JP2022165030A - gas blowing pipe - Google Patents

gas blowing pipe Download PDF

Info

Publication number
JP2022165030A
JP2022165030A JP2021070202A JP2021070202A JP2022165030A JP 2022165030 A JP2022165030 A JP 2022165030A JP 2021070202 A JP2021070202 A JP 2021070202A JP 2021070202 A JP2021070202 A JP 2021070202A JP 2022165030 A JP2022165030 A JP 2022165030A
Authority
JP
Japan
Prior art keywords
porous member
gas
molten metal
pipe
blowing pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021070202A
Other languages
Japanese (ja)
Inventor
川端祐樹
Yuki Kawabata
柿本康弘
Yasuhiro Kakimoto
高橋優介
Yusuke Takahashi
今枝孝文
Takafumi Imaeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Miyamoto Kogyosho Co Ltd
TYK Corp
Original Assignee
Denso Corp
Miyamoto Kogyosho Co Ltd
TYK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Miyamoto Kogyosho Co Ltd, TYK Corp filed Critical Denso Corp
Priority to JP2021070202A priority Critical patent/JP2022165030A/en
Publication of JP2022165030A publication Critical patent/JP2022165030A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a gas blowing pipe preventing bumping and backflow of molten metal into the gas pipe.SOLUTION: Gas 22 is blown into molten metal in a molten metal container through a gas blowing pipe 1 immersed thereinto. The gas blowing pipe 1 has a connection member 2 having a first end 7 and a second end 8, a porous member 3 formed in the connection member 2, and a gas pipe 4 connected to the second end 8 of the connection member 2. A through-hole part 9 is formed inside the connection part 2. The porous member 3 is formed to cover a first end periphery 7a jointed to the first end 7, to close the through-hole part 9 facing the first end 7, and further, to close at least a part of the inside in the through-hole part 9. The gas blowing pipe 1 is immersed in the molten metal in the molten metal container, and when gas 22 is introduced through the gas pipe 4, the gas 22 is blown into the molten metal container through the porous member 3.SELECTED DRAWING: Figure 2

Description

本発明は、溶湯容器内の金属溶湯に浸漬させてガスを吹き込むガス吹き込み管に関する。 TECHNICAL FIELD The present invention relates to a gas blowing pipe that is immersed in molten metal in a molten metal container and blows gas into it.

従来より、金属溶湯内に混入した酸素や水素などのガスを排除する事を目的として、不活性ガスを溶湯中に吹き込むガス吹き込みが行われている。例えば、従来例として特許文献1に記載の保持炉用ガス吹き込み装置は、溶湯保持炉内にガス吹き込み管を設置し、このガス吹き込み管の先端部を溶湯保持炉の底面近傍まで延設したものである。ガス吹き込み管の先端部には、ポーラス状の吹き出し具が連結されている。不活性ガスは、吹き込み管を介して保持炉内に流入し、この吹き出し具の細孔から金属溶湯内に拡散する。この構成によれば、不活性ガスが金属溶湯中の酸素と物理吸着し、酸素を不活性状態にする。 Conventionally, in order to eliminate gases such as oxygen and hydrogen mixed in the molten metal, gas injection is performed by blowing an inert gas into the molten metal. For example, as a conventional example, a gas injection device for a holding furnace described in Patent Document 1 has a gas injection pipe installed in the molten metal holding furnace, and the tip of the gas injection pipe is extended to the vicinity of the bottom surface of the molten metal holding furnace. is. A porous blower is connected to the tip of the gas blowing pipe. The inert gas flows into the holding furnace through the blowing pipe and diffuses into the molten metal through the pores of this blowing tool. According to this configuration, the inert gas physically adsorbs oxygen in the molten metal and renders the oxygen inactive.

特開平4-200858Japanese Patent Laid-Open No. 4-200858

しかしながら、従来例では吹き出し具がガス吹き込み管の先端部のみに連結されているので、ガスを吹き込む際のガスの圧力によって吹き出し具が脱落し破損する恐れがある。その場合、先端部からガスが勢いよく吹き出す突沸が起きる恐れがある。また、保持炉内に圧力がかかっている場合、金属溶湯がガス吹き込み管内へ逆流する恐れがある。 However, in the conventional example, the blowout tool is connected only to the tip of the gas blowing pipe, so there is a risk that the blowout tool will fall off and be damaged due to the pressure of the gas when the gas is blown. In that case, there is a risk of sudden boiling, in which the gas is vigorously blown out from the tip. In addition, when the holding furnace is pressurized, the molten metal may flow back into the gas injection pipe.

本発明の目的は、突沸を防止し、金属溶湯がガス管内へ逆流することを防止するガス吹き込み管を提供することにある。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a gas blowing pipe which prevents bumping and reverse flow of molten metal into the gas pipe.

本発明の態様に係るガス吹き込み管は、溶湯容器内の金属溶湯に浸漬させてガスを吹き込むガス吹き込み管であって、第一端部と第二端部を有する接続部材と、前記接続部材に形成される多孔質部材と、前記接続部材の前記第二端部に接続されるガス管を備え、前記接続部材は、内部に貫通孔部が形成され、前記多孔質部材は、前記第一端部に繋がる第一端部外周部を覆い、前記第一端部に臨む前記貫通孔部を塞ぎ、さらに、前記貫通孔部において、内部の少なくとも一部を塞ぐように形成され、前記溶湯容器内の前記金属溶湯に浸漬され、前記ガス管より前記ガスが導入されると、前記ガスは前記多孔質部材を通って前記溶湯容器内に吹き込む。 A gas blowing pipe according to an aspect of the present invention is a gas blowing pipe that is immersed in a molten metal in a molten metal container and blows gas, and comprises a connection member having a first end and a second end, and and a gas pipe connected to the second end of the connection member, wherein the connection member has a through hole formed therein, and the porous member is connected to the first end. covering the outer peripheral part of the first end connected to the part, closing the through hole facing the first end, and further, in the through hole, formed so as to block at least a part of the inside, in the molten metal container When the gas is introduced from the gas pipe, the gas is blown into the molten metal container through the porous member.

これによれば、多孔質部材は、第一端部に繋がる第一端部外周部を覆い、第一端部に臨む貫通孔部を塞ぎ、さらに、貫通孔部において、内部の少なくとも一部を塞ぐように形成される。金属溶湯に吹き込むガスは、多孔質部材を通るので、圧力が低減されて突沸の発生を防止できる。また、貫通孔部の内部の少なくとも一部に多孔質部材を備えるので、第一端部の多孔質部材が脱落した場合でも金属溶湯がガス管内へ逆流することを防止できる。 According to this, the porous member covers the outer peripheral portion of the first end portion connected to the first end portion, closes the through hole portion facing the first end portion, and further at least partially fills the interior of the through hole portion. Formed to block. Since the gas blown into the molten metal passes through the porous member, the pressure is reduced and the occurrence of bumping can be prevented. Moreover, since the porous member is provided in at least a part of the inside of the through-hole portion, even if the porous member at the first end falls off, the molten metal can be prevented from flowing back into the gas pipe.

また、前記ガス吹き込み管は、前記多孔質部材が、第一多孔質部材と第二多孔質部材とからなり、前記第一多孔質部材は、前記第一端部に繋がる前記第一端部外周部を覆い、且つ前記第一端部に臨む前記貫通孔部を塞ぎ、前記第二多孔質部材は、前記貫通孔部における内部の少なくとも一部を塞いでもよい。 Further, in the gas injection pipe, the porous member includes a first porous member and a second porous member, and the first porous member is the first porous member connected to the first end. The second porous member may cover the outer peripheral portion of the end portion and block the through hole portion facing the first end portion, and block at least part of the interior of the through hole portion.

この場合、多孔質部材は二つの部材に分かれるので、それぞれ独立して容易に接続部材に形成することができる。また、第一多孔質部材と第二多孔質部材とは、それぞれ独立した形状を形成できるので、製造上の自由度が増す。 In this case, since the porous member is divided into two members, each member can be easily formed as a connecting member independently. In addition, since the first porous member and the second porous member can be formed in independent shapes, the degree of freedom in manufacturing increases.

また、前記ガス吹き込み管は、前記貫通孔部が、前記第二多孔質部材の前記第一端部の側の端面と、前記第一多孔質部材の前記第二端部の側の端面との間に空間部が形成され、前記ガス管を通って注入されるガスは、前記第二多孔質部材を通った後に前記空間部を通り、さらに前記第一多孔質部材を通って前記金属溶湯に吹き込でもよい。 Further, in the gas injection pipe, the through-hole portion is located on the end face of the second porous member on the first end side and the end face of the first porous member on the second end side. and the gas injected through the gas pipe passes through the space after passing through the second porous member, and further through the first porous member It may be blown into the molten metal.

この場合、ガス吹き込み管は空間部が形成される。空間部は、多孔質部材が充填されないので、空間部が多孔質部材によって充填される場合に比べて、空間部に相当する体積分の材料が低減され、材料費を低減することができる。 In this case, a space is formed in the gas blowing pipe. Since the space is not filled with the porous member, compared with the case where the space is filled with the porous member, the volume of material corresponding to the space is reduced, and the material cost can be reduced.

また、前記ガス吹き込み管は、前記第一多孔質部材と前記第二多孔質部材とは、同種材料で形成されてもよい。この場合、第一多孔質部材と第二多孔質部材とを同一の材料で形成することにより、材料コストを低減でき、同一の工法で製作することができる。 Further, in the gas injection pipe, the first porous member and the second porous member may be made of the same material. In this case, by forming the first porous member and the second porous member from the same material, the material cost can be reduced, and the same construction method can be used.

また、前記ガス吹き込み管は、前記第一多孔質部材と前記第二多孔質部材とは、異種材料で形成されてもよい。この場合、ガスの流路において、直列的に並ぶ第一多孔質部材と第二多孔質部材とを異なる材料で形成することにより、ガスの吹き込み部である下流側と、上流側とで、異なる多孔質材料の特性を活かすことができる。 Further, in the gas injection pipe, the first porous member and the second porous member may be made of different materials. In this case, in the gas flow path, by forming the first porous member and the second porous member that are arranged in series with different materials, , the properties of different porous materials can be exploited.

本発明のガス吹き込み管1を溶湯容器20内に浸漬させた状態を示す図である。FIG. 2 is a diagram showing a state in which the gas blowing pipe 1 of the present invention is immersed in a molten metal container 20; 本発明の第一実施形態であるガス吹き込み管1a(11a、12a)を示す図であって、貫通孔部9の内部において空間部6を備え、(a)及び(b)は、貫通孔部の第二端部の側は第二多孔質部材で充填され、(c)は、貫通孔部の第二端部の側の一部は第二多孔質部材の無い凹部16が形成される場合を示す。1A and 1B are diagrams showing a gas injection pipe 1a (11a, 12a) which is a first embodiment of the present invention, and includes a space portion 6 inside a through hole portion 9, and (a) and (b) are through hole portions The second end side of is filled with the second porous member, and in (c), a recess 16 without the second porous member is formed in a part of the through hole on the second end side indicates when 本発明の第二実施形態であるガス吹き込み管1b(11b)を示す図であって、貫通孔部9に空間部6を有しない場合であり、(a)は貫通孔部9が第二多孔質部材23によって充填される場合を示し、(b)は第一多孔質部材13が貫通孔部9の内部にまで形成され、貫通孔部9が第二多孔質部材23と第一多孔質部材13とによって充填される場合を示す。FIG. 11A is a diagram showing a gas injection pipe 1b (11b) according to a second embodiment of the present invention, in which the through-hole portion 9 does not have a space portion 6; (b) shows a case where the first porous member 13 is formed up to the inside of the through-hole portion 9, and the through-hole portion 9 is formed between the second porous member 23 and the first porous member 23; It shows the case of being filled with the porous member 13 . 本発明の第三実施形態であるガス吹き込み管1c(11c)を示す図であって、多孔質部材3は一つで形成され、(a)は多孔質部材3が定形耐火物からなる場合を示し、(b)は多孔質部材3が不定形耐火物からなる場合を示す。Fig. 10 is a diagram showing a gas injection pipe 1c (11c) according to a third embodiment of the present invention, in which the porous member 3 is formed by one, and (a) shows a case where the porous member 3 is made of a shaped refractory; and (b) shows the case where the porous member 3 is made of a monolithic refractory. 本発明の第四実施形態であるガス吹き込み管1d(11d)を示す図であって、第一多孔質部材13と第二多孔質部材23とが異種材料で形成される場合を示し、(a)は第二多孔質部材が定型耐火物からなり、第一多孔質部材が不定形耐火物からなる場合を示し、(b)は第二多孔質部材が不定形耐火物又はセラミックファイバーからなり、第一多孔質部材が定型耐火物からなる場合を示す。A diagram showing a gas injection pipe 1d (11d) that is a fourth embodiment of the present invention, showing a case where the first porous member 13 and the second porous member 23 are made of different materials, (a) shows the case where the second porous member is made of a shaped refractory and the first porous member is made of a monolithic refractory, and (b) shows the case where the second porous member is made of a monolithic refractory or It is made of ceramic fibers and the first porous member is made of a regular refractory. 本発明のガス吹き込み管において、図2(a)、(c)に示す場合の製造方法を示す図である。2(a) and 2(c) in the gas blowing pipe of the present invention; FIG. 本発明のガス吹き込み管において、図2(b)、図3、図4(a)、図4(b)に示す場合の製造方法を示す図である。FIG. 4 is a diagram showing a method of manufacturing the gas blowing pipe of the present invention in the cases shown in FIGS. 2(b), 3, 4(a), and 4(b). 従来のガス吹き込み管を示す図であり、第一多孔質部材13に相当する部材のみが形成される場合を示す。It is a figure which shows the conventional gas injection pipe|tube, and shows the case where only the member corresponded to the 1st porous member 13 is formed.

以下、図面を参照し、本発明を具現化したガス吹き込み管1を説明する。参照する図面は、本発明が採用しうる技術的特徴を説明するために用いられるものである。図面に記載されている装置の構成は、それのみに限定する趣旨ではなく、単なる説明例である。 Hereinafter, a gas blowing pipe 1 embodying the present invention will be described with reference to the drawings. The referenced drawings are used to explain technical features that the present invention can employ. The configuration of the device described in the drawings is not meant to be limiting, but merely illustrative.

<各実施形態に共通の構成>
図1、図2を例として参照し、本発明に係るガス吹き込み管1の各実施形態に共通の構成を説明する。図1に示すように、本発明のガス吹き込み管1は、溶湯容器20内の金属溶湯21に浸漬させてガス22を吹き込む。
<Configuration Common to Each Embodiment>
A configuration common to each embodiment of the gas blowing pipe 1 according to the present invention will be described with reference to FIGS. 1 and 2 as an example. As shown in FIG. 1, the gas blowing pipe 1 of the present invention is immersed in a molten metal 21 in a molten metal container 20 to blow gas 22 into it.

図2等に示すように、ガス吹き込み管1は、第一端部7と第二端部8を有する接続部材2と、接続部材2に形成される多孔質部材3と、接続部材2の第二端部8に接続されるガス管4を備える。接続部材2は、内部に貫通孔部9が形成される。多孔質部材3は、第一端部7に繋がる第一端部外周部7aを覆い、第一端部7に臨む貫通孔部9を塞ぎ、さらに、貫通孔部9において、内部の少なくとも一部を塞ぐように形成される。 As shown in FIG. It comprises a gas pipe 4 connected to two ends 8 . The connection member 2 has a through hole portion 9 formed therein. The porous member 3 covers the first end outer peripheral portion 7a connected to the first end portion 7, closes the through hole portion 9 facing the first end portion 7, and furthermore, at least part of the inside of the through hole portion 9 formed to block the

ガス吹き込み管1は、溶湯容器20内の金属溶湯21に浸漬され、ガス管4よりガス22が導入されると、ガス22は多孔質部材3を通って溶湯容器20内に吹き込む。ガス22は、例としてアルゴンガス又は窒素ガスである。また、金属溶湯21は、例としてアルミニウム、銅等の非鉄金属からなる。なお、多孔質部材3は、後述するように、一つの繋がった部材によって形成されてもよいし、複数に分離して形成されてもよい。多孔質部材3には、セラミックファイバー、定型レンガ等の定型耐火物、或いはキャスタブル等の不定形耐火物のいずれかが含まれる。 The gas blowing pipe 1 is immersed in the molten metal 21 in the molten metal container 20 , and when the gas 22 is introduced from the gas pipe 4 , the gas 22 is blown into the molten metal container 20 through the porous member 3 . Gas 22 is, for example, argon gas or nitrogen gas. Further, the molten metal 21 is made of, for example, non-ferrous metals such as aluminum and copper. As will be described later, the porous member 3 may be formed by one connected member, or may be formed by being separated into a plurality of members. The porous member 3 includes either shaped refractories such as ceramic fibers or shaped bricks, or monolithic refractories such as castables.

次に、図2等を参照して、多孔質部材3が、第一多孔質部材13と第二多孔質部材23とからなる場合を説明する。第一多孔質部材13と第二多孔質部材23とは互いに独立した部材である。第一多孔質部材13は、第一端部7に繋がる第一端部外周部7aを覆い、且つ第一端部7に臨む貫通孔部9を塞ぐよう形成される。第二多孔質部材23は、貫通孔部9における内部の少なくとも一部を塞ぐよう形成される。 Next, the case where the porous member 3 is composed of the first porous member 13 and the second porous member 23 will be described with reference to FIG. 2 and the like. The first porous member 13 and the second porous member 23 are members independent of each other. The first porous member 13 is formed so as to cover the first end outer peripheral portion 7a connected to the first end portion 7 and block the through hole portion 9 facing the first end portion 7 . The second porous member 23 is formed so as to block at least part of the interior of the through-hole portion 9 .

<各実施形態に共通の解決課題と効果>
以上説明したガス吹き込み管1は、以下の課題を解決し、その効果を奏する。従来のガス吹き込み管は、図8に示すように、吹き出し具がガス吹き込み管の先端部のみに連結されているので、ガスを吹き込む際のガスの圧力によって吹き出し具が脱落し破損する恐れがある。その場合、先端部からガスが勢いよく吹き出す突沸が起きる恐れがある。また、溶湯容器内に圧力がかかっている場合、金属溶湯がガス吹き込み管内へ逆流する恐れがある。
<Problem to be solved and effect common to each embodiment>
The gas blowing pipe 1 described above solves the following problems and produces the effect. In the conventional gas blowing pipe, as shown in FIG. 8, the blowing tool is connected only to the tip of the gas blowing pipe. . In that case, there is a risk of sudden boiling, in which the gas is vigorously blown out from the tip. Also, if the molten metal container is pressurized, the molten metal may flow back into the gas injection pipe.

また、一般にアルミニウムや銅の溶湯中にアルゴンガスや窒素ガスなどの不活性ガスを吹込むことにより、溶湯中に混入している水素濃度を下げることができる。また溶湯中の酸化物等の不純物もガスの気泡により凝集してスラグとして溶湯から分離できるので、金属の性能向上をはかることができる。そしてこの脱ガス処理のための装置としては、高速回転する回転翼端部からガスの気泡を細分化しつつ吹込む撹拌式のものが多く用いられていたが、高速回転に伴う装置のトラブルが発生しやすく、またガス量が多い場合は気泡の細分化は困難であった。 In general, by blowing an inert gas such as argon gas or nitrogen gas into molten aluminum or copper, the concentration of hydrogen mixed in the molten metal can be lowered. In addition, impurities such as oxides in the molten metal are aggregated by the gas bubbles and can be separated from the molten metal as slag, so that the performance of the metal can be improved. As a device for this degassing process, a stirring type that blows gas bubbles into small pieces from the tip of a rotating blade that rotates at high speed was often used, but trouble with the device occurred due to high speed rotation. In addition, when the amount of gas is large, it is difficult to subdivide the bubbles.

本発明のガス吹き込み管1は、これらの課題を解決するものである。ガス吹き込み管1から溶湯容器20内の金属溶湯21に吹き込むガス22は、多孔質部材3を通るので、気泡を細分化することができ、脱ガス性能が向上する。また、ガス22は、金属溶湯21の酸化物等の不純物をガス22の気泡により凝集してスラグとして分離できる。さらに、ガス22は圧力が低減されるので、突沸の発生を防止できる。 The gas blowing pipe 1 of the present invention solves these problems. Since the gas 22 blown into the molten metal 21 in the molten metal container 20 from the gas blowing pipe 1 passes through the porous member 3, the bubbles can be finely divided and the degassing performance is improved. Further, the gas 22 can separate impurities such as oxides from the molten metal 21 into slag by aggregating them with the bubbles of the gas 22 . Furthermore, since the pressure of the gas 22 is reduced, the occurrence of bumping can be prevented.

また、図2等の例に示すように、貫通孔部9の少なくとも一部に多孔質部材3(図2に示す例では、後述する第二多孔質部材23)を備えるので、第一端部7周辺の多孔質部材3(図2に示す例では、後述する第一多孔質部材13)が脱落した場合でも、貫通孔部9の内部に形成された多孔質部材3(図2に示す例では、第二多孔質部材23)が防波堤となる。よって、金属溶湯21がガス管4内へ逆流することを防止できる。 Further, as shown in the example of FIG. 2 and the like, at least part of the through-hole portion 9 is provided with the porous member 3 (in the example shown in FIG. 2, a second porous member 23 to be described later). Even if the porous member 3 around the portion 7 (in the example shown in FIG. 2, the first porous member 13 to be described later) falls off, the porous member 3 formed inside the through-hole portion 9 ( In the example shown, the second porous member 23) serves as a breakwater. Therefore, it is possible to prevent the molten metal 21 from flowing back into the gas pipe 4 .

また、多孔質部材3が、第一多孔質部材13と第二多孔質部材23とからなる場合は以下の効果がある。すなわち、ガス吹き込み管1は、第一多孔質部材13と第二多孔質部材23とが直列的に形成されるので、一方に脱落等の不具合が生じても、他方がその機能を補うことができる。その機能とは、ガス22の気泡を細分化して金属溶湯21へ吹き込む機能と、金属溶湯21がガス管4内に逆流することを防止する機能である。 Moreover, when the porous member 3 is composed of the first porous member 13 and the second porous member 23, the following effects are obtained. That is, since the gas blowing pipe 1 is formed by serially forming the first porous member 13 and the second porous member 23, even if one of the members is detached, the other can compensate for its function. be able to. The functions are a function of breaking up the bubbles of the gas 22 and blowing them into the molten metal 21 and a function of preventing the molten metal 21 from flowing back into the gas pipe 4 .

さらに、ガス吹き込み管1は、ガス管4から吹き込むガス22が多孔質部材3である第二多孔質部材23と、第一多孔質部材13とを通って金属溶湯21へ吹き込むので、気泡を細分化することができる。ガス22は、脱ガス性能を向上させることができる。また、金属溶湯21の酸化物等の不純物を気泡により凝集してスラグとして分離する効果をより高めることができる。 Furthermore, in the gas blowing pipe 1, the gas 22 blown from the gas pipe 4 passes through the second porous member 23, which is the porous member 3, and the first porous member 13, and blows into the molten metal 21. can be subdivided. The gas 22 can improve degassing performance. In addition, the effect of aggregating impurities such as oxides in the molten metal 21 by the bubbles and separating them as slag can be further enhanced.

<第一実施形態の構成>
次に、図2を参照して、本発明の態様に係る第一実施形態のガス吹き込み管1aの構成を説明する。すでに説明した共通部分は、説明を省略する。ガス吹き込み管1aは、貫通孔部9が第二多孔質部材23の第一端部7の側の端面23aと、第一多孔質部材13の第二端部8の側の端面13aとの間に空間部6が形成される。ガス管4を通って注入されるガス22は、第二多孔質部材23を通った後に空間部6を通り、さらに第一多孔質部材13を通って金属溶湯21に吹き込む。
<Configuration of First Embodiment>
Next, with reference to FIG. 2, the configuration of the gas blowing pipe 1a of the first embodiment according to the aspect of the present invention will be described. Descriptions of common parts that have already been described are omitted. The gas injection pipe 1a has a through-hole portion 9 formed between an end surface 23a of the second porous member 23 on the first end portion 7 side and an end surface 13a of the first porous member 13 on the second end portion 8 side. A space 6 is formed between The gas 22 injected through the gas pipe 4 passes through the space 6 after passing through the second porous member 23 , and further passes through the first porous member 13 to blow into the molten metal 21 .

図2(a)、(b)に示す例(それぞれ、ガス吹き込み管1aとガス吹き込み管11a)では、第二多孔質部材23は、接続部材2の第二端部8まで貫通孔部9に充填される。これに対して、図2(c)に示す例(ガス吹き込み管12a)では、第二多孔質部材23の第二端部8の側の端面23bと、接続部材2の第二端部8との間には凹部16が形成される。図2等に示す接続部材2は、貫通孔部9に段部9aが形成され、空間部6は段部9aと第一端部7との間に形成される。 In the examples shown in FIGS. 2(a) and 2(b) (gas injection pipe 1a and gas injection pipe 11a, respectively), the second porous member 23 extends through the through-hole portion 9 to the second end portion 8 of the connecting member 2. is filled to On the other hand, in the example (gas blowing pipe 12a) shown in FIG. A recess 16 is formed between the In the connection member 2 shown in FIG. 2 and the like, a stepped portion 9a is formed in the through hole portion 9, and the space portion 6 is formed between the stepped portion 9a and the first end portion 7. As shown in FIG.

すでに説明したように、多孔質部材3が第一多孔質部材13と第二多孔質部材23とからなるときは、段部9aが形成される。段部9aは、第二多孔質部材23を保持する役目を果たす。すなわち、ガス管4からガス22が送られ、第二多孔質部材23に到達すると、ガス22が第二多孔質部材23を第一端部7の側へ押し出す力が働く。その際、仮に段部9aが無くて貫通孔部9がストレートの場合、第二多孔質部材23はガス22の圧力を受ける部分が無く、第一端部7の側へ押し出される可能性がある。なお、図2(a)と図2(b)の違いは後述する。 As already explained, when the porous member 3 consists of the first porous member 13 and the second porous member 23, the stepped portion 9a is formed. The stepped portion 9 a serves to hold the second porous member 23 . That is, when the gas 22 is sent from the gas pipe 4 and reaches the second porous member 23 , the gas 22 exerts a force to push the second porous member 23 toward the first end portion 7 side. At that time, if there is no step portion 9a and the through hole portion 9 is straight, the second porous member 23 has no portion that receives the pressure of the gas 22, and there is a possibility that the second porous member 23 will be pushed out toward the first end portion 7 side. be. The difference between FIG. 2(a) and FIG. 2(b) will be described later.

<第一実施形態の効果>
以上説明した、第一実施形態のガス吹き込み管1aは、以下の効果を奏する。ガス吹き込み管1aは、安定した圧力で金属溶湯21内へガス22を吹き込むことができる。
<Effects of First Embodiment>
The gas blowing pipe 1a of the first embodiment described above has the following effects. The gas blowing pipe 1a can blow the gas 22 into the molten metal 21 at a stable pressure.

ガス吹き込み管1aは、各実施形態に共通の効果に加え、空間部6が形成されることにより、材料費を低減できるという効果を奏する。すなわち、空間部6は、多孔質部材3が充填されないので、空間部6が多孔質部材3によって充填される場合に比べて、空間部6に相当する体積分の材料が低減され、材料費を低減することができる。 In addition to the effect common to each embodiment, the gas blowing pipe 1a has the effect of reducing the material cost by forming the space portion 6 . That is, since the space portion 6 is not filled with the porous member 3, compared with the case where the space portion 6 is filled with the porous member 3, the volume of the material corresponding to the space portion 6 is reduced, and the material cost is reduced. can be reduced.

また、第二多孔質部材23が定型耐火物の場合、空間部6を形成することにより、製造が容易となるという効果がある。定型耐火物の場合、貫通孔部9の内部形状に合わせて予め第二多孔質部材23を成形するが、第一端部7の側の端面23aに凹凸が発生する場合がある。空間部6が形成されることにより、端面23aと第一多孔質部材13の第二端部8の側の端面13aとは接触しないので、端面23aに凹凸が発生したとしても許容することができるからである。 In addition, when the second porous member 23 is a standard refractory, forming the space 6 has the effect of facilitating manufacturing. In the case of a standard refractory, the second porous member 23 is formed in advance according to the internal shape of the through-hole portion 9, but unevenness may occur on the end surface 23a on the first end portion 7 side. By forming the space 6, the end surface 23a and the end surface 13a of the first porous member 13 on the side of the second end portion 8 do not come into contact with each other. Because you can.

さらに、次の効果を期待できる場合がある。ガス管4を通るガス22は、第二多孔質部材23を通った後に空間部6に入り、さらに第一多孔質部材13を通って金属溶湯21内に吹き込む。空間部6は、第二多孔質部材23を通って注入されたガス22をプールし、一定の圧力に維持された状態となる。すると、空間部6は、上流側のガス22の圧力に変動が生じても、下流側である第一多孔質部材13へは一定範囲の圧力でガス22を送り出すことができるダンパー効果を生じる。よって、ガス吹き込み管1aは、ガス22を供給する供給装置の圧力が変動したとしても、安定した圧力で金属溶湯21にガス22を吹き込むことができる。よって、圧力が変動してガス22が高圧で吹き込むと発生する突沸を防止できる。以上は、ガス22の吹き込みが大容量の場合に特に効果が期待できる。 Furthermore, the following effects may be expected. The gas 22 passing through the gas pipe 4 enters the space 6 after passing through the second porous member 23 and is blown into the molten metal 21 through the first porous member 13 . The space 6 pools the gas 22 injected through the second porous member 23 and is maintained at a constant pressure. Then, even if the pressure of the gas 22 on the upstream side fluctuates, the space part 6 produces a damper effect that can send the gas 22 to the first porous member 13 on the downstream side at a certain range of pressure. . Therefore, the gas blowing pipe 1a can blow the gas 22 into the molten metal 21 at a stable pressure even if the pressure of the supply device for supplying the gas 22 fluctuates. Therefore, it is possible to prevent bumping that occurs when the pressure fluctuates and the gas 22 is blown in at high pressure. The above can be expected to be particularly effective when the gas 22 is blown in at a large volume.

<第二実施形態のガス吹き込み管1bの構成> <Structure of Gas Injection Pipe 1b of Second Embodiment>

次に、図3を参照して、本発明の態様に係る第二実施形態のガス吹き込み管1b(11b)の構成を説明する。図3において、図2におけるガス吹き込み管1aと共通の構成は同様の符号を付すか、或いは省略する。また、共通の構成は説明を省略する。 Next, with reference to FIG. 3, the configuration of the gas injection pipe 1b (11b) of the second embodiment according to the aspect of the present invention will be described. In FIG. 3, components common to the gas blowing pipe 1a in FIG. 2 are given the same reference numerals or omitted. Also, the description of the common configuration is omitted.

ガス吹き込み管1bは、第一端部7、又は貫通孔部9の内部において、第二多孔質部材23と第一多孔質部材13とが接触する。ガス管4を通って注入されるガス22は、第二多孔質部材23を通った後に第一多孔質部材13を通って溶湯容器20内に吹き込む。第二多孔質部材23と第一多孔質部材13とは、互いに接する面が互いに密着して隙間が無い状態でもよいし、部分的に接触して部分的に隙間があってもよい。 The second porous member 23 and the first porous member 13 are in contact with each other in the first end portion 7 or the inside of the through-hole portion 9 of the gas blowing pipe 1b. The gas 22 injected through the gas pipe 4 is blown into the molten metal container 20 through the first porous member 13 after passing through the second porous member 23 . The surfaces of the second porous member 23 and the first porous member 13 in contact with each other may be in close contact with each other without a gap, or may be in partial contact with a partial gap.

図3(a)に示すガス吹き込み管1bは、接続部材2の貫通孔部9が、第二多孔質部材23によって充填される。貫通孔部9は、第二多孔質部材23によって接続部材2の第一端部7から第二端部8まで充填され、第一端部7において第一多孔質部材13と接触する。図3(b)に示すガス吹き込み管11bは、接続部材2の貫通孔部9が、第二多孔質部材23によって接続部材2の第二端部8から段部9aまで充填され、第一多孔質部材13によって段部9aから第一端部7まで充填されている。 In the gas blowing pipe 1 b shown in FIG. 3( a ), the through hole portion 9 of the connecting member 2 is filled with the second porous member 23 . The through-hole portion 9 is filled with the second porous member 23 from the first end portion 7 to the second end portion 8 of the connecting member 2 and contacts the first porous member 13 at the first end portion 7 . In the gas injection pipe 11b shown in FIG. 3(b), the through-hole portion 9 of the connection member 2 is filled with the second porous member 23 from the second end portion 8 to the step portion 9a of the connection member 2, and the first The porous member 13 is filled from the step portion 9 a to the first end portion 7 .

<第二実施形態の効果>
以上説明した、第二実施形態のガス吹き込み管1bは、以下の課題を解決し効果を奏する。ガス吹き込み管1bは、ガス吹き込み管1aと同様に、安定した圧力で金属溶湯21内へガス22を吹き込むことができる。
<Effects of Second Embodiment>
The gas blowing pipe 1b of the second embodiment described above solves the following problems and produces effects. Like the gas blowing pipe 1a, the gas blowing pipe 1b can blow the gas 22 into the molten metal 21 at a stable pressure.

ガス吹き込み管1b(11b)は、接続部材2における貫通孔部9の全長と、ガス22の吹き込み部である第一端部7の先の部分まで第二多孔質部材23或いは第一多孔質部材13が連続する構成である。よって、ガス22は多孔質部材3である第二多孔質部材23、及び第一多孔質部材13を通る流路が長くなり、吹き込む際の圧力がより安定する。 The gas blowing pipe 1b (11b) extends through the entire length of the through-hole portion 9 in the connecting member 2 and the portion beyond the first end portion 7 where the gas 22 is blown. It is a structure in which the material member 13 is continuous. Therefore, the flow path of the gas 22 through the second porous member 23, which is the porous member 3, and the first porous member 13 becomes longer, and the pressure during blowing becomes more stable.

また、ガス吹き込み管1b(11b)は、貫通孔部9が、第二多孔質部材23、又は、第二多孔質部材23と第一多孔質部材13とによって充填されてもよい。この場合、貫通孔部9を通るガス22は、常に第一多孔質部材13又は第二多孔質部材23のいずれかを通るので、溶湯容器20内の金属溶湯21へ吹き込む際の圧力がより安定する。 Further, the through hole portion 9 of the gas blowing pipe 1 b ( 11 b ) may be filled with the second porous member 23 or the second porous member 23 and the first porous member 13 . In this case, since the gas 22 passing through the through-hole portion 9 always passes through either the first porous member 13 or the second porous member 23, the pressure when blowing into the molten metal 21 in the molten metal container 20 is more stable.

<第三実施形態の構成>
次に、図4を参照して、本発明の態様に係る第三実施形態のガス吹き込み管1c(11c)の構成を説明する。ガス吹き込み管1c(11c)が、ガス吹き込み管1a、及びガス吹き込み管1bと異なる点は、多孔質部材3が一つに繋がった部材からなる点である。
<Configuration of the third embodiment>
Next, with reference to FIG. 4, the configuration of the gas injection pipe 1c (11c) of the third embodiment according to the aspect of the present invention will be described. The gas blowing pipe 1c (11c) differs from the gas blowing pipes 1a and 1b in that the porous member 3 is made of a member connected to one.

図4(a)に示す例は、多孔質部材3が定形耐火物からなり、接続部材2と多孔質部材3との間にはモルタル14が注入されて隙間無く固定される。図4(b)に示す例は、多孔質部材3が不定型耐火物からなる場合を示し、接続部材2を型にセットして材料を流し込んで成形するものである。 In the example shown in FIG. 4(a), the porous member 3 is made of a shaped refractory, and the mortar 14 is injected between the connecting member 2 and the porous member 3 to fix them without gaps. The example shown in FIG. 4(b) shows the case where the porous member 3 is made of a monolithic refractory, and the connecting member 2 is set in a mold and the material is poured into the mold.

図4(a)に示すガス吹き込み管1cと、図4(b)に示すガス吹き込み管11cは、共に、多孔質部材3が第一端部7に繋がる第一端部外周部7aを覆い、第一端部7に臨む貫通孔部9を塞ぎ、さらに、貫通孔部9において、内部の全体を塞ぐように形成される。 Both the gas blowing pipe 1c shown in FIG. 4(a) and the gas blowing pipe 11c shown in FIG. It closes the through hole portion 9 facing the first end portion 7 and is formed so as to close the entire inside of the through hole portion 9 .

ガス吹き込み管1c及びガス吹き込み管11cから溶湯容器20内の金属溶湯21に吹き込むガス22は、多孔質部材3を通るので、気泡を細分化することができ、脱ガス性能が向上する。また、金属溶湯21の酸化物等の不純物をガス22の気泡により凝集してスラグとして分離できる。さらに、ガス22は圧力が低減されるので、突沸の発生を防止できる。また、貫通孔部9に多孔質部材3を備えるので、第一端部7周辺の多孔質部材3が亀裂により脱落した場合でも、貫通孔部9の内部に形成された多孔質部材3が防波堤となる。よって、金属溶湯21が逆流することを防止できる。 Since the gas 22 blown into the molten metal 21 in the molten metal container 20 from the gas injection pipes 1c and 11c passes through the porous member 3, the bubbles can be subdivided and the degassing performance is improved. Also, impurities such as oxides in the molten metal 21 can be aggregated by the bubbles of the gas 22 and separated as slag. Furthermore, since the pressure of the gas 22 is reduced, the occurrence of bumping can be prevented. In addition, since the through-hole portion 9 is provided with the porous member 3, even if the porous member 3 around the first end portion 7 falls off due to a crack, the porous member 3 formed inside the through-hole portion 9 will still serve as a breakwater. becomes. Therefore, it is possible to prevent the molten metal 21 from flowing back.

<第一多孔質部材と第二多孔質部材とが同種材料の場合とその効果>
次に、第一多孔質部材13と第二多孔質部材23が同種材料の場合の構成と製造方法について説明する。図2(a)及び図2(c)に示す例は、第一多孔質部材13と第二多孔質部材23とがいずれも定型耐火物で形成される場合を示す。この場合、第一多孔質部材13と第二多孔質部材23とは、同種材料で形成される。なお、ここでの同種材料とは、第一多孔質部材13と第二多孔質部材23とが、いずれも予め形状が固定される定型耐火物で形成されるか、又はいずれも不定形耐火物で形成される場合のいずれかを示す。なお、同じ原材料で形成する場合も含む。
<When the first porous member and the second porous member are made of the same material and its effect>
Next, the configuration and manufacturing method when the first porous member 13 and the second porous member 23 are made of the same material will be described. The examples shown in FIGS. 2(a) and 2(c) show the case where both the first porous member 13 and the second porous member 23 are made of standard refractories. In this case, the first porous member 13 and the second porous member 23 are made of the same material. In addition, the same kind of material here means that both the first porous member 13 and the second porous member 23 are formed of a shaped refractory whose shape is fixed in advance, or both Indicates either of the cases where the refractory material is used. In addition, the case where it forms with the same raw material is also included.

図2(b)、図3に示す例は、第二多孔質部材23がセラミックファイバー、又は不定形耐火物で形成される場合を示す。第一多孔質部材13は不定形耐火物で形成され、第二多孔質部材23が不定形耐火物で形成される場合は、第一多孔質部材13と第二多孔質部材23とは、同種材料で形成される。 The examples shown in FIGS. 2B and 3 show the case where the second porous member 23 is made of ceramic fiber or monolithic refractory. When the first porous member 13 is formed of a monolithic refractory and the second porous member 23 is formed of a monolithic refractory, the first porous member 13 and the second porous member 23 are made of the same kind of material.

次に、図6、図7を参照して、第一多孔質部材13と第二多孔質部材23とが同種材料の場合のガス吹き込み管1における製造方法を説明する。図6に示すように、第一多孔質部材13が定型耐火物であり、第二多孔質部材23が定型耐火物の場合、予めそれぞれ接続部材2において形成する部分の形状に合わせて成形又は加工しておいて、接続部材2に取り付ける。その際に、接続部材2と第二多孔質部材23、及び第一多孔質部材13との接続部分にモルタル14を充填させて隙間無く接着する。 Next, with reference to FIGS. 6 and 7, a method of manufacturing the gas blowing pipe 1 when the first porous member 13 and the second porous member 23 are made of the same material will be described. As shown in FIG. 6, when the first porous member 13 is a standard refractory material and the second porous member 23 is a standard refractory material, the first porous member 13 and the second porous member 23 are preformed according to the shapes of the portions to be formed in the connecting member 2 respectively. Alternatively, it is processed and attached to the connection member 2 . At that time, the connecting portions between the connecting member 2 and the second porous member 23 and the first porous member 13 are filled with the mortar 14 so that they are bonded without gaps.

図2等に示す例では、接続部材2は第一端部7及び第二端部8の側にそれぞれ雄ネジ部7b、8bが形成されたニップル等を使用する。ガス管4は予め雌ネジを形成しておき、接続部材2の第二端部8に形成される雄ネジ部8bとネジ留めする。なお、接続部材2はニップル形状に限定するものではなく、貫通孔部9を備えた部材であれば形状は問わない。例えば、単なる円筒状の部材でもよく、その場合はガス管4との接続は接着、溶接その他の方法を適用できる。ただし、すでに説明したように、多孔質部材3が第一多孔質部材13と第二多孔質部材23とからなるときは、貫通孔部9に段部9aが形成される。 In the example shown in FIG. 2 and the like, the connection member 2 uses a nipple or the like having male screw portions 7b and 8b formed on the first end portion 7 and the second end portion 8 sides, respectively. The gas pipe 4 is formed with a female screw in advance, and is screwed to the male screw portion 8b formed on the second end portion 8 of the connecting member 2 . The shape of the connection member 2 is not limited to the nipple shape, and any shape can be used as long as the member has the through hole portion 9 . For example, it may be a simple cylindrical member, in which case bonding, welding, or other methods can be applied to the connection with the gas pipe 4 . However, as already explained, when the porous member 3 consists of the first porous member 13 and the second porous member 23, the through-hole portion 9 is formed with a stepped portion 9a.

次に、図7に示すように、第一多孔質部材13が不定形耐火物で形成され、第二多孔質部材23が不定形耐火物、又はセラミックファイバーで形成される場合を説明する。第二多孔質部材23は、接続部材2の貫通孔部9に不定形耐火物、又はセラミックファイバーを注入して成形する。一方、第一多孔質部材13は、接続部材2の第一端部7に対応する型を製作し、型に接続部材2の第一端部7の側を装着した状態で不定形耐火物を注入して成形する。接続部材2とガス管4との接続は同様である。なお、多孔質部材3が図4(a)に示す形態の場合も、図7に示す場合と同様に形成される。 Next, as shown in FIG. 7, the case where the first porous member 13 is made of monolithic refractory and the second porous member 23 is made of monolithic refractory or ceramic fiber will be described. . The second porous member 23 is formed by injecting a monolithic refractory or ceramic fiber into the through-hole portion 9 of the connecting member 2 . On the other hand, for the first porous member 13, a mold corresponding to the first end portion 7 of the connection member 2 is manufactured, and the monolithic refractory is molded while the first end portion 7 side of the connection member 2 is attached to the mold. is injected and molded. The connection between the connecting member 2 and the gas pipe 4 is the same. In addition, even when the porous member 3 has the form shown in FIG. 4A, it is formed in the same manner as the case shown in FIG.

以上説明したように、第一多孔質部材13と第二多孔質部材23とが同種材料で形成されると、材料の管理、手配等のコストを低減できる。また、定型耐火物のように成形によって予め固定形状に成形できる場合は、予め必要な形状に成形又は加工し、接続部材2に接着して形成できる。なお、セラミックファイバーは定型材として使用する場合は、定型耐火物と同様の取扱となる。 As described above, if the first porous member 13 and the second porous member 23 are made of the same kind of material, it is possible to reduce costs such as material management and arrangement. Moreover, when it can be formed into a fixed shape in advance by molding, such as a regular refractory, it can be formed by forming or processing it into a required shape in advance and bonding it to the connection member 2 . When ceramic fiber is used as a shaped material, it is handled in the same way as a shaped refractory.

<第一多孔質部材と第二多孔質部材とが異種材料の場合とその効果>
次に、第一多孔質部材13と第二多孔質部材23が異種材料の場合の構成と製造方法について説明する。図5に示すように、第四実施形態のガス吹き込み管1d(11d)は、第一多孔質部材13と第二多孔質部材23とが異種材料の場合を示す。ここでの異種材料とは、一方が予め形状を固定できる所謂定型耐火物であり、他方が不定形耐火物、又はセラミックファイバーの場合を示すが、異なる原材料で形成する場合も含む。
<When the first porous member and the second porous member are made of different materials and their effects>
Next, the configuration and manufacturing method when the first porous member 13 and the second porous member 23 are made of different materials will be described. As shown in FIG. 5, the gas injection pipe 1d (11d) of the fourth embodiment shows the case where the first porous member 13 and the second porous member 23 are made of different materials. Here, the dissimilar materials refer to a so-called shaped refractory whose shape can be preliminarily fixed and a monolithic refractory or ceramic fiber on the other side, but also include the case where they are formed from different raw materials.

図5(a)に示すガス吹き込み管1dは、第二多孔質部材23が定型耐火物からなり、第一多孔質部材13が不定形耐火物からなる場合を示す。図5(b)に示すガス吹き込み管11dは、第二多孔質部材23が不定形耐火物、又はセラミックファイバーからなり、第一多孔質部材13が定型耐火物からなる場合を示す。それぞれの製造方法は、すでに説明したとおりである。 The gas injection pipe 1d shown in FIG. 5(a) shows the case where the second porous member 23 is made of a shaped refractory and the first porous member 13 is made of a monolithic refractory. The gas injection pipe 11d shown in FIG. 5(b) shows the case where the second porous member 23 is made of monolithic refractory or ceramic fiber, and the first porous member 13 is made of shaped refractory. Each manufacturing method is as already explained.

第一多孔質部材13と第二多孔質部材23とが異種材料の場合、それぞれの特性を異ならせることができる。例えば、それぞれの部材の強度、重量、密度、さらには気孔率を容易に異ならせることができる。 When the first porous member 13 and the second porous member 23 are made of different materials, they can have different properties. For example, the strength, weight, density, and porosity of each member can be easily varied.

1、1a、1b、1c、1d、11a、11b、11c、11d、12a ガス吹き込み管
2 接続部材
3 多孔質部材
4 ガス管
6 空間部
7 第一端部
7a 第一端部外周部
8 第二端部
9 貫通孔部
13 第一多孔質部材
13a 端面
20 溶湯容器
21 金属溶湯
22 ガス
23 第二多孔質部材
23a 端面

1, 1a, 1b, 1c, 1d, 11a, 11b, 11c, 11d, 12a Gas injection pipe 2 Connection member 3 Porous member 4 Gas pipe 6 Space 7 First end 7a First end outer peripheral portion 8 Second End 9 Through hole 13 First porous member 13a End face 20 Molten metal container 21 Molten metal 22 Gas 23 Second porous member 23a End face

Claims (5)

溶湯容器内の金属溶湯に浸漬させてガスを吹き込むガス吹き込み管であって、
第一端部と第二端部を有する接続部材と、
前記接続部材に形成される多孔質部材と、
前記接続部材の前記第二端部に接続されるガス管を備え、
前記接続部材は、内部に貫通孔部が形成され、
前記多孔質部材は、
前記第一端部に繋がる第一端部外周部を覆い、前記第一端部に臨む前記貫通孔部を塞ぎ、さらに、前記貫通孔部において、内部の少なくとも一部を塞ぐように形成され、
前記溶湯容器内の前記金属溶湯に浸漬され、前記ガス管より前記ガスが導入されると、前記ガスは前記多孔質部材を通って前記溶湯容器内に吹き込むガス吹き込み管。
A gas blowing pipe for blowing gas by immersing it in the molten metal in the molten metal container,
a connecting member having a first end and a second end;
a porous member formed on the connection member;
a gas pipe connected to the second end of the connecting member;
The connection member has a through hole formed therein,
The porous member is
It covers the outer periphery of the first end connected to the first end, closes the through hole facing the first end, and further closes at least a part of the interior of the through hole,
a gas blowing pipe which is immersed in the molten metal in the molten metal container and blows the gas into the molten metal container through the porous member when the gas is introduced from the gas pipe;
前記多孔質部材は、第一多孔質部材と第二多孔質部材とからなり、
前記第一多孔質部材は、前記第一端部に繋がる前記第一端部外周部を覆い、且つ前記第一端部に臨む前記貫通孔部を塞ぎ、
前記第二多孔質部材は、前記貫通孔部における内部の少なくとも一部を塞ぐ請求項1に記載のガス吹き込み管。
The porous member comprises a first porous member and a second porous member,
The first porous member covers the outer periphery of the first end connected to the first end and closes the through hole facing the first end,
2. The gas blowing pipe according to claim 1, wherein said second porous member closes at least part of the interior of said through-hole portion.
前記貫通孔部は、前記第二多孔質部材の前記第一端部の側の端面と、前記第一多孔質部材の前記第二端部の側の端面との間に空間部が形成され、
前記ガス管を通って注入されるガスは、前記第二多孔質部材を通った後に前記空間部を通り、さらに前記第一多孔質部材を通って前記金属溶湯に吹き込む請求項2に記載のガス吹き込み管。
In the through-hole portion, a space is formed between an end face of the second porous member on the first end side and an end face of the first porous member on the second end side. is,
3. The gas injected through the gas pipe according to claim 2, after passing through the second porous member, passes through the space and further passes through the first porous member to blow into the molten metal. gas injection pipe.
前記第一多孔質部材と前記第二多孔質部材とは、同種材料で形成される請求項2又は3に記載のガス吹き込み管。 4. The gas blowing pipe according to claim 2, wherein said first porous member and said second porous member are made of the same material. 前記第一多孔質部材と前記第二多孔質部材とは、異種材料で形成される請求項2又は3に記載のガス吹き込み管。

4. The gas blowing pipe according to claim 2, wherein said first porous member and said second porous member are made of different materials.

JP2021070202A 2021-04-19 2021-04-19 gas blowing pipe Pending JP2022165030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021070202A JP2022165030A (en) 2021-04-19 2021-04-19 gas blowing pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021070202A JP2022165030A (en) 2021-04-19 2021-04-19 gas blowing pipe

Publications (1)

Publication Number Publication Date
JP2022165030A true JP2022165030A (en) 2022-10-31

Family

ID=83845768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021070202A Pending JP2022165030A (en) 2021-04-19 2021-04-19 gas blowing pipe

Country Status (1)

Country Link
JP (1) JP2022165030A (en)

Similar Documents

Publication Publication Date Title
CN101918329B (en) For corrosion-resistant cradle and the castable of glass production
NL8200818A (en) POURING MELTED METALS.
JP2022165030A (en) gas blowing pipe
CN108778564B (en) Nozzle structure
EP0424502B1 (en) Gas injector
RU2277591C2 (en) Refractory plug or block for pumping gas into melt metal
FR2561957A1 (en) REFRACTORY NOZZLE FOR DIVING
JP2001191152A (en) Casting stopper
KR102117307B1 (en) Gasket for a collector nozzle
JP4061880B2 (en) Molten glass conduit structure and vacuum degassing apparatus for molten glass
JP2006068798A (en) Nozzle for continuous casting having inner hole body
JP2583492B2 (en) Gas injection tube for molten aluminum
JPS586943A (en) Refractories for blowing of gas for refining of molten metal
JPH06158130A (en) Stave cooler
JP6430844B2 (en) Bubbling plate
CN214185176U (en) Graphite base for horizontal continuous casting brass rod
JPH02104454A (en) Nozzle for continuous casting
CN212655834U (en) Metal liquid purifier
JP2007149608A (en) Fuel cell stack and manufacturing method of fuel cell stack
JP4490131B2 (en) Ladle
CN219156765U (en) Chimney structure and glass tank furnace
KR100897748B1 (en) Refractory for gas bubbling
CN110809499B (en) Nozzle for casting
JP2014515990A (en) Permanent aluminum casting mold vent
CN212144943U (en) Gas-cooled plasma cutting gun

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230704