JPS586943A - Refractories for blowing of gas for refining of molten metal - Google Patents

Refractories for blowing of gas for refining of molten metal

Info

Publication number
JPS586943A
JPS586943A JP10321881A JP10321881A JPS586943A JP S586943 A JPS586943 A JP S586943A JP 10321881 A JP10321881 A JP 10321881A JP 10321881 A JP10321881 A JP 10321881A JP S586943 A JPS586943 A JP S586943A
Authority
JP
Japan
Prior art keywords
molten metal
gas
blowing
refractory
brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10321881A
Other languages
Japanese (ja)
Other versions
JPS6159373B2 (en
Inventor
Hiromi Fukuoka
福岡 弘美
Hiroshi Kano
鹿野 弘
Teruo Imazaki
今崎 輝雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Kurosaki Refractories Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurosaki Refractories Co Ltd, Nippon Steel Corp filed Critical Kurosaki Refractories Co Ltd
Priority to JP10321881A priority Critical patent/JPS586943A/en
Publication of JPS586943A publication Critical patent/JPS586943A/en
Publication of JPS6159373B2 publication Critical patent/JPS6159373B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D1/00Treatment of fused masses in the ladle or the supply runners before casting
    • B22D1/002Treatment with gases
    • B22D1/005Injection assemblies therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To prevent the inclusion of molten metal into holes and to make the intermittent operations of gas blowing possible in a bubbling brick for the purpose of blowing specific gases into molten metal by inserting convergent bodies of refractory fibers into the holes of the brick. CONSTITUTION:In the case of agitating and refining molten metal by blowing various kinds of active gases and inert gases into molten iron or molten steel, a bubbling brick 4 for blowing of said gases is molded of dense refractories 4 of graphite-Mgo type, and refractory fiber bundles 7 of high wettability with molten iron and molten steel such as carbon fibers, silicon carbide base, boron carbide base or the like are inserted and packed into holes 6 for gas blowing. The bundles 7 of sizes having 5-50mm. sectional diameters are inserted in such a way that the unit air permeating sectional diameter attains <=100mu. Refining by intermittent gas blowing is accomplished without inclusion of the molten metal into the holes 6 of the brick 4.

Description

【発明の詳細な説明】 本発明は耐用性に優れ且つ断続使用が可能な溶融金属精
錬用ガス吹込み耐火物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gas-blown refractory for molten metal refining that has excellent durability and can be used intermittently.

溶融金属特に鉄鋼業における溶銑・溶鋼への活性・不活
性ガスの吹込みによる溶金反応の効率化は、古来いろい
ろの形で実施されてきており、溶銑・溶鋼・取鍋、二次
精錬炉、転炉等のいずれにおいても攪拌効果が認められ
ている。従来、ガス吹込方式には上方から溶融金属中に
耐火物で保護されたランスを用いる上吹法と溶融金属容
器の底部に通気孔を有する耐火物(以下バブリング・ブ
リックと称す)を設けた底吹き法等が周知である。
Increasing the efficiency of molten metal reactions, especially in the steel industry, by injecting active or inert gases into molten pig iron and molten steel has been carried out in various ways since ancient times. The stirring effect has been recognized in both converters and converters. Conventionally, gas blowing methods include the top blowing method, which uses a lance protected by a refractory material to enter the molten metal from above, and the bottom blowing method, which uses a refractory material with ventilation holes (hereinafter referred to as a bubbling brick) at the bottom of the molten metal container. The blowing method etc. are well known.

浴の攪拌効果の点からは後者の方が有利であるが、バブ
リング・ブリックの耐用性に問題があり、湯もれ事故な
どの懸念もあることから、後者が必ずしも有利であるこ
とはいえない状況にある。
The latter is more advantageous in terms of bath agitation effect, but there are problems with the durability of bubbling bricks and there are concerns about accidents such as water leakage, so the latter cannot necessarily be said to be advantageous. situation.

発明者等は底吹きガスによる攪拌効果を生かすためには
バブリング・ブリックの耐用性、信頼性を向上させるこ
とが最も重要であると考え、種々検討の結果、高耐火高
耐食性繊維状耐火物を利用したバブリング・ブリックの
開発に成功した。以下順に説明する。
The inventors believe that it is most important to improve the durability and reliability of bubbling bricks in order to take advantage of the stirring effect of bottom-blown gas, and after various studies, they developed a fibrous refractory with high fire resistance and high corrosion resistance. Successfully developed a bubbling brick using They will be explained in order below.

溶融金属容器1氏部よシのガス吹込耐火物については従
来から次の三つのタイプが用いられている。
Conventionally, the following three types of gas-injected refractories have been used for molten metal containers.

即ち (1)通気性の良い多孔質耐火物(第2図)(2)貫通
細孔を複数個有する耐火物(第3図)(3)れんがの目
地又はコーナーに空隙を設けた耐火物 等である。これらは使用条件や用途に応じて、材質とと
もにその組合せで適宜選択採用されるが、いずれも大き
な欠点を持っている。即ち、(1)は粒度構成により通
気性の良い組織を得るため、微粉の少ない中粒配合とし
、且つ気孔率は通常耐火物jの3倍〜5倍と高く、低強
度である。したがってガス吹込みによる溶融金属の流動
磨耗に弱く、耐用性が悪いっまた平均気孔径は小粒径を
選択することで小さくすることができるが、通気性確保
の面から制約があり、中粒構成(多くの場合2〜Q、 
5 mm )とすることを余儀なくすることから比較的
大きな気孔(例えば40μ以上が30%以上)が存在す
る。したがって、このような気孔には溶融金属が容易に
侵入し凝固するため、前記溶融金属を容器中に収納保持
した状態でのガス吹込みの中断ができず、耐用上不利で
ある。何となればもしガス吹込を中断すれば、前記気孔
部にいわゆるメタルが侵入、凝固し、このメタル侵入部
分を破壊しなければ次後の通気が出来ず、結局耐用性が
悪くなってしまうのである。
In other words, (1) porous refractories with good air permeability (Figure 2), (2) refractories with multiple through-holes (Figure 3), and (3) refractories with voids at the joints or corners of bricks. It is. These materials and combinations of materials are selected and adopted as appropriate depending on usage conditions and applications, but all have major drawbacks. That is, in (1), in order to obtain a structure with good air permeability due to the particle size structure, a medium particle composition with a small amount of fine powder is used, and the porosity is as high as 3 to 5 times that of ordinary refractory material J, and the strength is low. Therefore, it is susceptible to flow wear of the molten metal due to gas injection, and has poor durability.Although the average pore size can be reduced by selecting small particle sizes, there are restrictions from the perspective of ensuring air permeability. Configuration (often 2-Q,
5 mm), there are relatively large pores (for example, 30% or more of pores are 40μ or more). Therefore, since the molten metal easily enters and solidifies into such pores, it is impossible to interrupt the gas injection while the molten metal is stored and held in the container, which is disadvantageous in terms of durability. If gas injection is interrupted, so-called metal will invade and solidify into the pores, and unless the metal invades the area, subsequent ventilation will not be possible, resulting in poor durability. .

次に前記(2)、(3)の耐火物は通常の耐火物と同様
に緻密組織を有するれんがから成ることから、高強度で
あり、且つ材質の選択とあいまって耐食性は優れたもの
が得られる。しかし細孔又は空隙は。
Next, the refractories mentioned in (2) and (3) above are made of bricks with a dense structure like normal refractories, so they have high strength and, combined with the selection of materials, have excellent corrosion resistance. It will be done. But the pores or voids.

ガスの吹込みを中断すると溶融金属が容易に通過できる
大きなものであるため、前記(1)の耐火物と同様に、
溶融金属保持中のガス吹込中断は不可能である。このた
め、溶融金属保持中は無意味なガス吹込みも続ける必要
があシ、高価なガスの場合の経済的不利や耐用面でのマ
イナスなどが生ずる。
Since it is a large material through which molten metal can easily pass if gas injection is interrupted, similar to the refractory described in (1) above,
It is not possible to interrupt the gas blowing while holding the molten metal. For this reason, it is necessary to continue pointlessly blowing gas while the molten metal is being held, resulting in economical disadvantages and disadvantages in terms of durability when using expensive gas.

溶融金属特に溶銑・溶鋼は1500〜1650℃程度で
処理されることが多いが、これらの耐火物細孔への侵入
はcantor  の法則によると、浴深と侵入限界気
孔径の関係ははソ第1図(A)に示す通    1.1
シで、1m程度の浴深では細孔々径が40μ以下であれ
ば生じないと考えられるが、この様な細孔を製造時ある
いは加工によって多数設けることは技術的にきわめて困
難であシ、且つ経済的でない。
Molten metals, especially hot metal and molten steel, are often processed at temperatures of about 1,500 to 1,650°C, but according to Cantor's law, the relationship between bath depth and pore size limit for penetration is approximately 1 As shown in Figure (A) 1.1
It is thought that this will not occur at a bath depth of about 1 m if the pore diameter is 40 μm or less, but it is technically extremely difficult to create a large number of such pores during manufacturing or processing. Moreover, it is not economical.

図中aは溶融メタル侵入のない領域を示している。In the figure, a indicates an area where molten metal does not invade.

本発明はかかるガス吹込みプロセスにおいて、溶融金属
の気孔への侵入を完全に防止し、ガス吹込の断続作、業
を可能にした高耐用性ガス吹込用耐火物を提供するもの
である。
The present invention provides a highly durable refractory for gas injection that completely prevents molten metal from entering the pores in such a gas injection process and enables intermittent gas injection operations.

本発明の特徴は高耐水性ファイバー例えば炭素(無定形
でも黒鉛でも)質、炭珪質、炭化硼素質、炭化タングス
テン質、炭化モリブデン質などの炭化物、窒化硼素質、
窒化珪素質などの窒化物、あるいは金属質、更には有機
質ファイバー、例えばノボラックタイプのフェノール樹
脂よシ得たもの等々の非酸化物系ファイバー、アルミナ
質、アルミナ−シリカ質、ジルコニア質、特殊ガラス質
繊維等酸化物系ファイバー、更にこれらを混合あるいは
結合させた複合ファイバーなどを、前記(2)。
The characteristics of the present invention are highly water-resistant fibers such as carbon (both amorphous and graphite), silica carbide, boron carbide, tungsten carbide, molybdenum carbide and other carbides, boron nitride,
Nitride such as silicon nitride, metal, organic fiber, non-oxide fiber such as novolac type phenolic resin, alumina, alumina-silica, zirconia, special glass. Oxide fibers such as fibers, and composite fibers made by mixing or bonding these fibers are referred to in (2) above.

(3)のような細孔又は空隙に単位通気断面径を100
μ以下、好ましくは40μ以下となるよう充填したこと
にある。
(3) The unit ventilation cross-sectional diameter for pores or voids is 100
The reason is that it is filled so that it is less than μ, preferably less than 40 μ.

充填する耐火性ファイバーの材質は使用条件によって1
種又は2種以上の組合せとすることも可能である。溶鋼
の場合は高温で且つスラグの侵食も考慮する必要がある
ため炭素質、炭珪質などの非酸化物系ファイバーとか純
アルミナ質、ジルコニア質などの高融点、高耐食性酸化
物系ファイバーを使用しなければ耐用性を得てないこと
が多いが、溶銑ではシリカ−アルミナ質やガラス繊維質
などでも十分耐用し得ることが判明している。
The material of the refractory fiber to be filled depends on the usage conditions.
It is also possible to use a species or a combination of two or more species. In the case of molten steel, the high temperature and slag erosion must be taken into account, so non-oxide fibers such as carbonaceous and carboxylic fibers, and high melting point and highly corrosion resistant oxide fibers such as pure alumina and zirconia are used. Otherwise, durability is often not achieved, but it has been found that hot metal such as silica-alumina and glass fiber can be used satisfactorily.

細孔又は空隙への耐火性ファイバーの充填方法は、バブ
リング・ブリックの本体を構成する耐火物(焼成、不焼
成れんが又は不定形耐火ブロックが使用出来、その材質
は酸化物系、非酸化物系、カーボン系耐火物)をガス供
給側からガス吐出側まで連続的で通気性が保持されるよ
うに、該耐火性ファイバーの束が存在する様に成形又は
装入する。
To fill the pores or voids with refractory fibers, the refractory material (fired or unfired bricks or amorphous refractory block) that constitutes the body of the bubbling brick can be used, and the material may be oxide-based or non-oxide-based. , carbon-based refractories) is molded or charged so that a bundle of the refractory fibers exists so as to maintain continuous air permeability from the gas supply side to the gas discharge side.

前記耐火性ファイバーはガスの流れ方向に、その長手方
向を一致させることが望ましいが、加工したものを用い
る場合、例えば織布、ひも、フエルト等はこれに限定さ
れるものでなく、そのような場合も本発明に含まれる。
It is desirable that the longitudinal direction of the refractory fiber coincides with the gas flow direction, but when using a processed fiber, for example, woven fabric, string, felt, etc. are not limited to this. These cases are also included in the present invention.

又、耐火性ファイバーの束を予め本体とは別の耐火性管
の中にセットしたもの、あるいは同種または異種の耐火
性ファイバーで被覆したもの等を、本体耐火物に予め設
けられた所定の細孔又は空隙にはめ込む方法をとっても
さしつかえなく、これも本発明に含まれる。
In addition, a bundle of refractory fibers set in advance in a refractory tube separate from the main body, or a bundle of refractory fibers covered with the same or different types of refractory fibers, can be placed in a predetermined thin tube provided in the refractory of the main body. A method of fitting into a hole or a gap may be used, and this is also included in the present invention.

本発明に使用する耐火性ファイバーの材質は一般に市販
されているものでも一向に差支えないが、溶融金属との
濡れ性が小さいものほど好ましい。
The material of the refractory fiber used in the present invention may be one that is generally commercially available, but it is preferable that the material has a lower wettability with molten metal.

5esile drop法で接触角が908よシ犬であ
ることが絶対条件であるが、好ましくは150°以上で
ある。
It is an absolute requirement that the contact angle be 908° or more by the 5esile drop method, but preferably 150° or more.

第1図(B)において式r−−2γe CO8θ/1・
ρは次の値を与えられる。
In FIG. 1(B), the formula r--2γe CO8θ/1・
ρ is given the following value.

le  =  1.733   (lit/cJ)、ρ
=7.6   Cf1cd) θ = 150 第1表(市販耐火性ファイバーの品質特性)に七のよう
な要件を満たす材質の1例を示す。
le = 1.733 (lit/cJ), ρ
=7.6 Cf1cd) θ = 150 Table 1 (Quality characteristics of commercially available refractory fibers) shows an example of a material that satisfies the requirements listed in item 7.

耐火性ファイバーの束の断面径はバブリング・ブリック
断面径の範囲内であれば特に限定されるものではないが
、大き過ぎると束の製作が困難とな9、小さ過ぎると通
気性の確保が困難となるので、5 *yn 〜50 m
m、好ましくは101m 〜3Q龍が適当である。また
用途によってスリット状のガス吐出口を用いることも可
能であり、このスリット部に本発明を適用する事が出来
る。
The cross-sectional diameter of the refractory fiber bundle is not particularly limited as long as it is within the range of the bubbling brick cross-sectional diameter, but if it is too large, it will be difficult to manufacture the bundle9, and if it is too small, it will be difficult to ensure ventilation. Therefore, 5 *yn ~50 m
m, preferably 101m to 3Q dragon is suitable. Further, it is also possible to use a slit-shaped gas discharge port depending on the purpose, and the present invention can be applied to this slit portion.

次にこの耐火性ファイバーの束の密度(ここでは単位断
面積当りのファイバ一本数)は溶融金属の侵入が生じな
いような第1図の侵入限界気孔径から単位通気断面が少
くとも100μ以下、好ましくは40μ以下となるよう
な本数が適当で、上記の束の断面径の範囲と合わせて、
100〜20000本/−1好1しくは1000〜1o
oo。
Next, the density of this refractory fiber bundle (in this case, the number of fibers per unit cross-sectional area) is such that the unit ventilation cross-section is at least 100μ or less based on the penetration limit pore diameter shown in Figure 1, which prevents the penetration of molten metal. Preferably, the number of bundles is 40μ or less, and in conjunction with the above range of cross-sectional diameter of the bundle,
100-20000/-1 preferably 1000-1o
oo.

本/jIjが適当である。これは本数が少なすさると溶
融金属の侵入が生じ、以後のガス吹込に支障(この地“
全侵入部分を除去するためにバブリング・ブリックの損
耗をはやめる結果にもなる)を生じ、一方多過ぎると通
気断面の確保が困難となるからである。
Book/jIj is appropriate. If the number of gas pipes is too small, molten metal will enter the pipes, which will interfere with subsequent gas injection.
This is because removing the entire intrusion part may result in shortening the wear and tear of the bubbling brick), while if there is too much, it becomes difficult to secure a ventilation cross section.

以上のような要件を満足するノくプリング・ブリックの
開発により、溶融金属保持容器における底部よりのガス
吹込処理を必要な時期に支障なく断続して行なうことが
可能となり、ノ(プリング・)゛リックの耐用性も実質
的なガス吹込時間を短縮できるので、更に向上し、一般
の底れんがと同等の寿命の確保が可能となった。
With the development of the Nopu-Pull Brick that satisfies the above requirements, it has become possible to perform the gas blowing process from the bottom of the molten metal holding container intermittently at the necessary times without any trouble, resulting in no-pull bricks. The durability of the bricks has also been further improved because the actual gas injection time can be shortened, making it possible to ensure the same lifespan as regular bottom bricks.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例1 直径lQMの通気性の炭素ファイノく−の束を10ケ所
設けたマグネシア−黒鉛質不焼成れんがのガス吹込用バ
ブリング・ブリックにおいて、炭素ファイバー(0,l
 5ad1本)の束を密度50〜30000本/−の範
囲で、10水準のものを試作し、従来の多孔質タイプの
マグネシア糸ポーラス・プラグとの比較試験を3を試験
取鍋で10回繰返し実施した結果、第2表の如くであっ
た。
Example 1 In a bubbling brick for gas blowing made of magnesia-graphite unfired bricks, in which bundles of air-permeable carbon fibers with a diameter lQM were installed at 10 locations, carbon fibers (0, l
We prototyped bundles of 5ad (1 piece) with densities ranging from 50 to 30,000 pieces/- in 10 levels, and repeated 3 10 times in a test ladle to compare them with conventional porous type magnesia yarn porous plugs. The results were as shown in Table 2.

この結果からファイバー密度5000本/−を選び、従
来品とともに250を取鍋にて実炉使用した結果、従来
品平均15回の耐用に対し、25回以上の耐用性が確認
された。
Based on these results, a fiber density of 5,000 fibers/- was selected, and as a result of using it in an actual furnace with a conventional product in a ladle of 250 fibers, it was confirmed that the product had a durability of 25 cycles or more, compared to the average durability of the conventional product, which was 15 cycles.

なお25回は敷れんがの交換によるものて、残存状態か
ら40回以上の耐用が可能と判断された。
The 25 times were due to the replacement of the paving bricks, and it was determined that it could be used for more than 40 times based on the remaining condition.

まだ本発明品使用の場合は、溶鋼保持中のガス吹込の断
続を必要に応じて実施したが、使用後の断面状況から地
金侵入はほとんどなく、表面に若干付着しているにすぎ
ないことが確認された。
When using the product of the present invention, gas injection was interrupted as necessary while holding the molten steel, but the cross-sectional condition after use showed that there was almost no intrusion of metal, and only a small amount of metal adhered to the surface. was confirmed.

実施例2 転炉の炉底からのガス吹込用耐人物を本発明方式で製造
した。母体れんがはマグネンアー黒鉛質れんがであシ、
その形状寸法は700X150X150 / l 30
 wである。 30amφのカーボン・ファイバーの束
(密度3000本/−)を150×150 ynmの小
口面から150X130闘の小口面に達するように、小
口面全体に10本を千鳥に配置した。250を転炉炉底
にこのバブリング・ブリックを4個設置し、Arガスの
断続吹込を実施した。
Example 2 A structure for blowing gas from the bottom of a converter was manufactured by the method of the present invention. The base brick is made of Magnenur graphite brick.
Its shape and dimensions are 700X150X150/l 30
It is w. Ten carbon fiber bundles (density: 3000 fibers/-) having a diameter of 30 am were arranged in a staggered manner over the entire edge surface so as to reach from the edge surface of 150 x 150 nm to the edge surface of 150 x 130 nm. Four of these bubbling bricks were installed at the bottom of a converter furnace, and Ar gas was intermittently blown into the furnace.

従来のガス吹込みは焼成マグネシア質多多孔質耐火物又
はマグネシア−黒鉛質れんかに細孔を設けた貫通孔耐火
物が使用されていたが、前者はスポーリングと溶銑や溶
鋼の磨耗侵食がはげしく、100回程鹿の耐用性しかな
かった。後者は細孔(1〜3 unφ)に溶鋼が侵入す
るため常時Arガスを高圧で吹込む必要があシ、耐用性
も400〜900回と大きく変動していた。
Conventional gas injection methods have used fired magnesia porous refractories or through-hole refractories with fine holes in magnesia-graphite bricks, but the former suffers from spalling and abrasion erosion of hot metal or molten steel. It was so intense that it only lasted about 100 times. In the latter case, since molten steel invades the pores (1 to 3 unφ), it is necessary to constantly blow Ar gas at high pressure, and the durability also varies widely, ranging from 400 to 900 times.

本発明品では細孔がカーボン・ファイバーで充填されて
いるためガスの断続吹込みが可能で、攪拌の必要な時期
のみガス吹込みをすればよいため、溶損量、A、rガス
使用量にも軽爪され、1500回以上のバブリング・ブ
リックの耐用が安定して得られるようになった。
Since the pores of the product of the present invention are filled with carbon fiber, intermittent gas injection is possible, and gas injection only needs to be performed when stirring is required. The bubbling brick can now be used stably for more than 1,500 times.

実施例3、 実施例2においてカーボン・ファイバー充填部分が若干
先行損傷する場合も認められ、そのような場合にバブリ
ング・ブリックの損耗かや\犬きく゛なることから、カ
ーボン・ファイバーの酸化損耗が生じていることが推察
された。
In Example 3 and Example 2, it was observed that the carbon fiber filled part was slightly damaged in advance, and in such cases, the bubbling brick was worn out, and the carbon fiber became oxidized and damaged. It was inferred that

この対策としてカーボン・ファイバーと炭化珪素ファイ
バーを7/3(重量比)に配合し束ねたもの(A)およ
びカーボン・ファイバーとジルコニア・ファイバーを6
/4(重量比)に束ねたもの(B)を、実施例2と同様
の方法で製造し、耐酸化性テスト結果良好であることが
判明したので、100を転炉の炉底で使用した。
As a countermeasure, carbon fibers and silicon carbide fibers are combined at a ratio of 7/3 (weight ratio) and bundled (A), and carbon fibers and zirconia fibers are combined at 6/3 (weight ratio) and bundled together.
/4 (weight ratio) was produced in the same manner as in Example 2, and the oxidation resistance test results showed that it was good, so 100 was used at the bottom of the converter. .

結果はバブリング・ブリックのトラブルは全くなく 、
 (A) 、 (B)はそれぞれ1100.1200回
の耐用を示した(これは従来LDの場合とはy同等の炉
底、炉壁の損傷程度であシ、耐用性であった)。
As a result, there were no problems with bubbling bricks.
(A) and (B) each showed a service life of 1100 and 1200 times (this was the same level of damage to the bottom and wall of the furnace as in the case of a conventional LD).

また両者ともガス吐出口の先行溶損は軽微であった( 
(A)と(B)ではや\(A)の方が溶損傾向を示した
)。
In addition, the preliminary erosion of the gas discharge port was slight in both cases (
Between (A) and (B), (A) showed a higher tendency to melt away).

以上、鉄精錬の場合についてのみ述べたが、本発明は非
鉄精錬でのガス吹込に対しても有効であることが十分予
測され、その応用も可能である。
Although only the case of iron refining has been described above, the present invention is fully predicted to be effective for gas injection in non-ferrous refining, and its application is also possible.

第2図は、従来の多孔質型のガス吹込耐人物の一例を示
し、1はポーラスプラグ、2は外装保持板(例えば鋼板
)で、底部は吹込みガス管3に連通して設けられている
FIG. 2 shows an example of a conventional porous type gas blowing resistor, in which 1 is a porous plug, 2 is an exterior holding plate (for example, a steel plate), and the bottom is connected to a blowing gas pipe 3. There is.

第3図は、例えばM2O−黒鉛質煉瓦のような緻密質耐
火物4に、該耐火物の軸方向(′ガス吹込み方向)に、
適宜数のガス吹込み細孔5を設けた従来の貫通孔型のガ
ス吹込耐人物を示す。
FIG. 3 shows a dense refractory 4 such as M2O-graphite brick, in the axial direction of the refractory ('gas injection direction).
This figure shows a conventional through-hole type gas blowing resistant person provided with an appropriate number of gas blowing holes 5.

第4図は、本発明になるガス吹込耐人物を取鍋に適用し
た場合の一実施例を示し、截頭円錐状に形成された例え
ばMg0=黒鉛質煉瓦のような緻密質耐火物の軸方向(
ガス次込み方向)に設けたガス吹込み用空孔6に、例え
ばカーボン・ファイバーのような耐火性ファイバー束7
を介挿充填したガス吹込み用耐火物を示す。
FIG. 4 shows an embodiment in which the present invention is applied to a ladle for a gas-injected refractory body, in which the shaft of a dense refractory such as Mg0 = graphite brick is formed into a truncated conical shape. direction(
For example, a refractory fiber bundle 7 such as carbon fiber is inserted into the gas injection hole 6 provided in the gas injection direction).
This shows a gas-injected refractory filled with .

第5図、第6図は、本発明の他の実施例で、転炉に適用
した場合の一例を示す斜視図である。好ましくはブロッ
ク状に形成された例えばMgO−黒鉛質煉瓦のような緻
密質耐火物の軸方向(ガス吹込み方向)に設けたガス吹
込み用空孔6に、同様に例えばカーボン・ファイバーの
ような耐火物フ    、1゜アイバー束7を介挿充填
した場合を示す。
FIG. 5 and FIG. 6 are perspective views showing an example of another embodiment of the present invention applied to a converter. Similarly, a gas injection hole 6 provided in the axial direction (gas injection direction) of a dense refractory such as a MgO-graphite brick preferably formed in a block shape is filled with a material such as carbon fiber. The case where a 1° eyebar bundle 7 is inserted and filled is shown.

本発明は上述したように構成し且つ用いることにより、
溶融金属収納(保持)容器の溶湯面下の容器体部に設け
てなるガス吹込み耐火物を用いて、前記容器中溶湯にガ
ス吹込みを行なうにあたり。
By configuring and using the present invention as described above,
When blowing gas into the molten metal in the container using a gas injection refractory provided in the container body below the molten metal surface of the molten metal storage (holding) container.

該ガス吹込み処理を必要な時期に、支障なく断続して行
なうことが可能となり、従ってガス吹込み耐火物の寿命
延長を期待し得ると共に、ガス吹込み耐火物保全用の通
気ガスが不要となることから、吠込みガスのコスト低減
もはかれるなど、生産性の向上、設備保全面ならびに操
業コスト等に貢献する効果がきわめて大きい。
The gas injection process can be carried out intermittently at the required times without any problems, and therefore the life of the gas-injected refractories can be expected to be extended, and ventilation gas for maintaining the gas-injected refractories is no longer required. As a result, the cost of barking gas can be reduced, which has an extremely large effect on improving productivity, equipment maintenance, and operating costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は、浴深と侵入限界との関係図、第1図(
B)は細孔の模式図、第2図及び第3図は従来のガス吹
込み耐火物の一実施例を示す模式図、第4図、第5図及
び第6図は本発明の一実施例を示す模式図である。 l:ポーラスプラグ  2:外装保持板3:吹込みガス
管   4:緻密質耐火物6:ガス吹込み用空孔 7:
耐火性ファイバー第1図(A) 第2I27    第3面   第442第51 第6田
Figure 1 (A) is a diagram of the relationship between bath depth and penetration limit.
B) is a schematic diagram of pores, FIGS. 2 and 3 are schematic diagrams showing an example of a conventional gas-injected refractory, and FIGS. 4, 5, and 6 are an example of an embodiment of the present invention. It is a schematic diagram showing an example. l: Porous plug 2: Exterior holding plate 3: Gas injection pipe 4: Dense refractory 6: Gas injection hole 7:
Fireproof fiber Figure 1 (A) 2I27 3rd page 442nd 51st field 6th field

Claims (1)

【特許請求の範囲】 1 適宜形状に形成してなる緻密質耐火物基体に、該基
体のガス吹込み方向に沿って、一端を溶融金属接触面に
臨ませて且っ他端を吹込みガス供給系に連通してなる長
筒孔を設け、該長孔に耐火性ファイバー収束体を介挿し
たことを特徴とする溶融金属精錬用ガス吹込耐大物。 2 単位通気断面が、100μ以下の耐濡れ性耐火ファ
イバーを5〜50mの収束体として用いることを特徴と
する特許請求の範囲第1項に記載の溶融金属精錬用ガス
吹込耐大物。
[Scope of Claims] 1. A dense refractory substrate formed into an appropriate shape, with one end facing the molten metal contact surface and the other end facing the molten metal contact surface along the gas injection direction of the substrate. 1. A gas-blown large object for refining molten metal, characterized in that a long cylindrical hole communicating with a supply system is provided, and a refractory fiber bundle is inserted into the long hole. 2. The gas-blown large resistant material for molten metal refining according to claim 1, characterized in that a wettable refractory fiber with a unit ventilation cross section of 100 μm or less is used as a 5-50 m convergence body.
JP10321881A 1981-07-03 1981-07-03 Refractories for blowing of gas for refining of molten metal Granted JPS586943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10321881A JPS586943A (en) 1981-07-03 1981-07-03 Refractories for blowing of gas for refining of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10321881A JPS586943A (en) 1981-07-03 1981-07-03 Refractories for blowing of gas for refining of molten metal

Publications (2)

Publication Number Publication Date
JPS586943A true JPS586943A (en) 1983-01-14
JPS6159373B2 JPS6159373B2 (en) 1986-12-16

Family

ID=14348355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10321881A Granted JPS586943A (en) 1981-07-03 1981-07-03 Refractories for blowing of gas for refining of molten metal

Country Status (1)

Country Link
JP (1) JPS586943A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931813A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Stirring vessel for steel making
JPS5931810A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Steel making method with converter
JPS5931808A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Stirring vessel for steel making
JPS5931809A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Steel making method with converter
JPS59222509A (en) * 1983-05-30 1984-12-14 Nippon Kokan Kk <Nkk> Method for preventing clogging in plug for blowing gas provided to bottom wall of vessel for refining
DE102017006729A1 (en) * 2017-07-17 2019-01-17 Lebronze Alloys Germany Gmbh Component, use of a component, method and system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5931813A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Stirring vessel for steel making
JPS5931810A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Steel making method with converter
JPS5931808A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Stirring vessel for steel making
JPS5931809A (en) * 1982-08-13 1984-02-21 Nippon Kokan Kk <Nkk> Steel making method with converter
JPS6353243B2 (en) * 1982-08-13 1988-10-21 Nippon Kokan Kk
JPS59222509A (en) * 1983-05-30 1984-12-14 Nippon Kokan Kk <Nkk> Method for preventing clogging in plug for blowing gas provided to bottom wall of vessel for refining
DE102017006729A1 (en) * 2017-07-17 2019-01-17 Lebronze Alloys Germany Gmbh Component, use of a component, method and system

Also Published As

Publication number Publication date
JPS6159373B2 (en) 1986-12-16

Similar Documents

Publication Publication Date Title
HU176383B (en) Nozzle for introducing gases
JPS586943A (en) Refractories for blowing of gas for refining of molten metal
JPS6146523B2 (en)
US5911946A (en) Snorkel for a degassing vessel
JP2781483B2 (en) Nozzle for continuous casting
CN210916131U (en) Novel composite iron notch structure
US5156801A (en) Low porosity-high density radial burst refractory plug with constant flow
JPH02431Y2 (en)
JPH02172859A (en) Nozzle for casting
JP2536793Y2 (en) Peripheral structure of gas nozzle for electric furnace gas injection
JPS59121146A (en) Hollow alumina-containing refractories
US20170240983A1 (en) Access port arrangement and method of forming thereof
JPS6311613A (en) Construction of bottom blowing tuyere for electric furnace
JPS5931808A (en) Stirring vessel for steel making
JPS58204136A (en) Tuyere for blowing gas
JP3769060B2 (en) Method of blowing gas into molten metal
JPS6229459Y2 (en)
JPS6157995B2 (en)
JPS6028660Y2 (en) Structure of blast furnace taphole
JP2007246960A (en) Molten iron trough for blast furnace
JPS61157611A (en) Slag coating method of converter
JPS61213314A (en) Repairing method for gas blowing tuyere of vessel for refining
JPH08155601A (en) Nozzle for continuous casting
JPH02432Y2 (en)
JPS5823481Y2 (en) sliding nozzle device