JP7535683B2 - Air Conditioning Equipment - Google Patents

Air Conditioning Equipment Download PDF

Info

Publication number
JP7535683B2
JP7535683B2 JP2021020399A JP2021020399A JP7535683B2 JP 7535683 B2 JP7535683 B2 JP 7535683B2 JP 2021020399 A JP2021020399 A JP 2021020399A JP 2021020399 A JP2021020399 A JP 2021020399A JP 7535683 B2 JP7535683 B2 JP 7535683B2
Authority
JP
Japan
Prior art keywords
indoor
unit
heat exchanger
outdoor
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021020399A
Other languages
Japanese (ja)
Other versions
JP2022123228A (en
Inventor
準市 馬場
雄次 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2021020399A priority Critical patent/JP7535683B2/en
Publication of JP2022123228A publication Critical patent/JP2022123228A/en
Application granted granted Critical
Publication of JP7535683B2 publication Critical patent/JP7535683B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は1台の室外機と複数の室内機とを接続して構成した空機調和装置に関するものである。 The present invention relates to an air-conditioning system that is configured by connecting one outdoor unit to multiple indoor units.

特許文献1は、1台の室外機と複数の室内機とを接続して構成した空機調和装置を開示する。この空気調和装置は、1台の室外機に四方切替弁を介して複数の室内機を接続し、前記室外機と複数の各室内機とで構成する冷媒回路中、例えばこの例では各室内機内部の冷媒回路中に膨張弁をそれぞれ設けて構成している。そして、上記四方切替弁により冷媒の流れ方向を切り替えて冷房運転或いは暖房運転を行い、膨張弁の開度を可変することで各室内機の冷房能力或いは暖房能力を制御するとともに、サーモオフする場合、室内機は膨張弁を閉じて当該室内機の運転を停止している。 Patent Document 1 discloses an air conditioner that is configured by connecting one outdoor unit to multiple indoor units. In this air conditioner, multiple indoor units are connected to one outdoor unit via a four-way switching valve, and an expansion valve is provided in the refrigerant circuit configured by the outdoor unit and each of the multiple indoor units, for example, in this example, in the refrigerant circuit inside each indoor unit. The four-way switching valve switches the refrigerant flow direction to perform cooling or heating operation, and the opening of the expansion valve is varied to control the cooling or heating capacity of each indoor unit, and when the thermostat is turned off, the indoor unit closes its expansion valve to stop operation of that indoor unit.

特開平10-132357号公報Japanese Patent Application Publication No. 10-132357

本開示は、1台の室外機と複数の室内機とからなる空気調和装置の圧縮機停止時において、複数の室内機と室外機との間の圧力差を解消して均圧化させる際に運転停止中の室内機から発生する冷媒流通音を抑制して快適な空気調和装置を提供する。 This disclosure provides a comfortable air conditioner that suppresses refrigerant flow noise generated from the stopped indoor units when the compressor of the air conditioner consisting of one outdoor unit and multiple indoor units is stopped and pressure differences between the multiple indoor units and the outdoor unit are eliminated and equalized.

本開示における空気調和装置は、圧縮機と四方切替弁と室外熱交換器とを有する1台の室外機に室内熱交換器を備えた室内機を複数接続し、室外機の圧縮機、四方切替弁、室外熱交換器、複数の室内機の室内熱交換器によって構成される冷媒回路の途中にそれぞれ膨張弁を接続して構成した空気調和装置であって、室外機の圧力を間接または直接検出する室外機圧力検出手段と、複数の室内機の圧力を間接または直接検出する室内機圧力検出手段と、膨張弁を制御する制御部と、を備え、制御部は、圧縮機の停止後、室外機圧力検出手段が検出した室外機圧力と室内機圧力検出手段が検出した各室内機圧力とのそれぞれの圧力差を計算し、圧力差が大きい室内機から圧力差が小さい室内機の順に膨張弁を所定開度まで開する構成としてある。 The air conditioner disclosed herein is an air conditioner in which multiple indoor units equipped with indoor heat exchangers are connected to one outdoor unit having a compressor, a four-way switching valve, and an outdoor heat exchanger, and an expansion valve is connected to each of the refrigerant circuits formed by the compressor, four-way switching valve, outdoor heat exchanger of the outdoor unit, and the indoor heat exchangers of the multiple indoor units. The air conditioner is equipped with outdoor unit pressure detection means that indirectly or directly detects the pressure of the outdoor unit, indoor unit pressure detection means that indirectly or directly detects the pressure of the multiple indoor units, and a control unit that controls the expansion valves, and the control unit is configured to calculate the respective pressure differences between the outdoor unit pressure detected by the outdoor unit pressure detection means and each indoor unit pressure detected by the indoor unit pressure detection means after the compressor is stopped, and open the expansion valves to a predetermined opening degree in the order from the indoor unit with the largest pressure difference to the indoor unit with the smallest pressure difference.

また、本開示における空気調和装置は、圧縮機と四方切替弁と室外熱交換器とを有する1台の室外機に室内熱交換器を備えた室内機を複数接続し、室外機の圧縮機、四方切替弁、室外熱交換器、複数の室内機の室内熱交換器によって構成される冷媒回路の途中にそれぞれ膨張弁を接続して構成した空気調和装置であって、室外熱交換器の温度を検出する室外熱交換器温度センサと、複数の室内熱交換器の温度を検出するそれぞれの室内熱交換器温度センサと、膨張弁を制御する制御部と、を備え、制御部は、圧縮機の停止後、室外熱交換器温度センサが検出した室外熱交換器温度と室内熱交換器温度センサが検出した各室内熱交換器温度とのそれぞれの温度差を計算し、温度差が大きい室内機から温度差が小さい室内機の順に膨張弁を所定開度まで開する構成としてある。 The air conditioner disclosed herein is an air conditioner in which multiple indoor units equipped with indoor heat exchangers are connected to one outdoor unit having a compressor, a four-way switching valve, and an outdoor heat exchanger, and an expansion valve is connected to each of the refrigerant circuits formed by the compressor, four-way switching valve, outdoor heat exchanger of the outdoor unit, and the indoor heat exchangers of the multiple indoor units. The air conditioner is equipped with an outdoor heat exchanger temperature sensor that detects the temperature of the outdoor heat exchanger, each indoor heat exchanger temperature sensor that detects the temperature of the multiple indoor heat exchangers, and a control unit that controls the expansion valves. After the compressor is stopped, the control unit calculates the temperature difference between the outdoor heat exchanger temperature detected by the outdoor heat exchanger temperature sensor and each indoor heat exchanger temperature detected by the indoor heat exchanger temperature sensor, and opens the expansion valves to a predetermined opening degree in the order from the indoor unit with the largest temperature difference to the indoor unit with the smallest temperature difference.

本開示における空気調和装置は、室外機に接続されている複数の室内機のうち、室外機との圧力差が大きい室内機から圧力差が小さい室内機の順に室外機との間の圧力差を解消して均圧化していく。これにより、運転停止していた室内機に冷媒流通音が発生するのを抑制でき、快適な空気調和装置とすることができる。 The air conditioner of the present disclosure eliminates and equalizes the pressure difference between the indoor units among multiple indoor units connected to the outdoor unit, starting with the indoor unit with the largest pressure difference from the outdoor unit and then the indoor unit with the smallest pressure difference. This makes it possible to suppress the generation of refrigerant flow noise in indoor units that are not operating, resulting in a comfortable air conditioner.

実施の形態1における空気調和装置の冷凍サイクル構成図Refrigeration cycle configuration diagram of an air conditioner according to the first embodiment 同空気調和装置の制御ブロック図Control block diagram of the air conditioner 同空気調和装置の制御フロー図Control flow diagram of the air conditioner 同空気調和装置の各室内機の動作説明図FIG. 2 is an explanatory diagram of the operation of each indoor unit of the air conditioner.

(本開示の基礎となった知見等)
発明者らが本開示に想到するに至った当時、1台の室外機と複数の室内機とを接続して構成した空機調和装置は、特許文献1に開示されているように、各室内機に対応して膨張弁を設け、この膨張弁の開度を可変することで冷房或いは暖房能力を制御するようになっている。この各室内機に膨張弁を設けた空気調和装置は、空調運転を停止、つまり圧縮機を停止した直後に室外機側と複数の室内機側との間にそれぞれ異なる高低圧圧力差が生じるので、この状態を解消して高低圧圧力バランスを均一にするため各室内機の膨張弁をあらかじめ定めてある大きな開度まで一斉に開く。この時、上記室内機の高低圧圧力差により、サーモオフ等によって運転停止中の室内機に急激かつ大きな冷媒流れが生じ冷媒流通音が発生する、という課題があり、その音でユーザの信頼性と快適性を損なう一因となっていることを見出した。
(Knowledge and other information that forms the basis of this disclosure)
At the time when the inventors came up with the present disclosure, an air conditioner configured by connecting one outdoor unit and multiple indoor units, as disclosed in Patent Document 1, is provided with an expansion valve corresponding to each indoor unit, and the cooling or heating capacity is controlled by varying the opening degree of this expansion valve. In this air conditioner with an expansion valve provided in each indoor unit, different high and low pressure differences occur between the outdoor unit side and the multiple indoor unit sides immediately after stopping the air conditioning operation, i.e., stopping the compressor, so in order to eliminate this condition and equalize the high and low pressure balance, the expansion valves of each indoor unit are opened simultaneously to a predetermined large opening degree. At this time, there is a problem that a sudden and large refrigerant flow occurs in the indoor unit that is stopped by thermo-off or the like due to the high and low pressure difference of the indoor units, generating refrigerant flow noise, and it was found that this noise is one of the factors that impair the reliability and comfort of users.

本発明者らはこのような課題を見出し当該課題解決のため本開示の主題を構成するに至った。 The inventors discovered this problem and came to define the subject of this disclosure in order to solve it.

そこで本開示は、圧縮機停止時における冷媒流通音を抑制して信頼性が高く快適な空気調和装置を提供する。 Therefore, this disclosure provides a highly reliable and comfortable air conditioner by suppressing refrigerant flow noise when the compressor is stopped.

以下、図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明、または、実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が必要以上に冗長になるのを避け、当業者の理解を容易にするためである。 Below, the embodiments will be described in detail with reference to the drawings. However, more detailed explanations than necessary may be omitted. For example, detailed explanations of matters that are already well known, or duplicate explanations of substantially identical configurations may be omitted. This is to avoid making the following explanation unnecessarily redundant and to make it easier for those skilled in the art to understand.

なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することを意図していない。 The accompanying drawings and the following description are provided to enable those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.

(実施の形態1)
以下、図1~図4を用いて、実施の形態1を説明する。
(Embodiment 1)
Hereinafter, the first embodiment will be described with reference to FIGS. 1 to 4. FIG.

[1-1.構成]
図1は、実施の形態1に係る空気調和装置の構成を示す図である。
[1-1. Configuration]
FIG. 1 is a diagram showing the configuration of an air conditioning apparatus according to the first embodiment.

本実施形態の空気調和装置は、1台の室外機1に複数の室内機11a~11dを並列に接続して構成してあり、室外機1で圧縮した冷媒を室外機1と室内機11a~11dとの間で流通させ、室内機11a~11dが設置された被調和空間を空調する。 The air conditioning device of this embodiment is configured with multiple indoor units 11a to 11d connected in parallel to one outdoor unit 1, and refrigerant compressed in the outdoor unit 1 is circulated between the outdoor unit 1 and the indoor units 11a to 11d to condition the conditioned space in which the indoor units 11a to 11d are installed.

室外機1は、冷媒を圧縮する圧縮機2、圧縮機温度センサ3、冷媒の流れ方向を切り替えて被調和空間を冷房する冷房運転或いは暖房する暖房運転に切り替える四方切替弁4、四方切替弁4からの冷媒と室外ファン5からの送風空気とを熱交換する室外熱交換器6、室外機1の冷媒圧力を間接的に検出する室外機圧力検出手段、電磁弁等からなる液側閉鎖弁8とガス側閉鎖弁16を有している。そして、上記室外熱交換器6は、室外機1において冷媒を熱交換させ、冷房運転モードで凝縮器として機能し、暖房運転モードでは蒸発器として機能する。 The outdoor unit 1 has a compressor 2 that compresses the refrigerant, a compressor temperature sensor 3, a four-way switching valve 4 that switches the flow direction of the refrigerant to switch between cooling operation for cooling the space to be conditioned and heating operation for heating the space to be conditioned, an outdoor heat exchanger 6 that exchanges heat between the refrigerant from the four-way switching valve 4 and the air blown from the outdoor fan 5, an outdoor unit pressure detection means that indirectly detects the refrigerant pressure of the outdoor unit 1, a liquid side shutoff valve 8 and a gas side shutoff valve 16 that are composed of an electromagnetic valve or the like. The outdoor heat exchanger 6 exchanges heat with the refrigerant in the outdoor unit 1, functions as a condenser in the cooling operation mode, and functions as an evaporator in the heating operation mode.

室外機圧力検出手段は、室外熱交換器温度センサ7が室外熱交換器6の温度を検出して室外機1の冷媒圧力を間接的に検出している。 The outdoor unit pressure detection means indirectly detects the refrigerant pressure of the outdoor unit 1 by detecting the temperature of the outdoor heat exchanger 6 using the outdoor heat exchanger temperature sensor 7.

また、この実施の形態では上記室外機1に液側閉鎖弁8を介して膨張弁9a~9dを設け、後述する複数の室内機11a~11dを接続している。 In addition, in this embodiment, the outdoor unit 1 is provided with expansion valves 9a to 9d via a liquid-side shutoff valve 8, and is connected to multiple indoor units 11a to 11d, which will be described later.

上記膨張弁9a~9dは、高圧の冷媒を減圧して膨張させ、後述する制御部17の制御によって開度を調整されるとともに、冷媒を遮断できる機能も有している。 The expansion valves 9a to 9d reduce the pressure of the high-pressure refrigerant to expand it, and their opening is adjusted under the control of the control unit 17 (described later), and they also have the function of cutting off the refrigerant.

尚、上記各膨張弁9a~9dはこの例では室外機1側に纏めて設けているが、後述する各室内機11a~11d側にそれぞれ設けてもよいし、室外機1と各室内機11a~11dとの間の接続配管中に設けてもよい。 In this example, the expansion valves 9a to 9d are all located on the outdoor unit 1 side, but they may be located on each of the indoor units 11a to 11d (described later) or in the connecting pipes between the outdoor unit 1 and each of the indoor units 11a to 11d.

一方、複数の各室内機11a~11dは、液側接続部10a~10d及びガス側接続部15a~15dを介して前記室外機1に接続され、室外機1から供給される冷媒の熱交換を行う室内熱交換器12a~12d、室内機11a~11dの冷媒圧力を間接的に検出する室内機圧力検出手段、および、室内熱交換器12a~12dに送風する室内ファン14a~14dを備えている。 On the other hand, each of the indoor units 11a to 11d is connected to the outdoor unit 1 via liquid side connections 10a to 10d and gas side connections 15a to 15d, and is equipped with indoor heat exchangers 12a to 12d that exchange heat with the refrigerant supplied from the outdoor unit 1, indoor unit pressure detection means that indirectly detects the refrigerant pressure of the indoor units 11a to 11d, and indoor fans 14a to 14d that blow air to the indoor heat exchangers 12a to 12d.

室内機圧力検出手段は、室内熱交換器温度センサ13a~13dが室内熱交換器12a~12dの温度を検出して室内機11a~11dの冷媒圧力を間接的に検出している。 The indoor unit pressure detection means indirectly detects the refrigerant pressure of the indoor units 11a to 11d by detecting the temperature of the indoor heat exchangers 12a to 12d using the indoor heat exchanger temperature sensors 13a to 13d.

上記室内熱交換器12a~12dは、冷房運転モードで蒸発器として機能し、膨張弁9a~9dで減圧された冷媒を蒸発させる。 The indoor heat exchangers 12a to 12d function as evaporators in the cooling operation mode, evaporating the refrigerant that has been depressurized by the expansion valves 9a to 9d.

なお、上記空気調和装置は、図示しないが、液体の冷媒と気体の冷媒とを分離し、冷媒を貯留するアキュムレータ等々の冷凍サイクルを効率的に運転するための各種部品を備えている。 Although not shown, the air conditioner is equipped with various components for efficiently operating the refrigeration cycle, such as an accumulator that separates liquid refrigerant from gaseous refrigerant and stores the refrigerant.

また、上記空気調和装置は、運転を制御する制御部17を備える。この制御部17は、圧縮機2の運転制御、四方切替弁4の流路の切り替え制御、室外ファン5の運転または停止等の制御を実行する。 The air conditioner also includes a control unit 17 that controls operation. This control unit 17 controls the operation of the compressor 2, the flow path switching control of the four-way switching valve 4, and the operation or stopping of the outdoor fan 5.

さらに、上記制御部17は前述した如く各膨張弁9a~9dの開度および/または開閉等の制御を行う。この各膨張弁9a~9dの制御は、室温と設定温度との温度差に基づく開度調整に加え、運転停止や冷房運転から暖房運転への切り替えやその逆の時の圧縮機停止時に、前記室外機1の室外熱交換器温度センサ7が検出した圧力代替値としての温度と各室内機11a~11dの室内熱交換器温度センサ13a~13dが検出した圧力代替値としての温度との差に基づいて複数の各室内機11a~11dに対応した各膨張弁9a~9dの開度を所定開度まで順次開制御する。 Furthermore, the control unit 17 controls the opening and/or opening/closing of each expansion valve 9a-9d as described above. In addition to adjusting the opening based on the temperature difference between the room temperature and the set temperature, the control of each expansion valve 9a-9d sequentially controls the opening of each expansion valve 9a-9d corresponding to each of the multiple indoor units 11a-11d to a predetermined opening based on the difference between the temperature as a pressure substitute value detected by the outdoor heat exchanger temperature sensor 7 of the outdoor unit 1 and the temperature as a pressure substitute value detected by the indoor heat exchanger temperature sensors 13a-13d of each indoor unit 11a-11d when the compressor is stopped during operation stop, switching from cooling operation to heating operation, or vice versa.

図2は上記各膨張弁9a~9dを制御する制御ブロック部を示し、制御部17は時間制御部17a、圧力差計算手段17b、優先順序判断手段17c、膨張弁制御手段17d、全開動作判断手段17eを有する。 Figure 2 shows the control block that controls the expansion valves 9a to 9d. The control unit 17 has a time control unit 17a, a pressure difference calculation means 17b, a priority order determination means 17c, an expansion valve control means 17d, and a full-open operation determination means 17e.

時間制御部17aは圧縮機2停止からの時間を計測する。 The time control unit 17a measures the time since compressor 2 stopped.

圧力差計算手段17bは、室外機1と複数の各室内機11a~11dとの間の各圧力差を検出するためのもので、この例では室外熱交換器温度センサ7が検出した圧力代替値としての温度と各室内熱交換器温度センサ13a~13dが検出した圧力代替値としての温度との差から圧力差を計算する。 The pressure difference calculation means 17b is for detecting each pressure difference between the outdoor unit 1 and each of the multiple indoor units 11a to 11d, and in this example calculates the pressure difference from the difference between the temperature detected as a pressure substitute value by the outdoor heat exchanger temperature sensor 7 and the temperature detected as a pressure substitute value by each of the indoor heat exchanger temperature sensors 13a to 13d.

優先順序判断手段17cは上記圧力差計算手段17bが計算した圧力代替値としての温度差に基づいて各膨張弁9a~9dの開度を所定開度まで開く順序を決定する。 The priority order determination means 17c determines the order in which the expansion valves 9a to 9d are opened to a predetermined opening degree based on the temperature difference calculated by the pressure difference calculation means 17b as a substitute pressure value.

膨張弁制御手段17dは、上記優先順序判断手段17cで決定した順序で各膨張弁9a~9dを所定開度、この例では全開状態まで開く。この膨張弁制御手段17dは、圧力代替値としての温度差が大きい順に膨張弁9a~9dを所定開度まで開動作する。そして、先の膨張弁が所定開度に開動作した終了後に次の膨張弁の開動作を開始する。 The expansion valve control means 17d opens each expansion valve 9a-9d to a predetermined degree of opening, in this example to a fully open state, in the order determined by the priority order determination means 17c. This expansion valve control means 17d opens the expansion valves 9a-9d to a predetermined degree of opening in the order of the largest temperature difference as a pressure substitute value. Then, after the previous expansion valve has finished opening to the predetermined degree of opening, it starts opening the next expansion valve.

全開動作判断手段17eは前記膨張弁制御手段17dに各膨張弁9a~9dが所定開度まで開動作したことを検出してその信号を膨張弁制御手段17dに出力する。 The full-open operation determination means 17e detects that each expansion valve 9a to 9d has opened to a predetermined opening degree and outputs a signal to the expansion valve control means 17d.

なお、室内制御装置18a~18dは各室内機11a~11dに設けてある室内制御装置で、各室内熱交換器温度センサ13a~13dからの圧力代替値である温度出力を圧力差計算手段17bに出力する。 The indoor control devices 18a to 18d are indoor control devices provided in each of the indoor units 11a to 11d, and output the temperature output, which is a pressure substitute value, from each of the indoor heat exchanger temperature sensors 13a to 13d to the pressure difference calculation means 17b.

そして、本実施の形態では、上記室内制御装置18a~18dと前記室外機1の制御部17とが協働して、冷房運転や暖房運転等の運転制御を行い、目標温度に合わせて被調和空間を空調する。 In this embodiment, the indoor control devices 18a to 18d and the control unit 17 of the outdoor unit 1 cooperate to control operation such as cooling and heating, and air-condition the space to be conditioned to the target temperature.

[1-2.動作]
次に上記のように構成した空気調和装置について、その作用効果を図3、図4を用い説明する。
[1-2. Operation]
Next, the operation and effect of the air conditioner configured as above will be described with reference to Figs.

本実施の形態の空気調和装置は、ユーザが運転を指示すると、冷房運転や暖房運転等を行うが、冷房運転や暖房運転等の運転中、ユーザが設定した目標温度に合わせて、圧縮機2の運転周波数や運転または停止の制御、各膨張弁9a~9dの開度調整、室外ファン5および室内ファン14a~14dの制御を実行し、目標温度に合わせて被調和空間を空調する。 The air conditioner of this embodiment performs cooling operation, heating operation, etc. when the user instructs it to operate. During cooling operation, heating operation, etc., the air conditioner controls the operating frequency and operation/stop of compressor 2, adjusts the opening of each expansion valve 9a-9d, and controls outdoor fan 5 and indoor fans 14a-14d according to the target temperature set by the user, and conditions the conditioned space according to the target temperature.

そして、例えばユーザにより空調運転が停止される、或いは、冷房運転から暖房運転またはその逆の操作がされると、制御部17は室外機1の圧縮機2を停止し、図3のステップ1で示す所定時間経過後、例えば1~2分後、圧力差計算手段17bがステップ2で室外機1と各室内機11a~11dとの間の圧力代替値となる温度差を計算し、ステップ3に移行する。 For example, when the user stops the air conditioning operation, or switches from cooling operation to heating operation or vice versa, the control unit 17 stops the compressor 2 of the outdoor unit 1, and after a predetermined time shown in step 1 of FIG. 3 has elapsed, for example, 1 to 2 minutes, the pressure difference calculation means 17b calculates the temperature difference between the outdoor unit 1 and each of the indoor units 11a to 11d in step 2, which becomes the pressure substitute value, and the process proceeds to step 3.

ステップ3では運転中の室内機(以降、運転号機と記す)が複数あるかを判定し、複数ある場合はステップ4以降に移行する。 In step 3, it is determined whether there are multiple indoor units in operation (hereafter referred to as operating units), and if there are multiple, the process proceeds to step 4 and onwards.

ステップ4では複数の運転号機の中で室外機1との間の圧力代替値となる温度差が一番大きい運転号機(図4に運転号機動作優先度1として示す)の膨張弁9aを通常運転時よりも大きな開度、この例では全開するように指示(図4のa)する。そして、ステップ5で上記室外機1との間の温度差が一番大きい運転号機の膨張弁9aの全開動作を完了(図4のb)させ、その後、ステップ6に移行し、室外機1との間の温度差が次に大きい運転号機(図4に運転号機動作優先度2として示す)の膨張弁9bを全開指示(図4のc)し、ステップ7で当該膨張弁9bの全開動作を完了(図4のd)させ、ステップ8に移行する。 In step 4, the expansion valve 9a of the operating unit (shown in FIG. 4 as operating unit operation priority 1) that has the largest temperature difference between the outdoor unit 1 and the operating unit among the multiple operating units is instructed to open to a greater degree than during normal operation, in this example, fully open (a in FIG. 4). Then, in step 5, the expansion valve 9a of the operating unit with the largest temperature difference between the outdoor unit 1 is fully opened (b in FIG. 4), and then the process moves to step 6, where the expansion valve 9b of the operating unit (shown in FIG. 4 as operating unit operation priority 2) that has the next largest temperature difference between the outdoor unit 1 is fully opened (c in FIG. 4), and in step 7, the fully open operation of the expansion valve 9b is completed (d in FIG. 4), and the process moves to step 8.

そして、ステップ8では全運転号機の膨張弁、この場合は膨張弁9a、9bの全開動作が完了したかを判定し、完了するまでステップ4からステップ7を繰り返す。この動作を運転号機が存在する数だけ行う。 Then, in step 8, it is determined whether the expansion valves of all operating units, in this case expansion valves 9a and 9b, have been fully opened, and steps 4 to 7 are repeated until this is complete. This operation is performed as many times as there are operating units.

これにより、室外機1との間の圧力代替値となる温度差が大きい運転号機から少ない運転号機の順に室内機との間の圧力差を解消し、均圧化していく。 This eliminates the pressure difference between the indoor units and the outdoor unit 1, starting with the operating unit with the largest temperature difference, which serves as the pressure substitute value, and equalizes the pressure.

つまり、室外機1と複数の各室内機11a~11dの圧力を当該圧力に応じて変動する温度によって検出し、その温度差が大きい順で各室内機11a~11dの膨脹弁9a~9dを所定開度まで開き、室外機1との間の温度差が大きい運転号機から少ない運転号機の順に室内機11a~11dの間の圧力差を解消し、均圧化していく。 In other words, the pressures of the outdoor unit 1 and each of the indoor units 11a-11d are detected by the temperature that changes according to the pressure, and the expansion valves 9a-9d of each of the indoor units 11a-11d are opened to a specified opening degree in descending order of temperature difference, eliminating the pressure differences between the indoor units 11a-11d in order from the operating unit with the largest temperature difference to the operating unit with the smallest temperature difference from the outdoor unit 1, and equalizing the pressure.

したがって、圧縮機停止時に運転を停止している室内機(以降、停止号機と記す)が存在していて、当該停止号機と室外機1との間に大きな圧力差があっても、その圧力差は従来の運転号機の膨張弁を一斉に全開させるものに比べ極めて小さくなる。よって、停止号機の膨張弁を全開しても停止号機内の冷媒の流れは穏やかで冷媒流通音はほとんど発生しない形となる。 Therefore, even if there is an indoor unit (hereafter referred to as the stopped unit) that is not operating when the compressor is stopped and there is a large pressure difference between the stopped unit and the outdoor unit 1, the pressure difference is extremely small compared to the conventional method of fully opening the expansion valves of all operating units at once. Therefore, even if the expansion valve of the stopped unit is fully opened, the flow of refrigerant within the stopped unit is gentle and almost no refrigerant flow noise is generated.

また本実施形態の場合、圧力代替値となる温度差が大きい順に膨張弁を全開するので、室外機1と各運転号機とを段階を追ってスムーズに均圧化していくことができる。よって、均圧化の途中で冷媒流れの勢いに差が出て生じる違和感を抑制することができる。 In addition, in this embodiment, the expansion valves are fully opened in descending order of the temperature difference that serves as the pressure substitute value, so pressure equalization can be achieved smoothly and step by step between the outdoor unit 1 and each operating unit. This makes it possible to suppress the discomfort that can occur when differences in the momentum of the refrigerant flow occur during pressure equalization.

更に各膨張弁の開動作は最初に均圧化する運転号機の膨張弁が全開状態まで開いた動作終了後に次の膨張弁の開動作を開始するので、個々の運転号機毎に確実に圧力差を解消することになる。よって、膨張弁が全開状態になる前に次の膨張弁を開動作させることにより生じる運転号機の圧力差解消動作のオーバーラップで冷媒流れに勢いの差が生じ、冷媒流通音に大少差が発生して感じる違和感を確実に抑制することができる。 Furthermore, the opening operation of each expansion valve begins after the expansion valve of the operating unit that is first to be pressure equalized has finished opening to its fully open state, so the pressure difference is reliably eliminated for each operating unit. Therefore, the overlap of the pressure difference elimination operation of the operating unit, which occurs when the next expansion valve is opened before the expansion valve is fully open, creates a difference in momentum in the refrigerant flow, and the discomfort felt by small and large differences in the refrigerant flow sound can be reliably suppressed.

更にまた、室外機と各室内機の圧力は温度センサによる温度検知で間接的に検知するようにしているので、圧力を直接検出する圧力センサを用いる場合に比べセンサ自体の取り付けを容易化でき、構成の簡素化とセンサ自体のコストダウンを実現することができる。 Furthermore, the pressure in the outdoor unit and each indoor unit is indirectly detected by temperature sensors, making it easier to install the sensors themselves compared to using pressure sensors that directly detect pressure, simplifying the configuration and reducing the cost of the sensors themselves.

なお、ステップ3で運転号機が複数ないと判定、つまり運転号機が1台しかないと判定した場合、ステップ9に移行して該当する運転号機の例えば膨張弁9aを全開指示し、ステップ10で全開動作を完了させてステップ11の停止号機の有無確認に移る。この場合も、前記と同様、圧縮機停止時に運転停止していた停止号機と室外機1との間の圧力差は極小化し、停止号機内の冷媒の流れは穏やかで冷媒流通音はほとんど発生しない形となる。 If it is determined in step 3 that there is not more than one operating unit, that is, that there is only one operating unit, the process proceeds to step 9, where an instruction is given to fully open, for example, expansion valve 9a, of the operating unit in question, and the fully opening operation is completed in step 10, after which the process proceeds to step 11, where confirmation is made as to whether or not there is a stopped unit. In this case, as in the above, the pressure difference between the stopped unit that was stopped when the compressor was stopped and outdoor unit 1 is minimized, the flow of refrigerant in the stopped unit is gentle, and almost no refrigerant flow noise is generated.

次に、上記ステップ8及びステップ10で全運転号機の膨張弁、この例では9a、9bの全開動作の完了を確認すると、更にステップ11に移行して圧縮機停止時、停止号機が複数あるかを判定する。そして、停止号機が複数ある場合はステップ12以降の動作を行う。 Next, in steps 8 and 10 above, once it has been confirmed that the expansion valves of all operating units, in this example 9a and 9b, have been fully opened, the process proceeds to step 11, where it is determined whether there are multiple units that have stopped when the compressor is stopped. If there are multiple units that have stopped, the process proceeds to step 12 and onwards.

まず、ステップ12で複数の停止号機の中で室外機1との間の圧力代替値となる温度差が一番大きい停止号機(図4に停止号機動作優先度1として示す)に繋がる例えば膨張弁9cを大きな開度、この例では全開するように指示(図4のe)する。そして、ステップ13で上記室外機1との間の圧力代替値となる温度差が一番大きい停止号機の膨張弁9cの全開動作を完了(図4のf)させ、その後、ステップ14に移行し、室外機1との間の圧力代替値となる温度差が次に大きい停止機の例えば膨張弁9dを全開指示(図4のg)し、ステップ15で当該膨張弁9dの全開動作を完了(図4のh)させ、ステップ16に移行する。 First, in step 12, an instruction is given to open, for example, the expansion valve 9c connected to the stopped unit (shown as stopped unit operation priority 1 in FIG. 4) with the largest temperature difference that serves as a pressure substitute value with the outdoor unit 1 among the multiple stopped units to a large degree, in this example, to be fully opened (e in FIG. 4). Then, in step 13, the operation of fully opening the expansion valve 9c of the stopped unit with the largest temperature difference that serves as a pressure substitute value with the outdoor unit 1 is completed (f in FIG. 4), and then the process moves to step 14, where an instruction is given to fully open, for example, the expansion valve 9d of the stopped unit with the next largest temperature difference that serves as a pressure substitute value with the outdoor unit 1 (g in FIG. 4), and in step 15 the operation of fully opening the expansion valve 9d is completed (h in FIG. 4), and the process moves to step 16.

そして、ステップ16では全停止号機の膨張弁9c、9dの全開動作が完了したかを判定し、完了するまでステップ12からステップ15を繰り返す。この動作を停止号機が存在する数だけ行う。 In step 16, it is determined whether the expansion valves 9c and 9d of all stopped units have been fully opened, and steps 12 to 15 are repeated until this is complete. This operation is repeated as many times as there are stopped units.

これにより、室外機1との間の圧力差を解消する停止号機に生じる冷媒の急激な流れも効果的に抑制し、冷媒流通音の発生をより効果的に抑えることができる。 This effectively suppresses the sudden flow of refrigerant that occurs in the stopped unit, which eliminates the pressure difference between the outdoor unit 1, and more effectively suppresses the generation of refrigerant flow noise.

つまり、圧縮機停止時に運転停止している停止号機も前記運転号機の均圧化動作と同様、室外機1との間の圧力代替値となる温度差が大きい停止号機から少ない停止号機の順に室内機との間の圧力差を解消し、均圧化して冷媒流通音の発生を抑制する。 In other words, in the same way as the pressure equalization operation of the operating units, the pressure difference between the indoor units and the stopped units that are not operating when the compressor is stopped is eliminated in the order of the stopped units with the largest temperature difference, which serves as a pressure substitute value between the outdoor unit 1 and the stopped units with the smallest temperature difference, and the pressure is equalized to suppress the generation of refrigerant flow noise.

また、前記膨張弁9c、9dを全開する順序、及びその開度を全開として次の膨張弁を開とする動作も、運転号機の場合と同様であり、同様の作用効果が得られる。 The order in which the expansion valves 9c and 9d are fully opened, and the operation of opening the next expansion valve after fully opening them, is the same as in the case of the operating unit, and the same effects are obtained.

なお、ステップ11で停止号機が複数ないと判定、つまり停止号機が1台しかない場合、ステップ17に移行し、該当する停止号機の膨張弁を全開し、圧縮機停止時における膨張弁制御を終了する。この場合も、前記と同様、運転号機の均圧化が終了しているので、圧縮機停止時に運転停止していた停止号機と室外機1との間の圧力差は極小化しており、停止号機内の冷媒の流れは穏やかで冷媒流通音はほとんど発生しない形となる。 If it is determined in step 11 that there are not multiple stopped units, that is, if there is only one stopped unit, the process proceeds to step 17, the expansion valve of the corresponding stopped unit is fully opened, and expansion valve control when the compressor is stopped is terminated. In this case, as in the above, pressure equalization of the operating units is completed, so the pressure difference between the stopped unit that was not operating when the compressor was stopped and the outdoor unit 1 is minimized, the flow of refrigerant in the stopped unit is gentle, and almost no refrigerant flow noise is generated.

以上、本実施の形態では室外機1と各室内機11a~11dの冷媒圧力を検出する室外機圧力検出手段及び室内機圧力検出手段はいずれも圧力代替値となる温度を検出する温度センサで構成した場合を例示したが、これは室外機1、各室内機11a~11dの冷媒圧力、例えばそれぞれの熱交換器部分の冷媒圧力を直接検出する圧力センサ等の圧力検知器で構成してもよい。また、本実施の形態では、室外機と各室内機の圧力を温度センサによる温度検知で間接的に検知するようにしているが、室外熱交換器温度センサ7、室内熱交換器温度センサ13a~13dで検出した温度を直接用いて各膨張弁9a~9dを制御する構成としてもよい。その場合は、制御部17は圧力差計算手段17bの代わりに、室外熱交換器温度センサ7が検出した温度と各室内熱交換器温度センサ13a~13dが検出した温度との差を計算する温度差計算手段を有する。 In the above, in this embodiment, the outdoor unit pressure detection means and indoor unit pressure detection means for detecting the refrigerant pressure of the outdoor unit 1 and each indoor unit 11a to 11d are configured with a temperature sensor that detects the temperature that serves as a pressure substitute value. However, this may be configured with a pressure detector such as a pressure sensor that directly detects the refrigerant pressure of the outdoor unit 1 and each indoor unit 11a to 11d, for example, the refrigerant pressure of each heat exchanger part. In addition, in this embodiment, the pressure of the outdoor unit and each indoor unit is indirectly detected by temperature detection using a temperature sensor, but the expansion valves 9a to 9d may be controlled directly using the temperatures detected by the outdoor heat exchanger temperature sensor 7 and the indoor heat exchanger temperature sensors 13a to 13d. In that case, the control unit 17 has a temperature difference calculation means for calculating the difference between the temperature detected by the outdoor heat exchanger temperature sensor 7 and the temperature detected by each indoor heat exchanger temperature sensor 13a to 13d instead of the pressure difference calculation means 17b.

また、室外機1と各室内機11a~11dとの間の圧力差を解消する均圧化時の膨張弁9a~9dの開度は全開としているが、これは所定の開度に任意に設定すればよい。 In addition, the expansion valves 9a to 9d are fully open during pressure equalization to eliminate the pressure difference between the outdoor unit 1 and each of the indoor units 11a to 11d, but this can be set to any desired opening.

さらに室内機11a~11dは4台の場合を例示したが、これは複数であれば何台であってもよい。 Furthermore, although an example has been given in which there are four indoor units 11a to 11d, this can be any number provided there is more than one.

[1-3.効果等]
以上のように、本開示の空気調和装置は、圧縮機2と四方切替弁4と室外熱交換器6とを有する1台の室外機1に室内熱交換器12a~12dを備えた室内機11a~11dを複数接続し、室外機1の圧縮機2、四方切替弁4、室外熱交換器6、複数の室内機11a~11dの室内熱交換器12a~12dによって構成される冷媒回路の途中にそれぞれ膨張弁9a~9dを接続して構成した空気調和装置であって、室外機1の圧力を間接または直接検出する室外機圧力検出手段と、複数の室内機11a~11dの圧力を間接または直接検出する室内機圧力検出手段と、膨張弁9a~9dを制御する制御部17と、を備え、制御部17は、圧縮機2の停止後、室外機圧力検出手段が検出した室外機圧力と室内機圧力検出手段が検出した各室内機圧力とのそれぞれの圧力差を計算し、圧力差が大きい運転中の室内機から圧力差が小さい室内機の順に膨張弁9a~9dを所定開度まで開する構成としている。
[1-3. Effects, etc.]
As described above, the air conditioner of the present disclosure is an air conditioner in which a plurality of indoor units 11a to 11d each equipped with indoor heat exchangers 12a to 12d are connected to one outdoor unit 1 having a compressor 2, a four-way switching valve 4, and an outdoor heat exchanger 6, and expansion valves 9a to 9d are connected midway through a refrigerant circuit made up of the compressor 2, four-way switching valve 4, outdoor heat exchanger 6 of the outdoor unit 1, and the indoor heat exchangers 12a to 12d of the plurality of indoor units 11a to 11d, and the pressure of the outdoor unit 1 is indirectly or directly detected. The control unit 17 is configured to calculate, after the compressor 2 is stopped, the respective pressure differences between the outdoor unit pressure detected by the outdoor unit pressure detection means and each indoor unit pressure detected by the indoor unit pressure detection means, and to open the expansion valves 9a to 9d to a predetermined opening degree in the order from the indoor unit with the largest pressure difference to the indoor unit with the smallest pressure difference.

これにより、室外機1に接続されている複数の室内機11a~11dのうち、室外機1との圧力差が大きい室内機から圧力差が小さい室内機の順に前記室外機1との間の圧力差を解消して均圧化していく。これにより、運転停止していた室内機に冷媒流通音が発生するのを抑制でき、快適な空気調和装置とすることができる。 As a result, among the multiple indoor units 11a to 11d connected to the outdoor unit 1, the pressure difference between the outdoor unit 1 is eliminated and equalized, starting with the indoor unit with the largest pressure difference and then the indoor unit with the smallest pressure difference. This makes it possible to suppress the generation of refrigerant flow noise in indoor units that are not operating, resulting in a comfortable air conditioning system.

また、本開示の空気調和装置は、室外機圧力検出手段は、室外熱交換器6の温度を検出する室外熱交換器温度センサ7で構成して室外機の圧力を間接的に検知し、室内機圧力検出手段は、室内熱交換器12a~12dの温度を検出する室内熱交換器温度センサ13a~13dで構成して室内機11a~11dの圧力を間接的に検知する構成とし、制御部17は、圧縮機停止後、室外熱交換器温度センサ7で検出した室外熱交換器温度と室内熱交換器温度センサ13a~13dで検出した複数の各室内熱交換器温度とのそれぞれの温度差を計算し、温度差が大きい室内機から温度差が小さい室内機の順に膨張弁を所定開度まで開する構成としている。 In addition, in the air conditioning device of the present disclosure, the outdoor unit pressure detection means is configured with an outdoor heat exchanger temperature sensor 7 that detects the temperature of the outdoor heat exchanger 6 to indirectly detect the pressure of the outdoor unit, and the indoor unit pressure detection means is configured with indoor heat exchanger temperature sensors 13a to 13d that detect the temperatures of the indoor heat exchangers 12a to 12d to indirectly detect the pressure of the indoor units 11a to 11d, and after the compressor is stopped, the control unit 17 calculates the temperature difference between the outdoor heat exchanger temperature detected by the outdoor heat exchanger temperature sensor 7 and each of the multiple indoor heat exchanger temperatures detected by the indoor heat exchanger temperature sensors 13a to 13d, and opens the expansion valves to a predetermined opening degree in the order from the indoor unit with the largest temperature difference to the indoor unit with the smallest temperature difference.

これにより、冷媒流通音の発生を抑制できるのはもちろん、室外機1と室内機11a~11dとの圧力差を温度差によって検出するので、圧力を直接検知する圧力センサを用いる場合に比べ簡単かつ安価に空気調和装置を提供することができる。 This not only suppresses the generation of refrigerant flow noise, but also allows the pressure difference between the outdoor unit 1 and the indoor units 11a to 11d to be detected by the temperature difference, making it possible to provide an air conditioner more simply and inexpensively than if a pressure sensor that directly detects pressure were used.

また、本開示の空気調和装置における制御部17は、複数の室内機に運転中の室内機と停止中の室内機がある場合、運転中の室内機の膨張弁を所定開度まで開した後、停止中の室内機の膨張弁を開する構成としている。 In addition, the control unit 17 in the air conditioning device disclosed herein is configured such that, when multiple indoor units include indoor units that are operating and indoor units that are stopped, the expansion valve of the indoor unit that is operating is opened to a predetermined opening degree, and then the expansion valve of the indoor unit that is stopped is opened.

これにより、運転号機及び停止号機のいずれも室内機の均圧化をスムーズに行って違和感なく冷媒流通音を抑制することができ、運転号機と停止号機が複数混在していても快適性の高い空気調和装置とすることができる。 This allows smooth pressure equalization of the indoor units for both operating and stopped units, suppressing refrigerant flow noise without creating an unpleasant feeling, making it possible to create a highly comfortable air conditioning system even when multiple operating and stopped units are mixed.

また、本開示の空気調和装置における制御部17は、先の膨張弁が所定開度まで開した開動作終了後に次の膨張弁の開動作を開始する構成としている。 The control unit 17 in the air conditioning device disclosed herein is configured to start the opening operation of the next expansion valve after the previous expansion valve has finished opening to a predetermined degree.

これにより、室内機11a~11dの圧力差解消動作が一部オーバーラップすることにより冷媒流れに勢いの差が生じるのを防止して冷媒流通音の大少差発生による違和感を抑制することができ、更に高いレベルまで快適性を高めることができる。 This prevents the pressure difference elimination operations of the indoor units 11a to 11d from partially overlapping, which can cause differences in the momentum of the refrigerant flow, reducing the discomfort caused by differences in the sound of the refrigerant flow, and further increasing comfort to a higher level.

また、本開示の空気調和装置は、圧縮機2と四方切替弁4と室外熱交換器6とを有する1台の室外機1に室内熱交換器12a~12dを備えた室内機11a~11dを複数接続し、室外機1の圧縮機2、四方切替弁4、室外熱交換器6、複数の室内機11a~11dの室内熱交換器12a~12dによって構成される冷媒回路の途中にそれぞれ膨張弁9a~9dを接続して構成した空気調和装置であって、室外熱交換器6の温度を検出する室外熱交換器温度センサ7と、複数の室内熱交換器12a~12dの温度を検出するそれぞれの室内熱交換器温度センサ13a~13dと、膨張弁9a~9dを制御する制御部17と、を備え、制御部17は、圧縮機2の停止後、室外熱交換器温度センサ7が検出した室外熱交換器温度と室内熱交換器温度センサ13a~13dが検出した各室内熱交換器温度とのそれぞれの温度差を計算し、温度差が大きい室内機から前記温度差が小さい室内機の順に膨張弁9a~9dを所定開度まで開する構成としている。 The air conditioner disclosed herein is an air conditioner in which a single outdoor unit 1 having a compressor 2, a four-way switching valve 4, and an outdoor heat exchanger 6 is connected to a plurality of indoor units 11a to 11d each equipped with indoor heat exchangers 12a to 12d, and expansion valves 9a to 9d are connected midway through a refrigerant circuit made up of the compressor 2, four-way switching valve 4, outdoor heat exchanger 6 of the outdoor unit 1, and the indoor heat exchangers 12a to 12d of the plurality of indoor units 11a to 11d, respectively, and further includes an outdoor heat exchanger temperature sensor 7 for detecting the temperature of the outdoor heat exchanger 6, and an outdoor heat exchanger temperature sensor 8 for detecting the temperature of the outdoor heat exchanger 6, and an outdoor heat exchanger temperature sensor 9 for detecting the temperature of the outdoor heat exchanger 6. The system is equipped with indoor heat exchanger temperature sensors 13a-13d that detect the temperatures of the indoor heat exchangers 12a-12d, and a control unit 17 that controls the expansion valves 9a-9d. After the compressor 2 is stopped, the control unit 17 calculates the temperature difference between the outdoor heat exchanger temperature detected by the outdoor heat exchanger temperature sensor 7 and the indoor heat exchanger temperatures detected by the indoor heat exchanger temperature sensors 13a-13d, and opens the expansion valves 9a-9d to a predetermined opening degree in the order from the indoor unit with the largest temperature difference to the indoor unit with the smallest temperature difference.

これにより、冷媒流通音の発生を抑制できるのはもちろん、室外機1と室内機11a~11dとの圧力差を温度差によって検出するので、圧力を直接検知する圧力センサを用いる場合に比べ簡単かつ安価に空気調和装置を提供することができる。 This not only suppresses the generation of refrigerant flow noise, but also allows the pressure difference between the outdoor unit 1 and the indoor units 11a to 11d to be detected by the temperature difference, making it possible to provide an air conditioner more simply and inexpensively than if a pressure sensor that directly detects pressure were used.

以上、本発明に係る空気調和装置について、上記実施の形態を用いて説明したが、本発明はこれに限定されるものではなく、種々の変更、置き換え、付加、省略などを行うことができる。つまり、今回開示した実施の形態はすべての点で例示であって制限的なものではなく、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれるものである。 The air conditioning device according to the present invention has been described above using the above embodiment, but the present invention is not limited to this, and various modifications, substitutions, additions, omissions, etc. can be made. In other words, the embodiment disclosed here is illustrative in all respects and is not restrictive, and the scope of the present invention is indicated by the claims, and includes all modifications within the meaning and scope equivalent to the claims.

本発明に係る空気調和装置は、上記したように、運転停止していた室内機(停止号機)と室外機との間の圧力差を均圧化するときには当該室内機(停止号機)に冷媒が勢いよく流れて冷媒流通音が発生するのを抑制でき、快適な空気調和装置とすることができる。よって、家庭用及び業務用エアコン等に幅広く利用でき、その産業的価値は大なるものがある。 As described above, when equalizing the pressure difference between an indoor unit (stopped unit) that has stopped operating and an outdoor unit, the air conditioner according to the present invention can suppress the generation of refrigerant flow noise caused by the refrigerant flowing forcefully into the indoor unit (stopped unit), resulting in a comfortable air conditioner. Therefore, it can be widely used in home and commercial air conditioners, etc., and has great industrial value.

1 室外機
2 圧縮機
3 圧縮機温度センサ
4 四方切替弁
5 室外ファン
6 室外熱交換器
7 室外熱交換器温度センサ
8 液側閉鎖弁
9a~9d 膨張弁
10a~10d 液側接続部
11a~11d 室内機
12a~12d 室内熱交換器
13a~13d 室内熱交換器温度センサ
14a~14d 室内ファン
15a~15d ガス側接続部
17 制御部
17a 時間制御部
17b 圧力差計算手段
17c 優先順序判断手段
17d 膨張弁制御手段
17e 全開動作判断手段
REFERENCE SIGNS LIST 1 Outdoor unit 2 Compressor 3 Compressor temperature sensor 4 Four-way switching valve 5 Outdoor fan 6 Outdoor heat exchanger 7 Outdoor heat exchanger temperature sensor 8 Liquid side stop valve 9a-9d Expansion valve 10a-10d Liquid side connection 11a-11d Indoor unit 12a-12d Indoor heat exchanger 13a-13d Indoor heat exchanger temperature sensor 14a-14d Indoor fan 15a-15d Gas side connection 17 Control unit 17a Time control unit 17b Pressure difference calculation means 17c Priority order determination means 17d Expansion valve control means 17e Full open operation determination means

Claims (7)

圧縮機と四方切替弁と室外熱交換器とを有する1台の室外機に室内熱交換器を備えた室内機を複数接続し、前記室外機の前記圧縮機、前記四方切替弁、前記室外熱交換器、複数の前記室内機の前記室内熱交換器によって構成される冷媒回路の途中にそれぞれ膨張弁を接続して構成した空気調和装置であって、
前記室外機の圧力を間接または直接検出する室外機圧力検出手段と、
複数の前記室内機の圧力を間接または直接検出する室内機圧力検出手段と、
前記膨張弁を制御する制御部と、を備え、
前記制御部は、前記圧縮機の停止後、前記室外機圧力検出手段が検出した室外機圧力と前記室内機圧力検出手段が検出した各室内機圧力とのそれぞれの圧力差を計算し、前記圧力差が大きい室内機から前記圧力差が小さい室内機の順に前記膨張弁を所定開度まで開する構成とした空気調和装置。
An air-conditioning apparatus comprising: a single outdoor unit having a compressor, a four-way switching valve, and an outdoor heat exchanger; a plurality of indoor units each having an indoor heat exchanger; and an expansion valve connected midway through a refrigerant circuit formed by the compressor, the four-way switching valve, and the outdoor heat exchanger of the outdoor unit, and the indoor heat exchangers of the plurality of indoor units;
an outdoor unit pressure detection means for indirectly or directly detecting the pressure of the outdoor unit;
an indoor unit pressure detection means for indirectly or directly detecting the pressures of the indoor units;
A control unit that controls the expansion valve,
The control unit calculates, after the compressor is stopped, the pressure difference between the outdoor unit pressure detected by the outdoor unit pressure detection means and each indoor unit pressure detected by the indoor unit pressure detection means, and opens the expansion valve to a predetermined opening degree in the order of indoor units with the largest pressure difference to indoor units with the smallest pressure difference.
前記室外機圧力検出手段は、前記室外熱交換器の温度を検出する室外熱交換器温度センサで構成して前記室外機の圧力を間接的に検知し、前記室内機圧力検出手段は前記室内熱交換器の温度を検出する室内熱交換器温度センサで構成して前記室内機の圧力を間接的に検知する構成とし、
前記制御部は、前記圧縮機停止後、前記室外熱交換器温度センサで検出した室外熱交換器温度と前記室内熱交換器温度センサで検出した複数の各室内熱交換器温度とのそれぞれの温度差を計算し、前記温度差が大きい室内機から前記温度差が小さい室内機の順に前記膨張弁を所定開度まで開する構成とした請求項1記載の空気調和装置。
The outdoor unit pressure detection means is configured with an outdoor heat exchanger temperature sensor that detects the temperature of the outdoor heat exchanger to indirectly detect the pressure of the outdoor unit, and the indoor unit pressure detection means is configured with an indoor heat exchanger temperature sensor that detects the temperature of the indoor heat exchanger to indirectly detect the pressure of the indoor unit,
The air conditioning apparatus of claim 1, wherein the control unit calculates, after the compressor is stopped, the temperature difference between the outdoor heat exchanger temperature detected by the outdoor heat exchanger temperature sensor and each of the multiple indoor heat exchanger temperatures detected by the indoor heat exchanger temperature sensors, and opens the expansion valves to a predetermined opening degree in the order of indoor units with the largest temperature difference to indoor units with the smallest temperature difference.
前記制御部は、複数の前記室内機に運転中の室内機と停止中の室内機がある場合、前記運転中の室内機の膨張弁を所定開度まで開した後、前記停止中の室内機の膨張弁を所定開度まで開する構成とした請求項1又は2記載の空気調和装置。 The air conditioner according to claim 1 or 2, wherein the control unit is configured to open the expansion valve of the indoor unit in operation to a predetermined opening degree and then open the expansion valve of the indoor unit that is not in operation to a predetermined opening degree when the indoor units include an indoor unit in operation and an indoor unit that is not in operation. 前記制御部は、先の膨張弁が所定開度まで開した開動作終了後に次の膨張弁の開動作を開始する構成とした請求項1~3のいずれか1項記載の空気調和装置。 An air conditioner according to any one of claims 1 to 3, wherein the control unit is configured to start the opening operation of the next expansion valve after the previous expansion valve has finished opening to a predetermined degree. 圧縮機と四方切替弁と室外熱交換器とを有する1台の室外機に室内熱交換器を備えた室内機を複数接続し、前記室外機の前記圧縮機、前記四方切替弁、前記室外熱交換器、複数の前記室内機の前記室内熱交換器によって構成される冷媒回路の途中にそれぞれ膨張弁を接続して構成した空気調和装置であって、
前記室外熱交換器の温度を検出する室外熱交換器温度センサと、
複数の前記室内熱交換器の温度を検出するそれぞれの室内熱交換器温度センサと、
前記膨張弁を制御する制御部と、を備え、
前記制御部は、前記圧縮機の停止後、前記室外熱交換器温度センサが検出した室外熱交換器温度と前記室内熱交換器温度センサが検出した各室内熱交換器温度とのそれぞれの温度差を計算し、前記温度差が大きい室内機から前記温度差が小さい室内機の順に前記膨張弁を所定開度まで開する構成とした空気調和装置。
An air-conditioning apparatus comprising: a single outdoor unit having a compressor, a four-way switching valve, and an outdoor heat exchanger; a plurality of indoor units each having an indoor heat exchanger; and an expansion valve connected midway through a refrigerant circuit formed by the compressor, the four-way switching valve, and the outdoor heat exchanger of the outdoor unit, and the indoor heat exchangers of the plurality of indoor units;
an outdoor heat exchanger temperature sensor for detecting a temperature of the outdoor heat exchanger;
a plurality of indoor heat exchanger temperature sensors for detecting temperatures of the indoor heat exchangers;
A control unit that controls the expansion valve,
The control unit calculates, after the compressor is stopped, the temperature difference between the outdoor heat exchanger temperature detected by the outdoor heat exchanger temperature sensor and each indoor heat exchanger temperature detected by the indoor heat exchanger temperature sensor, and opens the expansion valve to a predetermined opening degree in the order of indoor units with the largest temperature difference to indoor units with the smallest temperature difference.
前記制御部は、複数の前記室内機に運転中の室内機と停止中の室内機がある場合、前記運転中の室内機の膨張弁を所定開度まで開した後、前記停止中の室内機の膨張弁を所定開度まで開する構成とした請求項5記載の空気調和装置。 The air conditioner according to claim 5, wherein the control unit is configured to open the expansion valve of the indoor unit in operation to a predetermined opening degree and then open the expansion valve of the indoor unit that is not in operation to a predetermined opening degree when the indoor units include an indoor unit in operation and an indoor unit that is not in operation. 前記制御部は、先の膨張弁が所定開度まで開した開動作終了後に次の膨張弁の開動作を開始する構成とした請求項5又は6項記載の空気調和装置。 An air conditioner according to claim 5 or 6, wherein the control unit is configured to start the opening operation of the next expansion valve after the opening operation of the previous expansion valve to a predetermined opening degree is completed.
JP2021020399A 2021-02-12 2021-02-12 Air Conditioning Equipment Active JP7535683B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021020399A JP7535683B2 (en) 2021-02-12 2021-02-12 Air Conditioning Equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021020399A JP7535683B2 (en) 2021-02-12 2021-02-12 Air Conditioning Equipment

Publications (2)

Publication Number Publication Date
JP2022123228A JP2022123228A (en) 2022-08-24
JP7535683B2 true JP7535683B2 (en) 2024-08-19

Family

ID=82940420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021020399A Active JP7535683B2 (en) 2021-02-12 2021-02-12 Air Conditioning Equipment

Country Status (1)

Country Link
JP (1) JP7535683B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170804A (en) 2012-02-22 2013-09-02 Fujitsu General Ltd Air conditioner
JP2019113246A (en) 2017-12-22 2019-07-11 株式会社富士通ゼネラル Air conditioner
WO2021019686A1 (en) 2019-07-30 2021-02-04 三菱電機株式会社 Air-conditioning device and control method therefor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170804A (en) 2012-02-22 2013-09-02 Fujitsu General Ltd Air conditioner
JP2019113246A (en) 2017-12-22 2019-07-11 株式会社富士通ゼネラル Air conditioner
WO2021019686A1 (en) 2019-07-30 2021-02-04 三菱電機株式会社 Air-conditioning device and control method therefor

Also Published As

Publication number Publication date
JP2022123228A (en) 2022-08-24

Similar Documents

Publication Publication Date Title
JP6081033B1 (en) Air conditioner
WO2013099047A1 (en) Air conditioner
JP2002147823A (en) Air conditioner
WO2016088167A1 (en) Air-conditioning device
JP2654222B2 (en) Cooling / heating mixed type multi-refrigeration cycle
JP6785980B2 (en) Air conditioner
KR100575682B1 (en) Air conditioner with equalization pipe between out door units
JP2006234295A (en) Multiple air conditioner
JP7535683B2 (en) Air Conditioning Equipment
JP2008190758A (en) Air conditioner
JPH11173628A (en) Air conditioner
JP2002286300A (en) Air conditioner
CN217952534U (en) Dual-system air conditioning unit
CN109073256A (en) Air-conditioning device
JP2001147052A (en) Air conditioner
JPH03260561A (en) Air conditioner
JPH08189690A (en) Heating and dehumidifying operation controller for multi-room split type air conditioner
JP2008209021A (en) Multi-air conditioner
JP2002130861A (en) Air conditioner
JPH0763429A (en) Mult-room type air conditioner
JPH11201573A (en) Multiroom type air conditioner
JP2003028536A (en) Air conditioner
JP2005291555A (en) Air conditioner
JPH11294834A (en) Multi-room air conditioner provided with air cleaner
WO2008047784A1 (en) Air conditioner

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20221021

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231106

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240625

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240708

R150 Certificate of patent or registration of utility model

Ref document number: 7535683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150