultrafine amorphous hydrogenated silicon particles and aggregates thereof according to the present invention, for example, the first
The equipment shown in the figure can be used.

第1図の中で、1は縮少拡大ノズル、2はノズルののど
部、3は上流室、4は下流室、5は空胴共振器、6は基
体、7はマイクロ波投入窓、8は排気ポ器5に直結して
いても良い。反応ガスを12がら空胴共振器内5へ導入
した時は反応は5の中で起き、5は反応室として働(。
In Fig. 1, 1 is the contraction/expansion nozzle, 2 is the throat of the nozzle, 3 is the upstream chamber, 4 is the downstream chamber, 5 is the cavity resonator, 6 is the base, 7 is the microwave input window, 8 may be directly connected to the exhaust pump 5. When a reaction gas is introduced into the cavity 5 through the chamber 12, the reaction occurs inside the cavity 5, and the chamber 5 acts as a reaction chamber.

例えばa−3iの微粒子膜をつくる場合には、ガス導入
口12よりSiH4ガスと、必要ならばH2ガスを送り
込み、反応室内でプラズマを発生させてガスを分解して
反応させプラズマ生成物を得る。
For example, when making a-3i fine particle film, SiH4 gas and, if necessary, H2 gas are fed through the gas inlet 12, plasma is generated in the reaction chamber, the gases are decomposed and reacted, and plasma products are obtained. .

尚、ここで本発明におけるプラズマ生成物はプラズマ中
で生成する微粒子及び活性種の総称であり、反応及び未
反応を問わないものである。
Note that the plasma product in the present invention is a general term for fine particles and active species generated in plasma, regardless of whether they are reacted or unreacted.

そしてこれを一部未反応の気体状の活性種とともにノズ
ル4から吹き出させ基体6の上に吹きつけて固定する。
Then, this is blown out from the nozzle 4 together with partially unreacted gaseous active species and blown onto the substrate 6 to be fixed thereon.

プラズマにエネルギーを与える手段としてはマイクロ波
や紫外線あるいはRFなどの高周波などの電磁波や低周
波や直流などの電場印加などが使える。実用上置も使い
易いのは紫外線又はマイクロ波であり、この時は反応室
の形状を工夫する必要はあるが、反応室内に電極などの
構造物を置く必要はなく、エネルギー投入用の窓かあれ
ば良い。マイクロ波プラズマを用いる場合にも色々なや
り方があり同軸管を用いるJapaneseJourn
al  of  Applied  Physics 
 21 (8)L470 (1982)などに見られる
方法や、J、Non−Crystalline  5o
lids  77&78に見られる方法などがあるが、
効率的なプラズマ生成物を得る立場からみれば反応室5
をマイクロ波の空胴共振器とする方法が非常に有効であ
る。第4図は円筒空胴共振器の一例を示す図であり、T
E112モードでの電場分布を画いであるマイクロ波の
周波数を決めると、それに合せて公知のやり方に従って
設計してやれば良い。マイクロ波の共振がT E +o
モードで起きる様にすると特にプラズマ生成物が微粒子
の場合には微粒子膜の高速堆積に有効である。空胴共振
器の軸方向の長さlを共振波長λの1/2にすることで
これが実現出来る。空胴共振器の長さを長くしてl=λ
とした場合との堆積速度の比較を」 示したのが第襲図であり、SiH4濃度を上げて行くと
l=λの場合は堆積速度の増加が頭打ちになるのに対し
て!=λ/2゛の場合にはこのような限界が認められず
、直線的に増加する事がわかる(第5図)。1>2λで
は堆積速度が極めて遅くなり、実用的ではない事を確認
した。従って、空胴共振器の長さlはl≦3λ/2の条
件を満たす必要かある。
As means for imparting energy to the plasma, electromagnetic waves such as microwaves, ultraviolet rays, or high frequency waves such as RF waves, low frequency waves, and electric field application such as direct current can be used. Ultraviolet rays or microwaves are easy to use in practical applications, and although it is necessary to devise the shape of the reaction chamber in this case, there is no need to place structures such as electrodes inside the reaction chamber, and there is no need to use a window for energy input. It's good to have. There are various ways to use microwave plasma, such as Japanese Journal using a coaxial tube.
al of Applied Physics
21 (8) L470 (1982), J. Non-Crystalline 5o
There are methods such as those seen in lids 77 & 78,
From the standpoint of obtaining efficient plasma products, reaction chamber 5
A method using a microwave cavity resonator is very effective. FIG. 4 is a diagram showing an example of a cylindrical cavity resonator, and T
Once the microwave frequency that defines the electric field distribution in the E112 mode is determined, a design can be made according to a known method. Microwave resonance is T E +o
This is effective for high-speed deposition of a particulate film, especially when the plasma products are particulates. This can be achieved by setting the axial length l of the cavity resonator to 1/2 of the resonant wavelength λ. By increasing the length of the cavity resonator, l=λ
The comparison of the deposition rate with the case of λ is shown in the second graph, which shows that as the SiH4 concentration is increased, the increase in the deposition rate reaches a plateau in the case of l=λ! In the case of =λ/2゛, such a limit is not recognized and it can be seen that it increases linearly (Figure 5). It was confirmed that when 1>2λ, the deposition rate becomes extremely slow and is not practical. Therefore, the length l of the cavity resonator must satisfy the condition l≦3λ/2.

また圧力を高めて行くと堆積速度は第6図の例の様に増
加して行(。圧力を1.0Torr以上にすれば1μ/
 s e c程度の高速堆積も可能である。ノズルはプ
ラズマ内で出来た生成物を含んだガス状物を高速で吹き
出゛し、基体に吹きつけて固定化するために設けである
。次に、ノズルの形状は一般的には何でも良いが、プラ
ズマ生成物の基体への付着力を高め、またプラズマ生成
物をビーム化して基体上に効率的に集めるためには上流
側から下流側へ、いわゆる縮少拡大型の口径変化をもつ
超音速ノズルを使用する事が望ましい。その断面形状は
円形だけでなく、特開昭61−221377号公報に示
されている様な様々な変形が目的に応じて使用可能であ
る。
Furthermore, as the pressure is increased, the deposition rate increases as shown in the example in Figure 6 (If the pressure is increased to 1.0 Torr or higher, the deposition rate increases by 1μ/
High-speed deposition on the order of sec is also possible. The nozzle is provided to blow out a gaseous substance containing products generated in the plasma at high speed, and to spray it onto the substrate and fix it. Next, the shape of the nozzle can generally be any shape, but in order to increase the adhesion of the plasma products to the substrate, and to convert the plasma products into a beam and efficiently collect them on the substrate, it is necessary to It is desirable to use a supersonic nozzle with a so-called contraction-expansion type aperture change. Its cross-sectional shape is not limited to a circular shape, but various modifications such as those shown in Japanese Patent Application Laid-Open No. 61-221377 can be used depending on the purpose.

ノズルより下流側の基体室付近は、通常1O−3TOr
r以下程度以下力を下げて使用する。ノズル上流とシし 下流との圧力外は数lOから100程度ある事が望まし
い。
The area near the base chamber downstream from the nozzle is usually 10-3 TOr.
Use the force less than r. It is desirable that the pressure difference between the upstream side of the nozzle and the downstream side of the nozzle ranges from several lO to about 100.

基体はシリコン・ウェハー、ガラス、ネサガラス、プラ
スチックス、金属その他大抵のものが使用可能である。
The substrate can be silicon wafer, glass, Nesa glass, plastic, metal, or many other materials.

その形状は平面でも良いし、それ以外でも良い。堆積中
に基体の加熱をすれば得られる膜状物中の結合水素量に
変化が認められたが、基体を400°C迄加熱しても結
合水素の全量が抜ける事はなかった。
The shape may be flat or other shapes. If the substrate was heated during deposition, a change in the amount of bound hydrogen in the resulting film was observed, but even when the substrate was heated to 400° C., the entire amount of bound hydrogen did not escape.

以上が本発明の非晶質シリコン超微粒子膜を得る製造方
法の特徴である。
The above are the characteristics of the manufacturing method for obtaining an amorphous silicon ultrafine particle film of the present invention.

本発明における−(SiH2)n−を、主体とする非晶
質水素化シリコン超微粒子の作成用原料としては、Si
ソースとしてS i H4、S i2 H6、S i3
 Hs等のSiの水素化物、SiF4 、  Si2F
6 、 5iCA’ 4等のSiのハロゲン化物、5i
HF 3 、  SiH2F2 。
In the present invention, Si
S i H4, S i2 H6, S i3 as sources
Si hydride such as Hs, SiF4, Si2F
6, 5iSi halide such as CA' 4, 5i
HF3, SiH2F2.

5iH2Cj72等のSi、水素、ハロゲンからなる化
合物等をあげる事が出来る。本発明においては、H2ガ
スで稀釈して用いても良いがSiソースと稀釈用水素の
組合せで行う場合には次の様な利点があっス濃度を1o
5Q以下と成る様にしたところ、空胴共ことによって発
生する曇りはなかった。
Compounds made of Si, hydrogen, and halogen such as 5iH2Cj72 can be mentioned. In the present invention, it may be used diluted with H2 gas, but when used in combination with Si source and hydrogen for dilution, there are the following advantages:
When the temperature was set to 5Q or less, there was no fogging caused by this in the cavity.

例えば、第1図に示す空胴共振器5内にH2ガスで3%
に稀釈したSiH4ガスを流し、マイクロ波パワーを1
50Wとしたところ、第6図に示す様に高速で−(Si
H2)n−を主体とする非晶質水素化シリコンが得られ
たにも拘わらず、いずれの条件でもマイクロ波導入用の
石英窓に曇りは発生しなかった。
For example, inject 3% H2 gas into the cavity resonator 5 shown in FIG.
Flow SiH4 gas diluted to
When the power was set to 50W, as shown in Figure 6, -(Si
H2) Despite the fact that amorphous silicon hydride containing mainly n- was obtained, fogging did not occur on the quartz window for introducing microwaves under any conditions.

尚、マイクロ波導入用の窓としてアルミナ等の他の誘電
導体を用いた場合にも同様の効果を得ている。
Note that similar effects have been obtained when other dielectric conductors such as alumina are used as the window for introducing microwaves.

以上、本発明で開示している非晶質シリコン超微粒子凝
集体膜の製造方法は、従来の製造法では得られなかった
新規な超微粒子凝集膜の製造法であると同時に、μ波導
入用誘電体膜の汚れを生じる事なく、高速成膜が可能と
なり、しかも極め再現性の良い量産に適した製造方法で
ある。
As described above, the method for producing an amorphous silicon ultrafine particle aggregate film disclosed in the present invention is a novel method for producing an ultrafine particle aggregate film that could not be obtained by conventional production methods, and at the same time This manufacturing method enables high-speed film formation without contaminating the dielectric film, and is suitable for mass production with extremely good reproducibility.

〔実施例〕〔Example〕

以下、実施例を挙げて本発明を具体的に説明する。 The present invention will be specifically described below with reference to Examples.

実施例1 第7図の装置を用いて非晶質シリコン超微粒子凝集体を
基体上に成膜した。第7図の装置は第1図の装置と基本
的には同一であるが、空胴共振器の先端に直接縮小拡大
ノズルが取り付けられている点が第1図と異なる。
Example 1 An amorphous silicon ultrafine particle aggregate was formed into a film on a substrate using the apparatus shown in FIG. The device shown in FIG. 7 is basically the same as the device shown in FIG. 1, but differs from that in FIG. 1 in that a contraction/expansion nozzle is attached directly to the tip of the cavity resonator.

第7図において21は縮小拡大ノズル、21aはノズル
入口、21bはノズル出口、22はノズル喉部、23は
縮小拡大ノズルの周りに置かれた永久磁石筒であり、ノ
ズルの軸方向にN極とS極が並ぶ様に棒磁石を充填して
、ノズルの周囲に同軸方向の磁場がかかる様に工夫され
ている。
In FIG. 7, 21 is a contraction/expansion nozzle, 21a is a nozzle inlet, 21b is a nozzle outlet, 22 is a nozzle throat, and 23 is a permanent magnet cylinder placed around the contraction/expansion nozzle, with N pole in the axial direction of the nozzle. The nozzle is filled with bar magnets so that the S and S poles are lined up and a coaxial magnetic field is applied around the nozzle.

24は下流室、25は反応室を兼ねた円筒型空胴共振器
、26はヒータ内蔵の基板ホルダー、27はガラス基板
、28はマイクロ波導入用の石英窓、29はマイクロ波
導波管、30はガス導入管、31は排気系である。マイ
クロ波発振器は29に対し空胴共振器とは反対側につけ
てあり、発振周波数2.45GHzで、パルス発振する
出力1kwのものを使用した。
24 is a downstream chamber, 25 is a cylindrical cavity resonator that also serves as a reaction chamber, 26 is a substrate holder with a built-in heater, 27 is a glass substrate, 28 is a quartz window for introducing microwaves, 29 is a microwave waveguide, 30 31 is a gas introduction pipe, and 31 is an exhaust system. The microwave oscillator 29 was attached to the side opposite to the cavity resonator, and was used with an oscillation frequency of 2.45 GHz and a pulse oscillation output of 1 kW.

磁石23はノズル入口でのプラズ発生とその維持に役立
つ。ノズル21はノズル人口21aの断面積と喉部22
の断面積との比が31.ノズル出口21bの断面積度と
喉部22の断面積との比が7であり、ポリテトラフロロ
エチレン(PTFF)製とした。
The magnet 23 helps generate and maintain plasma at the nozzle inlet. The nozzle 21 has a cross-sectional area of the nozzle population 21a and a throat portion 22.
The ratio to the cross-sectional area of is 31. The ratio of the cross-sectional area of the nozzle outlet 21b to the cross-sectional area of the throat portion 22 was 7, and it was made of polytetrafluoroethylene (PTFF).

空胴共振器はステンレス(SUS)製で、その軸長の長
さlは共振波長λgのl/2とした。
The cavity resonator was made of stainless steel (SUS), and its axial length l was set to l/2 of the resonance wavelength λg.

非晶質シリコン超微粒子凝集体から成る膜を得る為に次
の操作を行った。
The following operations were performed to obtain a film composed of amorphous silicon ultrafine particle aggregates.

まず、Siウェハーを基体としてホルダー26に固定し
た後、排気系31で下流室24内を2X10−’Tor
r迄減圧した。次にN2ガスで3%に稀釈したSiH4
ガスをガス導入管30から空胴共振器25内へ流量11
005CCで流した。すると、空胴共振器内の圧力は4
X10−’Torrとなり、ノズル21から下流室24
へ吹き出した。このとき下流室24の圧力は4.5 X
 10−’Torr程度になった。次に、マイクロ波発
振器からマイクロ波導波管29を介して石英窓28から
空胴共振器5へ送り込み空胴共振器内で放電プラズマを
発生させた。
First, after fixing the Si wafer as a base to the holder 26, the inside of the downstream chamber 24 is heated to 2X10-'Tor using the exhaust system 31.
The pressure was reduced to r. Next, SiH4 diluted to 3% with N2 gas
Flow rate 11 of the gas from the gas introduction pipe 30 into the cavity resonator 25
It was run at 005CC. Then, the pressure inside the cavity resonator is 4
X10-'Torr, from the nozzle 21 to the downstream chamber 24
I burst out laughing. At this time, the pressure in the downstream chamber 24 is 4.5
It became about 10-'Torr. Next, a discharge plasma was generated in the cavity resonator 5 by feeding it from a microwave oscillator through the microwave waveguide 29 through the quartz window 28 and into the cavity resonator 5.

マイクロ波のパワーは150Wであった。するとプラズ
マ内で微粒子が形成されて、残りのガス成分と共にノズ
ル21から吹き出し、微粒子ビームとなって下流室を進
み基体27に衝突して固定された。
The power of the microwave was 150W. Then, fine particles are formed in the plasma and blown out from the nozzle 21 together with the remaining gas components, forming a fine particle beam that advances through the downstream chamber and collides with the base body 27 to be fixed.

基体上に付着した超微粒子凝集体の堆積した層の厚みは
5分間の放電で7.5μmであった。基体の加熱は行わ
なかった。
The thickness of the layer of ultrafine particle aggregates deposited on the substrate was 7.5 μm after 5 minutes of discharge. No heating of the substrate was performed.

超微粒子凝集体を堆積後、ガスを止め、下流室24内を
充分に排気してから真空をN2でリークし、成膜された
基体を取出し、直ちにN2雰囲気中に保管した。
After depositing the ultrafine particle aggregates, the gas was stopped, the downstream chamber 24 was sufficiently evacuated, the vacuum was leaked with N2, and the film-formed substrate was taken out and immediately stored in an N2 atmosphere.

超微粒子凝集体膜は外観上黄褐色の光沢のある膜状物と
して基体上に堆積しており、ビームの中心を中心とした
円板状に堆積していた。また、中心部が最も厚かった。
The ultrafine particle aggregate film was deposited on the substrate as a glossy film with a yellowish brown appearance, and was deposited in the shape of a disk centered at the center of the beam. It was also thickest in the center.

この超微粒子凝集体膜をN2を流過した雰囲気下でフー
リエを変換赤外分光法(FT−IR)で測定したところ
2100cm−’付近に鋭い単一ピークがあり、他に9
05 c m−’付近860cm−’付近及び650c
m−’付近のピークを有していた。(第傷図)従って、
−(SiH2) n(2100cm−’付近)を主体と
し、SiH2(860cm−’付近)及びSiH3(9
05cm”付近)を含む事が判った。尚、SiHWag
gingmodeが650cm−’に出現する点からも
従来の非晶質水素化シリコン膜とは異なるものである事
が判った。
When this ultrafine particle aggregate film was measured by Fourier transform infrared spectroscopy (FT-IR) in an atmosphere where N2 was passed through, there was a sharp single peak near 2100 cm-', and 9 others.
05 cm m-' around 860 cm-' and 650 c
It had a peak near m-'. (Figure 1) Therefore,
-(SiH2) n (around 2100 cm-') as the main component, SiH2 (around 860 cm-') and SiH3 (9
It was found that SiHWag
It was also found that the film was different from conventional amorphous hydrogenated silicon films because the gingmode appeared at 650 cm-'.

ひき続きSEM観察をしたところ、この膜状物は直径1
00′〜200人程度の比較的粒径の揃った超微粒子が
堆積した構造であり、膜状物表面及び断面のいずれにも
微粒子の存在が確認出来た。
Subsequent SEM observation revealed that this film-like substance had a diameter of 1
It has a structure in which ultrafine particles of relatively uniform size of approximately 00' to 200 particles are deposited, and the presence of the microparticles was confirmed both on the surface and cross section of the film-like material.

SEM観察によれば超微粒子凝集体はかなり密に堆積し
ている様に見えた。
According to SEM observation, the ultrafine particle aggregates appeared to be quite densely deposited.

次に、X線回折のパターンを検討したところ、Siは微
結晶は含まれていると思われる程度の小さなパターンし
か示さなかった。
Next, when examining the X-ray diffraction pattern, Si showed only a small pattern that seemed to contain microcrystals.

以上の測定は=SiH2結合のもつ空気中での反応性を
考慮し、N2雰囲気、またはN2流過後排気した真空下
で行った。上記のすべての測定を終えた後、残った試料
をFT−IRで測定しても初期に測定したスペクトル図
と変化はなかった。
The above measurements were carried out in a N2 atmosphere or under a vacuum that was evacuated after N2 flow, taking into consideration the reactivity of the =SiH2 bond in air. After completing all the above measurements, the remaining sample was measured by FT-IR, but there was no change from the initially measured spectrum.

また、本実施例ではN2ガスで3%に稀釈したSiH4
ガスを用いたのでマイクロ波投入用の石英窓28の曇り
は全(発生しなかった。
In addition, in this example, SiH4 diluted to 3% with N2 gas
Since gas was used, no fogging of the quartz window 28 for microwave injection occurred.

次に、本実施例で得られた−(SiH2)n−を主体と
する非晶質水素化シリコン超微粒子凝集体膜にN2雰囲
気下、及び大気中でAr+レーザ(λ= 488 n 
m )を照射したところ、いずれの場合にもレーザ光照
射部と非照射部の間に光の反射率の差が観察された。こ
の反射率の差は充分目視出来るものであり、しかもAr
+レーザ照射中には発生(ホトルミネッセンス)してい
た。尚、大気中でAr”レーザ照射を続けていたところ
発光(ホトルミネッセンス)強度が増加していく事を観
察した。
Next, the amorphous hydrogenated silicon ultrafine particle aggregate film mainly composed of -(SiH2)n- obtained in this example was treated with an Ar+ laser (λ=488 n
m), a difference in light reflectance was observed between the laser beam irradiated area and the non-irradiated area in both cases. This difference in reflectance is sufficiently visible, and moreover, Ar
+ Photoluminescence was generated during laser irradiation. Incidentally, as the Ar'' laser irradiation was continued in the atmosphere, it was observed that the luminescence (photoluminescence) intensity increased.

これとは別に、大気中放置後の非晶質水素化シリコン超
微粒子膜のFT−IRを測定したところ酸素を含む結合
の存在を認めた。
Separately, FT-IR measurements of the amorphous hydrogenated silicon ultrafine particle film after being left in the atmosphere revealed the presence of bonds containing oxygen.

比較例 図8に示す20’φ平行平板型対向電極を有するグロー
放電装置を用いSiウェハー基体31上に膜形成した。
Comparative Example A film was formed on a Si wafer substrate 31 using a glow discharge device having a 20'φ parallel plate type counter electrode shown in FIG.

その際、基体は加熱せず原料ガスはN2で70%に稀釈
したSiH4を用い、ガス流量は203CCMとした。
At this time, the substrate was not heated, SiH4 diluted to 70% with N2 was used as the source gas, and the gas flow rate was 203 CCM.

このとき放電室31の圧力を0.11Torrを保ち、
RFパワーを50Wとしてプラズマを発生させアット電
極32上に設けた基体31上に成膜を行ったところ、微
粒子を生成する事なく均一膜の成膜を行う事が出来た。
At this time, the pressure in the discharge chamber 31 is maintained at 0.11 Torr,
When a film was formed on the substrate 31 provided on the at electrode 32 by generating plasma with RF power of 50 W, a uniform film could be formed without generating fine particles.

成膜後、SEMで観察すると、膜の表面及び断面にも超
微粒子凝集体(実施例1)で見られた様な構造は全く見
られず、均一な膜になっている事が確認出来た。
After the film was formed, when observed with SEM, no structure like that seen in the ultrafine particle aggregates (Example 1) was observed on the surface or cross section of the film, confirming that it was a uniform film. .

次に、この均一膜のFT−IR測測定たところ第9図に
示す様なスペクトル図が得られた。
Next, when this uniform film was subjected to FT-IR measurement, a spectrum diagram as shown in FIG. 9 was obtained.

第9図から判る様に得られた均一膜は−SiH結合(2
000cm−’付近)を含むものであり、X線回折の結
果は微結晶を含まぬ非晶質であった。
As can be seen from Fig. 9, the uniform film obtained was -SiH bond (2
000 cm-'), and X-ray diffraction results showed that it was amorphous without containing microcrystals.

次に、この均一膜にAr+レーザ(λ=488nm)を
照射したが、レーザ照射部と非照射部の間に斜め入射光
を当て光の反射率の差を観察したが、はとんど反射率に
差が見られず、Ar+レーザ照射中に発光(ホトルミネ
ッセンス)は観察されなかった。
Next, this uniform film was irradiated with an Ar+ laser (λ = 488 nm), but obliquely incident light was applied between the laser irradiated area and the non-irradiated area to observe the difference in light reflectance, but most of the light was not reflected. No difference in rate was observed, and no light emission (photoluminescence) was observed during Ar+ laser irradiation.

実施例2〜9 ア 第旭図の装置を用い実施例1に準する方法でより、基体
上に膜形成を行った。以下に各実施例の実施条件及び得
られた非晶質シリコン超微粒子凝集体の特徴を表1にま
とめた。
Examples 2 to 9 A film was formed on a substrate by a method similar to Example 1 using the apparatus shown in Figure A. Table 1 summarizes the implementation conditions of each example and the characteristics of the obtained amorphous silicon ultrafine particle aggregates.

実施例2〜8では作成条件により、堆積速度が変化し、
それに伴い粒径も変化するが、いずれの膜も非晶質(微
結晶の含まれる)水素化シリコン超微粒子凝集体膜であ
り、Ar+レーザ(λ= 488 n m )照射によ
り程度の差はあるが発光(ホトルミネッセンス)を観察
した。
In Examples 2 to 8, the deposition rate changed depending on the preparation conditions,
The particle size also changes accordingly, but all films are amorphous (containing microcrystals) silicon hydride ultrafine particle aggregate films, and there are differences in degree depending on Ar + laser (λ = 488 nm) irradiation. observed light emission (photoluminescence).

実施例9では、堆積速度の低下は見られたが、得られた
膜の粒径は〜20人程変色判定されるが、−(SiH2
)、−を主体とする極めて微粒子膜であり、かつ非晶質
(微結晶も含まれる)水素化シリコンであった。
In Example 9, although a decrease in the deposition rate was observed, the grain size of the obtained film was judged to be discolored by ~20 people, but -(SiH2
), -, and was amorphous (including microcrystalline) hydrogenated silicon.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に、本発明により従来は容易に得る事が
出来なかった非晶質水素化シリコンが得られ、しかもこ
の物質は結合水素を多量に含んでいる。そこで、通常は
安定であるが加熱により水素が放出される水素放出材料
及びレーザ照射により照射部のみから水素が放出される
材料として利用出来る。
As explained above, according to the present invention, amorphous hydrogenated silicon, which could not be obtained easily in the past, can be obtained, and furthermore, this material contains a large amount of bound hydrogen. Therefore, it can be used as a hydrogen-releasing material that is normally stable but releases hydrogen when heated, and as a material that releases hydrogen only from the irradiated area when irradiated with a laser.

本発明の微粒子膜は、−(SiH2)、−を主体とする
ので、オプティカル・バンド・ギャップが2.0〜2.
4eVであり、短波長レーザにより室温発光(ホトルミ
ネッセンス)しているので発光材料としても利用出来る
Since the fine particle film of the present invention is mainly composed of -(SiH2), -, the optical band gap is 2.0 to 2.0.
It has a voltage of 4 eV and emits room temperature light (photoluminescence) using a short wavelength laser, so it can also be used as a light emitting material.

本発明により−(SiH2)n−を主体とする非晶質水
素化シリコンが高速で成膜可能となり、しかもビーム状
堆積の為、堆積室の他の部分は汚れる事がないので極め
て量産向きの方法が提供される。
According to the present invention, it is possible to form amorphous silicon hydride mainly composed of -(SiH2)n- at high speed, and since it is deposited in a beam form, other parts of the deposition chamber are not contaminated, making it extremely suitable for mass production. A method is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の非晶質水素化シリコン超微粒子凝集体
膜を作成するのに用いる装置の例を示す図、第2図は昇
温ガスクロマド法による熱分析結果を示す図、第3図は
本発明で得られる非晶質水素化シリコン凝集体膜のFT
−IR法による分析結果を示す図、第4図はプラズマ発
生室となる空胴共振器内の電場分布を示す図、第5図は
H2中のSiH4濃度と成膜速度との関係を示す図、第
6図は空胴共振器内の圧力との成膜速度の関係を示す図
、第7図は本発明の非晶質水素化シリコン超微粒子凝集
体を作成するのに用いる装置の他の例を示す図、第8図
は均一膜を作成する為の平行平板型グロー放電装置の例
を示す図、第9図は第8図の装置で得られる均一膜のF
T−IR法による分析結果を示す図である。
Fig. 1 is a diagram showing an example of the apparatus used to create the amorphous hydrogenated silicon ultrafine particle aggregate film of the present invention, Fig. 2 is a diagram showing the results of thermal analysis by the heating gas chromad method, and Fig. 3 The figure shows FT of an amorphous hydrogenated silicon aggregate film obtained by the present invention.
- A diagram showing the analysis results by IR method, Figure 4 is a diagram showing the electric field distribution in the cavity resonator which becomes the plasma generation chamber, and Figure 5 is a diagram showing the relationship between the SiH4 concentration in H2 and the film formation rate. , FIG. 6 is a diagram showing the relationship between the pressure inside the cavity resonator and the film formation rate, and FIG. 7 is a diagram showing the relationship between the film formation rate and the pressure inside the cavity resonator. Figure 8 is a diagram showing an example of a parallel plate type glow discharge device for producing a uniform film, and Figure 9 is a diagram showing the F of a uniform film obtained with the device shown in Figure 8.
It is a figure showing the analysis result by T-IR method.

Claims (2)

【特許請求の範囲】[Claims] (1)1μm以下の非晶質水素化シリコン微粒子を含む
微粒子膜であって、前記膜の赤外吸収スペクトルが20
80〜2150cm^−^1に吸収をもち、且つ200
0cm^−^1付近の吸収ピーク強度が2080〜21
50cm^−^1の吸収ピーク強度の50%以下である
ことを特徴とする非晶質水素化シリコン微粒子膜。
(1) A fine particle film containing amorphous hydrogenated silicon fine particles of 1 μm or less, the film having an infrared absorption spectrum of 20
It has absorption from 80 to 2150cm^-^1 and 200cm
Absorption peak intensity near 0cm^-^1 is 2080-21
An amorphous hydrogenated silicon fine particle film characterized in that the absorption peak intensity is 50% or less of the absorption peak intensity at 50 cm^-^1.
(2)シラン及びその誘導体を含む気体の放電プラズマ
を発生させ、それにより得られたプラズマ生成物を圧力
差を利用してノズルから基体に向けて噴出させて基体上
に堆積させることを特徴とする非晶質水素化シリコン微
粒子膜の製造方法。
(2) The feature is that a discharge plasma of a gas containing silane and its derivatives is generated, and the resulting plasma product is ejected from a nozzle toward a substrate using a pressure difference and deposited on the substrate. A method for producing an amorphous hydrogenated silicon fine particle film.
JP62258800A 1987-10-14 1987-10-14 Noncrystalline hydrogenated silicon fine particle film and production thereof Pending JPH01100010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62258800A JPH01100010A (en) 1987-10-14 1987-10-14 Noncrystalline hydrogenated silicon fine particle film and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62258800A JPH01100010A (en) 1987-10-14 1987-10-14 Noncrystalline hydrogenated silicon fine particle film and production thereof

Publications (1)

Publication Number Publication Date
JPH01100010A true JPH01100010A (en) 1989-04-18

Family

ID=17325235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62258800A Pending JPH01100010A (en) 1987-10-14 1987-10-14 Noncrystalline hydrogenated silicon fine particle film and production thereof

Country Status (1)

Country Link
JP (1) JPH01100010A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537965A (en) * 2004-05-21 2007-12-27 サイメデイカ リミテツド Silicon structure
JP2013529591A (en) * 2010-07-02 2013-07-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Medium chain length polysilane and method for producing the same
JP2013533198A (en) * 2010-06-30 2013-08-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Storage material and method for obtaining H-silane therefrom

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007537965A (en) * 2004-05-21 2007-12-27 サイメデイカ リミテツド Silicon structure
JP2013533198A (en) * 2010-06-30 2013-08-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Storage material and method for obtaining H-silane therefrom
US9034291B2 (en) 2010-06-30 2015-05-19 Spawnt Private S.A.R.L. Storage material and method for obtaining H-silanes therefrom
JP2013529591A (en) * 2010-07-02 2013-07-22 シュパウント プライベート ソシエテ ア レスポンサビリテ リミテ Medium chain length polysilane and method for producing the same

Similar Documents

Publication Publication Date Title
US5776552A (en) Process for the vapor phase synthesis of diamond and highly crystalline diamond
US5094915A (en) Laser-excited synthesis of carbon films from carbon monoxide-containing gas mixtures
US4931692A (en) Luminescing member, process for preparation thereof, and electroluminescent device employing same
US5270028A (en) Diamond and its preparation by chemical vapor deposition method
FR2780601A1 (en) ELECTRONIC CYCLOTRON RESONANCE PLASMA DEPOSIT PROCESS OF CARBON LAYERS EMITTING ELECTRONS UNDER THE EFFECT OF AN APPLIED ELECTRIC FIELD
EP0520832B1 (en) Plasma assisted diamond synthesis
Curcio et al. Synthesis of silicon carbide powders by a CW CO2 laser
JPH01100010A (en) Noncrystalline hydrogenated silicon fine particle film and production thereof
JPH08333684A (en) Formation of deposited film
JP3082979B2 (en) Method for forming a-DLC-Si film
JP3258439B2 (en) Gas phase reactor
Batanov et al. Plasma chemistry and thin film deposition in discharges excited by intense microwave beams
JPH03139824A (en) Depositing method for semiconductor device
JP2608456B2 (en) Thin film forming equipment
JP3084395B2 (en) Semiconductor thin film deposition method
JPH0420985B2 (en)
JP2754274B2 (en) Method and apparatus for producing diamond film
JPS61236691A (en) Vapor phase synthesis of diamond
JP2757221B2 (en) Method for synthesizing aluminum oxynitride
JP2660244B2 (en) Surface treatment method
JPS634454B2 (en)
Vikharev et al. Study of microwave plasma-assisted chemical vapor deposition of poly-and single-crystalline diamond films
JP3938424B2 (en) Diamond thin film production equipment
JPH06280019A (en) Production of thin film of diamond-like carbon
JPH11251248A (en) Manufacture of silicon alloy film