JP5781385B2 - Degassing equipment dip tube - Google Patents

Degassing equipment dip tube Download PDF

Info

Publication number
JP5781385B2
JP5781385B2 JP2011152973A JP2011152973A JP5781385B2 JP 5781385 B2 JP5781385 B2 JP 5781385B2 JP 2011152973 A JP2011152973 A JP 2011152973A JP 2011152973 A JP2011152973 A JP 2011152973A JP 5781385 B2 JP5781385 B2 JP 5781385B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
dip tube
refractory
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011152973A
Other languages
Japanese (ja)
Other versions
JP2013019022A (en
Inventor
今川 浩志
浩志 今川
真悟 梅田
真悟 梅田
幸久 松尾
幸久 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2011152973A priority Critical patent/JP5781385B2/en
Publication of JP2013019022A publication Critical patent/JP2013019022A/en
Application granted granted Critical
Publication of JP5781385B2 publication Critical patent/JP5781385B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Description

本発明は、製鉄プロセスの溶製工程で使用される脱ガス装置の浸漬管に関する。 The present invention relates to a dip tube of a degassing apparatus used in a melting step of an iron making process.

転炉において一次精錬が終了した溶鋼は、脱炭のため、また水素や窒素などの溶存ガスの除去を目的として、真空脱ガス設備(以下、単に脱ガス設備ともいう)を用いた脱ガス処理が行われる。なお、脱ガス処理の方法には、例えば、DH(Dortmunt−Horde)法やRH(Ruhrstahl−Heraus)法等がある。
この脱ガス処理に用いる脱ガス設備は、真空脱ガス槽と、その下部に設けられた浸漬管を有している。なお、浸漬管は一般に、筒状となった芯金の内周側と外周側に耐火物が設けられた構成であり、脱ガス処理は、浸漬管の先端部(下端部)を取鍋内の溶鋼中に浸漬させ、この溶鋼を真空脱ガス槽内に吸い上げ、同時に還流することで行われている。
The molten steel that has undergone primary refining in the converter is degassed using a vacuum degassing facility (hereinafter also simply referred to as degassing facility) for the purpose of decarburization and removal of dissolved gases such as hydrogen and nitrogen. Is done. Examples of the degassing method include a DH (Dortmount-Horde) method and a RH (Ruhrstahl-Heraus) method.
The degassing equipment used for this degassing process has a vacuum degassing tank and a dip tube provided in the lower part thereof. In addition, the dip tube generally has a configuration in which refractories are provided on the inner peripheral side and the outer peripheral side of the cylindrical metal core, and the degassing treatment is performed by taking the tip (lower end) of the dip tube into the ladle. The molten steel is immersed in the molten steel, and the molten steel is sucked into a vacuum degassing tank and simultaneously refluxed.

しかし、脱ガス処理は、上記したように、浸漬管の先端部を、取鍋内の溶鋼中に浸漬させた状態で行われるため、先端部(浸漬させた部分)の耐火物が損傷し、また芯金が熱で変形するため、浸漬管の長寿命化が図れなかった。
そこで、例えば、特許文献1には、筒状の芯金(芯管)と耐火物(耐火材)との間に、断熱モルタルを配置した浸漬管が開示されている。
また、特許文献2には、耐火物内への空気の侵入を抑制するために使用される不活性ガスの送給路となるパージ用配管を、芯金の外周面(芯金の外周側の耐火物内)に配設した浸漬管が開示されている。
However, as described above, the degassing treatment is performed in a state where the tip of the dip tube is immersed in the molten steel in the ladle, so that the refractory at the tip (immersed part) is damaged, In addition, since the core metal is deformed by heat, the life of the dip tube cannot be extended.
Thus, for example, Patent Document 1 discloses a dip tube in which a heat insulating mortar is disposed between a cylindrical cored bar (core tube) and a refractory (refractory material).
Further, in Patent Document 2, a purge pipe that serves as a feed path for an inert gas used to suppress the intrusion of air into the refractory is provided on the outer peripheral surface of the metal core (on the outer peripheral side of the metal core). A dip tube disposed in the refractory) is disclosed.

特開2010−168600号公報JP 2010-168600 A 特開2010−106294号公報JP 2010-106294 A

しかしながら、前記従来の浸漬管には、未だ解決すべき以下のような問題があった。
特許文献1に記載の浸漬管は、稼動に伴う受熱により、断熱モルタルの焼結が進行すると、その収縮が発生する。このため、断熱効果を向上させるために断熱モルタルの厚みを厚くした場合、断熱モルタルの収縮代に起因してウェア耐火物の背面側に生成する隙間が大きくなり、この結果、浸漬管の構造が不安定になって、煉瓦の目地開きや不定形耐火物(キャスタブル等)の亀裂といった問題が発生し、著しい場合には、ウェア耐火物の脱落が発生する恐れがある。
また、浸漬管は、高温下で稼動させるため、断熱モルタルの収縮が進行して、熱伝導率が大幅に上昇することが考えられる。特に、浸漬管の使用(処理)回数の増加に伴い、断熱モルタルの焼結(焼き締まり)が進行して組織が緻密になると、断熱性の低下が顕著となることが考えられる。
この場合、高温に曝された芯金に熱変形(膨張)が発生し、この変形に追従できない煉瓦に目地開きが発生して、また不定形耐火物に亀裂が発生して、これらが浸漬管の寿命を律速する損傷となり、浸漬管の長寿命化を図ることができない恐れがある。
However, the conventional dip tube still has the following problems to be solved.
The dip tube described in Patent Document 1 contracts when the heat-insulating mortar is sintered due to heat received during operation. For this reason, when the thickness of the heat insulating mortar is increased in order to improve the heat insulating effect, a gap generated on the back side of the wear refractory due to the shrinkage allowance of the heat insulating mortar becomes large. It becomes unstable, causing problems such as opening of brick joints and cracking of irregular shaped refractories (castable, etc.), and in extreme cases, wear refractories may fall off.
In addition, since the dip tube is operated at a high temperature, it is considered that the heat insulation mortar shrinks and the thermal conductivity is significantly increased. In particular, with the increase in the number of times of use (treatment) of the dip tube, it is conceivable that the decrease in the heat insulation property becomes significant when the sintering (sintering) of the heat insulating mortar proceeds and the structure becomes dense.
In this case, thermal deformation (expansion) occurs in the metal core exposed to high temperature, joint opening occurs in the brick that cannot follow the deformation, and cracks occur in the amorphous refractory, which are immersed in the dip tube. There is a risk that the life of the dip tube will be limited and the life of the dip tube cannot be extended.

また、特許文献2に記載の浸漬管は、パージ用配管の一部(周方向配管)を、芯金の下端部外周面に沿って周回させることで、不活性ガスによる冷却効果を利用し、芯金の下部を冷却している。
しかし、浸漬管への溶鋼からの入熱が大きく、上記した構成では、芯金の冷却能力が不十分となり、芯金変形の抑制効果が不十分となる恐れがある。また、パージ用配管は、耐火物内への空気の侵入の抑制に使用するもので、芯金の外周面側の耐火物内に埋設されているため、パージ用配管から流出するArガスの流路を制御することが困難であり、目的とする場所の芯金の冷却を、効果的に行うことが難しい。
In addition, the dip pipe described in Patent Document 2 uses a cooling effect by an inert gas by circulating a part of the purge pipe (circumferential pipe) along the outer peripheral surface of the lower end portion of the core metal, The lower part of the metal core is cooled.
However, the heat input from the molten steel to the dip tube is large, and with the above-described configuration, the cooling capacity of the core metal becomes insufficient, and the effect of suppressing the deformation of the core metal may be insufficient. The purge piping is used to suppress the intrusion of air into the refractory, and is buried in the refractory on the outer peripheral surface side of the metal core, so that the flow of Ar gas flowing out from the purge piping is It is difficult to control the path, and it is difficult to effectively cool the metal core at the target location.

本発明はかかる事情に鑑みてなされたもので、芯金の変形や、芯金を覆う耐火物の損傷を抑制し、寿命末期まで安定に長寿命化を図ることが可能な脱ガス装置の浸漬管を提供することを目的とする。 The present invention has been made in view of such circumstances, soaking of a degassing apparatus capable of suppressing the deformation of the metal core and the damage of the refractory covering the metal core, and stably extending the life until the end of the life. The purpose is to provide a tube.

前記目的に沿う本発明に係る脱ガス装置の浸漬管は、筒状の芯金の内周側と外周側に、それぞれ内周側耐火物と外周側耐火物が設けられた脱ガス装置の浸漬管において、
前記内周側耐火物と前記芯金との間、及び前記外周側耐火物と前記芯金との間のいずれか一方又は双方に、厚みが1mm以上5mm以下である断熱材が配置され、該断熱材に向けてArガスを吹付ける供給ヘッダを有する。
The dip tube of the degassing apparatus according to the present invention in accordance with the above object is a degassing apparatus immersing the inner peripheral refractory and the outer peripheral refractory on the inner peripheral side and outer peripheral side of the cylindrical cored bar, respectively. In the tube
A heat insulating material having a thickness of 1 mm or more and 5 mm or less is disposed between one or both of the inner peripheral refractory and the metal core and between the outer peripheral refractory and the metal core, A supply header for blowing Ar gas toward the heat insulating material is provided.

本発明に係る脱ガス装置の浸漬管において、前記断熱材は、雰囲気温度500℃における熱伝導率が0.05W/(m・K)以下であることが好ましい In dip tube degassing apparatus according to the present invention, the thermal insulator preferably has a thermal conductivity at ambient temperature of 500 ° C. is 0.05W / (m · K) or less.

本発明に係る脱ガス装置の浸漬管は、芯金(特に、空冷芯金)と耐火物との間に断熱材を配置するので、耐火物の厚み方向、即ち稼動面(溶鋼接触面側)と背面(断熱材側)との間の温度勾配を緩やかにすることが可能になり、かつ、耐火物の急激な温度変化(抜熱による急冷)を軽減することが可能になる。これにより、耐火物のスポーリング損傷(剥離損傷)を軽減できるので、耐火物の寿命向上が可能になる。
また、仮に、浸漬管の芯金を空冷する場合でも、浸漬管は処理中の溶鋼内に浸漬させて使用するものであるため、溶鋼からの入熱が大きく芯金の温度が高温になり、芯金の熱膨張が煉瓦の目地開きや不定形耐火物の亀裂の発生原因となる。このため、開いた目地や亀裂を通して耐火物内へ地金が浸入し、芯金温度の更なる上昇を招くと共に、浸漬管の寿命を律速する損傷となり、浸漬管が低寿命となってしまう。そこで、芯金と耐火物との間に断熱材を配置することで、芯金の変形が抑制され、耐火物の寿命延長が可能になる。
更に、浸漬管に設けた断熱材の稼動面(溶鋼接触面側の表面)は、非常に高温となるため、浸漬管の寿命末期には、断熱材の収縮が進行して断熱材の断熱性が低下し、またこの収縮で生じる耐火物と断熱材との間の隙間に起因した耐火物の目地開きや亀裂が発生する。そこで、これらを抑制するため、断熱材に向けてArガスを吹付ける供給ヘッダを設けた。これにより、断熱材の収縮の低減が可能になると共に、発生した隙間をArガスの流路とし、断熱材の断熱機能の劣化後でも、Arガスが断熱材と芯金を積極的に冷却できる。
以上のことから、本発明の脱ガス装置の浸漬管は、寿命末期まで安定に長寿命化を図ることが可能である。
In the dip tube of the degassing apparatus according to the present invention, since a heat insulating material is disposed between the core metal (particularly, air-cooled core metal) and the refractory, the thickness direction of the refractory, that is, the working surface (molten steel contact surface side). It is possible to make the temperature gradient between the refractory and the back surface (insulating material side) gentle, and to reduce the rapid temperature change of the refractory (rapid cooling due to heat removal). Thereby, since the spalling damage (peeling damage) of the refractory can be reduced, the life of the refractory can be improved.
Also, even if the core metal of the dip tube is air-cooled, since the dip tube is used by immersing it in the molten steel being processed, the heat input from the molten steel is large and the temperature of the core metal becomes high, The thermal expansion of the core metal causes the joint opening of the brick and the cracking of the irregular refractory. For this reason, the ingot enters into the refractory through the open joints and cracks, leading to a further increase in the core metal temperature, and damage that determines the life of the dip tube, resulting in a short life of the dip tube. Therefore, by disposing a heat insulating material between the core metal and the refractory, deformation of the core metal is suppressed, and the life of the refractory can be extended.
Furthermore, since the working surface of the heat insulating material provided on the dip tube (surface on the molten steel contact surface side) becomes extremely hot, the heat insulating material shrinks at the end of the life of the dip tube and the heat insulating property of the heat insulating material. In addition, joint opening and cracking of the refractory are caused by the gap between the refractory and the heat insulating material generated by this shrinkage. Therefore, in order to suppress these, a supply header that blows Ar gas toward the heat insulating material is provided. As a result, shrinkage of the heat insulating material can be reduced, and the generated gap can be used as an Ar gas flow path so that the Ar gas can actively cool the heat insulating material and the metal core even after the heat insulating function of the heat insulating material is deteriorated. .
From the above, the dip tube of the degassing apparatus of the present invention can stably extend the life until the end of its life.

また、断熱材の雰囲気温度500℃における熱伝導率が0.05W/(m・K)以下である場合、耐火物のスポーリング損傷を更に抑制でき、耐火物寿命の更なる向上が図れる。これは、断熱材の熱伝導率を低下させるほど、溶鋼からの入熱を断熱により回避させ、浸漬管の芯金温度の低減が図れることによる。 Moreover, when the heat conductivity in the atmospheric temperature of 500 degreeC of a heat insulating material is 0.05 W / (m * K) or less, the spalling damage of a refractory can be further suppressed and the further improvement of a refractory life can be aimed at. This is because the heat input from the molten steel is avoided by heat insulation and the core metal temperature of the dip tube can be reduced as the thermal conductivity of the heat insulating material is lowered.

そして、断熱材の厚みが1mm以上5mm以下であるので、断熱材の断熱性を維持できると共に、断熱材の収縮による煉瓦の目地開きや不定形耐火物の亀裂発生を防止できる。従って、浸漬管の稼動後半の寿命を更に延長できると共に、例えば、耐火物の突然の剥離等による突発トラブルも回避できる。 And, since the thickness of the heat insulating material is 1mm or 5mm or less, it is possible to maintain the heat insulating property of the heat insulating material, the cracking of the joint opening and monolithic refractory brick due to shrinkage of the insulation material can be prevented. Accordingly, the service life of the second half of the operation of the dip tube can be further extended, and sudden troubles due to, for example, sudden peeling of the refractory can be avoided.

本発明の一実施の形態に係る脱ガス装置の浸漬管の部分正断面図である。It is a partial front sectional view of a dip tube of a degassing apparatus according to an embodiment of the present invention. (A)〜(D)はそれぞれ第1〜第4の変形例に係る脱ガス装置の浸漬管の供給ヘッダの部分拡大正断面図である。(A)-(D) are the partial expansion front sectional views of the supply header of the dip tube of the degassing apparatus which concerns on the 1st-4th modification, respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る脱ガス装置の浸漬管(以下、単に浸漬管ともいう)10は、筒状の芯金11の内周側に、ウェア耐火物である煉瓦(内周側耐火物の一例)12が、また外周側に、ウェア耐火物である不定形耐火物(外周側耐火物の一例)13が、それぞれ設けられたものであり、寿命末期まで安定に長寿命化が図れるものである。以下、詳しく説明する。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
As shown in FIG. 1, a dip tube (hereinafter also simply referred to as a dip tube) 10 of a degassing apparatus according to an embodiment of the present invention is a wear refractory on the inner peripheral side of a cylindrical cored bar 11. A certain brick (an example of the inner refractory) 12 is provided, and an irregular refractory (an example of the outer refractory) 13 that is a wear refractory is provided on the outer periphery, respectively, until the end of life. Long life can be achieved stably. This will be described in detail below.

浸漬管10は、真空(減圧)を利用した溶鋼の脱炭や脱ガスの精錬を目的として使用可能なものである。なお、浸漬管は、上記した脱炭や脱ガスの精錬に使用するものであれば、特に限定されるものではなく、例えば、DH法やRH法、更にはCAS(Composition Adjustment by Sealed Argon Bubbling)法等に使用するものでもよい。 The dip tube 10 can be used for the purpose of decarburization and degassing of molten steel using vacuum (reduced pressure). The dip tube is not particularly limited as long as it is used for the above-described decarburization and degassing refining. For example, the DH method, the RH method, and further CAS (Composition Adjustment by Sealed Argon Bubbling). It may be used for law.

浸漬管10の芯金11は、鉄製(金属製)の筒状となったものであり、その上端部が、真空脱ガス槽(図示しない)に接続され、その下端部には、内周側に配置される煉瓦12を支持するための支持金物14が固着されている。なお、芯金11は、ここでは円筒状となっているが、筒状であれば特に限定されるものではない。
また、芯金11は、その内部が外気から遮断された中空部15を有する構造であり、芯金11を内部から冷却できる構成(空冷可能な構成)となっているが、使用条件に応じて、例えば、中空部を有しない構成(中実板状)にすることもできる。
The cored bar 11 of the dip tube 10 has a cylindrical shape made of iron (metal), and its upper end is connected to a vacuum degassing tank (not shown). A support metal 14 for supporting the bricks 12 arranged on is fixed. The cored bar 11 is cylindrical here, but is not particularly limited as long as it is cylindrical.
Further, the cored bar 11 has a structure having a hollow portion 15 whose inside is shielded from the outside air, and has a configuration capable of cooling the cored bar 11 from the inside (a configuration capable of air cooling), depending on use conditions. For example, it can also be set as the structure (solid plate shape) which does not have a hollow part.

芯金11の内周側には、前記したように、煉瓦(れんが)12を設置しているが、浸漬管の使用用途に応じて、不定形耐火物を設置することもできる。また、芯金11の外周側も、前記したように、主として不定形耐火物13を使用することが多いが、不定形耐火物と煉瓦を組み合わせて使用する場合もあり得る。
なお、芯金11を覆う煉瓦12と不定形耐火物13には、従来公知の耐火材を用いることができる。この耐火材には、例えば、マグネシア−クロム質、マグネシア−カーボン質、アルミナ−クロム質、アルミナ−カーボン質、アルミナ−マグネシア質、アルミナ−マグネシア−カーボン質、アルミナ−スピネル−カーボン質等がある。
As described above, the brick (brick) 12 is installed on the inner peripheral side of the core metal 11, but an irregular refractory can also be installed according to the use application of the dip tube. Further, as described above, the amorphous refractory 13 is mainly used on the outer peripheral side of the core metal 11 as described above. However, the amorphous refractory and brick may be used in combination.
A conventionally known refractory material can be used for the brick 12 and the indeterminate refractory 13 covering the cored bar 11. Examples of the refractory material include magnesia-chromium, magnesia-carbon, alumina-chromium, alumina-carbon, alumina-magnesia, alumina-magnesia-carbon, alumina-spinel-carbon, and the like.

芯金11の径方向内表面と煉瓦12の径方向外表面との間、及び芯金11の径方向外表面と不定形耐火物13の径方向内表面との間には、断熱材16が配置されている。これにより、浸漬管10の稼動前半において、断熱材16の断熱効果により、熱による芯金11の変形を抑制することが可能になり、煉瓦12と不定形耐火物13の寿命延長に寄与できる。
この断熱材16は、芯金11の内表面と外表面に直接配置されているが、断熱材16が、芯金11と煉瓦12の間、また芯金11と不定形耐火物13の間に配置されていれば、これに限定されるものではない。例えば、断熱材16が芯金11に隣接配置(断熱機能を発揮可能な位置に配置)されていれば、芯金11の表面に断熱材16を固定(接着)するため、芯金11と断熱材16の間に、薄いモルタルのような耐火材(固着材)を設置することもできる。
Between the radial inner surface of the core metal 11 and the radial outer surface of the brick 12, and between the radial outer surface of the core metal 11 and the radial inner surface of the amorphous refractory 13, a heat insulating material 16 is provided. Is arranged. Thereby, in the first half of operation of the dip tube 10, it becomes possible to suppress the deformation | transformation of the metal core 11 with a heat | fever by the heat insulation effect of the heat insulating material 16, and it can contribute to the lifetime extension of the brick 12 and the amorphous refractory 13.
The heat insulating material 16 is disposed directly on the inner surface and the outer surface of the core metal 11, but the heat insulating material 16 is disposed between the core metal 11 and the brick 12 and between the core metal 11 and the amorphous refractory 13. If it is arranged, it is not limited to this. For example, if the heat insulating material 16 is disposed adjacent to the metal core 11 (arranged at a position where the heat insulating function can be exhibited), the heat insulating material 16 is fixed (adhered) to the surface of the metal core 11. A refractory material (adhesive material) such as a thin mortar can be installed between the materials 16.

なお、前記したように、芯金に不定形耐火物を設置する場合、この不定形耐火物を支持するために、例えば、芯金の外周部にスタッドを設置することが多いが、この場合、スタッドは、上記した断熱材を避けて設置する。
また、断熱材16は、芯金11の内周側と外周側の双方に設置しているが、内周側と外周側のいずれか一方のみに配置した場合でも、熱による芯金11の変形をある程度抑制することが可能であり、煉瓦12又は不定形耐火物13の寿命延長に寄与可能である。しかし、上記したように、断熱材16を芯金11の内周側と外周側の双方に配置することが、より望ましい。
In addition, as described above, when installing an irregular refractory on the core metal, in order to support the irregular refractory, for example, a stud is often installed on the outer periphery of the core metal. The stud is installed avoiding the above-mentioned heat insulating material.
Moreover, although the heat insulating material 16 is installed in both the inner peripheral side and outer peripheral side of the metal core 11, even when arrange | positioning only in any one of an inner peripheral side and an outer peripheral side, the deformation | transformation of the metal core 11 by heat | fever Can be suppressed to some extent, and can contribute to extending the life of the brick 12 or the irregular refractory 13. However, as described above, it is more desirable to arrange the heat insulating material 16 on both the inner peripheral side and the outer peripheral side of the core metal 11.

この断熱材には、例えば、セラミックスファイバー等の無機繊維質の断熱材、流込み施工や鏝塗り施工を行う無機不定形質の断熱材(耐火材)、微細多孔性の断熱材等を用いることができる。
なお、断熱材の断熱効果を更に高めるためには、雰囲気温度500℃における熱伝導率が、0.05W/(m・K)以下の断熱材を使用することが好ましい。例えば、雰囲気温度500℃での熱伝導率は、セラミックスファイバーが約0.1W/(m・K)であり、セル構造の微細多孔性の断熱材が0.05W/(m・K)以下であるが、上記した微細多孔性の断熱材がより低熱伝導性である。
As this heat insulating material, for example, an inorganic fibrous heat insulating material such as ceramic fiber, an inorganic indefinite heat insulating material (refractory material) for performing pouring construction or glazing construction, a microporous heat insulating material, or the like may be used. it can.
In order to further enhance the heat insulating effect of the heat insulating material, it is preferable to use a heat insulating material having a thermal conductivity of 0.05 W / (m · K) or less at an atmospheric temperature of 500 ° C. For example, the thermal conductivity at an ambient temperature of 500 ° C. is about 0.1 W / (m · K) for a ceramic fiber, and 0.05 W / (m · K) or less for a microporous heat insulating material having a cell structure. However, the above-described microporous heat insulating material has lower thermal conductivity.

ここで、断熱材の熱伝導率を雰囲気温度500℃で規定したのは、断熱材を設置する浸漬管の使用環境を考慮したことによる。また、熱伝導率を0.05W/(m・K)以下に規定したのは、溶鋼からの入熱を断熱により回避させ、浸漬管の芯金温度の低減を図る必要があるため、より低熱伝導性であることが望ましいことによる。
従って、雰囲気温度500℃における熱伝導率が0.05W/(m・K)以下の断熱材を使用したが、熱伝導率が0.04W/(m・K)以下、更には、0.035W/(m・K)以下の断熱材を使用することが好ましい。
一方、上記した理由から、断熱材の熱伝導率の下限値については規定していないが、世の中に存在する低熱伝導性の断熱材を考慮すれば、例えば、0.01W/(m・K)である。
Here, the reason why the thermal conductivity of the heat insulating material is defined at an ambient temperature of 500 ° C. is that the use environment of the dip tube in which the heat insulating material is installed is taken into consideration. The reason why the thermal conductivity is specified to be 0.05 W / (m · K) or less is that heat input from the molten steel must be avoided by heat insulation, and the core metal temperature of the dip tube must be reduced. This is because it is desirable to be conductive.
Therefore, although a heat insulating material having a thermal conductivity of 0.05 W / (m · K) or less at an atmospheric temperature of 500 ° C. was used, the thermal conductivity was 0.04 W / (m · K) or less, and further 0.035 W. It is preferable to use a heat insulating material of / (m · K) or less.
On the other hand, for the reasons described above, the lower limit value of the thermal conductivity of the heat insulating material is not stipulated, but considering the low heat conductive heat insulating material existing in the world, for example, 0.01 W / (m · K) It is.

また、断熱材の厚みは、1mm以上5mm以下にすることが好ましい。
断熱材の厚みの下限値を1mmとしたのは、セラミックスファイバーや微細多孔性の断熱材が、その断熱性を維持しつつ、製造が可能な厚みを考慮したことによる。一方、厚みの上限値を5mmとしたのは、断熱材の収縮により、煉瓦の目地開き(目地切れ)や不定形耐火物の亀裂が発生することのない厚みを考慮したことによる。
従って、断熱材の厚みを1mm以上5mm以下とすることで、浸漬管の稼動後半(断熱材の性能劣化後)の寿命を更に延長できると共に、突然の耐火物の剥離等による突発トラブルも回避できるが、下限を1.5mm、更には2mm、上限を4mm、更には3mmとすることが好ましい。
Moreover, it is preferable that the thickness of a heat insulating material shall be 1 mm or more and 5 mm or less.
The reason why the lower limit of the thickness of the heat insulating material is set to 1 mm is that the ceramic fiber and the microporous heat insulating material take into consideration the thickness that can be manufactured while maintaining the heat insulating property. On the other hand, the reason why the upper limit value of the thickness is set to 5 mm is that consideration is given to the thickness at which the joints of the bricks (joint breaks) and cracks of the irregular refractory do not occur due to the shrinkage of the heat insulating material.
Therefore, by setting the thickness of the heat insulating material to 1 mm or more and 5 mm or less, it is possible to further extend the life of the dip tube in the second half of the operation (after the deterioration of the performance of the heat insulating material) and to avoid sudden troubles due to sudden refractory peeling. However, it is preferable that the lower limit is 1.5 mm, more preferably 2 mm, and the upper limit is 4 mm, further 3 mm.

更に、煉瓦12と断熱材16との間、及び不定形耐火物13と断熱材16との間には、それぞれ供給ヘッダ17、18が設けられている。
一方の供給ヘッダ17は、環状となって、芯金11の内周面から径方向内側に向って突出する支持部(図示しない)を介し、内周側の断熱材16の表面に沿うように、芯金11に取付け固定されている。また、他方の供給ヘッダ18も、環状となって、芯金11の外周面から径方向外側に向って突出する支持部(図示しない)を介し、外周側の断熱材16の表面に沿うように、芯金11に取付け固定されている。なお、各供給ヘッダは、芯金11の内周面と外周面にそれぞれ接触してもよい。また、各供給ヘッダ17、18を構成する配管の径は、例えば、10mm以下程度である。
Further, supply headers 17 and 18 are provided between the brick 12 and the heat insulating material 16 and between the amorphous refractory 13 and the heat insulating material 16, respectively.
One supply header 17 is annular and extends along the surface of the heat insulating material 16 on the inner peripheral side through a support portion (not shown) protruding radially inward from the inner peripheral surface of the cored bar 11. , Fixed to the cored bar 11. Further, the other supply header 18 is also formed in an annular shape so as to be along the surface of the heat insulating material 16 on the outer peripheral side through a support portion (not shown) protruding radially outward from the outer peripheral surface of the cored bar 11. , Fixed to the cored bar 11. In addition, each supply header may contact the inner peripheral surface and outer peripheral surface of the cored bar 11, respectively. Moreover, the diameter of the piping which comprises each supply header 17 and 18 is about 10 mm or less, for example.

各供給ヘッダ17、18には、芯金11の周方向に等ピッチで多数の噴出孔19が形成されている。この各噴出孔19は、開口部分が、煉瓦12と断熱材16との間(界面近傍)、及び不定形耐火物13と断熱材16との間(界面近傍)に、それぞれ位置するように、各供給ヘッダ17、18に形成されている。
これにより、浸漬管10の外部から供給された冷却用のAr(アルゴン)ガスを、ガス供給用配管20、21を介して各供給ヘッダ17、18にそれぞれ供給することで、各噴出孔19から断熱材16に向けて吹付けることができる。
なお、供給ヘッダの配置位置や噴出孔の形成位置は、上記した位置に限定されるものではなく、断熱材に向けてArガスを吹付け可能な位置であればよい。
A large number of ejection holes 19 are formed in each supply header 17, 18 at an equal pitch in the circumferential direction of the core metal 11. Each of the ejection holes 19 has an opening portion located between the brick 12 and the heat insulating material 16 (near the interface) and between the amorphous refractory 13 and the heat insulating material 16 (near the interface), It is formed in each supply header 17, 18.
Thereby, the cooling Ar (argon) gas supplied from the outside of the dip tube 10 is supplied to the supply headers 17 and 18 via the gas supply pipes 20 and 21, respectively, and thus from each of the ejection holes 19. It can be sprayed toward the heat insulating material 16.
In addition, the arrangement | positioning position of a supply header and the formation position of an ejection hole are not limited to an above-described position, What is necessary is just a position which can spray Ar gas toward a heat insulating material.

例えば、図2(A)に示すように、噴出孔19が断熱材16の内部に位置するように形成された供給ヘッダ22を、不定形耐火物13と断熱材16との間に設置する。これにより、Arガスを断熱材16の内部に吹付けることができる。
また、図2(B)に示すように、複数の噴出孔19が、断熱材16の内部、及び不定形耐火物13と断熱材16との間に位置するように形成された供給ヘッダ23を、不定形耐火物13と断熱材16との間に設置する。これにより、Arガスを断熱材16の内部、及び断熱材16の表面に、それぞれ吹付けることができる。
For example, as shown in FIG. 2A, a supply header 22 formed so that the ejection holes 19 are located inside the heat insulating material 16 is installed between the amorphous refractory 13 and the heat insulating material 16. Thereby, Ar gas can be sprayed inside the heat insulating material 16.
Further, as shown in FIG. 2B, a supply header 23 formed so that a plurality of ejection holes 19 are located inside the heat insulating material 16 and between the amorphous refractory 13 and the heat insulating material 16 is provided. It is installed between the irregular refractory 13 and the heat insulating material 16. Thereby, Ar gas can be sprayed to the inside of the heat insulating material 16 and the surface of the heat insulating material 16, respectively.

そして、図2(C)に示すように、噴出孔19が不定形耐火物13と断熱材16との間に位置するように形成された供給ヘッダ24を、不定形耐火物13内に設置する。これにより、Arガスを断熱材16の表面に吹付けることができる。
更に、図2(D)に示すように、噴出孔19が不定形耐火物13内に位置し、しかも断熱材16の表面に向くように形成された供給ヘッダ25を、不定形耐火物13内に設置する。ここでは、噴出孔19から吹出されたArガスを、不定形耐火物13内の気孔を介して、断熱材16の表面に吹付けることができる。
Then, as shown in FIG. 2C, the supply header 24 formed so that the ejection hole 19 is positioned between the amorphous refractory 13 and the heat insulating material 16 is installed in the amorphous refractory 13. . Thereby, Ar gas can be sprayed on the surface of the heat insulating material 16.
Further, as shown in FIG. 2D, a supply header 25 formed so that the ejection hole 19 is located in the irregular refractory 13 and faces the surface of the heat insulating material 16 is provided in the irregular refractory 13. Install in. Here, the Ar gas blown from the blowout holes 19 can be blown onto the surface of the heat insulating material 16 through the pores in the amorphous refractory 13.

この図2(D)に示す供給ヘッダ25は、噴出孔19を不定形耐火物13内に位置させても、断熱材16にArガスを吹付けることができる範囲内で、設置されている。具体的には、断熱材16の表面(不定形耐火物13との接触面)から、噴出孔19までの最短距離(半径方向の距離)dが、例えば、5mm以下程度である。ここで、供給ヘッダ25の噴出孔19前方(ガス吹付け方向)の不定形耐火物を除去し、不定形耐火物内の気孔を介することなく、断熱材16にArガスを直接吹付けてもよい。
以上に示した供給ヘッダの噴出孔から吹出すArガスの流量は、例えば、10〜200(Nm/時間)程度で調整できる。
The supply header 25 shown in FIG. 2D is installed within a range in which Ar gas can be sprayed onto the heat insulating material 16 even when the ejection hole 19 is positioned in the amorphous refractory 13. Specifically, the shortest distance (distance in the radial direction) d from the surface of the heat insulating material 16 (the contact surface with the amorphous refractory 13) to the ejection hole 19 is, for example, about 5 mm or less. Here, even if the amorphous refractory in front of the ejection hole 19 of the supply header 25 (gas blowing direction) is removed and Ar gas is directly sprayed on the heat insulating material 16 without passing through the pores in the amorphous refractory. Good.
The flow rate of Ar gas blown out from the outlet hole of the supply header shown above can be adjusted, for example, to about 10 to 200 (Nm 3 / hour).

また、供給ヘッダの設置位置や噴出孔の形成位置は、煉瓦側の供給ヘッダについても勿論適用できる。なお、供給ヘッダは、芯金の内周側と外周側の双方に設置することなく、前記した断熱材の設置位置に対応させて、内周側と外周側のいずれか一方のみに配置してもよい。
そして、供給ヘッダは、芯金に取付け固定されているが、これに限定されるものではなく、例えば、断熱材の表面に、巻き付けて固定することもできる。
Of course, the installation position of the supply header and the formation position of the ejection holes can also be applied to the supply header on the brick side. It should be noted that the supply header is not installed on both the inner and outer peripheral sides of the cored bar, but is arranged only on either the inner or outer peripheral side in correspondence with the installation position of the heat insulating material. Also good.
And although a supply header is attached and fixed to the metal core, it is not limited to this, For example, it can also wind and fix to the surface of a heat insulating material.

供給ヘッダの設置高さ位置は、浸漬管の先側(下側)であれば、特に限定されるものではないが、芯金の熱変形が発生し易い部分を考慮すれば、浸漬管の先端部(下端部)が好ましい。
更に、供給ヘッダから断熱材に吹付けるArガスは、一般的に用いられている脱ガス装置の浸漬管の外気浸入防止用に用いられている「パージ用Ar」を流用することが可能である。この場合、耐火物内でのArガスの吹出し位置を、配管等の流路を用いて断熱材の表面に向けることで、「パージ用Ar」による外気浸入防止と断熱性の低下抑制の両立が可能になる。ここでは、上記した流路がArガスを吹付ける供給ヘッダになる。
The installation height position of the supply header is not particularly limited as long as it is the front side (lower side) of the dip tube, but considering the portion where the core metal is likely to be thermally deformed, the tip of the dip tube The part (lower end part) is preferable.
Furthermore, the Ar gas blown from the supply header to the heat insulating material can be diverted from the “purging Ar” used for preventing the outside air from entering the dip tube of the degassing apparatus that is generally used. . In this case, by directing the Ar gas blowing position in the refractory to the surface of the heat insulating material using a flow path such as a pipe, both the prevention of outside air intrusion by the “purging Ar” and the suppression of the deterioration of the heat insulating property can be achieved. It becomes possible. Here, the above-described flow path becomes a supply header for blowing Ar gas.

続いて、本発明の一実施の形態に係る脱ガス装置の浸漬管10を使用した脱ガス方法について説明する。
まず、図1に示すように、芯金11と煉瓦12及び不定形耐火物13との間に断熱材16が配置され、この断熱材16に向けてArガスを吹付ける供給ヘッダ17、18を有する浸漬管10を準備する。そして、この浸漬管10の先端部を、取鍋(図示しない)内の溶鋼に浸漬させ、脱ガス処理を行う。
Then, the degassing method using the dip tube 10 of the degassing apparatus which concerns on one embodiment of this invention is demonstrated.
First, as shown in FIG. 1, a heat insulating material 16 is disposed between the core metal 11, the brick 12 and the amorphous refractory 13, and supply headers 17 and 18 for blowing Ar gas toward the heat insulating material 16 are provided. A dip tube 10 is prepared. And the front-end | tip part of this dip tube 10 is immersed in the molten steel in a ladle (not shown), and a degassing process is performed.

一般的に、耐火物の寿命は、溶鋼やスラグ等から受ける摩耗や溶損により耐火物が損耗することに起因した耐火物の残存状態により決定される。しかし、それ以外にも、脱ガス装置の浸漬管に使用される耐火物の寿命は、浸漬管の芯金の熱変形による亀裂や剥離等の影響を大きく受け、それにより発生した亀裂や目地開きにより、耐火物の残存厚み以外の寿命の律速要因が存在する。 In general, the life of a refractory is determined by the remaining state of the refractory due to the wear of the refractory due to wear or melting caused by molten steel or slag. However, other than that, the life of refractories used in the dip tube of the degassing device is greatly affected by cracks and delamination caused by thermal deformation of the core metal of the dip tube, resulting in cracks and joint openings. Therefore, there is a rate-determining factor other than the remaining thickness of the refractory.

即ち、浸漬管の稼動初期は、断熱の効果により浸漬管の芯金の熱変形が防止されるため、断熱性の大小が、芯金の変形抑制、更には浸漬管の寿命を決定づける因子となる。
また、浸漬管の稼動後半では、受熱による収縮のため断熱材の断熱性が低下し、逆に、断熱材の収縮による空隙の大小に起因した亀裂が発生するため、断熱材の収縮代が、浸漬管の寿命を決定する因子となる。
That is, at the initial stage of operation of the dip tube, thermal deformation of the cored bar of the dip tube is prevented due to the effect of heat insulation. Therefore, the size of the heat insulation is a factor that suppresses deformation of the cored bar and further determines the life of the dip tube. .
Also, in the second half of the operation of the dip tube, the heat insulating property of the heat insulating material decreases due to shrinkage due to heat reception, and conversely, cracks due to the size of the void due to the shrinkage of the heat insulating material occur, so the shrinkage allowance of the heat insulating material is It is a factor that determines the life of the dip tube.

そこで、上記した浸漬管10のように、芯金11と煉瓦12及び不定形耐火物13との間に断熱材16を配置することで、浸漬管の稼動前半において、断熱材16の断熱性を維持し、芯金の変形を抑制でき、耐火物の寿命延長が可能になる。
更に、浸漬管10は、断熱材16に向けてArガスを吹付ける供給ヘッダ17、18を有するので、浸漬管の稼動後半において、断熱材16の収縮の低減が可能になると共に、この収縮により発生した隙間にArガスを流すことで断熱材16と芯金11を積極的に冷却できる。
Then, like the above-mentioned dip tube 10, the heat insulating material 16 is arrange | positioned between the metal core 11, the brick 12, and the irregular-shaped refractory 13, and the heat insulation of the heat insulating material 16 is carried out in the first half operation of a dip tube. It can be maintained, deformation of the cored bar can be suppressed, and the life of the refractory can be extended.
Furthermore, since the dip tube 10 has supply headers 17 and 18 for blowing Ar gas toward the heat insulating material 16, it is possible to reduce the shrinkage of the heat insulating material 16 in the latter half of the operation of the dip tube. By flowing Ar gas through the generated gap, the heat insulating material 16 and the core metal 11 can be actively cooled.

なお、Arガスは、浸漬管の稼動後半、例えば、過去の経験則から得られる断熱材の断熱機能の劣化の進行具合に応じて流すのがよい。しかし、前記した通常使用している「パージ用Ar」の配管を流用することが好ましく、これにより、浸漬管の稼動初期から末期まで通してArガスを流し続けることで、目地開きや亀裂発生等がない、安定した長寿命化が可能になる。
従って、本発明の脱ガス装置の浸漬管を使用することで、芯金の変形や、芯金を覆う耐火物の損傷を抑制し、寿命末期まで安定に長寿命化が図れる。
Ar gas should flow in the latter half of the operation of the dip tube, for example, according to the progress of the deterioration of the heat insulating function of the heat insulating material obtained from past empirical rules. However, it is preferable to divert the above-mentioned “purge Ar” pipe, which is normally used, so that the Ar gas can flow continuously from the beginning to the end of the operation of the dip tube, thereby opening joints, generating cracks, etc. It is possible to extend the service life stably.
Therefore, by using the dip tube of the degassing apparatus of the present invention, deformation of the core metal and damage to the refractory covering the core metal can be suppressed, and the lifetime can be stably extended until the end of the lifetime.

次に、本発明の作用効果を確認するために行った実施例について説明する。
ここでは、DH法の脱ガス装置の浸漬管を用いた。なお、浸漬管の内周側のウェア耐火物にはマグネシア−クロム質の煉瓦を、また、外周側の耐火物には、アルミナ−マグネシア質の不定形耐火物を、それぞれ使用した。
浸漬管への供給ヘッダの使用の有無、浸漬管に使用した断熱材の種類、熱伝導率、及び厚みと、各条件での耐火物の損傷状況を、表1に示す。
Next, examples carried out for confirming the effects of the present invention will be described.
Here, the dip tube of the degassing apparatus of DH method was used. Note that magnesia-chromic bricks were used for the ware refractories on the inner periphery side of the dip tube, and alumina-magnesia amorphous refractories were used for the refractories on the outer periphery side.
Table 1 shows the presence / absence of the supply header to the dip tube, the type of heat insulating material used for the dip tube, the thermal conductivity, the thickness, and the refractory damage under each condition.

Figure 0005781385
Figure 0005781385

表1に記載の供給ヘッダの有無について、供給ヘッダ有りは、脱ガス処理中、常時、パージ用のArガスを供給ヘッダに100(Nm/時間)流し、断熱材に吹付けた。
また、断熱材の種類で「C.F.」とは、セラミックスファイバーを意味する。また、「WDS」とは、Porextherm Dammstoffe Gmbh社製の「Porextherm WDS(登録商標)」であり、その材質は、ヒュームドシリカを主材とした微孔性成形体である。
With regard to the presence or absence of the supply header shown in Table 1, 100% (Nm 3 / hour) of purge Ar gas was constantly flowed through the supply header during the degassing process and sprayed onto the heat insulating material.
In addition, “CF” in the type of heat insulating material means ceramic fiber. Further, “WDS” is “Poretherm WDS (registered trademark)” manufactured by Porextherm Damstoff Gmbh, and the material thereof is a microporous molded body mainly composed of fumed silica.

そして、煉瓦の平均損耗速度とは、浸漬管の芯金の内周側に設置された煉瓦の1チャージあたりの損耗量である。この平均損耗速度は、芯金の内周側に設置された煉瓦の初回(稼動開始より80〜100チャージ後)の補修時に、芯金の内周側へ圧入した不定形耐火物の圧入量を測定することで、煉瓦の損耗量を求め、その結果より算出した。具体的には、浸漬管(脱ガス槽)内に、内径が一定の円筒状の中子をセットし、中子及び浸漬管の下端の隙間を塞いだ状態で、中子と煉瓦との間に浸漬管の高さまで不定形耐火物を圧入し、浸漬管の高さと測定した不定形耐火物の圧入量(体積)から補修厚みを求めた。 The average wear rate of the brick is the amount of wear per charge of the brick installed on the inner peripheral side of the core metal of the dip tube. This average wear rate is determined by the amount of indented refractory that was pressed into the inner periphery of the core during the first repair of the brick installed on the inner periphery of the core (after 80 to 100 charges from the start of operation). By measuring, the amount of wear of the brick was obtained and calculated from the result. Specifically, a cylindrical core with a constant inner diameter is set in the dip tube (degassing tank), and the gap between the core and the brick is closed between the core and the lower end of the dip tube. Then, an irregular refractory was press-fitted to the height of the dip tube, and the repair thickness was determined from the height of the dip tube and the measured amount (volume) of the irregular refractory.

更に、評価は、損耗抑制の効果と稼動末期の欠陥の双方を含めた総合評価で行った。
なお、損耗抑制の効果は、煉瓦の耐用性を示す評価であり、煉瓦の平均損耗速度から得られた結果である。ここでは、平均損耗速度が1.0(mm/ch)以下を「◎」、1.0(mm/ch)超1.5(mm/ch)以下を「○」、1.5(mm/ch)超を「×」とした。
また、稼動末期の欠陥は、操業の安定性(突発トラブルの発生の有無)を示す評価であり、目地開きや亀裂発生の有無を目視による監視で行った。
Furthermore, the evaluation was performed by comprehensive evaluation including both the effect of suppressing wear and defects at the end of operation.
In addition, the effect of wear suppression is an evaluation showing the durability of the brick, and is a result obtained from the average wear rate of the brick. Here, the average wear rate is 1.0 (mm / ch) or less as “」 ”, 1.0 (mm / ch) and 1.5 (mm / ch) or less as“ ◯ ”, 1.5 (mm / ch). ch) “×” was defined as “super”.
Further, the defect at the end of operation was an evaluation showing the stability of operation (whether or not a sudden trouble occurred), and the presence or absence of joint opening or crack generation was visually monitored.

まず、断熱材にArガスを吹付ける供給ヘッダの有無が、損耗抑制の効果に及ぼす影響について説明する。
表1に示す比較例のように、供給ヘッダを設けなかった場合、煉瓦の平均損耗速度が2.0(mm/ch)となって損耗抑制の効果が悪かった。これは、Arガスによる断熱材の冷却効果が得られず、また断熱材の断熱性が低下したことで、煉瓦内部の温度勾配が増大した結果、煉瓦の剥離損傷が増大したことによるものと考えられる。
一方、参考例1のように、供給ヘッダを設けることで、煉瓦の平均損耗速度を1.5(mm/ch)まで低減でき、比較例と比較して損耗抑制の効果を大幅に改善できた。これは、Arガスによる断熱材の冷却効果が得られ、断熱材の断熱性能が維持された結果、煉瓦の剥離損傷を低減させることができたことによる。
First, the influence that the presence or absence of the supply header that blows Ar gas on the heat insulating material has on the effect of suppressing wear will be described.
When the supply header was not provided as in the comparative example shown in Table 1, the average wear rate of the brick was 2.0 (mm / ch), and the wear suppression effect was poor. This is thought to be due to an increase in the brick peeling damage as a result of an increase in the temperature gradient inside the brick due to the insulative cooling effect of the Ar gas not being obtained and the heat insulation of the heat insulating material being reduced. It is done.
On the other hand, as in Reference Example 1 , by providing a supply header, the average wear rate of bricks could be reduced to 1.5 (mm / ch), and the effect of wear control could be greatly improved compared to the comparative example. . This is because the effect of cooling the heat insulating material by Ar gas was obtained, and as a result of maintaining the heat insulating performance of the heat insulating material, it was possible to reduce the peeling damage of the brick.

次に、断熱材の断熱性が、損耗抑制の効果に及ぼす影響について説明する。
参考例1〜3は、断熱材にそれぞれ、断熱モルタル、セラミックスファイバー、WDSを使用して、断熱性を変化させた結果であるが、断熱性を向上(熱伝導率を低下)させることにより、煉瓦の平均損耗速度の低減効果が得られることを確認できた(参考例1:1.5mm/ch、参考例2:1.2mm/ch、参考例3:0.7mm/ch)。
特に、参考例3のように、熱伝導率を最適範囲(0.05W/(m・K)以下)内とした断熱材を使用することで、煉瓦の平均損耗速度の低減効果を最も高めることができた。
Next, the influence which the heat insulation of a heat insulating material has on the effect of wear suppression will be described.
Reference Examples 1 to 3 are the results of changing the heat insulation properties by using heat insulation mortar, ceramic fiber, and WDS for the heat insulation materials, respectively, by improving the heat insulation properties (decreasing the thermal conductivity), It was confirmed that an effect of reducing the average wear rate of the brick was obtained ( Reference Example 1 : 1.5 mm / ch, Reference Example 2 : 1.2 mm / ch, Reference Example 3 : 0.7 mm / ch).
In particular, by using a heat insulating material whose thermal conductivity is within the optimum range (0.05 W / (m · K) or less) as in Reference Example 3, the effect of reducing the average wear rate of bricks is maximized. I was able to.

ここで、上記した参考例1〜3に記載の浸漬管の構成が、稼動末期の欠陥の発生に及ぼす影響について説明する。
参考例1〜3のように、断熱材の厚みを厚く(8mm以上)設定した場合、おおよそ浸漬管の稼動末期の300チャージ以降に、亀裂や目地開きといった耐火物の残存厚みに寄らない浸漬管の交換理由が発生することが確認された。そこで、浸漬管の稼動終了後に耐火物の解体調査を行ったところ、当初施工した断熱材はいずれも最大で5mm以上収縮していた。このため、この収縮で発生した耐火物と芯金の間の隙間が起因となって、煉瓦の目地開きや不定形耐火物の亀裂が発生したものと考えられる。
このように、参考例1〜3においては、稼動末期に欠陥が発生したが、Arガスを吹付ける供給ヘッダを設けた効果(特に、損耗抑制の効果)で、これら浸漬管の寿命を、比較例よりも延長することができたため、浸漬管を使用することが可能であった(総合評価:○)。
Here, the influence which the structure of the dip tube described in Reference Examples 1 to 3 described above has on the occurrence of defects at the end of operation will be described.
As in Reference Examples 1 to 3 , when the thickness of the heat insulating material is set to be thick (8 mm or more), the dip tube does not approach the remaining thickness of the refractory such as cracks and joint openings after approximately 300 charges at the end of the operation of the dip tube It was confirmed that the reason for replacement occurred. Then, when the dismantling investigation of the refractory was performed after the operation of the dip tube, all of the heat insulating materials initially applied were contracted by 5 mm or more at the maximum. For this reason, it is considered that the gap between the refractory and the cored bar generated by the shrinkage is caused by the joint opening of the brick and the crack of the irregular refractory.
As described above, in Reference Examples 1 to 3 , defects occurred at the end of operation, but the effects of providing a supply header for blowing Ar gas (particularly, the effect of suppressing wear) were compared for the life of these dip tubes. Since it was able to be extended more than an example, it was possible to use a dip tube (overall evaluation: (circle)).

最後に、断熱材の厚みが、損耗抑制の効果と稼動末期の欠陥の発生に及ぼす影響について説明する。
損耗抑制の効果について、参考例2と実施例のように、断熱材にセラミックスファイバーを用いた場合、また参考例3、実施例1、2のように、断熱材にWDSを用いた場合のいずれについても、断熱材の厚みを薄くすることで、煉瓦の平均損耗速度が僅かに上昇する傾向はあったが、十分な損耗抑制効果が得られることを確認できた。
Finally, the influence of the thickness of the heat insulating material on the effect of suppressing wear and the occurrence of defects at the end of operation will be described.
The effect of wear inhibition, as in Reference Example 2 and Example 3, when using a ceramic fiber heat insulating material, also Reference Example 3, as in Examples 1 and 2, in the case of using a WDS in the heat insulating member In either case, there was a tendency that the average wear rate of the brick was slightly increased by reducing the thickness of the heat insulating material, but it was confirmed that a sufficient wear suppression effect was obtained.

また、稼動末期の欠陥については、参考例2、3、実施例1〜3から、断熱材の種類に影響されることなく、断熱材の厚みを最適範囲(1mm以上5mm以下)内にすることで、稼動中の浸漬管に、煉瓦の目地開きや不定形耐火物の亀裂が発生しないことを確認できた。
特に、実施例1、2は、十分な損耗抑制効果が得られると共に、稼動末期の欠陥の発生もなかったことから、浸漬管の寿命を最大限延長することができた(総合評価:◎)。
以上のことから、本発明の脱ガス装置の浸漬管を使用することで、芯金の変形や、芯金を覆う耐火物の損傷を抑制し、寿命末期まで安定に長寿命化が図れることを確認できた。
Moreover, about the defect at the end of operation, the thickness of a heat insulating material shall be in the optimal range (1 mm or more and 5 mm or less) from Reference Examples 2, 3, and Examples 1-3 without being influenced by the kind of heat insulating material. Thus, it was confirmed that the open joint of the brick and the crack of the irregular refractory did not occur in the dip tube in operation.
In particular, in Examples 1 and 2 , a sufficient wear-inhibiting effect was obtained, and there was no occurrence of defects at the end of operation, so the life of the dip tube could be extended to the maximum (overall evaluation: ◎). .
From the above, by using the dip tube of the degassing apparatus of the present invention, it is possible to suppress the deformation of the core metal and damage to the refractory covering the core metal, and to stably extend the life until the end of the life. It could be confirmed.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の脱ガス装置の浸漬管を構成する場合も本発明の権利範囲に含まれる。
また、前記実施の形態においては、環状の供給ヘッダを使用した場合について説明したが、断熱材にArガスを吹付けることができれば、これに限定されるものではなく、例えば、螺旋状の供給ヘッダを使用したり、また直線状の複数の配管(供給ヘッダ)を、浸漬管の軸心を中心として、浸漬管の周方向に等ピッチ(異なるピッチでもよい)で配置することもできる。
As described above, the present invention has been described with reference to the embodiment. However, the present invention is not limited to the configuration described in the above embodiment, and the matters described in the scope of claims. Other embodiments and modifications conceivable within the scope are also included. For example, the case where the dip tube of the degassing apparatus of the present invention is configured by combining some or all of the above-described embodiments and modifications is also included in the scope of the right of the present invention.
Moreover, in the said embodiment, although the case where the cyclic | annular supply header was used was demonstrated, if Ar gas can be sprayed on a heat insulating material, it will not be limited to this, For example, a spiral supply header Or a plurality of straight pipes (supply headers) can be arranged at equal pitches (or different pitches) in the circumferential direction of the dip tube around the axis of the dip tube.

10:脱ガス装置の浸漬管、11:芯金、12:煉瓦(内周側耐火物)、13:不定形耐火物(外周側耐火物)、14:支持金物、15:中空部、16:断熱材、17、18:供給ヘッダ、19:噴出孔、20、21:ガス供給用配管、22〜25:供給ヘッダ 10: Degassing device dip tube, 11: Metal core, 12: Brick (inner refractory), 13: Indeterminate refractory (outer refractory), 14: Support metal, 15: Hollow part, 16: Insulating material, 17, 18: supply header, 19: ejection hole, 20, 21: piping for gas supply, 22-25: supply header

Claims (2)

筒状の芯金の内周側と外周側に、それぞれ内周側耐火物と外周側耐火物が設けられた脱ガス装置の浸漬管において、
前記内周側耐火物と前記芯金との間、及び前記外周側耐火物と前記芯金との間のいずれか一方又は双方に、厚みが1mm以上5mm以下である断熱材が配置され、該断熱材に向けてArガスを吹付ける供給ヘッダを有することを特徴とする脱ガス装置の浸漬管。
In the dip tube of the degassing apparatus in which the inner peripheral side refractory and the outer peripheral side refractory are provided on the inner peripheral side and the outer peripheral side of the cylindrical metal core, respectively.
A heat insulating material having a thickness of 1 mm or more and 5 mm or less is disposed between one or both of the inner peripheral refractory and the metal core and between the outer peripheral refractory and the metal core, A dip tube for a degassing apparatus, comprising a supply header for blowing Ar gas toward a heat insulating material.
請求項1記載の脱ガス装置の浸漬管において、前記断熱材は、雰囲気温度500℃における熱伝導率が0.05W/(m・K)以下であることを特徴とする脱ガス装置の浸漬管。 The dip tube of the degassing apparatus according to claim 1, wherein the heat insulating material has a thermal conductivity of 0.05 W / (m · K) or less at an atmospheric temperature of 500 ° C. .
JP2011152973A 2011-07-11 2011-07-11 Degassing equipment dip tube Active JP5781385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011152973A JP5781385B2 (en) 2011-07-11 2011-07-11 Degassing equipment dip tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011152973A JP5781385B2 (en) 2011-07-11 2011-07-11 Degassing equipment dip tube

Publications (2)

Publication Number Publication Date
JP2013019022A JP2013019022A (en) 2013-01-31
JP5781385B2 true JP5781385B2 (en) 2015-09-24

Family

ID=47690736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011152973A Active JP5781385B2 (en) 2011-07-11 2011-07-11 Degassing equipment dip tube

Country Status (1)

Country Link
JP (1) JP5781385B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274448B2 (en) 2020-09-11 2023-05-16 フクシマガリレイ株式会社 refrigerated showcase

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5024421A (en) * 1990-05-08 1991-06-18 Usx Corporation Interlocking snorkel refractory
JP2000073117A (en) * 1998-08-27 2000-03-07 Shinagawa Refract Co Ltd Immersion pipe for vacuum degassing furnace
JP2000313915A (en) * 1999-04-27 2000-11-14 Tokyo Yogyo Co Ltd Immersion tube in rh degassing apparatus and manufacture thereof
JP2005200696A (en) * 2004-01-15 2005-07-28 Jfe Steel Kk Immersion tube for producing low-nitrogen steel for rh-degassing apparatus
JP2010168600A (en) * 2009-01-20 2010-08-05 Tokyo Yogyo Co Ltd Dipping tube

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7274448B2 (en) 2020-09-11 2023-05-16 フクシマガリレイ株式会社 refrigerated showcase

Also Published As

Publication number Publication date
JP2013019022A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
JP5781385B2 (en) Degassing equipment dip tube
KR20110034001A (en) Oxygen blowing lance with protection element
JP5877123B2 (en) Degassing equipment dip tube
JP6070637B2 (en) Brick structure of reflux pipe and dip pipe of RH vacuum degassing equipment
CN217025359U (en) Ladle device for blowing air outside silicon furnace
JP2012148285A (en) Method and device for preheating immersing nozzle for continuous casting
EP1957681B1 (en) Snorkels for vacuum degassing of steel
JP2010248557A (en) Immersion tube
JP2008238216A (en) Rotating body for stirring molten metal, and degassing device of molten metal using the same
US8480951B2 (en) Tuyere structure of melting furnace
JP4830514B2 (en) RH vacuum degassing unit reflux tube brick structure
JP5348713B2 (en) Dip tube
CN108115120B (en) Protective tube for molten steel tapping process
JP4676927B2 (en) Immersion tube for molten metal treatment, manufacturing method thereof, and vacuum degassing method
JP2003279265A (en) Water-cooled panel for electric furnace
JP2008063633A (en) Immersion tube
JP6011808B2 (en) Annular tuyere for gas injection
CN103045807B (en) Vacuum circulation degassing insert tube
CN108917401B (en) Spout brick assembly for smelting equipment
JP2007191737A (en) Method for preventing wear of refractory in throat part of molten steel immersion tube
JPWO2013024649A1 (en) Float glass manufacturing apparatus and float glass manufacturing method using the same
JPH10298632A (en) Immersion tube for rh equipment
JP5393162B2 (en) Dip tube
JP6226483B2 (en) Circulation tube of vacuum degasser
JP4274016B2 (en) Refractory-coated lance manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150715

R150 Certificate of patent or registration of utility model

Ref document number: 5781385

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250