JP3082979B2 - Method for forming a-DLC-Si film - Google Patents

Method for forming a-DLC-Si film

Info

Publication number
JP3082979B2
JP3082979B2 JP03300649A JP30064991A JP3082979B2 JP 3082979 B2 JP3082979 B2 JP 3082979B2 JP 03300649 A JP03300649 A JP 03300649A JP 30064991 A JP30064991 A JP 30064991A JP 3082979 B2 JP3082979 B2 JP 3082979B2
Authority
JP
Japan
Prior art keywords
film
dlc
substrate
plasma
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03300649A
Other languages
Japanese (ja)
Other versions
JPH05140744A (en
Inventor
正佳 滝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP03300649A priority Critical patent/JP3082979B2/en
Publication of JPH05140744A publication Critical patent/JPH05140744A/en
Application granted granted Critical
Publication of JP3082979B2 publication Critical patent/JP3082979B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は低摩擦係数を有し密着力
の優れたa−DLC(ダイヤモンド・ライク・カーボ
ン)−Si膜の形成方法に関する。
The present invention relates to a method of forming an a-DLC (diamond-like carbon) -Si film having a low coefficient of friction and excellent adhesion.

【0002】[0002]

【従来の技術】ダイヤモンドの気相合成法は、炭化水素
と水素との混合ガスを反応ガスとし、数10Torrに
保った反応槽の中で、熱、マイクロ波または高周波等を
用いて反応ガスを励起し、600〜1000℃に加熱さ
れた基板上に導いて、炭化水素の熱分解と活性化した水
素の作用により、ダイヤモンド構造の炭素を基板上に析
出させるものである。
2. Description of the Related Art In a gas phase synthesis method of diamond, a mixed gas of hydrocarbon and hydrogen is used as a reaction gas, and the reaction gas is heated, heated, microwaved, or heated in a reaction tank maintained at several tens of Torr. It is excited and guided on a substrate heated to 600 to 1000 ° C., and the carbon having a diamond structure is deposited on the substrate by the thermal decomposition of hydrocarbons and the action of activated hydrogen.

【0003】このダイヤモンド気相合成法には、主とし
てCVD法(気相化学反応蒸着法)が用いられるが、C
VD法としては熱フィラメント法、マイクロ波プラズマ
法、電子衝撃CVD法、直流プラズマ法等がある。例え
ば、マイクロ波プラズマ法では、マイクロ波を励起源と
して、基板周囲にメタン−水素混合ガスを励起したプラ
ズマを発生させ、基板はマイクロ波の吸収とプラズマに
よる衝撃によって加熱され、圧力数Torr〜300T
orr、基板温度700〜1000℃の範囲でダイヤモ
ンドが合成される。
In this diamond vapor phase synthesis method, a CVD method (vapor phase chemical reaction deposition method) is mainly used.
Examples of the VD method include a hot filament method, a microwave plasma method, an electron impact CVD method, and a direct current plasma method. For example, in the microwave plasma method, a plasma in which a methane-hydrogen mixed gas is excited is generated around a substrate using a microwave as an excitation source, and the substrate is heated by absorption of the microwave and impact by the plasma, and a pressure of several Torr to 300 T
Diamond is synthesized at orr and a substrate temperature of 700 to 1000 ° C.

【0004】しかしながら、これらCVD法では20〜
200Torrの比較的高圧で反応が行われるため、反
応領域または析出範囲に限度があり、広い領域に均一に
ダイヤモンドを析出させることが困難である。この問題
は、反応圧力を低下することによって解決される。何故
ならば、反応圧力を下げることにより、電子の平均自由
工程が長くなり、磁界を使用して広い領域で容易にプラ
ズマ密度を増加することができるからである。
However, in these CVD methods, 20 to
Since the reaction is performed at a relatively high pressure of 200 Torr, the reaction region or the precipitation range is limited, and it is difficult to deposit diamond uniformly over a wide region. This problem is solved by reducing the reaction pressure. This is because, by lowering the reaction pressure, the mean free path of electrons is lengthened, and the plasma density can be easily increased over a wide area using a magnetic field.

【0005】然るに、最近は磁界とマイクロ波エネルギ
ーを用い、電子サイクロトン共鳴(Electron
Cyclotron Resonance、以下ECR
という)と呼ばれる現象を利用したプラズマ生成法が、
低ガス圧、高活性、高イオン化率等の特徴を有すること
から、プラズマ加工技術として注目され、プラズマCV
Dとしても実用化されている。
However, recently, using a magnetic field and microwave energy, electron cyclotron resonance (Electron) has been proposed.
Cyclotron Resonance, hereafter ECR
Plasma generation method using a phenomenon called
Because of its features such as low gas pressure, high activity, and high ionization rate, it has attracted attention as a plasma processing technology.
D has also been put to practical use.

【0006】ECRプラズマCVD装置の基本構成を図
1に従って説明すると、マイクロ波16は矩形導波管7
を利用してプラズマ室17へ導入される。マイクロ波と
しては、通常工業周波数である2.45GHzが利用さ
れる。プラズマ室17の周囲には励磁コイル4が配置さ
れ、マイクロ波導入部から反応室14方向に徐々に磁界
強度が弱くなる発散磁界構成となっており、プラズマ室
内の適当な領域でECR条件を満たす磁界を発生させ
る。反応ガス導入管6によってプラズマ室17に導入さ
れた反応ガスは、プラズマ室17内で励起され、磁界に
沿ってプラズマ流18の形で基板11に供給される。
The basic structure of the ECR plasma CVD apparatus will be described with reference to FIG.
Is introduced into the plasma chamber 17 using As the microwave, 2.45 GHz, which is an industrial frequency, is usually used. The excitation coil 4 is arranged around the plasma chamber 17 and has a divergent magnetic field structure in which the magnetic field intensity gradually decreases in the direction from the microwave introduction part toward the reaction chamber 14, and satisfies the ECR condition in an appropriate region in the plasma chamber. Generate a magnetic field. The reaction gas introduced into the plasma chamber 17 by the reaction gas introduction pipe 6 is excited in the plasma chamber 17 and supplied to the substrate 11 in the form of a plasma flow 18 along a magnetic field.

【0007】このECRプラズマCVD装置を用いて、
ダイヤモンド膜を形成した報告が鈴木等によってなされ
ており(Japanese Journal of A
pplied Physics Vol.28,No.
2,1989,pp.L281−L283)、この報告
によると、ECR条件の設定により基板周辺で1×10
11cm-3の高密度プラズマが得られ、CO/H2ガスを
用い、0.1Toorの低圧で、600℃の温度で、ダ
イヤモンド膜が得られている。また、このダイヤモンド
膜をラマン光により分析したところ、ダイヤモンドの結
晶質部分とその粒界に析出した非晶質の炭素層とからな
る(通常、ダイヤモンド・ライク・カーボンと称され
る。)ことが確認されている。
Using this ECR plasma CVD apparatus,
A report of forming a diamond film has been made by Suzuki et al. (Japanese Journal of A
Applied Physics Vol. 28, No.
2, 1989, p. L281-L283), according to this report, 1 × 10
A high-density plasma of 11 cm -3 was obtained, and a diamond film was obtained using CO / H 2 gas at a low pressure of 0.1 Toor at a temperature of 600 ° C. Further, when this diamond film was analyzed by Raman light, it was found that the diamond film was composed of a crystalline portion of diamond and an amorphous carbon layer deposited at the grain boundaries (generally referred to as diamond-like carbon). Has been confirmed.

【0008】一方、これらECRプラズマCVD法にお
いて、反応ガスにSiの塩化物または水素化物ガスを混
入することにより、DLCとSiの混合膜(a−DLC
−Si)が得られる。このa−DLC−Si膜は摩擦係
数が極めて低く、図3に荷重1kgf、速度0.4m/
sで測定したC濃度と摩擦係数の関係を示すが、その摩
擦係数は、C濃度65〜90原子%において、0.05
と非常に小さい。
On the other hand, in these ECR plasma CVD methods, a mixed film (a-DLC) of DLC and Si is mixed by mixing a chloride gas or hydride gas of Si into a reaction gas.
-Si) is obtained. This a-DLC-Si film has a very low coefficient of friction, and FIG.
The relationship between the C concentration measured in s and the coefficient of friction is shown below.
And very small.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このa
−DLC−Si膜は、プラズマCVD法による低温形成
のアモルファス膜ということで、基板に対する密着性に
劣っている。例えば、従来法で形成されたC濃度80原
子%のa−DLC−Si膜の付着力を引っかき法で測定
した結果は、僅か3×108dyn/cm2にしかならな
い。
However, this a
-The DLC-Si film is an amorphous film formed at a low temperature by a plasma CVD method, and has poor adhesion to a substrate. For example, the result of measuring the adhesion of an a-DLC-Si film formed by a conventional method and having a C concentration of 80 atomic% by a scratch method is only 3 × 10 8 dyn / cm 2 .

【0010】本発明は、ECRプラズマCVD法により
低圧かつ低温度で形成されるa−DLC−Si膜が密着
性に劣るという前記のごとき問題点を解決するためにな
されたものであって、基板に対する付着力に優れた低摩
擦係数のa−DLC−Si膜の形成方法を提供すること
を目的とする。
The present invention has been made to solve the above-mentioned problem that the a-DLC-Si film formed at low pressure and low temperature by the ECR plasma CVD method has poor adhesion. An object of the present invention is to provide a method for forming an a-DLC-Si film having a low coefficient of friction and excellent adhesion to a film.

【0011】[0011]

【課題を解決するための手段】ECRプラズマPVD法
は、他のプラズマCVD法と比べて低圧で、10-4〜1
-6Torr程度のガス圧で反応が行われる。そこで、
発明者はこのECRプラズマPVD法と密着力に優れた
真空蒸着を組み合わせることを着想し、鋭意研究を重ね
た結果、レーザPVD法とを組み合わせると、付着力に
優れたa−DLC−Si膜が得られることを新たに知見
し本発明を完成した。
The ECR plasma PVD method has a lower pressure than the other plasma CVD methods and has a pressure of 10 -4 to 1 -4.
The reaction is performed at a gas pressure of about 0 -6 Torr. Therefore,
The inventor of the present invention conceived of combining this ECR plasma PVD method and vacuum deposition with excellent adhesion, and as a result of intensive studies, when combined with laser PVD, an a-DLC-Si film with excellent adhesion was obtained. The inventor has newly found out that it can be obtained and completed the present invention.

【0012】本発明のa−DLC−Si膜の形成方法
は、基板を、反応室内において、マイクロ波矩形導波管
と磁気コイルを具備したECRプラズマ室に対面して斜
めに設置し、前記基板に対向して反応室内にSiターゲ
ットを配置し、前記ECRプラズマ室に反応ガスを導入
してECRプラズマCVDにより前記基板にDLC(ダ
イヤモンド・ライク・カーボン)膜を形成するととも
に、前記反応室に設けた入射窓を介してレーザ光をSi
ターゲットに照射してレーザPVDにより前記基板にS
iを蒸着させ、前記基板上にa−DLC−Si膜を形成
することを要旨とする。
According to the method of forming an a-DLC-Si film of the present invention, a substrate is placed obliquely in a reaction chamber so as to face an ECR plasma chamber having a microwave rectangular waveguide and a magnetic coil. A Si target is placed in the reaction chamber facing the substrate, a reaction gas is introduced into the ECR plasma chamber, a DLC (diamond-like carbon) film is formed on the substrate by ECR plasma CVD, and a DLC (diamond-like carbon) film is provided in the reaction chamber. Laser light through the incident window
The target is irradiated to the substrate by laser PVD.
The gist is to deposit i and form an a-DLC-Si film on the substrate.

【0013】ECRプラズマCVDは、マイクロ波波長
2.45GHz、磁場875ガウスの条件のもとで、マ
イクロ波パワー800〜1200W、ガス圧力0.01
〜0.1Torrの間で、プラズマを安定して起こすこ
とができる。
The ECR plasma CVD is performed under the conditions of a microwave wavelength of 2.45 GHz, a magnetic field of 875 gauss, a microwave power of 800 to 1200 W, and a gas pressure of 0.01.
Plasma can be stably generated between 0.1 and 0.1 Torr.

【0014】H2で希釈される反応ガスのCH4濃度は、
0.1〜6%とすることが好ましい。CH4濃度が0.
1%未満ではダイヤモンドの析出速度が極めて遅く殆ど
析出しないからであり、6%を越えるとCが煤として析
出し、DLCが形成されないからである。
The CH 4 concentration of the reaction gas diluted with H 2 is:
It is preferable to set it to 0.1 to 6%. CH 4 concentration is 0.
This is because if it is less than 1%, the deposition rate of diamond is extremely slow and almost no precipitation occurs, and if it exceeds 6%, C precipitates as soot and DLC is not formed.

【0015】レーザPVDの条件範囲は、レーザパワ
ー:1〜150W、パルスエネルギー:50〜400m
J、エネルギー密度:0.5〜200KJ/m2、レー
ザ波長:248nmである。なお、レーザ波長はこれ以
外でも可能であって、例えば波長193、308、35
1nmのエキシマレーザ、波長1.06μmのYAGレ
ーザでも良い。
The condition range of the laser PVD is as follows: laser power: 1 to 150 W, pulse energy: 50 to 400 m
J, energy density: 0.5 to 200 KJ / m 2 , laser wavelength: 248 nm. The laser wavelength can be other than this, and for example, the wavelengths 193, 308, 35
A 1 nm excimer laser or a 1.06 μm wavelength YAG laser may be used.

【0016】エネルギー密度を0.5〜200KJ/m
2としたのは、レーザパワー、パルスエネルギー、スポ
ット径から算出されるエネルギー密度が0.5KJ/m
2よりも小さいと、スパッタ現象が起きないからであ
り、上限値は現在のエキシマレーザの最高値であり、こ
れより大きな値でも差支えない。
An energy density of 0.5 to 200 KJ / m
The reason for setting 2 is that the energy density calculated from the laser power, pulse energy, and spot diameter is 0.5 KJ / m.
If the value is smaller than 2 , the sputtering phenomenon does not occur, and the upper limit is the highest value of the current excimer laser, and a value larger than this may be used.

【0017】ダイヤモンドの生成が可能な基板には、モ
リブデン、タングステン、金、銅、ジルコニウム、シリ
コンなどの単体、超硬合金、シリカガラス、サファイヤ
などの化合物のほか、炭化珪素、炭化チタン、窒化ホウ
素、窒化珪素などのセラミックスがある。
Substrates capable of forming diamond include simple substances such as molybdenum, tungsten, gold, copper, zirconium, and silicon, compounds such as cemented carbide, silica glass, and sapphire, as well as silicon carbide, titanium carbide, and boron nitride. And ceramics such as silicon nitride.

【0018】[0018]

【作用】マイクロ波16は矩形導波管7を利用してプラ
ズマ室17へ導入される。プラズマ室17の周囲には励
磁コイル4が配置され、マイクロ波導入部から反応室1
4方向に徐々に磁界強度が弱くなる発散磁界構成となっ
ており、プラズマ室内の適当な領域でECR条件を満た
す磁界を発生させる。
The microwave 16 is introduced into the plasma chamber 17 using the rectangular waveguide 7. An excitation coil 4 is arranged around the plasma chamber 17 and the reaction chamber 1
A divergent magnetic field configuration in which the magnetic field strength gradually decreases in four directions, and generates a magnetic field satisfying the ECR condition in an appropriate region in the plasma chamber.

【0019】ECRプラズマはその共鳴現象により、電
子が効率良くマイクロ波のエネルギーを吸収し運動エネ
ルギーに変換する。このマイクロ波エネルギーを吸収し
た電子はさらに気体分子に衝突し、低ガス圧で高密度・
高活性なプラズマを発生させる。反応ガス導入管6によ
ってプラズマ室17に導入された反応ガスは、プラズマ
室17内で励起され、発散磁界によりプラズマ流18の
形で基板11に供給されるので、基板11の上にDLC
膜が生成する。
In the ECR plasma, due to the resonance phenomenon, electrons efficiently absorb microwave energy and convert it into kinetic energy. The electrons that have absorbed the microwave energy further collide with gas molecules, and have a high density and low gas pressure.
Generates highly active plasma. The reaction gas introduced into the plasma chamber 17 by the reaction gas introduction pipe 6 is excited in the plasma chamber 17 and supplied to the substrate 11 in the form of a plasma flow 18 by a divergent magnetic field.
A film forms.

【0020】一方、これと同時にレーザ光1がレンズ2
で集光されて入射窓3を通して反応室14内に設置され
たSiターゲット10に照射される。レーザ光1がSi
ターゲット10に照射されると、ターゲット10の表面
がアブソレーションを起こし、ターゲット10から放出
されるSi蒸発粒子が対向して置かれた基板上にDLC
膜とともに堆積する。この蒸発粒子は非常に高いエネル
ギーを持っているので、基板11上に密着性に優れたa
−DLC−Si膜が形成される。
On the other hand, at the same time, the laser light 1
Then, the light is condensed and irradiated to the Si target 10 installed in the reaction chamber 14 through the incident window 3. Laser light 1 is Si
When the target 10 is illuminated, the surface of the target 10 undergoes absorption, and the Si-evaporated particles emitted from the target 10 are placed on a substrate placed opposite to the DLC.
Deposits with the film. Since the evaporated particles have very high energy, a
-A DLC-Si film is formed.

【0021】[0021]

【実施例】本発明の実施例を従来例と比較して説明し、
本発明の効果を明らかにする。図1は本発明方法の実施
に用いた装置の概略断面図である。反応室14は基板1
1およびターゲット10が設置される真空室であって、
底面には排気管15が設けられ真空排気されている。ま
た、反応室14の上面はプラズマ室17と連通してお
り、側面には入射窓3が設けられている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in comparison with a conventional example.
The effect of the present invention will be clarified. FIG. 1 is a schematic sectional view of an apparatus used for carrying out the method of the present invention. The reaction chamber 14 is the substrate 1
A vacuum chamber in which 1 and the target 10 are installed,
An exhaust pipe 15 is provided on the bottom surface and is evacuated. The upper surface of the reaction chamber 14 communicates with the plasma chamber 17, and the entrance window 3 is provided on the side surface.

【0022】プラズマ室17の外周にはウオータージャ
ケットが設けられ冷却水5によって冷却されており、さ
らにその周囲には励磁コイル4が配置されている。ま
た、プラズマ室17の上面には矩形導波管7が取り付け
られ、マイクロ波16がプラズマ室17へ導入される。
さらに、プラズマ室17には反応ガス導入管6が取り付
けられ水素で希釈されたメタンガスが反応ガスとして供
給される。
A water jacket is provided on the outer periphery of the plasma chamber 17 and is cooled by cooling water 5, and the exciting coil 4 is arranged around the water jacket. The rectangular waveguide 7 is attached to the upper surface of the plasma chamber 17, and the microwave 16 is introduced into the plasma chamber 17.
Further, a reaction gas introduction pipe 6 is attached to the plasma chamber 17, and methane gas diluted with hydrogen is supplied as a reaction gas.

【0023】一方、反応室14内のプラズマ室8に対面
する位置には、基板ホルダー12に固定された基板11
が配置されており、さらにこの基板11に対向し、かつ
側面の入射窓3から臨む位置には、ターゲットホルダー
9に支持されたSiターゲット10がレーザ光1に45
°の角度をなして設置されている。
On the other hand, at a position facing the plasma chamber 8 in the reaction chamber 14, the substrate 11 fixed to the substrate holder 12 is provided.
Further, at a position facing the substrate 11 and facing the entrance window 3 on the side surface, the Si target 10 supported by the target holder 9 is attached to the laser beam 1.
It is installed at an angle of °.

【0024】この装置の作動について説明すると、2.
45GHzのマイクロ波16は矩形導波管7を利用して
プラズマ室17へ導入される。プラズマ室17の周囲に
配置されたは励磁コイル4は、マイクロ波導入部から反
応室14方向に徐々に磁界強度が弱くなる発散磁界構成
となっており、875GのECR条件によって、プラズ
マ8を発生させる。
The operation of this device will be described.
The microwave 16 of 45 GHz is introduced into the plasma chamber 17 using the rectangular waveguide 7. The exciting coil 4 arranged around the plasma chamber 17 has a divergent magnetic field configuration in which the magnetic field strength gradually decreases from the microwave introduction part toward the reaction chamber 14, and generates the plasma 8 under the ECR condition of 875 G. Let it.

【0025】ECRプラズマはその共鳴現象により、電
子が効率良くマイクロ波のエネルギーを吸収し運動エネ
ルギーに変換する。このマイクロ波エネルギーを吸収し
た電子はさらに気体分子に衝突し、低ガス圧で高密度・
高活性なプラズマを発生させる。そこで、反応ガス導入
管6によってプラズマ室17に導入された反応ガスは、
プラズマ室17内で励起され、発散磁界によりプラズマ
流18の形で基板11に供給されるので、基板11の上
にDLC膜が生成する。
In the ECR plasma, due to the resonance phenomenon, electrons efficiently absorb microwave energy and convert it into kinetic energy. The electrons that have absorbed the microwave energy further collide with gas molecules, and have a high density and low gas pressure.
Generates highly active plasma. Therefore, the reaction gas introduced into the plasma chamber 17 by the reaction gas introduction pipe 6 is:
Since it is excited in the plasma chamber 17 and supplied to the substrate 11 in the form of a plasma flow 18 by a divergent magnetic field, a DLC film is formed on the substrate 11.

【0026】一方、これと同時にレーザ光1がレンズ2
で集光されて入射窓3を通して反応室14内に設置され
たSiターゲット10に照射される。レーザ光1がSi
ターゲット10に照射されると、ターゲット10の表面
がアブソレーションを起こし、ターゲット10から放出
されるSi蒸発粒子が対向して置かれた基板上にDLC
膜とともに堆積するので、基板11上に密着性に優れた
a−DLC−Si膜が形成される。
On the other hand, at the same time, the laser light 1
Then, the light is condensed and irradiated to the Si target 10 installed in the reaction chamber 14 through the incident window 3. Laser light 1 is Si
When the target 10 is illuminated, the surface of the target 10 undergoes absorption, and the Si-evaporated particles emitted from the target 10 are placed on a substrate placed opposite to the DLC.
Since it is deposited together with the film, an a-DLC-Si film having excellent adhesion is formed on the substrate 11.

【0027】(実施例1)この装置を用い、本発明方法
により下記の条件によりa−DLC−Si膜を形成した
ところ、C濃度80原子%のa−DLC−Si膜を得
た。 レーザパルスエネルギー 200mJ レーザパワー 20W レーザの繰り返し発振回数 100pps ターゲット上のスポット径 2mm×7mmの楕円形 エネルギー密度 14KJ/m2 反応ガス CH4:1%、H2:99% 真空度 0.02Torr マイクロ波パワー 1000W 基板温度 800℃
Example 1 Using this apparatus, an a-DLC-Si film having a C concentration of 80 atomic% was obtained by the method of the present invention under the following conditions. Laser pulse energy 200 mJ Laser power 20 W Laser repetition frequency 100 pps Spot diameter on target 2 mm × 7 mm elliptical shape Energy density 14 KJ / m 2 Reaction gas CH 4 : 1%, H 2 : 99% Vacuum degree 0.02 Torr Microwave Power 1000W Substrate temperature 800 ℃

【0028】比較のために、従来の直流プラズマCVD
法により、下記の条件でa−DLC−Si膜を形成した
ところ、C濃度80原子%のa−DLC−Si膜を得
た。 反応ガス CH4:4%、SiCl4:0.3% H2:58%、Ar:37.7% 真空度 4Torr DC電圧 400V 基板温度 550℃
For comparison, a conventional DC plasma CVD
When an a-DLC-Si film was formed by the method under the following conditions, an a-DLC-Si film having a C concentration of 80 atom% was obtained. Reaction gas CH 4 : 4%, SiCl 4 : 0.3% H 2 : 58%, Ar: 37.7% Vacuum degree 4 Torr DC voltage 400 V Substrate temperature 550 ° C.

【0029】得られた本発明例と従来例のa−DLC−
Si膜について、その付着力を評価した。付着力は引っ
かき法で測定したものであって、この引っかき法は硬い
針を薄膜に垂直に押し付けて、荷重をかけて動かし、引
っかきによって薄膜が基板から引き剥がす方法である。
得られた結果は図2にまとめて示した。
The obtained inventive example and conventional a-DLC-
The adhesion of the Si film was evaluated. The adhesive force is measured by a scratching method, in which a hard needle is pressed perpendicularly to a thin film, moved under a load, and the thin film is peeled off from the substrate by scratching.
The obtained results are shown in FIG.

【0030】図2から明らかなように、従来例で形成さ
れたのa−DLC−Si膜は付着力が僅かに3×108
dyn/cm2であったが、本発明方法で成膜したもの
では、50×108dyn/cm2の高い付着力を示し、
本発明の効果が確認された。なお、ここではエキシマレ
ーザを用いており、エキシマレーザスパッタによって飛
び出してくる蒸発粒子は、非常に高いエネルギーを持っ
ているので、膜の密着力をこのように高くすることが可
能である。
As is clear from FIG. 2, the a-DLC-Si film formed in the conventional example has an adhesion of only 3 × 10 8.
dyn / cm 2 , but the film formed by the method of the present invention showed a high adhesion of 50 × 10 8 dyn / cm 2 ,
The effect of the present invention was confirmed. Note that an excimer laser is used here, and the evaporated particles that fly out by excimer laser sputtering have extremely high energy, so that the adhesion of the film can be increased in this manner.

【0031】(実施例2)図1の装置を用い、本発明方
法により、表1に示す条件でa−DLC−Si膜を形成
したところ、表1に示すC濃度%の膜が得られた。な
お、ECR条件は1000W、レーザ条件は200m
J、ターゲット上のスポット径:2mm×7mmの楕円
で、それぞれ一定とした。得られた膜について、ボール
オンディスク方式の摩擦摩耗試験機(相手材:直径6.
35mm(1/4インチ)SUJ2ボール)を用い摩擦
係数を測定し、得られた結果を図3に示した。
(Example 2) An a-DLC-Si film was formed under the conditions shown in Table 1 by the method of the present invention using the apparatus shown in FIG. 1 and a film having a C concentration of% shown in Table 1 was obtained. . The ECR condition was 1000 W and the laser condition was 200 m.
J, the spot diameter on the target: an ellipse of 2 mm × 7 mm, each of which was constant. The obtained film was subjected to a ball-on-disk friction and wear tester (partner material: diameter 6.
The friction coefficient was measured using a 35 mm (1/4 inch) SUJ2 ball), and the obtained results are shown in FIG.

【0032】[0032]

【表1】 なお、表中のppsは1秒間当たりの発振回数。[Table 1] In the table, pps is the number of oscillations per second.

【0033】表1に示したように、本発明方法によれ
ば、レーザ繰り返し周波数、マイクロ波パワー等を変え
ることにより、a−DLC−Si膜中のDLCとSiの
割合を自由に変えることができる。また、図3から明ら
かなように、C濃度65〜95%において、形成された
膜の摩擦係数は0.05と非常に小さな値を示した。
As shown in Table 1, according to the method of the present invention, the ratio between DLC and Si in the a-DLC-Si film can be freely changed by changing the laser repetition frequency, microwave power, and the like. it can. Further, as is apparent from FIG. 3, the friction coefficient of the formed film showed a very small value of 0.05 at a C concentration of 65 to 95%.

【0034】[0034]

【発明の効果】本発明のa−DLC−Si膜の形成方法
は以上詳述したように、基板を、反応室内において、E
CRプラズマ室に対面して斜めに設置し、ECRプラズ
マ室に反応ガスを導入してECRプラズマCVDにより
基板にDLC(ダイヤモンド・ライク・カーボン)膜を
形成するとともに、基板に対向して反応室内に配置した
Siターゲットにレーザを照射してレーザPVDにより
基板にSiを蒸着させ、基板上にa−DLC−Si膜を
形成するものであって、プラズマ室に導入された反応ガ
スは、プラズマ室内で励起され、発散磁界によりプラズ
マ流の形で基板に供給されるので、基板の上にDLC膜
が生成するとともに、レーザPVDにより高いエネルギ
ーのSi蒸発粒子が蒸着するので、密着性の優れたa−
DLC−Si膜が形成される。
As described in detail above, the method of forming an a-DLC-Si film according to the present invention is as follows.
Installed diagonally facing the CR plasma chamber, introducing a reaction gas into the ECR plasma chamber and forming a DLC (diamond-like carbon) film on the substrate by ECR plasma CVD, and also facing the substrate into the reaction chamber. A laser is applied to the placed Si target to deposit Si on the substrate by laser PVD to form an a-DLC-Si film on the substrate, and the reaction gas introduced into the plasma chamber is When excited and supplied to the substrate in the form of a plasma stream by a divergent magnetic field, a DLC film is formed on the substrate, and high-energy Si vaporized particles are deposited by laser PVD.
A DLC-Si film is formed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を実施するための装置の概略側断面図で
ある。
FIG. 1 is a schematic side sectional view of an apparatus for carrying out the present invention.

【図2】本発明方法により形成された膜と従来方法によ
り形成された膜の付着力を示す図である。
FIG. 2 is a diagram showing the adhesive force between a film formed by the method of the present invention and a film formed by a conventional method.

【図3】本発明方法により形成されたa−DLC−Si
膜の摩擦係数とC濃度との関係を示す線図である。
FIG. 3 shows a-DLC-Si formed by the method of the present invention.
FIG. 3 is a diagram showing a relationship between a coefficient of friction of a film and a C concentration.

【符号の説明】[Explanation of symbols]

1 レーザ光 3 入射窓 4 励磁コイル 6 反応ガス導入
管 7 矩形導波管 8 プラズマ 10 ターゲット 11 基板 13 蒸発粒子 14 反応室 16 マイクロ波 17 ブラズマ室 18 プラズマ流
REFERENCE SIGNS LIST 1 laser light 3 entrance window 4 excitation coil 6 reaction gas introduction pipe 7 rectangular waveguide 8 plasma 10 target 11 substrate 13 evaporated particles 14 reaction chamber 16 microwave 17 plasma chamber 18 plasma flow

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C23C 16/00 - 16/56 C01B 31/02 101 C23C 14/00 - 14/58 C23C 26/00 INSPEC(DIALOG)Continuation of the front page (58) Fields investigated (Int. Cl. 7 , DB name) C23C 16/00-16/56 C01B 31/02 101 C23C 14/00-14/58 C23C 26/00 INSPEC (DIALOG)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板を、反応室内において、マイクロ波
矩形導波管と磁気コイルを具備したECRプラズマ室に
対面して斜めに設置し、前記基板に対向して反応室内に
Siターゲットを配置し、前記ECRプラズマ室に反応
ガスを導入してECRプラズマCVDにより前記基板に
DLC(ダイヤモンド・ライク・カーボン)膜を形成す
るとともに、前記反応室に設けた入射窓を介してレーザ
光をSiターゲットに照射してレーザPVDにより前記
基板にSiを蒸着させ、前記基板上にa−DLC−Si
膜を形成することを特徴とするa−DLC−Si膜の形
成方法。
1. A substrate is placed obliquely in a reaction chamber facing an ECR plasma chamber equipped with a microwave rectangular waveguide and a magnetic coil, and a Si target is placed in the reaction chamber facing the substrate. A reaction gas is introduced into the ECR plasma chamber, a DLC (diamond-like carbon) film is formed on the substrate by ECR plasma CVD, and a laser beam is directed to a Si target through an incident window provided in the reaction chamber. Irradiate to deposit Si on the substrate by laser PVD, a-DLC-Si on the substrate
A method for forming an a-DLC-Si film, comprising forming a film.
JP03300649A 1991-11-15 1991-11-15 Method for forming a-DLC-Si film Expired - Fee Related JP3082979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03300649A JP3082979B2 (en) 1991-11-15 1991-11-15 Method for forming a-DLC-Si film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03300649A JP3082979B2 (en) 1991-11-15 1991-11-15 Method for forming a-DLC-Si film

Publications (2)

Publication Number Publication Date
JPH05140744A JPH05140744A (en) 1993-06-08
JP3082979B2 true JP3082979B2 (en) 2000-09-04

Family

ID=17887401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03300649A Expired - Fee Related JP3082979B2 (en) 1991-11-15 1991-11-15 Method for forming a-DLC-Si film

Country Status (1)

Country Link
JP (1) JP3082979B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012215855A1 (en) 2012-03-15 2013-09-19 P.P.U.H. "MEDGAL" Józef Borowski Forming silicon-containing carbon layer on medical implants, by subjecting low temperature plasma to modification in which carbon- and/or silicon-containing gas is excited, and depositing carbon layer on implant in reactor chamber

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100545719B1 (en) * 1998-09-25 2006-03-31 학교법인연세대학교 Protective coating layer material for AC plasma display panel device
JP4441602B2 (en) * 2003-06-10 2010-03-31 学校法人立命館 Diamond film forming method and forming substrate
CN100336935C (en) * 2004-02-03 2007-09-12 旺宏电子股份有限公司 Physical gaseous phase deposition technology and its equipment
JP6104126B2 (en) * 2013-10-22 2017-03-29 三井造船株式会社 Film forming apparatus and film forming method
KR101412070B1 (en) * 2013-12-05 2014-07-01 송길용 Scriber fixing pin for evaporation a diamond-like carbon thin film method and apparatus, using this scriber fixing pin
KR102382779B1 (en) * 2020-05-22 2022-04-06 (주)아이네쓰 Thin film depostion apparatus and DLC thin film coating methos using the appartus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012215855A1 (en) 2012-03-15 2013-09-19 P.P.U.H. "MEDGAL" Józef Borowski Forming silicon-containing carbon layer on medical implants, by subjecting low temperature plasma to modification in which carbon- and/or silicon-containing gas is excited, and depositing carbon layer on implant in reactor chamber

Also Published As

Publication number Publication date
JPH05140744A (en) 1993-06-08

Similar Documents

Publication Publication Date Title
US5547716A (en) Laser absorption wave deposition process and apparatus
WO1994008077A1 (en) Method for heteroepitaxial diamond film development
JP4636476B2 (en) Deposition method of electron emission carbon film by electron cyclotron resonance plasma
JP3082979B2 (en) Method for forming a-DLC-Si film
Matsumoto Development of diamond synthesis techniques at low pressures
Roy et al. A review of plasma-assisted deposition methods for amorphous carbon thin and ultrathin films with a focus on the cathodic vacuum arc technique
JPS60195092A (en) Method and apparatus for production of carbon thin film
Teii et al. Kinetics and role of C, O, and OH in low-pressure nanocrystalline diamond growth
Ali et al. Role of surface pre-treatment in the CVD of diamond films on copper
JP2006307251A (en) Method for producing diamond-like carbon thin film
JP2808922B2 (en) Method for forming diamond-like carbon film
JP3898622B2 (en) Carbon film forming method and apparatus, and carbon film and product coated with the carbon film
JP3056827B2 (en) Article having a diamond-like carbon protective film and method for producing the same
JPH01203293A (en) Formation of diamond crystal
JPH0341435B2 (en)
JPH0656585A (en) Coating method of diamond film
JPH0361369A (en) Manufacture of diamond like carbon film
JPH0665744A (en) Production of diamond-like carbon thin film
JPH0769792A (en) Method for epitaxial growth of diamond crystal and method for selective epitacial growth
Ma et al. Preparation of diamond-like carbon by PBII-enhanced microwave ECR chemical vapor deposition
JPH05124896A (en) Coating method for diamond film
JP2739286B2 (en) Plasma processing method
JPH101332A (en) Chemical resistant member
JPH01298095A (en) Production of diamondlike carbon film
Zhu Microwave plasma-enhanced chemical vapor deposition and structural characterization of diamond films

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080630

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees