JP7537703B2 - Gas inlet pipe - Google Patents

Gas inlet pipe Download PDF

Info

Publication number
JP7537703B2
JP7537703B2 JP2021070202A JP2021070202A JP7537703B2 JP 7537703 B2 JP7537703 B2 JP 7537703B2 JP 2021070202 A JP2021070202 A JP 2021070202A JP 2021070202 A JP2021070202 A JP 2021070202A JP 7537703 B2 JP7537703 B2 JP 7537703B2
Authority
JP
Japan
Prior art keywords
porous member
gas
molten metal
pipe
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021070202A
Other languages
Japanese (ja)
Other versions
JP2022165030A (en
Inventor
川端祐樹
柿本康弘
高橋優介
今枝孝文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
TYK Corp
Original Assignee
Denso Corp
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, TYK Corp filed Critical Denso Corp
Priority to JP2021070202A priority Critical patent/JP7537703B2/en
Publication of JP2022165030A publication Critical patent/JP2022165030A/en
Application granted granted Critical
Publication of JP7537703B2 publication Critical patent/JP7537703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Charging Or Discharging (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

本発明は、溶湯容器内の金属溶湯に浸漬させてガスを吹き込むガス吹き込み管に関する。 The present invention relates to a gas injection tube that is immersed in molten metal in a molten metal container and injects gas into it.

従来より、金属溶湯内に混入した酸素や水素などのガスを排除する事を目的として、不活性ガスを溶湯中に吹き込むガス吹き込みが行われている。例えば、従来例として特許文献1に記載の保持炉用ガス吹き込み装置は、溶湯保持炉内にガス吹き込み管を設置し、このガス吹き込み管の先端部を溶湯保持炉の底面近傍まで延設したものである。ガス吹き込み管の先端部には、ポーラス状の吹き出し具が連結されている。不活性ガスは、吹き込み管を介して保持炉内に流入し、この吹き出し具の細孔から金属溶湯内に拡散する。この構成によれば、不活性ガスが金属溶湯中の酸素と物理吸着し、酸素を不活性状態にする。 Conventionally, gas injection has been performed by injecting an inert gas into the molten metal in order to eliminate gases such as oxygen and hydrogen that have become mixed into the molten metal. For example, a gas injection device for a holding furnace described in Patent Document 1, as a conventional example, is configured by installing a gas injection tube in a molten metal holding furnace and extending the tip of this gas injection tube to the vicinity of the bottom surface of the molten metal holding furnace. A porous blowing tool is connected to the tip of the gas injection tube. The inert gas flows into the holding furnace through the blowing tube and diffuses into the molten metal through the pores of the blowing tool. With this configuration, the inert gas physically adsorbs to the oxygen in the molten metal, rendering the oxygen inactive.

特開平4-200858JP 4-200858 A

しかしながら、従来例では吹き出し具がガス吹き込み管の先端部のみに連結されているので、ガスを吹き込む際のガスの圧力によって吹き出し具が脱落し破損する恐れがある。その場合、先端部からガスが勢いよく吹き出す突沸が起きる恐れがある。また、保持炉内に圧力がかかっている場合、金属溶湯がガス吹き込み管内へ逆流する恐れがある。 However, in the conventional example, the blowing tool is connected only to the tip of the gas blowing tube, so there is a risk that the blowing tool will fall off and be damaged by the gas pressure when the gas is blown in. In that case, there is a risk of bumping, in which gas is forcefully blown out from the tip. In addition, if pressure is applied inside the holding furnace, there is a risk of the molten metal flowing back into the gas blowing tube.

本発明の目的は、突沸を防止し、金属溶湯がガス管内へ逆流することを防止するガス吹き込み管を提供することにある。 The object of the present invention is to provide a gas injection pipe that prevents bumping and prevents the molten metal from flowing back into the gas pipe.

本発明の態様に係るガス吹き込み管は、溶湯容器内の金属溶湯に浸漬させてガスを吹き込むガス吹き込み管であって、第一端部と第二端部を有する接続部材と、前記接続部材に形成される多孔質部材と、前記接続部材の前記第二端部に接続されるガス管を備え、前記接続部材は、内部に貫通孔部が形成され、前記多孔質部材は、前記第一端部に繋がる第一端部外周部を覆い、前記第一端部に臨む前記貫通孔部を塞ぎ、さらに、前記貫通孔部において、内部の少なくとも一部を塞ぐように形成され、前記溶湯容器内の前記金属溶湯に浸漬され、前記ガス管より前記ガスが導入されると、前記ガスは前記多孔質部材を通って前記溶湯容器内に吹き込む。 The gas injection pipe according to the present invention is a gas injection pipe that is immersed in the molten metal in a molten metal container to inject gas, and includes a connection member having a first end and a second end, a porous member formed in the connection member, and a gas pipe connected to the second end of the connection member, the connection member having a through hole formed therein, the porous member covering the outer periphery of the first end connected to the first end, blocking the through hole facing the first end, and further formed so as to block at least a part of the inside of the through hole, the gas injection pipe is immersed in the molten metal in the molten metal container, and when the gas is introduced from the gas pipe, the gas is injected into the molten metal container through the porous member.

これによれば、多孔質部材は、第一端部に繋がる第一端部外周部を覆い、第一端部に臨む貫通孔部を塞ぎ、さらに、貫通孔部において、内部の少なくとも一部を塞ぐように形成される。金属溶湯に吹き込むガスは、多孔質部材を通るので、圧力が低減されて突沸の発生を防止できる。また、貫通孔部の内部の少なくとも一部に多孔質部材を備えるので、第一端部の多孔質部材が脱落した場合でも金属溶湯がガス管内へ逆流することを防止できる。 According to this, the porous member covers the outer periphery of the first end connected to the first end, blocks the through hole portion facing the first end, and is further formed so as to block at least a portion of the interior of the through hole portion. Since the gas blown into the molten metal passes through the porous member, the pressure is reduced and the occurrence of bumping can be prevented. In addition, since at least a portion of the interior of the through hole portion is provided with a porous member, the molten metal can be prevented from flowing back into the gas pipe even if the porous member of the first end portion falls off.

また、前記ガス吹き込み管は、前記多孔質部材が、第一多孔質部材と第二多孔質部材とからなり、前記第一多孔質部材は、前記第一端部に繋がる前記第一端部外周部を覆い、且つ前記第一端部に臨む前記貫通孔部を塞ぎ、前記第二多孔質部材は、前記貫通孔部における内部の少なくとも一部を塞いでもよい。 The gas inlet pipe may be configured such that the porous member is made of a first porous member and a second porous member, the first porous member covers the outer periphery of the first end connected to the first end and blocks the through hole portion facing the first end, and the second porous member blocks at least a portion of the inside of the through hole portion.

この場合、多孔質部材は二つの部材に分かれるので、それぞれ独立して容易に接続部材に形成することができる。また、第一多孔質部材と第二多孔質部材とは、それぞれ独立した形状を形成できるので、製造上の自由度が増す。 In this case, the porous member is divided into two components, and each can be easily formed into a connecting member independently. In addition, the first porous member and the second porous member can be formed into independent shapes, which increases the freedom in manufacturing.

また、前記ガス吹き込み管は、前記貫通孔部が、前記第二多孔質部材の前記第一端部の側の端面と、前記第一多孔質部材の前記第二端部の側の端面との間に空間部が形成され、前記ガス管を通って注入されるガスは、前記第二多孔質部材を通った後に前記空間部を通り、さらに前記第一多孔質部材を通って前記金属溶湯に吹き込でもよい。 The gas injection pipe may have a through hole portion, a space portion formed between the end face of the second porous member on the side of the first end portion and the end face of the first porous member on the side of the second end portion, and the gas injected through the gas pipe may pass through the second porous member, then through the space portion, and then through the first porous member, before being injected into the molten metal.

この場合、ガス吹き込み管は空間部が形成される。空間部は、多孔質部材が充填されないので、空間部が多孔質部材によって充填される場合に比べて、空間部に相当する体積分の材料が低減され、材料費を低減することができる。 In this case, a space is formed in the gas injection tube. Since the space is not filled with a porous material, the amount of material equivalent to the volume of the space is reduced compared to when the space is filled with a porous material, and material costs can be reduced.

また、前記ガス吹き込み管は、前記第一多孔質部材と前記第二多孔質部材とは、同種材料で形成されてもよい。この場合、第一多孔質部材と第二多孔質部材とを同一の材料で形成することにより、材料コストを低減でき、同一の工法で製作することができる。 The first and second porous members of the gas inlet pipe may be made of the same material. In this case, by making the first and second porous members of the same material, material costs can be reduced and they can be manufactured using the same construction method.

また、前記ガス吹き込み管は、前記第一多孔質部材と前記第二多孔質部材とは、異種材料で形成されてもよい。この場合、ガスの流路において、直列的に並ぶ第一多孔質部材と第二多孔質部材とを異なる材料で形成することにより、ガスの吹き込み部である下流側と、上流側とで、異なる多孔質材料の特性を活かすことができる。 The first and second porous members of the gas inlet pipe may be made of different materials. In this case, by making the first and second porous members arranged in series in the gas flow path from different materials, it is possible to take advantage of the characteristics of different porous materials on the downstream side, which is the gas inlet section, and the upstream side.

本発明のガス吹き込み管1を溶湯容器20内に浸漬させた状態を示す図である。FIG. 2 is a diagram showing a state in which the gas blowing tube 1 of the present invention is immersed in a molten metal container 20. 本発明の第一実施形態であるガス吹き込み管1a(11a、12a)を示す図であって、貫通孔部9の内部において空間部6を備え、(a)及び(b)は、貫通孔部の第二端部の側は第二多孔質部材で充填され、(c)は、貫通孔部の第二端部の側の一部は第二多孔質部材の無い凹部16が形成される場合を示す。FIG. 1 shows a gas injection pipe 1a (11a, 12a) according to a first embodiment of the present invention, which has a space 6 inside a through hole 9, and (a) and (b) show a case in which the second end side of the through hole is filled with a second porous member, and (c) shows a case in which a recess 16 is formed in a portion of the second end side of the through hole without the second porous member. 本発明の第二実施形態であるガス吹き込み管1b(11b)を示す図であって、貫通孔部9に空間部6を有しない場合であり、(a)は貫通孔部9が第二多孔質部材23によって充填される場合を示し、(b)は第一多孔質部材13が貫通孔部9の内部にまで形成され、貫通孔部9が第二多孔質部材23と第一多孔質部材13とによって充填される場合を示す。1A and 1B are diagrams showing a gas injection pipe 1b (11b) according to a second embodiment of the present invention, in which there is no space 6 in the through-hole portion 9, where (a) shows a case in which the through-hole portion 9 is filled with a second porous member 23, and (b) shows a case in which the first porous member 13 is formed up to the inside of the through-hole portion 9, and the through-hole portion 9 is filled with the second porous member 23 and the first porous member 13. 本発明の第三実施形態であるガス吹き込み管1c(11c)を示す図であって、多孔質部材3は一つで形成され、(a)は多孔質部材3が定形耐火物からなる場合を示し、(b)は多孔質部材3が不定形耐火物からなる場合を示す。These figures show a gas injection pipe 1c (11c) according to a third embodiment of the present invention, in which the porous member 3 is formed as a single piece, with (a) showing the case in which the porous member 3 is made of a shaped refractory material, and (b) showing the case in which the porous member 3 is made of an unshaped refractory material. 本発明の第四実施形態であるガス吹き込み管1d(11d)を示す図であって、第一多孔質部材13と第二多孔質部材23とが異種材料で形成される場合を示し、(a)は第二多孔質部材が定型耐火物からなり、第一多孔質部材が不定形耐火物からなる場合を示し、(b)は第二多孔質部材が不定形耐火物又はセラミックファイバーからなり、第一多孔質部材が定型耐火物からなる場合を示す。These figures show a gas injection pipe 1d (11d) according to a fourth embodiment of the present invention, in which the first porous member 13 and the second porous member 23 are formed of different materials, with (a) showing a case in which the second porous member is made of a molded refractory material and the first porous member is made of an amorphous refractory material, and (b) showing a case in which the second porous member is made of an amorphous refractory material or ceramic fiber and the first porous member is made of a molded refractory material. 本発明のガス吹き込み管において、図2(a)、(c)に示す場合の製造方法を示す図である。3A and 3B are diagrams showing a manufacturing method of the gas inlet tube of the present invention in the cases shown in FIGS. 2(a) and 2(c). 本発明のガス吹き込み管において、図2(b)、図3、図4(a)、図4(b)に示す場合の製造方法を示す図である。4(a) and 4(b) in the gas inlet tube of the present invention. FIG. 従来のガス吹き込み管を示す図であり、第一多孔質部材13に相当する部材のみが形成される場合を示す。FIG. 1 is a diagram showing a conventional gas inlet pipe, in which only a member corresponding to a first porous member 13 is formed.

以下、図面を参照し、本発明を具現化したガス吹き込み管1を説明する。参照する図面は、本発明が採用しうる技術的特徴を説明するために用いられるものである。図面に記載されている装置の構成は、それのみに限定する趣旨ではなく、単なる説明例である。 The gas injection pipe 1 embodying the present invention will be described below with reference to the drawings. The drawings are used to explain the technical features that can be adopted by the present invention. The configuration of the device shown in the drawings is not intended to be limiting, but is merely an illustrative example.

<各実施形態に共通の構成>
図1、図2を例として参照し、本発明に係るガス吹き込み管1の各実施形態に共通の構成を説明する。図1に示すように、本発明のガス吹き込み管1は、溶湯容器20内の金属溶湯21に浸漬させてガス22を吹き込む。
<Configuration common to each embodiment>
A configuration common to each embodiment of the gas blowing pipe 1 according to the present invention will be described with reference to Fig. 1 and Fig. 2. As shown in Fig. 1, the gas blowing pipe 1 according to the present invention is immersed in a molten metal 21 in a molten metal container 20 to blow in a gas 22.

図2等に示すように、ガス吹き込み管1は、第一端部7と第二端部8を有する接続部材2と、接続部材2に形成される多孔質部材3と、接続部材2の第二端部8に接続されるガス管4を備える。接続部材2は、内部に貫通孔部9が形成される。多孔質部材3は、第一端部7に繋がる第一端部外周部7aを覆い、第一端部7に臨む貫通孔部9を塞ぎ、さらに、貫通孔部9において、内部の少なくとも一部を塞ぐように形成される。 As shown in FIG. 2 etc., the gas injection pipe 1 comprises a connection member 2 having a first end 7 and a second end 8, a porous member 3 formed in the connection member 2, and a gas pipe 4 connected to the second end 8 of the connection member 2. The connection member 2 has a through hole portion 9 formed therein. The porous member 3 covers the first end outer periphery 7a connected to the first end 7, blocks the through hole portion 9 facing the first end 7, and is formed so as to block at least a portion of the interior of the through hole portion 9.

ガス吹き込み管1は、溶湯容器20内の金属溶湯21に浸漬され、ガス管4よりガス22が導入されると、ガス22は多孔質部材3を通って溶湯容器20内に吹き込む。ガス22は、例としてアルゴンガス又は窒素ガスである。また、金属溶湯21は、例としてアルミニウム、銅等の非鉄金属からなる。なお、多孔質部材3は、後述するように、一つの繋がった部材によって形成されてもよいし、複数に分離して形成されてもよい。多孔質部材3には、セラミックファイバー、定型レンガ等の定型耐火物、或いはキャスタブル等の不定形耐火物のいずれかが含まれる。 The gas blowing tube 1 is immersed in the molten metal 21 in the molten metal container 20, and when gas 22 is introduced from the gas tube 4, the gas 22 is blown into the molten metal container 20 through the porous member 3. The gas 22 is, for example, argon gas or nitrogen gas. The molten metal 21 is, for example, made of a non-ferrous metal such as aluminum or copper. The porous member 3 may be formed of a single connected member, as described below, or may be formed as multiple separate members. The porous member 3 includes either a fixed refractory material such as ceramic fiber or fixed brick, or an unfixed refractory material such as castable.

次に、図2等を参照して、多孔質部材3が、第一多孔質部材13と第二多孔質部材23とからなる場合を説明する。第一多孔質部材13と第二多孔質部材23とは互いに独立した部材である。第一多孔質部材13は、第一端部7に繋がる第一端部外周部7aを覆い、且つ第一端部7に臨む貫通孔部9を塞ぐよう形成される。第二多孔質部材23は、貫通孔部9における内部の少なくとも一部を塞ぐよう形成される。 Next, referring to FIG. 2 etc., a case where the porous member 3 is composed of a first porous member 13 and a second porous member 23 will be described. The first porous member 13 and the second porous member 23 are independent members. The first porous member 13 is formed so as to cover the first end outer periphery 7a connected to the first end 7 and to block the through hole portion 9 facing the first end 7. The second porous member 23 is formed so as to block at least a part of the inside of the through hole portion 9.

<各実施形態に共通の解決課題と効果>
以上説明したガス吹き込み管1は、以下の課題を解決し、その効果を奏する。従来のガス吹き込み管は、図8に示すように、吹き出し具がガス吹き込み管の先端部のみに連結されているので、ガスを吹き込む際のガスの圧力によって吹き出し具が脱落し破損する恐れがある。その場合、先端部からガスが勢いよく吹き出す突沸が起きる恐れがある。また、溶湯容器内に圧力がかかっている場合、金属溶湯がガス吹き込み管内へ逆流する恐れがある。
<Problems to be solved and effects common to each embodiment>
The gas blowing pipe 1 described above solves the following problems and has the following effects. In the conventional gas blowing pipe, as shown in Fig. 8, the blowing tool is connected only to the tip of the gas blowing pipe, so there is a risk that the blowing tool will fall off and be damaged by the gas pressure when blowing gas. In that case, there is a risk of bumping, in which gas is blown out forcefully from the tip. In addition, when pressure is applied inside the molten metal container, there is a risk of the molten metal flowing back into the gas blowing pipe.

また、一般にアルミニウムや銅の溶湯中にアルゴンガスや窒素ガスなどの不活性ガスを吹込むことにより、溶湯中に混入している水素濃度を下げることができる。また溶湯中の酸化物等の不純物もガスの気泡により凝集してスラグとして溶湯から分離できるので、金属の性能向上をはかることができる。そしてこの脱ガス処理のための装置としては、高速回転する回転翼端部からガスの気泡を細分化しつつ吹込む撹拌式のものが多く用いられていたが、高速回転に伴う装置のトラブルが発生しやすく、またガス量が多い場合は気泡の細分化は困難であった。 In general, the hydrogen concentration in molten aluminum or copper can be reduced by injecting an inert gas such as argon or nitrogen into the molten metal. Furthermore, impurities such as oxides in the molten metal can be agglomerated by the gas bubbles and separated from the molten metal as slag, improving the performance of the metal. The equipment used for this degassing process is often a stirring type that injects gas bubbles into the metal from the tip of a rotating blade that rotates at high speed, but this is prone to equipment problems due to high speed rotation, and it is difficult to break down the bubbles when there is a large amount of gas.

本発明のガス吹き込み管1は、これらの課題を解決するものである。ガス吹き込み管1から溶湯容器20内の金属溶湯21に吹き込むガス22は、多孔質部材3を通るので、気泡を細分化することができ、脱ガス性能が向上する。また、ガス22は、金属溶湯21の酸化物等の不純物をガス22の気泡により凝集してスラグとして分離できる。さらに、ガス22は圧力が低減されるので、突沸の発生を防止できる。 The gas injection tube 1 of the present invention solves these problems. The gas 22 injected from the gas injection tube 1 into the molten metal 21 in the molten metal container 20 passes through the porous member 3, which allows the bubbles to be broken down into smaller pieces, improving degassing performance. The gas 22 also causes impurities such as oxides in the molten metal 21 to coagulate with the bubbles of the gas 22, allowing them to be separated as slag. Furthermore, the pressure of the gas 22 is reduced, which prevents bumping from occurring.

また、図2等の例に示すように、貫通孔部9の少なくとも一部に多孔質部材3(図2に示す例では、後述する第二多孔質部材23)を備えるので、第一端部7周辺の多孔質部材3(図2に示す例では、後述する第一多孔質部材13)が脱落した場合でも、貫通孔部9の内部に形成された多孔質部材3(図2に示す例では、第二多孔質部材23)が防波堤となる。よって、金属溶湯21がガス管4内へ逆流することを防止できる。 In addition, as shown in the example of FIG. 2, etc., at least a part of the through hole portion 9 is provided with a porous member 3 (in the example shown in FIG. 2, the second porous member 23 described later). Therefore, even if the porous member 3 around the first end portion 7 (in the example shown in FIG. 2, the first porous member 13 described later) falls off, the porous member 3 formed inside the through hole portion 9 (in the example shown in FIG. 2, the second porous member 23) acts as a breakwater. This prevents the molten metal 21 from flowing back into the gas pipe 4.

また、多孔質部材3が、第一多孔質部材13と第二多孔質部材23とからなる場合は以下の効果がある。すなわち、ガス吹き込み管1は、第一多孔質部材13と第二多孔質部材23とが直列的に形成されるので、一方に脱落等の不具合が生じても、他方がその機能を補うことができる。その機能とは、ガス22の気泡を細分化して金属溶湯21へ吹き込む機能と、金属溶湯21がガス管4内に逆流することを防止する機能である。 Furthermore, when the porous member 3 is composed of the first porous member 13 and the second porous member 23, the following effect is obtained. That is, since the gas injection pipe 1 has the first porous member 13 and the second porous member 23 formed in series, even if a defect such as falling off occurs in one, the other can compensate for its function. The function is to break down the bubbles of the gas 22 and inject them into the molten metal 21, and to prevent the molten metal 21 from flowing back into the gas pipe 4.

さらに、ガス吹き込み管1は、ガス管4から吹き込むガス22が多孔質部材3である第二多孔質部材23と、第一多孔質部材13とを通って金属溶湯21へ吹き込むので、気泡を細分化することができる。ガス22は、脱ガス性能を向上させることができる。また、金属溶湯21の酸化物等の不純物を気泡により凝集してスラグとして分離する効果をより高めることができる。 In addition, the gas injection pipe 1 blows the gas 22 from the gas pipe 4 through the second porous member 23, which is the porous member 3, and the first porous member 13 into the molten metal 21, so that the bubbles can be broken down. The gas 22 can improve the degassing performance. In addition, the effect of agglomerating impurities such as oxides in the molten metal 21 by the bubbles and separating them as slag can be further improved.

<第一実施形態の構成>
次に、図2を参照して、本発明の態様に係る第一実施形態のガス吹き込み管1aの構成を説明する。すでに説明した共通部分は、説明を省略する。ガス吹き込み管1aは、貫通孔部9が第二多孔質部材23の第一端部7の側の端面23aと、第一多孔質部材13の第二端部8の側の端面13aとの間に空間部6が形成される。ガス管4を通って注入されるガス22は、第二多孔質部材23を通った後に空間部6を通り、さらに第一多孔質部材13を通って金属溶湯21に吹き込む。
<Configuration of First Embodiment>
Next, the configuration of the gas blowing pipe 1a of the first embodiment according to the present invention will be described with reference to Fig. 2. Explanation of the common parts already described will be omitted. In the gas blowing pipe 1a, a space 6 is formed between an end face 23a of the through hole portion 9 on the side of the first end 7 of the second porous member 23 and an end face 13a on the side of the second end 8 of the first porous member 13. The gas 22 injected through the gas pipe 4 passes through the second porous member 23, the space 6, and then the first porous member 13 to be blown into the molten metal 21.

図2(a)、(b)に示す例(それぞれ、ガス吹き込み管1aとガス吹き込み管11a)では、第二多孔質部材23は、接続部材2の第二端部8まで貫通孔部9に充填される。これに対して、図2(c)に示す例(ガス吹き込み管12a)では、第二多孔質部材23の第二端部8の側の端面23bと、接続部材2の第二端部8との間には凹部16が形成される。図2等に示す接続部材2は、貫通孔部9に段部9aが形成され、空間部6は段部9aと第一端部7との間に形成される。 2(a) and (b) (gas inlet tube 1a and gas inlet tube 11a, respectively), the second porous member 23 is filled in the through hole portion 9 up to the second end 8 of the connection member 2. In contrast, in the example shown in FIG. 2(c) (gas inlet tube 12a), a recess 16 is formed between the end face 23b on the second end 8 side of the second porous member 23 and the second end 8 of the connection member 2. In the connection member 2 shown in FIG. 2 etc., a step 9a is formed in the through hole portion 9, and a space portion 6 is formed between the step 9a and the first end 7.

すでに説明したように、多孔質部材3が第一多孔質部材13と第二多孔質部材23とからなるときは、段部9aが形成される。段部9aは、第二多孔質部材23を保持する役目を果たす。すなわち、ガス管4からガス22が送られ、第二多孔質部材23に到達すると、ガス22が第二多孔質部材23を第一端部7の側へ押し出す力が働く。その際、仮に段部9aが無くて貫通孔部9がストレートの場合、第二多孔質部材23はガス22の圧力を受ける部分が無く、第一端部7の側へ押し出される可能性がある。なお、図2(a)と図2(b)の違いは後述する。 As already explained, when the porous member 3 is composed of the first porous member 13 and the second porous member 23, a step 9a is formed. The step 9a serves to hold the second porous member 23. That is, when the gas 22 is sent from the gas pipe 4 and reaches the second porous member 23, the gas 22 exerts a force to push the second porous member 23 toward the first end 7. At that time, if there is no step 9a and the through hole portion 9 is straight, there is no part of the second porous member 23 that receives the pressure of the gas 22, and it is possible that it will be pushed toward the first end 7. The difference between Figure 2(a) and Figure 2(b) will be described later.

<第一実施形態の効果>
以上説明した、第一実施形態のガス吹き込み管1aは、以下の効果を奏する。ガス吹き込み管1aは、安定した圧力で金属溶湯21内へガス22を吹き込むことができる。
Effects of the First Embodiment
The gas blowing pipe 1a of the first embodiment described above has the following advantages: The gas blowing pipe 1a can blow the gas 22 into the molten metal 21 at a stable pressure.

ガス吹き込み管1aは、各実施形態に共通の効果に加え、空間部6が形成されることにより、材料費を低減できるという効果を奏する。すなわち、空間部6は、多孔質部材3が充填されないので、空間部6が多孔質部材3によって充填される場合に比べて、空間部6に相当する体積分の材料が低減され、材料費を低減することができる。 In addition to the effects common to each embodiment, the gas injection tube 1a has the effect of reducing material costs by forming the space 6. That is, since the space 6 is not filled with the porous member 3, the material equivalent to the volume of the space 6 is reduced compared to when the space 6 is filled with the porous member 3, and material costs can be reduced.

また、第二多孔質部材23が定型耐火物の場合、空間部6を形成することにより、製造が容易となるという効果がある。定型耐火物の場合、貫通孔部9の内部形状に合わせて予め第二多孔質部材23を成形するが、第一端部7の側の端面23aに凹凸が発生する場合がある。空間部6が形成されることにより、端面23aと第一多孔質部材13の第二端部8の側の端面13aとは接触しないので、端面23aに凹凸が発生したとしても許容することができるからである。 In addition, when the second porous member 23 is a standard refractory material, forming the space 6 has the effect of facilitating manufacturing. In the case of a standard refractory material, the second porous member 23 is molded in advance to match the internal shape of the through hole portion 9, but unevenness may occur on the end face 23a on the side of the first end portion 7. By forming the space 6, the end face 23a and the end face 13a on the side of the second end portion 8 of the first porous member 13 do not come into contact with each other, so even if unevenness occurs on the end face 23a, it is acceptable.

さらに、次の効果を期待できる場合がある。ガス管4を通るガス22は、第二多孔質部材23を通った後に空間部6に入り、さらに第一多孔質部材13を通って金属溶湯21内に吹き込む。空間部6は、第二多孔質部材23を通って注入されたガス22をプールし、一定の圧力に維持された状態となる。すると、空間部6は、上流側のガス22の圧力に変動が生じても、下流側である第一多孔質部材13へは一定範囲の圧力でガス22を送り出すことができるダンパー効果を生じる。よって、ガス吹き込み管1aは、ガス22を供給する供給装置の圧力が変動したとしても、安定した圧力で金属溶湯21にガス22を吹き込むことができる。よって、圧力が変動してガス22が高圧で吹き込むと発生する突沸を防止できる。以上は、ガス22の吹き込みが大容量の場合に特に効果が期待できる。 In addition, the following effect may be expected. The gas 22 passing through the gas pipe 4 enters the space 6 after passing through the second porous member 23, and is then blown into the molten metal 21 through the first porous member 13. The space 6 pools the gas 22 injected through the second porous member 23 and is maintained at a constant pressure. Then, the space 6 produces a damper effect that allows the gas 22 to be sent to the downstream first porous member 13 at a constant pressure even if the pressure of the gas 22 on the upstream side fluctuates. Therefore, the gas blowing pipe 1a can blow the gas 22 into the molten metal 21 at a stable pressure even if the pressure of the supply device that supplies the gas 22 fluctuates. Therefore, bumping that occurs when the pressure fluctuates and the gas 22 is blown in at high pressure can be prevented. The above effects are particularly expected when a large volume of gas 22 is blown in.

<第二実施形態のガス吹き込み管1bの構成> <Configuration of gas inlet pipe 1b in the second embodiment>

次に、図3を参照して、本発明の態様に係る第二実施形態のガス吹き込み管1b(11b)の構成を説明する。図3において、図2におけるガス吹き込み管1aと共通の構成は同様の符号を付すか、或いは省略する。また、共通の構成は説明を省略する。 Next, the configuration of the gas blowing pipe 1b (11b) of the second embodiment according to the present invention will be described with reference to FIG. 3. In FIG. 3, components common to the gas blowing pipe 1a in FIG. 2 are given the same reference numerals or are omitted. Also, descriptions of the common components will be omitted.

ガス吹き込み管1bは、第一端部7、又は貫通孔部9の内部において、第二多孔質部材23と第一多孔質部材13とが接触する。ガス管4を通って注入されるガス22は、第二多孔質部材23を通った後に第一多孔質部材13を通って溶湯容器20内に吹き込む。第二多孔質部材23と第一多孔質部材13とは、互いに接する面が互いに密着して隙間が無い状態でもよいし、部分的に接触して部分的に隙間があってもよい。 At the first end 7 or inside the through hole 9 of the gas blowing pipe 1b, the second porous member 23 and the first porous member 13 come into contact with each other. The gas 22 injected through the gas pipe 4 passes through the second porous member 23 and then the first porous member 13, and is blown into the molten metal container 20. The second porous member 23 and the first porous member 13 may be in a state where the contacting surfaces are in close contact with each other with no gaps, or may be in partial contact with each other with partial gaps.

図3(a)に示すガス吹き込み管1bは、接続部材2の貫通孔部9が、第二多孔質部材23によって充填される。貫通孔部9は、第二多孔質部材23によって接続部材2の第一端部7から第二端部8まで充填され、第一端部7において第一多孔質部材13と接触する。図3(b)に示すガス吹き込み管11bは、接続部材2の貫通孔部9が、第二多孔質部材23によって接続部材2の第二端部8から段部9aまで充填され、第一多孔質部材13によって段部9aから第一端部7まで充填されている。 In the gas blowing tube 1b shown in FIG. 3(a), the through hole portion 9 of the connection member 2 is filled with the second porous member 23. The through hole portion 9 is filled with the second porous member 23 from the first end 7 to the second end 8 of the connection member 2, and contacts the first porous member 13 at the first end 7. In the gas blowing tube 11b shown in FIG. 3(b), the through hole portion 9 of the connection member 2 is filled with the second porous member 23 from the second end 8 to the step portion 9a of the connection member 2, and is filled with the first porous member 13 from the step portion 9a to the first end 7.

<第二実施形態の効果>
以上説明した、第二実施形態のガス吹き込み管1bは、以下の課題を解決し効果を奏する。ガス吹き込み管1bは、ガス吹き込み管1aと同様に、安定した圧力で金属溶湯21内へガス22を吹き込むことができる。
<Effects of the Second Embodiment>
The gas blowing pipe 1b of the second embodiment described above solves the following problems and provides the following effects: The gas blowing pipe 1b can blow the gas 22 into the molten metal 21 at a stable pressure, similar to the gas blowing pipe 1a.

ガス吹き込み管1b(11b)は、接続部材2における貫通孔部9の全長と、ガス22の吹き込み部である第一端部7の先の部分まで第二多孔質部材23或いは第一多孔質部材13が連続する構成である。よって、ガス22は多孔質部材3である第二多孔質部材23、及び第一多孔質部材13を通る流路が長くなり、吹き込む際の圧力がより安定する。 The gas blowing pipe 1b (11b) is configured so that the second porous member 23 or the first porous member 13 continues over the entire length of the through hole portion 9 in the connection member 2 and up to the tip of the first end portion 7, which is the blowing portion of the gas 22. Therefore, the flow path of the gas 22 passing through the second porous member 23, which is the porous member 3, and the first porous member 13 becomes longer, and the pressure when blowing becomes more stable.

また、ガス吹き込み管1b(11b)は、貫通孔部9が、第二多孔質部材23、又は、第二多孔質部材23と第一多孔質部材13とによって充填されてもよい。この場合、貫通孔部9を通るガス22は、常に第一多孔質部材13又は第二多孔質部材23のいずれかを通るので、溶湯容器20内の金属溶湯21へ吹き込む際の圧力がより安定する。 The through hole portion 9 of the gas injection pipe 1b (11b) may be filled with the second porous member 23, or with the second porous member 23 and the first porous member 13. In this case, the gas 22 passing through the through hole portion 9 always passes through either the first porous member 13 or the second porous member 23, so that the pressure when blown into the molten metal 21 in the molten metal container 20 becomes more stable.

<第三実施形態の構成>
次に、図4を参照して、本発明の態様に係る第三実施形態のガス吹き込み管1c(11c)の構成を説明する。ガス吹き込み管1c(11c)が、ガス吹き込み管1a、及びガス吹き込み管1bと異なる点は、多孔質部材3が一つに繋がった部材からなる点である。
<Configuration of Third Embodiment>
Next, the configuration of a gas blowing pipe 1c (11c) according to a third embodiment of the present invention will be described with reference to Fig. 4. The gas blowing pipe 1c (11c) differs from the gas blowing pipes 1a and 1b in that the porous member 3 is made of a single connected member.

図4(a)に示す例は、多孔質部材3が定形耐火物からなり、接続部材2と多孔質部材3との間にはモルタル14が注入されて隙間無く固定される。図4(b)に示す例は、多孔質部材3が不定型耐火物からなる場合を示し、接続部材2を型にセットして材料を流し込んで成形するものである。 In the example shown in FIG. 4(a), the porous member 3 is made of a molded refractory material, and mortar 14 is poured between the connecting member 2 and the porous member 3 to fix them without any gaps. In the example shown in FIG. 4(b), the porous member 3 is made of an unformed refractory material, and the connecting member 2 is set in a mold and the material is poured in to form it.

図4(a)に示すガス吹き込み管1cと、図4(b)に示すガス吹き込み管11cは、共に、多孔質部材3が第一端部7に繋がる第一端部外周部7aを覆い、第一端部7に臨む貫通孔部9を塞ぎ、さらに、貫通孔部9において、内部の全体を塞ぐように形成される。 The gas injection tube 1c shown in FIG. 4(a) and the gas injection tube 11c shown in FIG. 4(b) are both formed so that the porous member 3 covers the outer periphery 7a of the first end portion connected to the first end portion 7, blocks the through hole portion 9 facing the first end portion 7, and further blocks the entire inside of the through hole portion 9.

ガス吹き込み管1c及びガス吹き込み管11cから溶湯容器20内の金属溶湯21に吹き込むガス22は、多孔質部材3を通るので、気泡を細分化することができ、脱ガス性能が向上する。また、金属溶湯21の酸化物等の不純物をガス22の気泡により凝集してスラグとして分離できる。さらに、ガス22は圧力が低減されるので、突沸の発生を防止できる。また、貫通孔部9に多孔質部材3を備えるので、第一端部7周辺の多孔質部材3が亀裂により脱落した場合でも、貫通孔部9の内部に形成された多孔質部材3が防波堤となる。よって、金属溶湯21が逆流することを防止できる。 The gas 22 blown into the molten metal 21 in the molten metal container 20 from the gas blowing pipe 1c and the gas blowing pipe 11c passes through the porous member 3, so the bubbles can be broken down and the degassing performance can be improved. In addition, impurities such as oxides in the molten metal 21 can be agglomerated by the gas 22 bubbles and separated as slag. Furthermore, the pressure of the gas 22 is reduced, so the occurrence of bumping can be prevented. In addition, since the porous member 3 is provided in the through hole portion 9, even if the porous member 3 around the first end portion 7 falls off due to a crack, the porous member 3 formed inside the through hole portion 9 acts as a breakwater. Therefore, the molten metal 21 can be prevented from flowing back.

<第一多孔質部材と第二多孔質部材とが同種材料の場合とその効果>
次に、第一多孔質部材13と第二多孔質部材23が同種材料の場合の構成と製造方法について説明する。図2(a)及び図2(c)に示す例は、第一多孔質部材13と第二多孔質部材23とがいずれも定型耐火物で形成される場合を示す。この場合、第一多孔質部材13と第二多孔質部材23とは、同種材料で形成される。なお、ここでの同種材料とは、第一多孔質部材13と第二多孔質部材23とが、いずれも予め形状が固定される定型耐火物で形成されるか、又はいずれも不定形耐火物で形成される場合のいずれかを示す。なお、同じ原材料で形成する場合も含む。
<Effects of the First Porous Member and the Second Porous Member Made of the Same Material>
Next, a configuration and a manufacturing method in the case where the first porous member 13 and the second porous member 23 are made of the same material will be described. The examples shown in Fig. 2(a) and Fig. 2(c) show a case where the first porous member 13 and the second porous member 23 are both made of a fixed refractory material. In this case, the first porous member 13 and the second porous member 23 are made of the same material. Here, the same material indicates that the first porous member 13 and the second porous member 23 are both made of a fixed refractory material whose shape is fixed in advance, or both made of an unshaped refractory material. This also includes the case where they are made of the same raw material.

図2(b)、図3に示す例は、第二多孔質部材23がセラミックファイバー、又は不定形耐火物で形成される場合を示す。第一多孔質部材13は不定形耐火物で形成され、第二多孔質部材23が不定形耐火物で形成される場合は、第一多孔質部材13と第二多孔質部材23とは、同種材料で形成される。 The examples shown in Figures 2(b) and 3 show the case where the second porous member 23 is formed of ceramic fiber or an unshaped refractory. When the first porous member 13 is formed of an unshaped refractory and the second porous member 23 is formed of an unshaped refractory, the first porous member 13 and the second porous member 23 are formed of the same material.

次に、図6、図7を参照して、第一多孔質部材13と第二多孔質部材23とが同種材料の場合のガス吹き込み管1における製造方法を説明する。図6に示すように、第一多孔質部材13が定型耐火物であり、第二多孔質部材23が定型耐火物の場合、予めそれぞれ接続部材2において形成する部分の形状に合わせて成形又は加工しておいて、接続部材2に取り付ける。その際に、接続部材2と第二多孔質部材23、及び第一多孔質部材13との接続部分にモルタル14を充填させて隙間無く接着する。 Next, referring to Figures 6 and 7, a manufacturing method for the gas injection pipe 1 when the first porous member 13 and the second porous member 23 are made of the same material will be described. As shown in Figure 6, when the first porous member 13 is a standard refractory material and the second porous member 23 is a standard refractory material, they are molded or processed in advance to match the shape of the portion to be formed in the connecting member 2, and then attached to the connecting member 2. At that time, mortar 14 is filled in the connecting portion between the connecting member 2 and the second porous member 23 and the first porous member 13 to bond them without gaps.

図2等に示す例では、接続部材2は第一端部7及び第二端部8の側にそれぞれ雄ネジ部7b、8bが形成されたニップル等を使用する。ガス管4は予め雌ネジを形成しておき、接続部材2の第二端部8に形成される雄ネジ部8bとネジ留めする。なお、接続部材2はニップル形状に限定するものではなく、貫通孔部9を備えた部材であれば形状は問わない。例えば、単なる円筒状の部材でもよく、その場合はガス管4との接続は接着、溶接その他の方法を適用できる。ただし、すでに説明したように、多孔質部材3が第一多孔質部材13と第二多孔質部材23とからなるときは、貫通孔部9に段部9aが形成される。 2, etc., the connecting member 2 uses a nipple or the like having male threads 7b, 8b formed on the first end 7 and second end 8, respectively. A female thread is formed in the gas pipe 4 in advance, and is screwed into the male thread 8b formed on the second end 8 of the connecting member 2. The connecting member 2 is not limited to a nipple shape, and any shape is acceptable as long as it is a member with a through hole portion 9. For example, a simple cylindrical member may be used, in which case the connection to the gas pipe 4 can be made by gluing, welding, or other methods. However, as already explained, when the porous member 3 is made of a first porous member 13 and a second porous member 23, a step portion 9a is formed in the through hole portion 9.

次に、図7に示すように、第一多孔質部材13が不定形耐火物で形成され、第二多孔質部材23が不定形耐火物、又はセラミックファイバーで形成される場合を説明する。第二多孔質部材23は、接続部材2の貫通孔部9に不定形耐火物、又はセラミックファイバーを注入して成形する。一方、第一多孔質部材13は、接続部材2の第一端部7に対応する型を製作し、型に接続部材2の第一端部7の側を装着した状態で不定形耐火物を注入して成形する。接続部材2とガス管4との接続は同様である。なお、多孔質部材3が図4(a)に示す形態の場合も、図7に示す場合と同様に形成される。 Next, as shown in FIG. 7, a case will be described in which the first porous member 13 is formed of an amorphous refractory material, and the second porous member 23 is formed of an amorphous refractory material or ceramic fiber. The second porous member 23 is formed by injecting amorphous refractory material or ceramic fiber into the through hole portion 9 of the connection member 2. On the other hand, the first porous member 13 is formed by producing a mold corresponding to the first end portion 7 of the connection member 2, and injecting amorphous refractory material with the first end portion 7 side of the connection member 2 attached to the mold. The connection between the connection member 2 and the gas pipe 4 is similar. Note that when the porous member 3 has the form shown in FIG. 4(a), it is formed in the same way as in the case shown in FIG. 7.

以上説明したように、第一多孔質部材13と第二多孔質部材23とが同種材料で形成されると、材料の管理、手配等のコストを低減できる。また、定型耐火物のように成形によって予め固定形状に成形できる場合は、予め必要な形状に成形又は加工し、接続部材2に接着して形成できる。なお、セラミックファイバーは定型材として使用する場合は、定型耐火物と同様の取扱となる。 As explained above, when the first porous member 13 and the second porous member 23 are made of the same material, the costs of managing and arranging the materials can be reduced. In addition, when it is possible to mold it into a fixed shape in advance, such as with a standardized refractory material, it can be molded or processed into the required shape in advance and bonded to the connecting member 2 to form it. When ceramic fiber is used as a standardized material, it is handled in the same way as a standardized refractory material.

<第一多孔質部材と第二多孔質部材とが異種材料の場合とその効果>
次に、第一多孔質部材13と第二多孔質部材23が異種材料の場合の構成と製造方法について説明する。図5に示すように、第四実施形態のガス吹き込み管1d(11d)は、第一多孔質部材13と第二多孔質部材23とが異種材料の場合を示す。ここでの異種材料とは、一方が予め形状を固定できる所謂定型耐火物であり、他方が不定形耐火物、又はセラミックファイバーの場合を示すが、異なる原材料で形成する場合も含む。
<The case where the first porous member and the second porous member are made of different materials and the effect thereof>
Next, a description will be given of a configuration and a manufacturing method in the case where the first porous member 13 and the second porous member 23 are made of different materials. As shown in Fig. 5, a gas blowing pipe 1d (11d) of the fourth embodiment shows a case where the first porous member 13 and the second porous member 23 are made of different materials. Here, the different materials indicate a case where one is a so-called fixed refractory material whose shape can be fixed in advance, and the other is an unshaped refractory material or ceramic fiber, but also includes a case where they are formed from different raw materials.

図5(a)に示すガス吹き込み管1dは、第二多孔質部材23が定型耐火物からなり、第一多孔質部材13が不定形耐火物からなる場合を示す。図5(b)に示すガス吹き込み管11dは、第二多孔質部材23が不定形耐火物、又はセラミックファイバーからなり、第一多孔質部材13が定型耐火物からなる場合を示す。それぞれの製造方法は、すでに説明したとおりである。 The gas injection pipe 1d shown in FIG. 5(a) shows a case where the second porous member 23 is made of a shaped refractory material and the first porous member 13 is made of an unshaped refractory material. The gas injection pipe 11d shown in FIG. 5(b) shows a case where the second porous member 23 is made of an unshaped refractory material or ceramic fiber and the first porous member 13 is made of a shaped refractory material. The manufacturing method for each has already been described.

第一多孔質部材13と第二多孔質部材23とが異種材料の場合、それぞれの特性を異ならせることができる。例えば、それぞれの部材の強度、重量、密度、さらには気孔率を容易に異ならせることができる。 When the first porous member 13 and the second porous member 23 are made of different materials, their respective properties can be made different. For example, the strength, weight, density, and even porosity of each member can be easily made different.

1、1a、1b、1c、1d、11a、11b、11c、11d、12a ガス吹き込み管
2 接続部材
3 多孔質部材
4 ガス管
6 空間部
7 第一端部
7a 第一端部外周部
8 第二端部
9 貫通孔部
13 第一多孔質部材
13a 端面
20 溶湯容器
21 金属溶湯
22 ガス
23 第二多孔質部材
23a 端面

1, 1a, 1b, 1c, 1d, 11a, 11b, 11c, 11d, 12a Gas blowing tube 2 Connection member 3 Porous member 4 Gas tube 6 Space portion 7 First end portion 7a First end portion outer periphery 8 Second end portion 9 Through hole portion 13 First porous member 13a End surface 20 Molten metal container 21 Molten metal 22 Gas 23 Second porous member 23a End surface

Claims (5)

溶湯容器内の金属溶湯に浸漬させてガスを吹き込むガス吹き込み管であって、
第一端部と第二端部を有する接続部材と、
前記接続部材に形成される多孔質部材と、
前記接続部材の前記第二端部に接続されるガス管を備え、
前記接続部材は、内部に貫通孔部が形成され、
前記多孔質部材は、
前記第一端部に繋がる第一端部外周部を覆い、前記第一端部に臨む前記貫通孔部を塞ぎ、さらに、前記貫通孔部において、内部の少なくとも一部を塞ぐように形成され、
前記溶湯容器内の前記金属溶湯に浸漬され、前記ガス管より前記ガスが導入されると、前記ガスは前記多孔質部材を通って前記溶湯容器内に吹き込むガス吹き込み管。
A gas injection pipe that is immersed in the molten metal in the molten metal container and injects gas into the molten metal,
a connecting member having a first end and a second end;
A porous member formed on the connection member;
a gas pipe connected to the second end of the connecting member;
The connection member has a through hole formed therein,
The porous member is
The first end portion is covered with a first end outer periphery connected to the first end portion, the through hole portion facing the first end portion is closed, and the through hole portion is further formed to close at least a part of the inside thereof,
a gas blowing pipe that is immersed in the molten metal in the molten metal container and blows the gas into the molten metal container through the porous member when the gas is introduced from the gas pipe;
前記多孔質部材は、第一多孔質部材と第二多孔質部材とからなり、
前記第一多孔質部材は、前記第一端部に繋がる前記第一端部外周部を覆い、且つ前記第一端部に臨む前記貫通孔部を塞ぎ、
前記第二多孔質部材は、前記貫通孔部における内部の少なくとも一部を塞ぐ請求項1に記載のガス吹き込み管。
The porous member includes a first porous member and a second porous member,
The first porous member covers an outer circumferential portion of the first end portion connected to the first end portion and closes the through-hole portion facing the first end portion,
The gas blowing pipe according to claim 1 , wherein the second porous member blocks at least a part of the inside of the through hole portion.
前記貫通孔部は、前記第二多孔質部材の前記第一端部の側の端面と、前記第一多孔質部材の前記第二端部の側の端面との間に空間部が形成され、
前記ガス管を通って注入されるガスは、前記第二多孔質部材を通った後に前記空間部を通り、さらに前記第一多孔質部材を通って前記金属溶湯に吹き込む請求項2に記載のガス吹き込み管。
The through-hole portion has a space formed between an end face of the second porous member on the side of the first end portion and an end face of the first porous member on the side of the second end portion,
3. The gas injection pipe according to claim 2, wherein the gas injected through the gas pipe passes through the second porous member, the space, and the first porous member before being injected into the molten metal.
前記第一多孔質部材と前記第二多孔質部材とは、同種材料で形成される請求項2又は3に記載のガス吹き込み管。 The gas injection pipe according to claim 2 or 3, wherein the first porous member and the second porous member are made of the same material. 前記第一多孔質部材と前記第二多孔質部材とは、異種材料で形成される請求項2又は3に記載のガス吹き込み管。

4. The gas injector pipe according to claim 2, wherein the first porous member and the second porous member are made of different materials.

JP2021070202A 2021-04-19 2021-04-19 Gas inlet pipe Active JP7537703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021070202A JP7537703B2 (en) 2021-04-19 2021-04-19 Gas inlet pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021070202A JP7537703B2 (en) 2021-04-19 2021-04-19 Gas inlet pipe

Publications (2)

Publication Number Publication Date
JP2022165030A JP2022165030A (en) 2022-10-31
JP7537703B2 true JP7537703B2 (en) 2024-08-21

Family

ID=83845768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021070202A Active JP7537703B2 (en) 2021-04-19 2021-04-19 Gas inlet pipe

Country Status (1)

Country Link
JP (1) JP7537703B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189687A (en) 2009-02-17 2010-09-02 Tokyo Yogyo Co Ltd Gas-blowing plug
JP2011184755A (en) 2010-03-09 2011-09-22 Mitsui Mining & Smelting Co Ltd Agitator for molten metal
JP2015183196A (en) 2014-03-20 2015-10-22 東京窯業株式会社 Apparatus for releasing and dispersing bubble

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010189687A (en) 2009-02-17 2010-09-02 Tokyo Yogyo Co Ltd Gas-blowing plug
JP2011184755A (en) 2010-03-09 2011-09-22 Mitsui Mining & Smelting Co Ltd Agitator for molten metal
JP2015183196A (en) 2014-03-20 2015-10-22 東京窯業株式会社 Apparatus for releasing and dispersing bubble

Also Published As

Publication number Publication date
JP2022165030A (en) 2022-10-31

Similar Documents

Publication Publication Date Title
JP7537703B2 (en) Gas inlet pipe
CN1988972A (en) Stopper rod for delivering gas into a molten metal
RU134090U1 (en) DEVICE FOR BOTTOM METAL GAS BLOWING
AU2012331052B2 (en) Refractory purging devices
BRPI0413794B1 (en) steel nozzle for continuous casting.
JP2011056559A (en) Casting method using core
JP4533051B2 (en) Continuous casting nozzle having an inner hole
KR101159974B1 (en) Apparatus for preventing sticking of molten steel of lance
CN108115120B (en) Protective tube for molten steel tapping process
JPS586943A (en) Refractories for blowing of gas for refining of molten metal
JPH02104454A (en) Nozzle for continuous casting
US20110140321A1 (en) Tuyer device for introducing gas media under a liquid metal level
JP2006055892A (en) Ceramic stoke and its production method
CN214185176U (en) Graphite base for horizontal continuous casting brass rod
JP7518735B2 (en) Sliding nozzle plate and manufacturing method thereof
KR100897748B1 (en) Refractory for gas bubbling
JP5164893B2 (en) Long nozzle and manufacturing method thereof
JP2007149608A (en) Fuel cell stack and manufacturing method of fuel cell stack
JP5781385B2 (en) Degassing equipment dip tube
RU2309183C2 (en) Method of blowing molten metal in ladle and device for blowing the metal with gas
JP2005298872A (en) Mass brick integral type gas blowing plug
KR20100123720A (en) Component for dispersing raw material
JPH02187246A (en) Stock for casting
JP5340533B2 (en) Lance pipe
JP2008229708A (en) Mold for producing ingot, and ingot production device for wire drawing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240704

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240730

R150 Certificate of patent or registration of utility model

Ref document number: 7537703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150