JP7531079B2 - Battery charge/discharge control method - Google Patents

Battery charge/discharge control method Download PDF

Info

Publication number
JP7531079B2
JP7531079B2 JP2020173590A JP2020173590A JP7531079B2 JP 7531079 B2 JP7531079 B2 JP 7531079B2 JP 2020173590 A JP2020173590 A JP 2020173590A JP 2020173590 A JP2020173590 A JP 2020173590A JP 7531079 B2 JP7531079 B2 JP 7531079B2
Authority
JP
Japan
Prior art keywords
electrode
battery
semicircle
charge
discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020173590A
Other languages
Japanese (ja)
Other versions
JP2022056280A (en
Inventor
茂 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2020173590A priority Critical patent/JP7531079B2/en
Publication of JP2022056280A publication Critical patent/JP2022056280A/en
Application granted granted Critical
Publication of JP7531079B2 publication Critical patent/JP7531079B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、蓄電池の電極活物質内の反応種イオン濃度の測定方法に関する。また、その測定方法により充放電制御する方法及び装置に関する。The present invention relates to a method for measuring the concentration of reactive ions in an electrode active material of a storage battery, and also to a method and device for controlling charging and discharging using the measuring method.

充放電を停止した後の平衡状態に戻るまでは、図2のように電圧が変化して行く。この間は回復過渡電圧(TRV)と呼ばれている。この回復過渡電圧は電池内での不均一状態から均一状態への過渡現象である。電極の厚み、電極活物質の空孔率など電極設計条件を変える実験により、この現象が電極表面と電極深部との間に生じた反応種イオン濃度差が解消されるために起きることが知られている。この現象を指数関数に近似して、その係数から速度論的係数を求め電極深部で起きている反応種イオン濃度の希薄化を予測する電流遮断法が試みられて来た。しかし、精度良く測定するためには電流を切断後、数分から数時間の過渡現象を測定する必要があり、使用機器の制御システムへ送るデータを得るには不便であった。The voltage changes as shown in Figure 2 until the battery returns to an equilibrium state after charging and discharging is stopped. This period is called the recovery transient voltage (TRV). This recovery transient voltage is a transient phenomenon from a non-uniform state to a uniform state in the battery. Experiments in which electrode design conditions such as the thickness of the electrode and the porosity of the electrode active material are changed have shown that this phenomenon occurs because the difference in the concentration of reactive species ions between the electrode surface and the depth of the electrode is eliminated. A current interruption method has been attempted in which this phenomenon is approximated to an exponential function, and the kinetic coefficient is calculated from the coefficient to predict the dilution of the concentration of reactive species ions occurring in the depth of the electrode. However, in order to measure accurately, it is necessary to measure the transient phenomenon for several minutes to several hours after cutting off the current, which is inconvenient for obtaining data to be sent to the control system of the device used.

電気化学インピーダンス法第2版 板垣昌幸著 丸善出版(株)発行 P.4,5,77Electrochemical Impedance Method, 2nd Edition, by Masayuki Itagaki, Maruzen Publishing Co., Ltd., pp. 4, 5, 77

電気化学測定マニュアル 基礎編 電気化学会編 丸善(株)発行 P.96Electrochemical Measurement Manual, Basics, Edited by the Electrochemical Society, Published by Maruzen Co., Ltd., P. 96

最新リチウムイオン二次電池 共著 (株)情報機構発行 P.40Latest Lithium-Ion Secondary Batteries, co-authored, published by Information Technology Co., Ltd., p. 40

(株)情報機構 ホームページ 講師コラム 佐野 茂Information Technology Corporation Home Page Lecturer's Column Shigeru Sano

交流インピーダンス測定法は、蓄電池の内部抵抗・電極反応抵抗を測定する目的で広く普及している。電池の正負両極端子と測定装置とを電気的に接続するだけの簡単な測定方法で、極端な低周波数側を測定しなければ秒単位で測定ができ、典型的な結果は図3のように半円になる。等価回路は非特許文献1によると図4のように描くことが出来る。この半円はコールコールプロット(ナイキストストプロット)と呼ばれ、自動的に描くことができる装置が東陽テクニカ社などから市販されている。しかしながら、交流では充放電に伴う反応種イオン移動が電極反応より遅れる場合に生じる反応種イオン濃度の変化が反映されないので、電池の充放電制御で重要な大電流放電時の極端な容量低下あるいは大電流充電時の過充電によるデンドライト発生などの検出は出来なかった。The AC impedance measurement method is widely used to measure the internal resistance and electrode reaction resistance of storage batteries. It is a simple measurement method that only requires electrically connecting the positive and negative terminals of a battery to a measuring device, and can be measured in seconds unless extremely low frequencies are measured. A typical result is a semicircle as shown in Figure 3. According to Non-Patent Document 1, the equivalent circuit can be drawn as shown in Figure 4. This semicircle is called a Cole-Cole plot (Nyquist plot), and devices that can automatically draw it are commercially available from Toyo Corporation and others. However, since AC does not reflect the change in the concentration of reactive species ions that occurs when the movement of reactive species ions accompanying charging and discharging lags behind the electrode reaction, it was not possible to detect the extreme capacity decrease during high-current discharge or the generation of dendrites due to overcharging during high-current charging, which are important for battery charging and discharging control.

非特許文献2に記載されているように、交流インピーダンス測定は、充放電停止後数分から数時間放置し、平衡電位が安定してから測定を開始することになっている。平衡電位が安定しない内に測定すると、測定結果が安定せず、再現性も悪く、結果の解析が困難になると言われている。As described in Non-Patent Document 2, AC impedance measurement is to be started after the battery is left for several minutes to several hours after charging and discharging is stopped and the equilibrium potential is stabilized. If the measurement is performed before the equilibrium potential is stabilized, the measurement results are unstable and poorly reproducible, making it difficult to analyze the results.

電力配線の交流測定で、コールコールプロットが半円にならず図1のように半楕円になった場合には、各家庭の配線抵抗などの違いを考慮した伝送線路理論が適用され、等価回路は図5のようになる。蓄電池の交流インピーダンス測定で半楕円になった場合にも、蓄電池の電極活物質の各部を電力配線の各家庭に見立てて、図6のように伝送線路理論を適用することが行われている。電極活物質内各部は対極との距離に差があるので、電子抵抗、イオン移動抵抗には差が生じ、伝送線路理論と同じような等価回路が成立するはずである。図7の解説図のように、半円が複数個実数軸方向に平行移動し、それが同時に測定され半楕円になっているが、各部に生じた電子抵抗とイオン移動抵抗差と実数軸の移動量とを比較すると大きく異なっている。従って、電子抵抗とイオン移動抵抗だけで伝送線路理論を当て嵌めて実電池の半楕円を解釈することは出来ない。In the AC measurement of power wiring, if the Cole-Cole plot is not a semicircle but a semiellipse as shown in Figure 1, the transmission line theory, which takes into account the difference in wiring resistance of each household, is applied, and the equivalent circuit is as shown in Figure 5. Even when the AC impedance measurement of a storage battery results in a semiellipse, the transmission line theory is applied as shown in Figure 6, with each part of the electrode active material of the storage battery being likened to each household of the power wiring. Since each part of the electrode active material has a difference in distance from the counter electrode, there is a difference in the electronic resistance and ionic migration resistance, and an equivalent circuit similar to the transmission line theory should be established. As shown in the explanatory diagram in Figure 7, multiple semicircles are translated in the real axis direction, and they are measured simultaneously to form a semiellipse, but when the electronic resistance and ionic migration resistance difference generated in each part are compared with the amount of movement of the real axis, they are significantly different. Therefore, the transmission line theory cannot be applied to the electronic resistance and ionic migration resistance alone to interpret the semiellipse of a real battery.

電極細孔の形状の多様性で蓄電池測定結果の半楕円を解説することもあるが、蓄電池の電極はランダムな細孔を有する多孔体構造であり、大半の交流インピーダンス測定結果が半円になることから、半楕円の理由を細孔の形状の多様性とすることには論理矛盾がある。従って、従来の交流インピーダンス測定法は充放電制御システムへ送るデータを得る方法としては理論上の根拠が不十分であった。The semi-ellipse in the battery measurement results is sometimes explained by the diversity of electrode pore shapes, but since the electrodes of a battery have a porous structure with random pores, and most AC impedance measurement results are semicircular, there is a logical inconsistency in attributing the semi-ellipse to the diversity of pore shapes. Therefore, the conventional AC impedance measurement method does not have sufficient theoretical basis to obtain data to send to a charge/discharge control system.

図1のような半楕円になる場合に、CPE(constant phase element)を含む等価回路でカーブフィッティングが行われ、イオン移動抵抗や電極反応抵抗が求められ、電池の特性比較に使われ便利ではあるが、数学的に処理されているだけと思われ、物理的あるいは化学的な現象に対しての裏付けが得られている訳ではないので、充放電制御システムへ送るデータとしては不適切である。When a semi-ellipse like that shown in FIG. 1 is obtained, curve fitting is performed using an equivalent circuit including a constant phase element (CPE) to obtain ion migration resistance and electrode reaction resistance. This is useful for comparing battery characteristics, but it is thought to be merely a mathematical process and is not backed by any physical or chemical phenomena, so it is inappropriate to use this data as data to send to a charge/discharge control system.

リチウムイオン2次電池を放電すると、負極活物質中のリチウムイオンが電解液中に溶出し、セパレータを通過して正極まで電気泳動し、正極活物質の遷移金属の価数を還元して正極活物質中のリチウムイオン挿入位置に貯蔵される。放電電流が電気泳動で供給されるリチウムイオン量よりも大きい場合には、正極細孔内のリチウムイオンが不足し濃度が薄くなる。電極反応表面での反応種であるリチウムイオンの濃度が低くなると、実験則として昔から知られている、化1で表記され図8に図示されるネルンストの式に基づき正極電位が低くなる。この正極細孔内の濃度低下が進むと、急激に電池電圧が低下し、基準としている放電電圧を下回り電池動作機器が突然作動停止になる。

Figure 0007531079000001
When a lithium-ion secondary battery is discharged, the lithium ions in the negative electrode active material dissolve into the electrolyte, pass through the separator, and electrophores to the positive electrode, where they are stored at the lithium ion insertion site in the positive electrode active material by reducing the valence of the transition metal in the positive electrode active material. If the discharge current is greater than the amount of lithium ions supplied by electrophoresis, the lithium ions in the positive electrode pores become insufficient and the concentration becomes low. If the concentration of lithium ions, which are reactive species on the electrode reaction surface, decreases, the positive electrode potential decreases based on the Nernst equation, which has long been known as an experimental rule and is represented by Chemical Formula 1 and shown in Figure 8. If the concentration in the positive electrode pores decreases, the battery voltage drops rapidly, falling below the reference discharge voltage, and the battery-operated device suddenly stops working.
Figure 0007531079000001

リチウムイオン2次電池を充電すると、正極活物質に貯蔵されているリチウムイオンが、電気泳動により負極に移動し、負極活物質がグラファイトの場合にはグラフェン層間に、ハードカーボンなどのカーボン多孔体の場合にはその微孔に挿入される。電気泳動が追いつけなくなるような大電流充電の場合には、負極細孔内のリチウムイオン濃度が低下する。電極反応面での濃度が下がると、化1で表記され図8に図示されるネルンストの式により挿入反応電位が下がる。最初に投入された濃度(一般的には1モル/l)の百分の一になると、電極反応電位は約120mV低下する。リチウム金属の析出反応電位とリチウムイオンの挿入反応電位とは約80mVの差であるので、析出反応が負極カーボンへの挿入反応よりも高くなり、析出反応が容易に進行し、図9の模式図で示すように、デンドライトと呼ばれる金属析出が成長し、いずれは正極に到達し電池は破裂発火する。When a lithium ion secondary battery is charged, the lithium ions stored in the positive electrode active material move to the negative electrode by electrophoresis, and are inserted between the graphene layers when the negative electrode active material is graphite, or into the micropores when the negative electrode active material is a porous carbon such as hard carbon. In the case of a large current charge where electrophoresis cannot keep up, the lithium ion concentration in the negative electrode pores decreases. When the concentration at the electrode reaction surface decreases, the insertion reaction potential decreases according to the Nernst equation shown in Chemical Formula 1 and illustrated in FIG. 8. When the concentration becomes one percent of the initial concentration (generally 1 mol/l), the electrode reaction potential decreases by about 120 mV. Since the difference between the deposition reaction potential of lithium metal and the insertion reaction potential of lithium ions is about 80 mV, the deposition reaction is higher than the insertion reaction into the negative electrode carbon, and the deposition reaction proceeds easily, and as shown in the schematic diagram of FIG. 9, metal deposition called dendrites grows and eventually reaches the positive electrode, causing the battery to explode and catch fire.

このように電解液中の反応種イオンの濃度に電極表面と電極奥部とで生じた差により不具合が起こるので、電池設計時には、電極の厚み、電極の空孔率、電極細孔径などを変化させる実験により、反応種イオン濃度が電極全体で一定なるように設計する。その設計条件で、充放電電流の限界値も定め、使用初期の電池では反応種イオン濃度が不均一になるようなことは決してない。しかしながら、図10に模式図で示すように、電極細孔内でSEI(固体電解質界面)が生成し、さらにはその剥離溶解によりできた滓が細孔内に浮遊堆積して、実質的細孔径を狭めてしまい、反応種イオンの移動を妨げ、設計では起きないはずの反応種イオン濃度に電極表面と電極奥部とで差が生じることになる。その結果急激な容量低下及び重大な不具合である破裂発火が起きる。Thus, the difference in the concentration of reactive species ions in the electrolyte between the electrode surface and the inner part of the electrode causes problems, so when designing a battery, the electrode thickness, porosity, pore size, etc. are changed to design the battery so that the reactive species ion concentration is constant throughout the electrode. Under these design conditions, the limit value of the charge and discharge current is also determined, so that the reactive species ion concentration is never uneven in the battery at the beginning of use. However, as shown in the schematic diagram in Figure 10, SEI (solid electrolyte interface) is generated in the electrode pores, and the scum produced by the peeling and dissolution of the SEI floats and accumulates in the pores, narrowing the actual pore size, preventing the movement of reactive species ions, and causing a difference in the reactive species ion concentration between the electrode surface and the inner part of the electrode, which should not occur in the design. As a result, a sudden decrease in capacity and a serious malfunction such as explosion and fire occur.

反応種イオンの電極表面と電極深部との濃度差を外部から検知することが出来れば、充放電制御システムで最適放電電流、最適充電電流を決定することが出来、急激な容量低下あるいはデンドライトショートによる破裂発火を防ぐことが出来る。本発明はその手段を提供する。If it were possible to detect the difference in concentration of reactive ions between the surface and deep inside of an electrode from the outside, it would be possible to determine the optimum discharge current and optimum charge current in a charge/discharge control system, and prevent a rapid decrease in capacity or explosion and fire due to dendrite shorts. The present invention provides the means for this.

充放電後に平衡電位が十分に安定してから交流インピーダンス測定をすると、リチウムイオン2次電池では2個の半円になる。測定対象とする電極に対し反対の電極の大きさを変える実験により、高周波側の半円は負極を反映し、低周波側の半円は正極を反映することが解明されている。通常の設計であれば負極を反映する半円の方が正極を反映する半円より小さくなる。二つの円が重なる場合には半円がほとんど一つに見えることもある。逆に負極を極端に大きくすると正極を反映した一個の半円だけになる。充放電直後は電池内の不均一な状態が均一になる過渡現象であり、この間に測定すると、図3に示す半円ではなく、図1に示す半楕円になる。負極を反映した半円と正極を反映した半円とが重なる位置とは異なる広い範囲に延びた半楕円になる。半楕円の虚数軸方向の高さは元の半円の大きさにより、実軸方向に延びた結果が負極を反映した半円であるか、正極を反映した半円であるかの区別をすることが出来る。正極の半円が大きく影響も大きいので、正極の半円が伸びることが多い。別途平衡電圧時に測定すれば、両者の差から実軸報告の伸びを計算することが出来る。When AC impedance is measured after the equilibrium potential has stabilized sufficiently after charging and discharging, two semicircles are formed in the lithium-ion secondary battery. Experiments in which the size of the electrode opposite to the electrode being measured is changed have revealed that the semicircle on the high frequency side reflects the negative electrode, and the semicircle on the low frequency side reflects the positive electrode. In a normal design, the semicircle reflecting the negative electrode is smaller than the semicircle reflecting the positive electrode. When the two circles overlap, the semicircles may appear almost as one. Conversely, if the negative electrode is made extremely large, only one semicircle reflecting the positive electrode will be formed. Immediately after charging and discharging, the uneven state inside the battery becomes uniform, which is a transient phenomenon. If the measurement is performed during this period, the semicircle shown in Figure 1 will be obtained, rather than the semicircle shown in Figure 3. The semicircle will extend over a wide range different from the position where the semicircle reflecting the negative electrode and the semicircle reflecting the positive electrode overlap. The height of the semicircle in the imaginary axis direction depends on the size of the original semicircle, and it is possible to distinguish whether the semicircle extended in the real axis direction is a semicircle reflecting the negative electrode or a semicircle reflecting the positive electrode. Since the positive semicircle is large and has a large effect, the positive semicircle often stretches. If you measure it separately at balanced voltage, you can calculate the elongation of the actual axis from the difference between the two.

実軸方向の伸びを電圧に換算した値が電極各部の平衡電位の変化である。蓄電池に伝送線路理論を適用した図6で示す等価回路に、各部での反応の平衡電位の変化を加えると、等価回路は図11のようになる。図11の平衡電圧変化の補正は電圧ではなく、等価回路上で矛盾しない補正抵抗値として記載されている。本発明の主旨は、この等価回路であり、この等価回路に基づく数値処理で得られたデータを、充放電制御システムに提供し、充放電制御する方法であり、そのシステム及び装置である。The value obtained by converting the extension in the real axis direction into a voltage is the change in equilibrium potential at each part of the electrode. When the change in equilibrium potential of the reaction at each part is added to the equivalent circuit shown in Figure 6, which applies the transmission line theory to a storage battery, the equivalent circuit becomes as shown in Figure 11. The correction of the equilibrium voltage change in Figure 11 is not a voltage but is described as a correction resistance value that is consistent on the equivalent circuit. The gist of the present invention is this equivalent circuit, and a method, system, and device for providing data obtained by numerical processing based on this equivalent circuit to a charge/discharge control system to control charge/discharge.

リチウムイオン2次電池においては、図11の等価回路で各部により変化するとして記載されている要素の内、測定時間内では電荷移動反応抵抗及びワールブルグインピーダンスの変化は非常に小さく、各細孔内のイオン移動抵抗、各細孔内の電子抵抗は半円から半楕円に変化した量に比較しはるかに小さく、各部での差は無視することが出来る。従って、電解液中のイオン移動抵抗、活物質・集電体・端子等の電子抵抗に含めることが出来、簡略化して等価回路は図12のように書け、図4と比較すると、半円と半楕円の違いは各部の平衡電位の違いだけとなる。先行実験あるいはカーブフィッティングで求めた半円と半楕円との差より平衡電位の差を求め、化式1で表記され図8に図示されるネルンストの式により濃度を求めることで、電極奥部の希薄化のデータを得ることが出来る。希薄化のデータを充放電制御装置に提供することで、希薄化による急激な放電容量低下あるいはデンドライト発生を防ぐように充放電電流を制御することが出来る。なお、正極と負極とで滓の生成は同等に起こるので、どちらかの極で希薄化が進めば、相手極でも同様に希薄化が進んでいるとみなすことが出来る。In a lithium ion secondary battery, among the elements described as changing depending on each part in the equivalent circuit of FIG. 11, the change in the charge transfer reaction resistance and the Warburg impedance is very small during the measurement time, and the ion transfer resistance in each pore and the electronic resistance in each pore are much smaller than the amount of change from a semicircle to a semiellipse, and the difference between each part can be ignored. Therefore, they can be included in the ion transfer resistance in the electrolyte and the electronic resistance of the active material, the current collector, the terminals, etc., and the equivalent circuit can be simplified and written as shown in FIG. 12. Compared with FIG. 4, the difference between the semicircle and the semiellipse is only the difference in the equilibrium potential of each part. The difference in equilibrium potential is calculated from the difference between the semicircle and the semiellipse obtained by a previous experiment or curve fitting, and the concentration is calculated by the Nernst equation shown in Chemical Formula 1 and illustrated in FIG. 8, so that the data on dilution in the inner part of the electrode can be obtained. By providing the data on dilution to a charge/discharge control device, the charge/discharge current can be controlled to prevent a sudden decrease in discharge capacity or the generation of dendrites due to dilution. In addition, since slag formation occurs equally at the positive and negative electrodes, if dilution progresses at one electrode, it can be considered that dilution is also progressing at the other electrode.

電極内、特に正極の各活物質間で反応種イオンの充放電状態の不均一が生じると、各部での平衡電位に差が生じるので平衡電位の補正が必要になり、別途各部の充電状態を測定し補正をすると精度を上げることが出来る。一般的には電解液中の反応種イオン濃度差よりは小さいので無視して構わない。正極電位が充放電中にほとんど変化しない鉄オリビン系の正極では、この誤差は非常に小さくなり、より精度良く測定できる。When the charge/discharge state of reactive ions in the electrode, especially between the active materials in the positive electrode, becomes uneven, a difference occurs in the equilibrium potential at each part, and the equilibrium potential must be corrected. Accuracy can be improved by measuring the charge state at each part separately and correcting it. Generally, this difference is smaller than the difference in the concentration of reactive ions in the electrolyte, so it can be ignored. In the case of iron olivine-based positive electrodes, where the positive electrode potential hardly changes during charge/discharge, this error becomes very small and can be measured with greater accuracy.

本発明では、交流インピーダンス測定の高周波側測定だけで十分に半円、半楕円を描くことが出来るので、測定時間は1秒以下で十分である。短時間測定であるから充放電遮断後に限らず、直流通電中に重畳しても構わない。瞬間的なパルス通電から得られた結果をフーリエ変換などの数学的処理をして交流測定と同様な結果を得られる高速解析技術も開発されており、高速パルス充放電中でも測定が可能である。充放電装置のスイッチングレギュレータによるパルス波形をフーリエ変換などの数学的処理で利用すれば、装置はより簡素化出来できるはずである。In the present invention, since a semicircle or semiellipse can be drawn sufficiently by only measuring the high frequency side of the AC impedance measurement, a measurement time of 1 second or less is sufficient. Since it is a short-time measurement, it is not limited to after the charge/discharge is cut off, and it may be superimposed on a direct current. A high-speed analysis technique has also been developed that can obtain results similar to AC measurements by mathematically processing the results obtained from instantaneous pulse current, such as by Fourier transform, and it is possible to perform measurements even during high-speed pulse charging/discharging. If the pulse waveform generated by the switching regulator of the charging/discharging device is used for mathematical processing, such as Fourier transform, the device should be able to be further simplified.

本発明に因れば、充放電あるいは経年劣化によりSEIの剥離・溶解生成物である滓が、電極活物質内の細孔に沈殿するような当初設計とは異なる状況で電解液の希薄化が起きた場合にも、そのデータを充放電制御システムに提供することにより、充放電電流を制御して、急激な放電容量低下あるいはデンドライト発生を防ぐことが出来る。According to the present invention, even if dilution of the electrolyte occurs under circumstances different from the original design, such as when slag, which is a product of the peeling and dissolution of the SEI due to charge/discharge or deterioration over time, precipitates in the pores in the electrode active material, by providing this data to the charge/discharge control system, it is possible to control the charge/discharge current and prevent a sudden decrease in discharge capacity or the occurrence of dendrites.

リチウムイオン2次電池では劣化が進むと、突然容量が無くなる突然死と呼ばれる現象があり、実用上は非常に難解な問題があるが、この突然死の大半は電極深部での希薄化が原因で起きているので、本発明により希薄化を測定できるので、事前に察知することが出来重大な実用上の不具合を防ぐことが出来る。さらには、リチウムイオン2次電池の再利用の場合にも、突然死あるいは劣化後の破裂発火が予測できるようになり、中古電池でも期待寿命を提示することが出来る。As deterioration progresses in lithium ion secondary batteries, a phenomenon called sudden death occurs in which the capacity suddenly disappears, which is a very difficult problem to solve in practical use, but since most of these sudden deaths are caused by dilution deep inside the electrodes, the present invention can measure dilution, which can be detected in advance and serious practical problems can be prevented. Furthermore, even in the case of reusing lithium ion secondary batteries, it becomes possible to predict sudden death or explosion and fire after deterioration, and the expected life of used batteries can be presented.

回復過渡電圧における交流インピーダンス測定法の結果Results of AC impedance measurements during recovery voltage transients. 蓄電池の放電曲線と回復過渡電圧の結果Battery discharge curve and recovery transient voltage results 交流測定法による蓄電池の結果Battery results using AC measurement method 蓄電池の等価回路Battery equivalent circuit 伝送線路理論による等価回路Equivalent circuit based on transmission line theory 伝送線路理論を蓄電池に適用した等価回路Equivalent circuit applying transmission line theory to storage batteries 複数個の半円が重複した半楕円A semiellipse made up of multiple overlapping semicircles ネルンストの式Nernst Equation 急速充電時のデンドライト発生の解説図Diagram of dendrite formation during rapid charging 滓の浮遊堆積によるデンドライト発生の解説図Illustration of dendrite formation caused by floating sediment of slag 各細孔内イオン濃度変化の平衡電位補正の等価回路Equivalent circuit for correcting the equilibrium potential for changes in ion concentration in each pore 簡略化した平衡電位補正の等価回路図Simplified equivalent circuit diagram for equilibrium potential correction 図7実数軸に実測値を記入した半楕円Figure 7. A semi-ellipse with actual measurements plotted on the real axis

市販の携帯電話用の1000mAh3.7V、角型リチウムイオン二次電池の正負両極端子に、スポット溶接でリード線を溶着し、交流インピーダンス測定装置(株式会社東陽テクニカ製Solartron 1280)に接続する。充放電前に開路電圧を測定し、その電位を設定し、交流インピーダンス測定をすると、2個の半円が得られ、高周波数側の小さな半円は負極に起因し、低周波数側の大きな半円は正極に起因する。この接続状態で、両極端子に放電電流2Aを10分間通電し、通電終了1秒後に0.1mA電流振幅で周波数域1MHzから10Hzで交流インピーダンス測定を実施する。開路電圧時に測定した負極の半円と同等の高さで、図13のような半楕円が描かれる。図13の半楕円の左端四分の1円から半円が推定出来、実数軸(横軸)から読み取ることが出来、その抵抗値は400Ωである。同様に半楕円の抵抗値は実数軸(横軸)から読み取ることが出来、4倍の1600Ωで、その差は1200Ωである。実数軸の数値計算であるからオームの法則が適用出来、印加した交流振幅0.1mAを掛けると、120mVになる。化1で表記され図8に図示されるネルンストの式に代入すると、初期投入反応種イオン濃度1モル/リットルの1/100つまり0.01モル/リットルと計測できた。その結果を衆知の方法で充放電制御システムに提供し、充放電システムにより充電電流を適切に制御することにより、不具合発生を防ぐことが出来た。 Lead wires are spot welded to the positive and negative terminals of a commercially available 1000 mAh 3.7 V square lithium ion secondary battery for mobile phones, and connected to an AC impedance measuring device (Solartron 1280 manufactured by Toyo Corporation). When the open circuit voltage is measured before charging and discharging, the potential is set, and AC impedance measurement is performed, two semicircles are obtained, the small semicircle on the high frequency side is due to the negative electrode, and the large semicircle on the low frequency side is due to the positive electrode. In this connection state, a discharge current of 2 A is applied to both terminals for 10 minutes, and AC impedance measurement is performed at a frequency range of 1 MHz to 10 Hz with a current amplitude of 0.1 mA 1 second after the current application is completed. A semi-ellipse as shown in FIG. 13 is drawn at the same height as the semicircle of the negative electrode measured at the open circuit voltage. The semicircle can be estimated from the left quarter circle of the semi-ellipse in FIG. 13 , and can be read from the real axis (horizontal axis), and its resistance value is 400Ω. Similarly, the resistance value of the semi-ellipse can be read from the real axis (horizontal axis), which is four times 1600Ω, and the difference is 1200Ω. Because this is a numerical calculation on the real axis, Ohm's law can be applied, and multiplying it by the applied AC amplitude of 0.1mA gives 120mV. Substituting this into the Nernst equation shown in Figure 8, which is expressed as Chemical Formula 1, the initial input reactive species ion concentration was measured to be 1/100 of 1 mole/liter, or 0.01 mole/liter. The result was provided to the charge/discharge control system by a well-known method, and the charge/discharge system was able to appropriately control the charge current, thereby preventing the occurrence of malfunctions.

本発明は、急激な電池容量の低下あるいは重大な不具合であるデンドライト発生を事前に検知出来るので電気自動車用電池制御システムに組み込めば、電気自動車の走行信頼性が高まるので、電気自動車分野で利用される可能性が高い。また、中古リチウムイオン2次電池市場での電池の使用期間に対する信頼性が高まるので、中古電池市場でも利用される可能性が高い。The present invention can detect a rapid decrease in battery capacity or the occurrence of dendrites, which is a serious defect, in advance, so if incorporated into a battery control system for an electric vehicle, the driving reliability of the electric vehicle will be improved, and it is highly likely to be used in the electric vehicle field. In addition, since the reliability of the battery life in the used lithium-ion secondary battery market will be improved, it is highly likely to be used in the used battery market.

本発明は、リチウムイオン2次電池に限定されず、電極細孔内で反応種イオン濃度が変化する全ての電池に適用出来、利用することが出来る。特に、高率放電で硫酸濃度が細孔内で希薄化することが判明している鉛蓄電池での利便性が高い。The present invention is not limited to lithium ion secondary batteries, but can be applied to all batteries in which the concentration of reactive ions changes in the electrode pores, and is particularly useful for lead-acid batteries in which the sulfuric acid concentration is diluted in the pores during high-rate discharge.

Claims (2)

交流インピーダンス測定結果のコールコールプロットが、半円を延長した半楕円になる場合に、元の半円の直径と半楕円の長軸との差を電圧に換算し、その電圧差をネルンストの式に従って反応種イオン濃度に換算する電極各部の濃度測定法When the Cole-Cole plot of the AC impedance measurement results is an extended semi-ellipse, the difference between the diameter of the original semi-circle and the major axis of the semi-ellipse is converted into voltage, and this voltage difference is converted into the reactive ion concentration according to the Nernst equation. 請求項1に記載された電極各部の濃度測定法により測定された電極各部の反応種イオン濃度により充放電を制御する充放電制御方法。A charge/discharge control method for controlling charge/discharge based on reactive ion concentrations at each electrode portion measured by the concentration measurement method at each electrode portion according to claim 1.
JP2020173590A 2020-09-29 2020-09-29 Battery charge/discharge control method Active JP7531079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020173590A JP7531079B2 (en) 2020-09-29 2020-09-29 Battery charge/discharge control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020173590A JP7531079B2 (en) 2020-09-29 2020-09-29 Battery charge/discharge control method

Publications (2)

Publication Number Publication Date
JP2022056280A JP2022056280A (en) 2022-04-08
JP7531079B2 true JP7531079B2 (en) 2024-08-09

Family

ID=80998592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020173590A Active JP7531079B2 (en) 2020-09-29 2020-09-29 Battery charge/discharge control method

Country Status (1)

Country Link
JP (1) JP7531079B2 (en)

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1199767A1 (en) 2000-10-17 2002-04-24 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Battery operable device with battery state-of-charge indicator
JP2009097878A (en) 2007-10-12 2009-05-07 Fujitsu Ltd Measuring method of battery, and manufacturing method of battery
JP2010243481A (en) 2009-03-18 2010-10-28 National Institute Of Advanced Industrial Science & Technology Method, device and program for decision of state about temperature of secondary battery
JP2011133443A (en) 2009-12-25 2011-07-07 Toshiba Corp Diagnostic device, battery pack, and method of manufacturing battery value index
WO2013054813A1 (en) 2011-10-13 2013-04-18 学校法人早稲田大学 Battery system and battery evaluation method
JP2013084499A (en) 2011-10-12 2013-05-09 Toyota Motor Corp Sulfide solid battery system
JP2014025850A (en) 2012-07-27 2014-02-06 Toyota Motor Corp Method of inspecting electrode and use thereof
JP2015094726A (en) 2013-11-13 2015-05-18 学校法人東海大学 Battery-state determination device and battery-state determination method
JP2016192370A (en) 2015-03-31 2016-11-10 ソニー株式会社 Lithium ion conductor, electrode, battery and manufacturing method thereof, and electronic apparatus
JP2018032558A (en) 2016-08-25 2018-03-01 トヨタ自動車株式会社 Device for diagnosis on lithium ion secondary battery and diagnosis method
JP2019190939A (en) 2018-04-23 2019-10-31 日立化成株式会社 Storage battery condition monitoring system
JP2019191029A (en) 2018-04-26 2019-10-31 トヨタ自動車株式会社 Battery information processing system, battery pack, battery module characteristics evaluation method, and battery pack manufacturing method
JP2019198174A (en) 2018-05-09 2019-11-14 本田技研工業株式会社 Charging control device
JP2019200800A (en) 2019-06-20 2019-11-21 株式会社リコー Information processing device, electronic conference system, and program
JP2019201464A (en) 2018-05-15 2019-11-21 日立化成株式会社 Deterioration diagnostic system and deterioration diagnostic method
JP2019220416A (en) 2018-06-22 2019-12-26 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery, and manufacturing system

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1199767A1 (en) 2000-10-17 2002-04-24 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Battery operable device with battery state-of-charge indicator
JP2009097878A (en) 2007-10-12 2009-05-07 Fujitsu Ltd Measuring method of battery, and manufacturing method of battery
JP2010243481A (en) 2009-03-18 2010-10-28 National Institute Of Advanced Industrial Science & Technology Method, device and program for decision of state about temperature of secondary battery
JP2011133443A (en) 2009-12-25 2011-07-07 Toshiba Corp Diagnostic device, battery pack, and method of manufacturing battery value index
JP2013084499A (en) 2011-10-12 2013-05-09 Toyota Motor Corp Sulfide solid battery system
WO2013054813A1 (en) 2011-10-13 2013-04-18 学校法人早稲田大学 Battery system and battery evaluation method
JP2014025850A (en) 2012-07-27 2014-02-06 Toyota Motor Corp Method of inspecting electrode and use thereof
JP2015094726A (en) 2013-11-13 2015-05-18 学校法人東海大学 Battery-state determination device and battery-state determination method
JP2016192370A (en) 2015-03-31 2016-11-10 ソニー株式会社 Lithium ion conductor, electrode, battery and manufacturing method thereof, and electronic apparatus
JP2018032558A (en) 2016-08-25 2018-03-01 トヨタ自動車株式会社 Device for diagnosis on lithium ion secondary battery and diagnosis method
JP2019190939A (en) 2018-04-23 2019-10-31 日立化成株式会社 Storage battery condition monitoring system
JP2019191029A (en) 2018-04-26 2019-10-31 トヨタ自動車株式会社 Battery information processing system, battery pack, battery module characteristics evaluation method, and battery pack manufacturing method
JP2019198174A (en) 2018-05-09 2019-11-14 本田技研工業株式会社 Charging control device
JP2019201464A (en) 2018-05-15 2019-11-21 日立化成株式会社 Deterioration diagnostic system and deterioration diagnostic method
JP2019220416A (en) 2018-06-22 2019-12-26 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery, and manufacturing system
JP2019200800A (en) 2019-06-20 2019-11-21 株式会社リコー Information processing device, electronic conference system, and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
佐野 茂,電池特にEV用電池の最新事情,情報機構 講師コラム[オンライン],2024年04月26日,<URL: https://johokiko.co.jp/column/column_shigeru-sano18-2.php>(インターネット),特に、「追加 第5回(2021/2/1) 2)電池の基礎:半楕円型交流インピーダンス測定結果」、を参照。
測定法Q&A 電気化学―そこを知りたい、議論したい、ネルンスト式,Electrochemistry,2002年10月05日,第70巻、第10号,第821ー823頁,doi: 10.5796/electrochemistry.70.821

Also Published As

Publication number Publication date
JP2022056280A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
Choi et al. Modeling and applications of electrochemical impedance spectroscopy (EIS) for lithium-ion batteries
JP6731041B2 (en) Lithium deposition detection method, secondary battery charging method and apparatus using the same, and secondary battery system
US20120158330A1 (en) Monitoring system for lithium ion secondary battery and monitoring method thereof
CN103891040A (en) Secondary battery control device and SOC detection method
JPWO2012095913A1 (en) Lithium ion secondary battery deterioration evaluation method and battery pack
KR20130124326A (en) Electrochemical cell based on lithium technology with internal reference electrode, process for its production and methods for simultaneous monitoring of the voltage or impedance of the anode and the cathode thereof
JP2014025850A (en) Method of inspecting electrode and use thereof
JP2014002009A (en) Method of inspecting secondary battery
KR20160008210A (en) Method And System For Charging A Motor Vehicle Battery According to Temperature
KR102009403B1 (en) Analysis apparatus interlocking in-situ X-ray diffraction and potentiostat and analyzing methods using the same
JPWO2020044932A1 (en) Rechargeable battery charging system
JP5353339B2 (en) Battery system and hybrid vehicle
JP2003045500A (en) Method and device for inspecting battery
Somakettarin et al. Parameter extraction and characteristics study for manganese-type lithium-ion battery
JP2002352864A (en) Method for testing secondary battery
JP7531079B2 (en) Battery charge/discharge control method
JP4954791B2 (en) Voltage prediction method for power storage devices
EP3586392A1 (en) Lithium-ion battery high temperature aging process
JP2014082121A (en) Method for manufacturing nonaqueous electrolyte secondary battery
Yang et al. Fast charging lithium-ion batteries
Xiao et al. State of charge effects on the parameters of electrochemical impedance spectroscopy equivalent circuit model for lithium ion batteries
Gao et al. Impedance modeling and aging research of the lithium-ion batteries using the EIS technique
Hu Electrode-electrolyte interfaces in solid polymer lithium batteries
JPWO2013035202A1 (en) Secondary battery inspection method
WO2021186781A1 (en) Capacity recovery device, capacity recovery method, and secondary battery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240604

R150 Certificate of patent or registration of utility model

Ref document number: 7531079

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150