JP7539643B1 - Continuous rigid joint structure for main girder - Google Patents

Continuous rigid joint structure for main girder Download PDF

Info

Publication number
JP7539643B1
JP7539643B1 JP2024062956A JP2024062956A JP7539643B1 JP 7539643 B1 JP7539643 B1 JP 7539643B1 JP 2024062956 A JP2024062956 A JP 2024062956A JP 2024062956 A JP2024062956 A JP 2024062956A JP 7539643 B1 JP7539643 B1 JP 7539643B1
Authority
JP
Japan
Prior art keywords
girder
main
support
main girder
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024062956A
Other languages
Japanese (ja)
Inventor
光弘 徳野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Engineering Co Ltd Fukuoka
Original Assignee
Asahi Engineering Co Ltd Fukuoka
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Engineering Co Ltd Fukuoka filed Critical Asahi Engineering Co Ltd Fukuoka
Priority to JP2024062956A priority Critical patent/JP7539643B1/en
Application granted granted Critical
Publication of JP7539643B1 publication Critical patent/JP7539643B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)

Abstract

【課題】 連結コンクリートに加わる引張力を減殺しつつ、適切に受け持たせることができ、亀裂発生を有効に防止することができる主桁連続化剛結合構造の提供。【解決手段】 本発明に係る主桁連続化剛結合構造は、左径間主桁の桁端と右径間主桁の桁端を共通の橋脚の橋座面上に枕材を介してそれぞれ支持すると共に、上記各主桁の桁端を上記橋座面上に立設した連結条材で上記橋脚とそれぞれ連結し、上記両主桁の桁端間に形成された遊間の上位に該遊間と間隔を置いて支点部桁材を配し、該支点部桁材、上記遊間、上記各主桁の桁端及び上記連結条材をコンクリート内に埋設して上記左径間主桁と上記右径間主桁を連続化すると共に、該連続化した両主桁と上記橋脚とを剛結合する構造を有する。【選択図】 図5[Problem] To provide a continuous main girder rigid connection structure that can properly bear the tensile force applied to the connecting concrete while reducing it, and can effectively prevent the occurrence of cracks. [Solution] The continuous main girder rigid connection structure of the present invention has a structure in which the girder ends of the left span main girder and the right span main girder are supported on the bridge seat of a common pier via bolsters, the girder ends of each main girder are connected to the pier by connecting strips erected on the bridge seat, a support girder is placed above the gap formed between the girder ends of both main girders with a gap between them, and the support girder, the gap, the girder ends of each main girder and the connecting strip are embedded in concrete to connect the left span main girder and the right span main girder, and the continuous main girders are rigidly connected to the pier. [Selected drawing] Figure 5

Description

本発明は、橋幅方向に並列した複数本の左径間主桁の桁端と橋幅方向に並列した複数本の右径間主桁の桁端を共通の橋脚上に支持する複径間桁橋における、上記左径間主桁と上記右径間主桁の連続化剛結合構造に関する。 The present invention relates to a continuous rigid connection structure of the left span main girder and the right span main girder in a multi-span girder bridge in which the girder ends of multiple left span main girders arranged in parallel in the bridge width direction and the girder ends of multiple right span main girders arranged in parallel in the bridge width direction are supported on a common pier.

図1(A)に示すように、一般的な複径間桁橋は橋長に応じて両岸の橋台1間に単数又は複数の橋脚2を設け、H形鋼等の鋼材製又はプレストレストコンクリート製の複数本の主桁3を橋台1と橋脚2間、橋脚2と橋脚2間にそれぞれ橋幅方向に並列して架け渡し、共通の橋脚2上に支承6を介して左径間を構成する主桁3と右径間を構成する主桁3の各桁端3aを支持する構成となっている。 As shown in Figure 1 (A), a typical double-span girder bridge has one or more piers 2 between abutments 1 on both banks depending on the bridge length, and multiple main girders 3 made of steel such as H-shaped steel or prestressed concrete are spanned in parallel across the width of the bridge between the abutment 1 and pier 2, and between the piers 2 and pier 2, respectively. The girder ends 3a of the main girders 3 that make up the left span and the main girders 3 that make up the right span are supported on the common pier 2 via bearings 6.

このような複径間桁橋にあっては、図1(B)に示すように、主桁の自重や床版コンクリートの重量等の死荷重、又は走行車両の重量等の活荷重に基づき、左径間主桁3の桁端3aと右径間主桁3の桁端3aとを連続化した部位(以下、「支点部」という。)において大きな負の曲げモーメント(図1(B)中の「-」のモーメント、すなわち上向きの凸状となるように曲げようとする力)が発生し、当該連続化した部位の連結コンクリート9の上端側に引張力Tが発生して亀裂が発生するおそれがある。 In such a multi-span girder bridge, as shown in Figure 1(B), a large negative bending moment (a "-" moment in Figure 1(B), i.e. a force that tries to bend the girder into an upward convex shape) is generated at the section where the girder end 3a of the left span main girder 3 and the girder end 3a of the right span main girder 3 are connected (hereinafter referred to as the "support section") due to dead loads such as the weight of the main girders and the weight of the deck concrete, or live loads such as the weight of traveling vehicles. This generates a tensile force T on the upper end of the connecting concrete 9 in this connected section, which may cause cracks.

そこで特許文献1は、左径間主桁の桁端と右径間主桁の桁端同士を連結しないで遊間を形成した状態(上記負の曲げモーメントが発生しない状態)で、左径間主桁上と右径間主桁上に床版コンクリートをそれぞれ打設し、該各床版コンクリートの重量や主桁の自重等による死荷重(以下、「連続化前死荷重」という。)による正の曲げモーメント(図1(B)の+のモーメント、すなわち下向きの凸状となるように曲げようとする力)を各主桁に発生させた後、上記遊間に連結コンクリートを打設し両主桁の連続化を図る方法を開示している。 Patent Document 1 discloses a method of pouring deck concrete onto the left span main girder and the right span main girder in a state where the girder ends of the left span main girder and the right span main girder are not connected to each other and a gap is formed (a state where the above-mentioned negative bending moment is not generated), and then generating a positive bending moment (the + moment in Figure 1 (B) in other words, a force that tries to bend the main girders in a downward convex shape) due to the dead load caused by the weight of each deck concrete and the weight of the main girders (hereinafter referred to as "dead load before continuity") in each main girder, and then pouring connecting concrete into the gap to connect both main girders.

特開2008-19687号公報JP 2008-19687 A

上記特許文献1の主桁連続化構造によれば、支点部における連続化前死荷重に基づく負のモーメントの発生を防止することができるが、連続化後に加わる死荷重(以下、「連続化後死荷重」という。)や活荷重に基づく負の曲げモーメントによって上記連結コンクリートに引張力(図1(A)のT)が加わると、該引張力を連結コンクリートのみ、つまり引張強度の弱いコンクリート部材のみで受け持つこととなり、上記亀裂の問題を有効に解消することはできない。 The main girder continuity structure of Patent Document 1 can prevent the generation of negative moments at the supports due to the dead load before continuity. However, when a tensile force (T in Figure 1(A)) is applied to the connecting concrete due to the dead load applied after continuity (hereinafter referred to as the "dead load after continuity") or the negative bending moment due to the live load, the tensile force is borne only by the connecting concrete, that is, by the concrete member with weak tensile strength, and the problem of cracks cannot be effectively solved.

また、上記特許文献1においては、上記遊間に打設した連結コンクリートのずれ止めを図る手段として、各主桁の桁端面から結合用部材を突設し連結コンクリート内に埋設する方法を採っているが、両結合用部材は互いに連結されておらず、結局は引張強度の弱いコンクリート部材に引張力を担わせる構造であることに変わりはない。 In addition, in the above-mentioned Patent Document 1, as a means of preventing the displacement of the connecting concrete poured in the above-mentioned gap, a method is adopted in which connecting members are protruded from the girder end faces of each main girder and embedded in the connecting concrete. However, the two connecting members are not connected to each other, and the structure is still such that the tensile force is borne by concrete members with weak tensile strength.

本発明は、支点部における連続化前死荷重に基づく負の曲げモーメントの発生を防止する一方、支点部における連続化後死荷重及び活荷重に基づく負の曲げモーメント、ひいてはコンクリートに加わる引張力を減殺しつつ、該引張力を遊間の上位に配した支点部桁材に受け持たせ、上記亀裂の問題を有効に解消することができる主桁連続化剛結合構造を提供する。 The present invention provides a continuous main girder rigid joint structure that prevents the generation of negative bending moments due to the dead load before continuity at the support, while reducing the negative bending moments due to the dead load and live load after continuity at the support, and thus the tensile force applied to the concrete, by having the tensile force borne by the support girder located above the gap, thereby effectively resolving the above-mentioned cracking problem.

要述すると、本発明に係る主桁連続化剛結合構造は、橋幅方向に並列した複数本の左径間主桁と、橋幅方向に並列した複数本の右径間主桁を共通の橋脚上に支持して連続化すると共に該橋脚と剛結合する構造であって、上記左径間主桁の桁端と上記右径間主桁の桁端を上記橋脚の橋座面上に枕材を介してそれぞれ支持すると共に、上記各主桁の桁端を上記橋座面上に立設した連結条材で上記橋脚とそれぞれ連結し、上記両主桁の桁端間に形成された遊間の上位に該遊間と間隔を置いて支点部桁材を配し、該支点部桁材、上記遊間、上記各主桁の桁端及び上記連結条材をコンクリート内に埋設して上記左径間主桁と上記右径間主桁を連続化すると共に、該連続化した両主桁と上記橋脚とを剛結合する構造を有する。 In summary, the continuous main girder rigid connection structure of the present invention is a structure in which multiple left span main girders arranged in parallel in the bridge width direction and multiple right span main girders arranged in parallel in the bridge width direction are supported on a common pier to make them continuous and rigidly connected to the pier, and the girder ends of the left span main girder and the right span main girder are supported on the bridge seat of the pier via bolsters, respectively, and the girder ends of each main girder are connected to the pier with connecting strips erected on the bridge seat, and a support girder is placed above the gap formed between the girder ends of both main girders with a gap between them, and the support girder, the gap, the girder ends of each main girder, and the connecting strip are embedded in concrete to make the left span main girder and the right span main girder continuous and rigidly connect both continuous main girders to the pier.

よって、上記左径間主桁と上記右径間主桁を連結しない構造により、支点部における連続化前死荷重に基づく負の曲げモーメントの発生を防止する。一方、上記遊間の上位に配した上記支点部桁材によって支点部高さ(図1(A)のH)を可及的に高くすることができ、支点部における連続化後死荷重及び活荷重に基づく負の曲げモーメントを減殺しコンクリートに加わる引張力を減殺することができる。加えて、該引張力を上記支点部桁材に受け持たせ、亀裂の問題を有効に解消することができる。 Therefore, the structure in which the left span main girder and the right span main girder are not connected prevents the occurrence of negative bending moment at the support due to the dead load before continuity. On the other hand, the support girder material placed above the gap makes it possible to make the support height (H in Figure 1 (A)) as high as possible, which reduces the negative bending moment at the support due to the dead load and live load after continuity and reduces the tensile force applied to the concrete. In addition, the tensile force is borne by the support girder material, which effectively solves the problem of cracks.

好ましくは、上記各主桁をアーチ状とすることにより、支点部高さを確実に高くすることができると共に、連続化後死荷重及び活荷重に基づく負の曲げモーメントを減殺することができる。 Preferably, by making each of the main girders arch-shaped, the support height can be reliably increased and the negative bending moment due to the dead load and live load after the continuation can be reduced.

好ましくは、上記支点部桁材を上記連結条材と連結することにより、上記支点部桁材を所望位置に容易に配することができると共に、連続化剛結合構造を強化することができる。 Preferably, by connecting the support beam to the connecting strip, the support beam can be easily positioned in the desired position and the continuous rigid connection structure can be strengthened.

また、上記支点部桁材を金属製とすることにより、適切に引張力を受け持つことができる。さらに好ましくは、上記支点部桁材として鉄筋を用いることにより、容易に配設や埋設を行うことができる。 In addition, by making the support beams out of metal, they can adequately bear tensile forces. Even more preferably, by using reinforcing bars as the support beams, they can be easily installed and buried.

又は、上記支点部桁材をプレストレストコンクリート(以下、「PC」という。)製とすることができる。 Alternatively, the support beams can be made of prestressed concrete (hereinafter referred to as "PC").

好ましくは、上記枕材の桁支持面を曲面構造又は多角面構造とすることにより、上記各主桁の変位や傾き、形状に適切に順応して確実に上記各主桁を支持することができる。 Preferably, the girder support surface of the bolster has a curved or polygonal structure, so that it can reliably support each of the main girders while appropriately adapting to the displacement, inclination, and shape of each of the main girders.

また、上記支点部桁材よりも上位で上記連結条材の上端を支圧材と連結し、該支圧材の上面にナットを球面座金を介して定着することにより、該球面座金で縦断勾配や横断勾配による傾斜を吸収できるため、上記ナットを隙間なく定着することができる。 In addition, by connecting the upper end of the connecting bar to the support material above the support beam and fixing the nut to the upper surface of the support material via a spherical washer, the spherical washer can absorb the inclination due to the longitudinal gradient and transverse gradient, allowing the nut to be fixed without any gaps.

本発明に係る主桁連続化剛結合構造によれば、支点部における連続化前死荷重に基づく負の曲げモーメントの発生を防止する一方、支点部における連続化後死荷重及び活荷重に基づく負の曲げモーメント、ひいては連結コンクリートに加わる引張力を減殺すると共に、該減殺した引張力を支点部桁材に受け持たせることができ、亀裂発生を有効に防止することができる。 The main girder continuous rigid connection structure of the present invention prevents the occurrence of negative bending moments due to the dead load before continuity at the support, while reducing the negative bending moments due to the dead load and live load after continuity at the support, and thus the tensile force applied to the connecting concrete, and allows the support girder to bear the reduced tensile force, effectively preventing the occurrence of cracks.

(A)は一般的な複径間桁橋を概示する側面図、(B)は複径間桁橋に発生する曲げモーメントの分布図である。(A) is a side view showing a typical double-span girder bridge, and (B) is a distribution diagram of bending moments generated in a double-span girder bridge. 支点部桁材として鋼製アングル材を用いた実施例における主桁連続化剛結合構造を概示する説明図である。FIG. 13 is an explanatory diagram outlining a continuous main girder rigid connection structure in an embodiment in which steel angle members are used as support girder members. 左径間主桁と右径間主桁の各桁端を橋脚に連結する状態を示す説明図である。FIG. 13 is an explanatory diagram showing the state in which the ends of the left span main girder and the right span main girder are connected to the pier. 左径間主桁と右径間主桁の各桁端を橋脚に連結した状態を示す説明図である。FIG. 13 is an explanatory diagram showing the state in which the ends of the left span main girder and the right span main girder are connected to the pier. 主桁連続化剛結合構造を示す橋長方向断面図である。This is a cross-sectional view in the bridge length direction showing the continuous rigid connection structure of the main girder. 主桁連続化剛結合構造を平面において断面視する図(図5のA-A線断面図)である。FIG. 6 is a cross-sectional view of the main girder continuous rigid joint structure in a plane (cross-sectional view of line A-A in FIG. 5). 主桁連続化剛結合構造を平面において断面視する図(図5のB-B線断面図)である。FIG. 6 is a cross-sectional view of the main girder continuous rigid joint structure in a plane (cross-sectional view of line B-B in FIG. 5). 主桁連続化剛結合構造を示す橋幅方向断面図(図5のC-C線断面図)である。This is a cross-sectional view in the bridge width direction (cross-sectional view along line CC in Figure 5) showing the main girder continuous rigid connection structure. 桁支持面を多角面形状とした枕材を説明する断面図である。FIG. 11 is a cross-sectional view illustrating a bolster having a girder support surface in the shape of a polygonal surface. 支点部桁材として鉄筋を用いた実施例における主桁連続化剛結合構造を概示する説明図である。FIG. 13 is an explanatory diagram outlining a main girder continuous rigid connection structure in an embodiment in which steel bars are used as support girder materials. 主桁連続化剛結合構造を示す橋長方向断面図である。This is a cross-sectional view in the bridge length direction showing the continuous rigid connection structure of the main girder. 主桁連続化剛結合構造を平面において断面視する図(図11のD-D線断面図)である。This is a cross-sectional view of the main girder continuous rigid connection structure in a plane (cross-sectional view of line D-D in Figure 11). 主桁連続化剛結合構造を平面において断面視する図(図11のE-E線断面図)である。This is a cross-sectional view of the main girder continuous rigid connection structure in a plane (cross-sectional view of line E-E in Figure 11). 主桁連続化剛結合構造を示す橋幅方向断面図(図11のF-F線断面図)である。This is a cross-sectional view in the bridge width direction showing the continuous rigid connection structure of the main girder (cross-sectional view taken along line F-F in Figure 11). 球面座金によるナットの定着を説明する断面図である。11 is a cross-sectional view illustrating the fixing of a nut by a spherical washer. FIG. 主桁連続化剛結合構造の他例を示す橋長方向断面図である。This is a cross-sectional view in the bridge length direction showing another example of a main girder continuous rigid connection structure.

以下、本発明に係る主桁連続化剛結合構造の最良の実施形態を図1乃至図16に基づき説明する。 The best embodiment of the main girder continuous rigid joint structure according to the present invention will be described below with reference to Figures 1 to 16.

<一般的な主桁連続化構造>
既述したとおり、図1(A)に示すように、一般的な複径間桁橋は、橋の長さに応じて両岸の橋台1間に単数又は複数の橋脚2を設け、H形鋼等の鋼材製又はPC製の複数本の主桁3を橋台1と橋脚2間、橋脚2と橋脚2間にそれぞれ橋幅方向に並列して架け渡す構成となっている。
<General continuous main girder structure>
As already mentioned, as shown in Figure 1 (A), a typical double-span girder bridge has one or more piers 2 between abutments 1 on both banks depending on the length of the bridge, and multiple main girders 3 made of steel such as H-shaped steel or made of precast concrete are spanned in parallel in the width direction of the bridge between the abutment 1 and pier 2, and between the piers 2 and pier 2, respectively.

詳述すると、一つの橋脚2の橋座面2a上に対し支承6を介して左径間を構成する主桁3と右径間を構成する主桁3の各桁端3aが支持されており、該左径間主桁3と右径間主桁3の各桁端3a間、具体的には各桁端3aのそれぞれの桁端面3b間に遊間5を形成し、該遊間5により左径間主桁3と右径間主桁3は途切れた構造を有しており、遊間5内に連結コンクリート9を打設して左径間主桁3と右径間主桁3の連続化を図っている。 In more detail, the girder ends 3a of the main girders 3 constituting the left span and the main girders 3 constituting the right span are supported on the bridge seat 2a of one pier 2 via bearings 6, and a gap 5 is formed between the girder ends 3a of the left span main girders 3 and the right span main girders 3, specifically between the girder end faces 3b of each girder end 3a, and the left span main girders 3 and the right span main girders 3 have a discontinued structure due to the gap 5, and connecting concrete 9 is poured into the gap 5 to make the left span main girders 3 and the right span main girders 3 continuous.

<本発明に係る主桁連続化剛結合構造>
≪基本構造≫
本発明に係る主桁連続化剛結合構造は、図2,図10に示すように、左径間主桁3の桁端3aと右径間主桁3の桁端3aを共通の橋脚2の橋座面2a上に枕材4を介してそれぞれ支持すると共に、該各主桁3の桁端3aを上記橋座面2a上に立設した連結条材13で上記橋脚2とそれぞれ連結する構造を有している。
<Continuous rigid joint structure of main beam according to the present invention>
<Basic structure>
As shown in Figures 2 and 10, the continuous main girder rigidly connected structure of the present invention has a structure in which the girder end 3a of the left span main girder 3 and the girder end 3a of the right span main girder 3 are each supported on the bridge bearing surface 2a of a common pier 2 via bolster members 4, and the girder ends 3a of each main girder 3 are each connected to the pier 2 by connecting strips 13 erected on the bridge bearing surface 2a.

本発明においては、特に左径間主桁3の桁端3aと右径間主桁3の桁端3aは非連結状態とし、該各桁端3aのそれぞれの桁端面3b間に形成された遊間5の上位に該遊間5と間隔を置いて支点部桁材7を配し、該支点部桁材7、遊間5、各主桁3の桁端3a及び連結条材13を連結コンクリート9内に埋設して左径間主桁3と右径間主桁3を連続化すると共に、該連続化した両主桁3と橋脚2とを剛結合する基本構造を有している。 In the present invention, the girder end 3a of the left span main girder 3 and the girder end 3a of the right span main girder 3 are not connected, and the support girder 7 is placed above the gap 5 formed between the girder end faces 3b of each girder end 3a with a gap 5 between them. The support girder 7, gap 5, girder ends 3a of each main girder 3 and connecting strips 13 are embedded in connecting concrete 9 to connect the left span main girder 3 and the right span main girder 3, and the basic structure rigidly connects the connected main girders 3 to the pier 2.

よって、本発明に係る主桁連続化剛結合構造は、一般的な連続化構造と同様に左径間主桁3と右径間主桁3の桁端3a同士を連結しない構造により、支点部における連続化前死荷重に基づく負の曲げモーメントの発生を防止することができるのは勿論であるが、さらに次の効果を有する。 Therefore, the main girder continuous rigid connection structure of the present invention, like a general continuous structure, does not connect the girder ends 3a of the left span main girder 3 and the right span main girder 3, so it can of course prevent the occurrence of negative bending moments due to pre-continuity dead loads at the support points, but it also has the following effects:

すなわち、遊間5の上位に該遊間5とは離れて配され埋設される支点部桁材7によって支点部高さHを可及的に高くすることができ、支点部における連続化後死荷重及び活荷重に基づく負の曲げモーメントを減殺し連結コンクリート9に加わる引張力Tを減殺することができる。加えて、該引張力Tを支点部桁材7に受け持たせ、亀裂の問題を有効に解消することができる。 In other words, the support height H can be made as high as possible by using the support girder 7 that is placed above and away from the gap 5, and can reduce the negative bending moment due to the dead load and live load at the support after continuity, and can reduce the tensile force T applied to the connecting concrete 9. In addition, the tensile force T can be borne by the support girder 7, effectively solving the problem of cracks.

なお、図2~図8,図16は支点部桁材7として鋼製アングル材を用いた実施例を示しており、図10~図14は支点部桁材7として鉄筋を用いた実施例を示している。なお、後述するように、本発明に係る主桁連続化剛結合構造において、支点部桁材7として用いる桁材としては引張力Tに耐えうるものであれば、金属製でもPC製でもよく、断面形状も実施に応じ任意である。 Note that Figs. 2 to 8 and 16 show examples in which steel angle bars are used as the support girder 7, and Figs. 10 to 14 show examples in which reinforcing bars are used as the support girder 7. As will be described later, in the main girder continuous rigid joint structure according to the present invention, the girder used as the support girder 7 may be made of metal or precast concrete as long as it can withstand the tensile force T, and the cross-sectional shape may be arbitrary depending on the implementation.

≪主桁構造≫
本発明においては、各主桁3としてアーチ状の主桁を用いるのが望ましい。たとえば、図2,図10に示すように、各主桁3として曲線アーチ状の主桁、つまり長手方向において上向き凸状に撓んだ形状の主桁を用いる。当該曲線アーチ形状により、支点部高さHを確実に高くすることができると共に、連続化後死荷重及び活荷重に基づく負の曲げモーメントを減殺することができ、ひいては引張力Tを減殺することができる。また、図16に示すように、各主桁3として角形アーチ状(π形)の主桁、つまり長手方向において中央部の桁部分の高さが端部の桁部分の高さよりも高い主桁を用いれば、当該角形アーチ状によっても、支点部高さHを確実に高くすることができ、ひいては引張力Tを減殺することができる。
<Main girder structure>
In the present invention, it is preferable to use an arch-shaped main girder as each main girder 3. For example, as shown in Figs. 2 and 10, a curved arch-shaped main girder, that is, a main girder that is bent in an upwardly convex shape in the longitudinal direction, is used as each main girder 3. This curved arch shape can reliably increase the support height H, and can also reduce the negative bending moment based on the dead load and live load after continuation, thereby reducing the tensile force T. Also, as shown in Fig. 16, if a square arch-shaped (π-shaped) main girder is used as each main girder 3, that is, a main girder in which the height of the central girder part in the longitudinal direction is higher than the height of the end girder parts, the square arch shape can also reliably increase the support height H, thereby reducing the tensile force T.

本書の各実施例においては、主桁3としてH型鋼を用いた例を示しているが、後述する枕材4によって支持される支持面を有し、垂直に伸びる連結条材13と連結することができるフランジ部を有する金属製、好ましくは鋼製の桁材であれば、特に断面形状は問わない。また、曲線アーチ状とする場合、その円弧形状を定める半径長(R)は適宜調整することができると共に、角形アーチ状とする場合、角部の角度を適宜調整することができる。 In each example in this document, an H-shaped steel beam is used as the main girder 3, but the cross-sectional shape is not important as long as the girder is made of metal, preferably steel, and has a support surface supported by the bolster material 4 (described later) and a flange portion that can be connected to the vertically extending connecting bar 13. In addition, if a curved arch shape is used, the radius (R) that determines the arc shape can be adjusted as appropriate, and in the case of a square arch shape, the angle of the corners can be adjusted as appropriate.

≪主桁支持構造及び桁と橋脚の剛結合構造≫
本発明に係る主桁連続化剛結合構造においては、図3,図4に示すように、まず左径間主桁3と右径間主桁3を支持するための共通の橋脚2の橋座面2a上に設置された枕材4により左径間主桁3と右径間主桁3をそれぞれ支持する。
<Main girder support structure and rigid connection structure between girder and pier>
In the continuous and rigidly connected main girder structure of the present invention, as shown in Figures 3 and 4, first, the left span main girder 3 and the right span main girder 3 are supported by bolsters 4 installed on the bridge bearing surface 2a of a common pier 2 for supporting the left span main girder 3 and the right span main girder 3, respectively.

枕材4について詳述すると、枕材4はコンクリート製又は金属製又は合成樹脂製であり、図8,図14にも示すように、橋幅方向に連続して配設する。好ましくは、図5等に示すように、枕材4の桁支持面(上面)4aを曲面構造とし、又は図9に示すように、桁支持面4aを多数の微小幅面4bから成る多角面構造として各主桁3の傾きや変形に応じながら支持できる構造とする。 To explain the bolster 4 in detail, it is made of concrete, metal, or synthetic resin, and is arranged continuously in the width direction of the bridge as shown in Fig. 8 and Fig. 14. Preferably, as shown in Fig. 5, etc., the girder support surface (upper surface) 4a of the bolster 4 is made of a curved structure, or as shown in Fig. 9, the girder support surface 4a is made of a polygonal structure consisting of many small width surfaces 4b, so that it can support each main girder 3 in response to its inclination and deformation.

よって、図4に示すように、既述のように設置した枕材4を介して左径間主桁3と右径間主桁3の各桁端3aを下フランジ3eをもって橋脚2の橋座面2a上に支持した際に、枕材4の曲面構造又は多角面構造の桁支持面4aによって主桁3の傾き等を吸収することができると共に、鋭角や直角の角部を有しないので枕材4自身が欠けることを有効に防止することができる。 As shown in Figure 4, when the girder ends 3a of the left span main girder 3 and the right span main girder 3 are supported on the bridge seat 2a of the pier 2 by the lower flanges 3e via the bolster 4 installed as described above, the curved or polygonal girder support surface 4a of the bolster 4 can absorb the inclination of the main girder 3, and since it does not have any acute or right-angled corners, it can effectively prevent the bolster 4 itself from chipping.

また、本発明においては、上記枕材4を設置した橋座面2a上に、左径間主桁3と右径間主桁3の各桁端3aと連結する連結条材13をそれぞれ立設する。 In addition, in the present invention, connecting strips 13 that connect to each girder end 3a of the left span main girder 3 and the right span main girder 3 are erected on the bridge seat 2a on which the bolster 4 is installed.

連結条材13は、たとえば鉄筋等の鋼棒にて形成し、該鋼棒の下端をコンクリート製橋脚2に一体に埋設して橋座面2aから立ち上げる。又は鋼棒の他、ケーブルの使用が可能である。 The connecting bar 13 is made of a steel rod such as a reinforcing bar, and the lower end of the steel rod is embedded integrally into the concrete pier 2 and raised from the bridge seat 2a. Alternatively, a cable can be used instead of a steel rod.

連結条材13として鋼棒を用いる場合、図5,図10に示すように、コンクリート製橋脚2に埋設した補強鉄筋16の端部を橋座面2aから上方へ突出し、該突出部分を連結条材13として用いることができる。 When using steel bars as the connecting bars 13, as shown in Figures 5 and 10, the ends of the reinforcing bars 16 embedded in the concrete pier 2 can be protruded upward from the bridge seat 2a, and the protruding parts can be used as the connecting bars 13.

また、図3に示すように、連結条材13を左径間主桁3と右径間主桁3の各桁端3aに貫挿する。具体的には、左径間主桁3と右径間主桁3の各桁端3aにおける上フランジ3d、下フランジ3eに設けた貫挿孔17に下から上へと貫挿する。なお、該貫挿孔17を橋長方向に延びる長孔形状にして、各主桁3の桁端3aの変位や位置ズレに対応できるようにするのが望ましい。 As shown in Figure 3, the connecting bar 13 is inserted into each girder end 3a of the left span main girder 3 and the right span main girder 3. Specifically, it is inserted from bottom to top into the through holes 17 provided in the upper flange 3d and the lower flange 3e of each girder end 3a of the left span main girder 3 and the right span main girder 3. It is preferable to make the through holes 17 elongated in the bridge length direction so that they can accommodate displacement or misalignment of the girder ends 3a of each main girder 3.

また、連結条材13は、図8,図14に示すように、橋座面2a上において、各主桁3の桁端3aの直下から立ち上げると共に、各主桁3の桁端3aの橋幅方向における並列間隔(橋幅方向に隣接する主桁3間の間隔)の直下から立ち上げることができる。又は、橋座面2a上において、各主桁3の桁端3aの直下からのみ、連結条材13を立ち上げることも実施に応じ任意である。 As shown in Figures 8 and 14, the connecting bars 13 can be raised on the bridge seat 2a from directly below the girder end 3a of each main girder 3, and also from directly below the parallel spacing in the bridge width direction of the girder end 3a of each main girder 3 (the spacing between adjacent main girders 3 in the bridge width direction). Alternatively, it is optional to raise the connecting bars 13 only from directly below the girder end 3a of each main girder 3 on the bridge seat 2a, depending on the implementation.

また、既述のように各主桁3の桁端3aの橋幅方向における並列間隔の直下から立ち上げた連結条材13を設けた場合には、図8,図14に示すように、当該連結条材13を上記並列間隔内に挿入する。 In addition, as described above, when a connecting bar 13 is provided that rises from directly below the parallel interval in the bridge width direction of the girder end 3a of each main girder 3, the connecting bar 13 is inserted into the parallel interval as shown in Figures 8 and 14.

図3,図4に示すように、支点部桁材7として鋼製アングル材を用いる場合には、各主桁3の桁端3aに貫挿した連結条材13を利用して、当該支点部桁材7を遊間5の上位の所望の位置に容易に配することができる。すなわち、連結条材13の上端(雄ねじ端)に支点部桁材7のフランジ7aの下面を支持するナット14′を螺合すると共に、該上端をフランジ7aに突設した貫通孔7dに貫挿し、該貫挿後の上端にナット14を螺合して、該ナット14を支点部桁材7のフランジ7aの上面に定着することにより、支点部桁材7を所望位置に固定して配置することができる。なお、図3中の21は座金である。 As shown in Figures 3 and 4, when steel angle bars are used as the support beams 7, the support beams 7 can be easily positioned at the desired position above the gap 5 by using the connecting bars 13 inserted into the girder ends 3a of the main girders 3. That is, the nut 14' supporting the underside of the flange 7a of the support beam 7 is screwed onto the upper end (male thread end) of the connecting bars 13, and the upper end is inserted into the through hole 7d protruding from the flange 7a, and the nut 14 is screwed onto the upper end after insertion, and the nut 14 is fixed to the upper surface of the flange 7a of the support beam 7, thereby fixing the support beam 7 at the desired position. Note that 21 in Figure 3 is a washer.

上述した支点部桁材7のフランジ7aの上面に定着するナット14は、フランジ7aの上面に直接定着する、又は図示の如く、支圧材15を介してフランジ7aの上面に定着する。該支圧材15は橋幅方向に並列された桁端3aを橋幅方向に横断するように延在し、各支点部桁材7のフランジ7aの上面に架橋載置する。 The nuts 14 that are fixed to the upper surface of the flanges 7a of the support girder 7 described above are fixed directly to the upper surface of the flanges 7a, or, as shown in the figure, are fixed to the upper surface of the flanges 7a via support materials 15. The support materials 15 extend across the girder ends 3a arranged in parallel in the bridge width direction, and are placed on the upper surface of the flanges 7a of each support girder 7.

また、図8,図14に示すように、左径間主桁3の橋幅方向の並列間隔(隣接間隔)内及び右径間主桁3の橋幅方向の並列間隔(隣接間隔)内に挿入された連結条材13に対しては、その上端を、支圧材15における主桁3間に延在する部分15aに貫挿してナット14を螺合し、該ナット14を支圧材部分15a上面に定着する。 As shown in Figures 8 and 14, for the connecting bars 13 inserted within the parallel intervals (adjacent intervals) in the bridge width direction of the left span main girder 3 and within the parallel intervals (adjacent intervals) in the bridge width direction of the right span main girder 3, their upper ends are inserted through the portion 15a of the support material 15 that extends between the main girders 3, and nuts 14 are screwed in, and the nuts 14 are fixed to the upper surface of the support material portion 15a.

なお、図3,図4は支点部桁材7として鋼製アングル材を用いた実施例を示しているが、支点部桁材7として鉄筋を用いた、図10等に示す実施例の場合も同様に枕材4によって左径間主桁3と右径間主桁3をそれぞれ支持し、各桁端3aと連結する連結条材13を各桁端3aの貫挿孔17に貫挿するのは同様である。 Note that Figures 3 and 4 show an embodiment in which steel angle bars are used as the support beams 7, but in the embodiment shown in Figure 10 etc. in which reinforcing bars are used as the support beams 7, the left span main girder 3 and the right span main girder 3 are supported by the bolsters 4 in the same way, and the connecting strips 13 that connect to each girder end 3a are inserted into the through holes 17 of each girder end 3a.

また、図11に示すように、支点部桁材7として鉄筋を用いる場合には、各主桁3の桁端3aを貫挿した連結条材13の上端を支圧材15に貫挿してナット14を螺合し、該ナット14を支圧材15上面に定着する。 Also, as shown in Figure 11, when reinforcing bars are used as the support beams 7, the upper ends of the connecting bars 13 that penetrate the girder ends 3a of each main girder 3 are inserted into the support material 15, and the nuts 14 are screwed in and fixed to the upper surface of the support material 15.

また、支点部桁材7がアングル材か鉄筋かにかかわらず、上述のように、支圧材15上面にナット14を定着する場合には、図15に示すような座金21を介して定着するのが望ましい。図15に示す座金21は球面座金であり、上座金21aと下座金21bの一対の座金から成り、一方の座金に設けられた凸球面部と他方の座金に設けられた凹球面部との係合により、縦断勾配や横断勾配等による傾斜に適切に対応して、隙間なくナット14を定着することができる。 Regardless of whether the support beam 7 is an angle bar or a reinforcing bar, when fixing the nut 14 to the top surface of the support material 15 as described above, it is preferable to fix it via a washer 21 as shown in Figure 15. The washer 21 shown in Figure 15 is a spherical washer, consisting of a pair of washers, an upper washer 21a and a lower washer 21b, and the engagement between the convex spherical portion of one washer and the concave spherical portion of the other washer allows the nut 14 to be fixed without gaps, appropriately responding to inclinations due to longitudinal gradients, transverse gradients, etc.

≪支点部桁材構造≫
支点部桁材7は、既述のように、左径間主桁3と右径間主桁3のそれぞれの桁端面3b間に形成された遊間5の上位に該遊間5と間隔を置いて配され、後述する連結コンクリート9内に埋設され、該連結コンクリート9に加わる引張力Tを担い、亀裂防止に貢献する部材である。
<Support beam structure>
As already mentioned, the support girder 7 is positioned above and spaced from the gap 5 formed between the girder end faces 3b of the left span main girder 3 and the right span main girder 3, and is embedded in the connecting concrete 9 described below. It bears the tensile force T applied to the connecting concrete 9 and contributes to preventing cracks.

支点部桁材7としては、連結コンクリート9内で引張力を担うことができれば、特に形状は問わず、金属製又はPC製の部材を用いることができる。たとえば、図2~図8に示すように、断面T字状の鋼製アングル材を用いることができる他、H字状、I字状、π字状等の各種断面形状のアングル材を用いることができる。 As the support beam 7, any shape can be used, as long as it can bear the tensile force within the connecting concrete 9. For example, as shown in Figures 2 to 8, steel angle bars with a T-shaped cross section can be used, as well as angle bars with various cross-sectional shapes such as H-shaped, I-shaped, and π-shaped.

又は、支点部桁材7として、図10~図14に示すように、橋長方向に延びる鉄筋を用いることができる。好ましくは、床版コンクリート8の組立筋を利用すれば、容易且つ適切に支点部桁材7を配することができる。 Alternatively, as shown in Figures 10 to 14, reinforcing bars extending in the bridge length direction can be used as the support beams 7. Preferably, the assembly bars of the concrete deck 8 can be used to easily and appropriately position the support beams 7.

本発明において、支点部桁材7は連結コンクリート9における引張力が生ずる部分に配され埋設されることができれば、その長さは適宜調整することができる。すなわち、図2,図5に示すように、支点部桁材7を支点部付近のみをカバーできる長さとすることや、図10,図11に示すように、支点部桁材7を橋長全域に亘る長さとすることもできる。 In the present invention, if the support girder 7 can be placed and embedded in the part of the connecting concrete 9 where tensile force is generated, its length can be adjusted appropriately. That is, as shown in Figures 2 and 5, the support girder 7 can be made to a length that covers only the vicinity of the support, or as shown in Figures 10 and 11, the support girder 7 can be made to a length that covers the entire length of the bridge.

≪橋体コンクリート構造≫
次いで、橋体コンクリートの構造について説明する。橋体コンクリートは、各主桁3上及び各主桁3の橋幅方向の並列間隔内に打設する。
<Concrete bridge structure>
Next, the structure of the bridge body concrete will be described. The bridge body concrete is poured onto each of the main girders 3 and within the parallel intervals between each of the main girders 3 in the bridge width direction.

まず、左径間主桁3上と右径間主桁3上にそれぞれ床版コンクリート8(橋体コンクリート)を打設すると共に、左径間主桁3の橋幅方向の並列間隔内と右径間主桁3の並列間隔内にそれぞれスラブコンクリート18(橋体コンクリート)を打設する。 First, concrete deck 8 (bridge body concrete) is poured onto the left span main girder 3 and the right span main girder 3, and concrete slab 18 (bridge body concrete) is poured within the parallel intervals of the left span main girder 3 in the bridge width direction and within the parallel intervals of the right span main girder 3.

この際に、死荷重(連続化前死荷重)の増大により各主桁3の桁端3aが変位するが、その変位を貫挿孔17が吸収する。さらに各枕材4の桁支持面4aの曲面形状又は多角面形状も各主桁3の桁端3aの変位吸収に貢献する。よって、各主桁3が橋体コンクリートの打設に基づく連続化前死荷重により変形して負の曲げモーメントの発生を防止する。 At this time, the girder end 3a of each main girder 3 is displaced due to an increase in dead load (dead load before continuity), but this displacement is absorbed by the through hole 17. Furthermore, the curved or polygonal shape of the girder support surface 4a of each bolster 4 also contributes to absorbing the displacement of the girder end 3a of each main girder 3. Therefore, each main girder 3 is deformed by the dead load before continuity due to the pouring of the bridge body concrete, preventing the generation of negative bending moment.

コンクリート打設について詳述すると、橋幅方向に隣接する左径間主桁3における上下フランジ3d,3eとウェブ3cにて画成されるスペースにスラブコンクリート18を打設し、連続して左径間主桁3上に床版コンクリート8を打設する。同様に橋幅方向に隣接する右径間主桁3における上下フランジ3d,3eとウェブ3cにて画成されるスペースにスラブコンクリート18を打設し、連続して右径間主桁3上に床版コンクリート8を打設する。 To explain concrete pouring in detail, slab concrete 18 is poured into the space defined by the upper and lower flanges 3d, 3e and web 3c of the left span main girder 3 adjacent in the bridge width direction, and then the deck concrete 8 is poured onto the left span main girder 3. Similarly, slab concrete 18 is poured into the space defined by the upper and lower flanges 3d, 3e and web 3c of the right span main girder 3 adjacent in the bridge width direction, and then the deck concrete 8 is poured onto the right span main girder 3.

換言すると、左径間主桁3の橋幅方向に隣接する下フランジ3e間に形成される橋長方向に延びる開口19′を閉鎖部材で閉鎖し、左径間主桁3の橋幅方向に隣接する上フランジ3d間に形成される橋長方向に延びる開口19を通じて上記スペース内にスラブコンクリート18を打設し、連続して左径間主桁3上に床版コンクリート8を打設する。 In other words, the opening 19' extending in the bridge length direction formed between the lower flanges 3e adjacent in the bridge width direction of the left span main girder 3 is closed with a closing member, slab concrete 18 is poured into the above space through the opening 19 extending in the bridge length direction formed between the upper flanges 3d adjacent in the bridge width direction of the left span main girder 3, and then the deck concrete 8 is poured on the left span main girder 3.

同様に、右径間主桁3の橋幅方向に隣接する下フランジ3e間に形成される橋長方向に延びる開口19′を閉鎖部材で閉鎖し、右径間主桁3の橋幅方向に隣接する上フランジ3d間に形成される橋長方向に延びる開口19を通じて上記スペース内にスラブコンクリート18を打設し、連続して右径間主桁3上に床版コンクリート8を打設する。 Similarly, the opening 19' extending in the bridge length direction formed between the lower flanges 3e adjacent in the bridge width direction of the right span main girder 3 is closed with a closing member, and slab concrete 18 is poured into the above space through the opening 19 extending in the bridge length direction formed between the upper flanges 3d adjacent in the bridge width direction of the right span main girder 3, and then the deck concrete 8 is poured on the right span main girder 3.

≪連結コンクリート構造≫
最後に、型枠を組んで遊間5を通じて橋脚2の橋座面2a上に連結コンクリート9を打設し、遊間5、左径間主桁3及び右径間主桁3の各桁端3a、支点部桁材7及び連結条材13を当該連結コンクリート9内に埋設する。
<Interlocking concrete structure>
Finally, formwork is assembled and connecting concrete 9 is poured onto the bridge seat 2a of the pier 2 through the gap 5, and the gap 5, the girder ends 3a of the left span main girder 3 and the right span main girder 3, the support girder members 7 and the connecting strip members 13 are embedded in the connecting concrete 9.

好ましくは、連結コンクリート9の打設は上述の如く打設した橋体コンクリート(床版コンクリート8及びスラブコンクリート18)が硬化する前に行う。これら連結コンクリート9と橋体コンクリートとを馴染みよく緊密に硬化させるためである。 The connecting concrete 9 is preferably poured before the bridge body concrete (the deck concrete 8 and the slab concrete 18) that has been poured as described above hardens. This is to allow the connecting concrete 9 and the bridge body concrete to harden in a good, tight fit.

そして、連結コンクリート9が硬化した後、舗装20を施せば、図5~図8,図11~図14に示す主桁連続化剛結合構造が完成する。 After the connecting concrete 9 hardens, paving 20 is applied to complete the continuous rigidly connected main girder structure shown in Figures 5 to 8 and 11 to 14.

以上説明したように、本発明にあっては、左径間主桁3の桁端3aと右径間主桁3の桁端3aを非連結とすることにより、連続化前死荷重に基づく負の曲げモーメントの発生を防止することができる。 As explained above, in the present invention, by disconnecting the girder end 3a of the left span main girder 3 from the girder end 3a of the right span main girder 3, it is possible to prevent the occurrence of negative bending moments due to the dead load before continuity.

なお、連続化後は左径間主桁3及び右径間主桁3に加わる活荷重又は舗装20の重量等の連続化後死荷重に基づく負の曲げモーメントによって連結コンクリート9の上方部位に引張力が加わるが、本発明においては、該引張力を支点部高さHを可及的に高くすることにより減殺すると共に、該減殺された引張力を支点部桁材7に適切に受け持たせ、連結コンクリート9に亀裂が生ずるのを有効に防止する。 After the continuation, a tensile force is applied to the upper part of the connecting concrete 9 due to a negative bending moment based on the live load applied to the left span main girder 3 and the right span main girder 3 or the dead load after continuation such as the weight of the pavement 20. However, in the present invention, this tensile force is reduced by making the support height H as high as possible, and the reduced tensile force is appropriately borne by the support girder material 7, effectively preventing the occurrence of cracks in the connecting concrete 9.

また、本発明にあっては、橋幅方向に隣接する左径間主桁3の各桁端3a間には該各桁端3aに穿設した通挿孔11を介して橋幅方向に延びるPCケーブル、無垢の線材等の鋼線材から成る連結線材10を橋長方向に間隔を置いて複数本通挿して連結コンクリート9内に埋設すると共に、橋幅方向に隣接する右径間主桁3の各桁端3a間に該各桁端3aに穿設した通挿孔11を介して橋幅方向に延びる上記鋼線材から成る他の連結線材10を橋長方向に間隔を置いて複数本通挿して連結コンクリート9内に埋設し主桁連続化剛結合構造を強化することができる。 In addition, in the present invention, between the girder ends 3a of the left span main girders 3 adjacent in the bridge width direction, multiple connecting wires 10 made of steel wires such as PC cables and solid wires extending in the bridge width direction are inserted at intervals in the bridge length direction through the through holes 11 drilled in each girder end 3a and embedded in the connecting concrete 9, and multiple other connecting wires 10 made of the above steel wires extending in the bridge width direction are inserted at intervals in the bridge length direction through the through holes 11 drilled in each girder end 3a of the right span main girders 3 adjacent in the bridge width direction and embedded in the connecting concrete 9, thereby strengthening the continuous rigid connection structure of the main girders.

再述すると、連結線材10は、図8,図14に示すように、橋幅方向に並列したH形鋼から成る各主桁3の桁端3aにおけるウェブ3cを貫通するように通挿孔11を介して通挿して橋幅方向両端の主桁3の桁端3aにおけるウェブ3c外側面においてナット12により締結する。 To restate, as shown in Figures 8 and 14, the connecting wire 10 is inserted through the through-hole 11 so as to penetrate the web 3c at the girder end 3a of each main girder 3, which is made of H-shaped steel arranged in parallel in the bridge width direction, and is fastened with nuts 12 on the outer surface of the web 3c at the girder end 3a of the main girder 3 at both ends in the bridge width direction.

又は、具体的には図示しないが、橋幅方向に隣接する左径間主桁3の各桁端3a間に橋幅方向に延びる管材内に緩挿した連結線材10を通挿して連結コンクリート9内に埋設すると共に、橋幅方向に隣接する右径間主桁3の各桁端3a間に橋幅方向に延びる他の管材内に緩挿した連結線材10を通挿して連結コンクリート9内に埋設し、連結線材10を緊張することにより連結コンクリート9にプレストレス力を与え補強することができる。 Alternatively, although not specifically shown, a connecting wire 10 loosely inserted into a pipe extending in the bridge width direction is inserted between each girder end 3a of the left span main girder 3 adjacent in the bridge width direction and embedded in the connecting concrete 9, and a connecting wire 10 loosely inserted into another pipe extending in the bridge width direction is inserted between each girder end 3a of the right span main girder 3 adjacent in the bridge width direction and embedded in the connecting concrete 9, and tensioning the connecting wire 10 provides a prestress force to the connecting concrete 9, thereby reinforcing it.

さらに、左径間主桁3と右径間主桁3の各ウェブ3cの橋長方向の全長に亘り連結線材10又は連結管材内に緩挿した連結線材10を橋長方向に間隔を置いて多数本通挿してスラブコンクリート18にプレストレス力を与え補強することができる。 Furthermore, the left span main girder 3 and the right span main girder 3 can be reinforced by inserting a number of connecting wires 10 or connecting wires 10 loosely inserted into connecting pipes at intervals along the bridge length along the entire length of each web 3c in the bridge length direction to provide prestress to the slab concrete 18.

また、図8に示すように、支点部桁材7としてアングル材を用いる場合には、支点部桁材7のウェブ7bに挿通孔7cを突設し、連結線材10又は連結管材内に緩挿した連結線材10を橋幅方向に並列した各支点部桁材7のウェブ7bを貫通するように挿通孔7cを介して通挿して橋幅方向両端の支点部桁材7におけるウェブ7b外側面においてナット12により締結する。これによっても、連結コンクリート9にプレストレス力を与え補強することができる。 Also, as shown in Figure 8, when angle bars are used as the support beams 7, insertion holes 7c are protruded into the webs 7b of the support beams 7, and connecting wires 10 or connecting wires 10 loosely inserted into connecting pipes are inserted through the insertion holes 7c so as to penetrate the webs 7b of the support beams 7 arranged in parallel in the bridge width direction, and are fastened with nuts 12 on the outer surfaces of the webs 7b of the support beams 7 at both ends in the bridge width direction. This also provides prestress to the connecting concrete 9, reinforcing it.

また、図14に示すように、支点部桁材7として鉄筋を用いる場合には、該支点部桁材7と直交する方向に延びる鉄筋を連結線材10として用い、橋幅方向に並列する全ての支点部桁材7を連結し、支点部桁材7自体を補強することも可能である。 Also, as shown in Figure 14, when using reinforcing bars as the support beams 7, it is possible to use reinforcing bars extending in a direction perpendicular to the support beams 7 as connecting wires 10 to connect all the support beams 7 arranged in parallel in the bridge width direction, thereby reinforcing the support beams 7 themselves.

1…橋台、2…橋脚、2a…橋座面、3…主桁(左径間主桁、右径間主桁)、3a…桁端、3b…桁端面、3c…ウェブ、3d…上フランジ、3e…下フランジ、
4…枕材、4a…桁支持面、4b…微小幅面、5…遊間、6…支承、7…支点部桁材、7a…フランジ、7b…ウェブ、7c…挿通孔、7d…貫通孔、8…床版コンクリート(橋体コンクリート)、9…連結コンクリート、10…連結線材、11…通挿孔、12…ナット、13…連結条材、14,14′…ナット、15…支圧材、15a…支圧材部分、16…補強鉄筋、17…貫挿孔、18…スラブコンクリート(橋体コンクリート)、19,19'…開口、20…舗装、T…引張力、H…支点部高さ。
1...Abutment, 2...Pier, 2a...Bridge seat, 3...Main girder (left span main girder, right span main girder), 3a...Girder end, 3b...Girder end surface, 3c...Web, 3d...Upper flange, 3e...Lower flange,
4...pillow material, 4a...girder support surface, 4b...micro-width surface, 5...gap, 6...bearing, 7...support girder material, 7a...flange, 7b...web, 7c...insertion hole, 7d...penetration hole, 8...deck concrete (bridge body concrete), 9...connecting concrete, 10...connecting wire material, 11...insertion hole, 12...nut, 13...connecting strip material, 14, 14'...nut, 15...bearing material, 15a...bearing material part, 16...reinforcing bar, 17...through hole, 18...slab concrete (bridge body concrete), 19, 19'...opening, 20...pavement, T...tensile force, H...support height.

Claims (8)

橋幅方向に並列した複数本の左径間主桁と、橋幅方向に並列した複数本の右径間主桁を共通の橋脚上に支持して連続化すると共に該橋脚と剛結合する構造であって、上記左径間主桁の桁端と上記右径間主桁の桁端を上記橋脚の橋座面上に枕材を介してそれぞれ支持すると共に、上記各主桁の桁端を上記橋座面上に立設した連結条材で上記橋脚とそれぞれ連結し、上記両主桁の桁端間に形成された遊間の上位に該遊間と間隔を置いて支点部桁材を配し、該支点部桁材、上記遊間、上記各主桁の桁端及び上記連結条材をコンクリート内に埋設して上記左径間主桁と上記右径間主桁を連続化すると共に、該連続化した両主桁と上記橋脚とを剛結合することを特徴とする主桁連続化剛結合構造。 A structure in which multiple left span main girders arranged in parallel in the bridge width direction and multiple right span main girders arranged in parallel in the bridge width direction are supported on a common pier to make them continuous and rigidly connected to the pier, in which the girder ends of the left span main girders and the right span main girders are supported on the bridge seat of the pier via bolsters, and the girder ends of each main girder are connected to the pier with connecting strips erected on the bridge seat, and a support girder is placed above the gap formed between the girder ends of both main girders with a gap between them, and the support girder, the gap, the girder ends of each main girder, and the connecting strip are embedded in concrete to make the left span main girders and the right span main girders continuous and rigidly connect both continuous main girders to the pier. 上記各主桁はアーチ状を呈することを特徴とする請求項1記載の主桁連続化剛結合構造。 The continuous main girder rigid joint structure described in claim 1, characterized in that each of the main girders is arch-shaped. 上記支点部桁材を上記連結条材と連結したことを特徴とする請求項1記載の主桁連続化剛結合構造。 The main girder continuous rigid joint structure described in claim 1, characterized in that the support beam is connected to the connecting strip. 上記支点部桁材が金属製であることを特徴とする請求項1記載の主桁連続化剛結合構造。 The main girder continuous rigid joint structure described in claim 1, characterized in that the support girder material is made of metal. 上記支点部桁材が鉄筋から成ることを特徴とする請求項4記載の主桁連続化剛結合構造。 The main girder continuous rigid joint structure described in claim 4, characterized in that the support girder is made of steel bars. 上記支点部桁材がプレストレストコンクリート製であることを特徴とする請求項1記載の主桁連続化剛結合構造。 The main girder continuous rigid joint structure described in claim 1, characterized in that the support girder is made of prestressed concrete. 上記枕材の桁支持面を曲面構造又は多角面構造としたことを特徴とする請求項1記載の主桁連続化剛結合構造。 The main girder continuous rigid joint structure described in claim 1, characterized in that the girder support surface of the pillow material is a curved or polygonal structure. 上記支点部桁材よりも上位で上記連結条材の上端を支圧材と連結し、該支圧材の上面にナットを球面座金を介して定着したことを特徴とする請求項1記載の主桁連続化剛結合構造。
2. The main girder continuous rigid connection structure according to claim 1, characterized in that the upper end of the connecting strip is connected to a support material above the support point girder, and a nut is fixed to the upper surface of the support material via a spherical washer.
JP2024062956A 2024-04-09 2024-04-09 Continuous rigid joint structure for main girder Active JP7539643B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024062956A JP7539643B1 (en) 2024-04-09 2024-04-09 Continuous rigid joint structure for main girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2024062956A JP7539643B1 (en) 2024-04-09 2024-04-09 Continuous rigid joint structure for main girder

Publications (1)

Publication Number Publication Date
JP7539643B1 true JP7539643B1 (en) 2024-08-26

Family

ID=92499057

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2024062956A Active JP7539643B1 (en) 2024-04-09 2024-04-09 Continuous rigid joint structure for main girder

Country Status (1)

Country Link
JP (1) JP7539643B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154060A (en) 2011-01-25 2012-08-16 Asahi Engineering Kk Continued structure of main girders
JP2014040753A (en) 2012-08-23 2014-03-06 Asahi Engineering Kk Bridge girder support structure
JP7266808B1 (en) 2023-01-17 2023-05-01 朝日エンヂニヤリング株式会社 Main girder continuous rigid connection method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012154060A (en) 2011-01-25 2012-08-16 Asahi Engineering Kk Continued structure of main girders
JP2014040753A (en) 2012-08-23 2014-03-06 Asahi Engineering Kk Bridge girder support structure
JP7266808B1 (en) 2023-01-17 2023-05-01 朝日エンヂニヤリング株式会社 Main girder continuous rigid connection method

Similar Documents

Publication Publication Date Title
US11578465B2 (en) Temporary support system for road bridge pre-fabricated small box girder-type concealed bent cap, and method of constructing same
KR102067254B1 (en) Negative moment reinforcement structure using girder and cross beam and method for constructing this same
KR100936944B1 (en) Continuity Girder, Continuity Structure of Girder and Construction Method of the Same
KR100823448B1 (en) The improved seismic resistant continuation structure of prestressed concrete composite beam bridge and method thereof
JP2003253621A (en) Continuous beam structure for continuing existing simple beam bridge
WO2024154365A1 (en) Main-girder continuous rigid-joint construction method
JP4728453B1 (en) Main girder continuous structure
JP2008088634A (en) Composite steel-concrete floor slab
JP7539643B1 (en) Continuous rigid joint structure for main girder
KR102033052B1 (en) Method for constructing truss bridge support with infilled tube using src girder
KR101272119B1 (en) PSC box girder of Propiled steel web for constructing bridge
KR102405028B1 (en) Composite steel continuous bridge and construction method thereof
KR20030094195A (en) Improved prestressed steel reinforced concrete beam and bridge construction method using the same beam
KR20090054511A (en) Pre-cast concrete elments and construction method using thereof for upper portion of bridge
JP2024507436A (en) Composite RCC deck and prestressed parabolic lower chord suspended open web steel girder bridge superstructure
KR102132338B1 (en) Steel Composite PSC Girder Including Arched Reinforcement
JP4607785B2 (en) Continuous viaduct
JPH10140525A (en) Bridge girder
KR102575432B1 (en) Construction Method of Ramen Bridge Using Partial Rigid Composite Box Girder
KR102471342B1 (en) Steel-concrete girder and construction method thereof
JP2005060964A (en) Construction method for girder bridge
KR20020020315A (en) Continuous Preflex Beam Structures Using External Tendon and Constructing Method thereof
KR102618251B1 (en) Bridge Deck Replacement Construction Method
KR100946277B1 (en) A arch bridge and method for constructing it
KR101489352B1 (en) Torsion Reinforcing Structure and Bridge Girders having such reinforcing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240409

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20240409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240624

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240801

R150 Certificate of patent or registration of utility model

Ref document number: 7539643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150