WO2021186781A1 - Capacity recovery device, capacity recovery method, and secondary battery system - Google Patents

Capacity recovery device, capacity recovery method, and secondary battery system Download PDF

Info

Publication number
WO2021186781A1
WO2021186781A1 PCT/JP2020/039621 JP2020039621W WO2021186781A1 WO 2021186781 A1 WO2021186781 A1 WO 2021186781A1 JP 2020039621 W JP2020039621 W JP 2020039621W WO 2021186781 A1 WO2021186781 A1 WO 2021186781A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode terminal
positive electrode
discharge
negative electrode
potential
Prior art date
Application number
PCT/JP2020/039621
Other languages
French (fr)
Japanese (ja)
Inventor
渉太 伊藤
杉政 昌俊
耕平 本蔵
誠之 廣岡
栄二 關
純 川治
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Publication of WO2021186781A1 publication Critical patent/WO2021186781A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a capacity recovery device, a capacity recovery method, and a secondary battery system.
  • the battery system for solving the above problems is a battery system including an assembled battery configured by connecting a plurality of lithium ion batteries.
  • the lithium ion battery is characterized by including a positive electrode, a negative electrode, a third electrode for adjusting the amount of lithium ions of at least one of the positive electrode and the negative electrode, and a fourth electrode serving as a reference potential.
  • a positive electrode a negative electrode
  • a third electrode for adjusting the amount of lithium ions of at least one of the positive electrode and the negative electrode
  • a fourth electrode serving as a reference potential.
  • the deteriorated battery can be determined by applying the result of the reproduction calculation. It is also possible to determine the appropriate range of use of the battery with high accuracy, and to obtain the amount of reduction of charge / discharge reaction species in a non-destructive manner. " The descriptions of these documents are included as part of the specification of the present application.
  • the present invention has been made in view of the above circumstances, and provides a capacity recovery device, a capacity recovery method, and a secondary battery system capable of achieving a long life while suppressing material deterioration of the positive electrode of the secondary battery. The purpose.
  • the capacity recovery device of the present invention is a capacity recovery device connected to a positive electrode terminal connected to a positive electrode, a negative electrode terminal connected to a negative electrode, and a capacity recovery electrode for moving a reaction species to the positive electrode or the negative electrode.
  • a capacity recovery device for a secondary battery including a pole terminal which is a capacity recovery current control unit that recovers the capacity of the secondary battery by moving the reaction species from the capacity recovery electrode to the positive electrode or the negative electrode.
  • a discharge necessity determination unit that determines whether or not to discharge between the capacitance recovery electrode terminal and the positive electrode terminal or the negative electrode terminal, and the discharge necessity determination unit. It is characterized by including a discharge control unit that discharges between the positive electrode terminal or the negative electrode terminal and the capacitance recovery electrode terminal when the determination result in the discharge necessity determination unit is affirmative.
  • FIG. 5 is a cross-sectional view showing an example of a cell applied to a preferred first embodiment. It is sectional drawing which conceptually shows the power generation element of the cell in FIG. It is a circuit diagram which shows an example of the charge / discharge apparatus applied to this embodiment. It is a circuit diagram of a charge / discharge device according to a modification. It is a graph which shows an example of the open circuit potential curve of a positive electrode. It is a flowchart of the 1st detection mode processing routine. It is a figure which shows the battery discharge curve, the positive electrode discharge curve and the negative electrode discharge curve. It is a flowchart of the 2nd detection mode processing routine. It is a figure which shows the relationship between the utilization rate of a positive electrode, and the electric energy rate of energization. It is a graph which shows an example of the capacity recovery rate with respect to the energization electric quantity rate.
  • Lithium-ion batteries are a type of non-aqueous electrolyte secondary batteries, and because of their high energy density, they are also used as batteries for portable devices and, in recent years, as batteries for electric vehicles. However, it is known that a lithium ion battery deteriorates with use and the battery capacity decreases.
  • a lithium metal oxide is generally used as the active material of the positive electrode
  • a carbon material such as graphite is generally used as the active material of the negative electrode.
  • the positive electrode and the negative electrode of a lithium ion battery are formed by adding a binder, a conductive agent, or the like to a group of minute active material particles to form a slurry, and then applying the mixture to a metal foil.
  • the lithium ions released from the active material of the positive electrode are occluded in the active material of the negative electrode, and at the time of discharging, the lithium ions stored in the active material of the negative electrode are occluded and stored in the active material of the positive electrode. In this way, lithium ions move between the electrodes, causing a current to flow between the electrodes.
  • the capacity is reduced by (1) electrical isolation of the positive electrode active material, (2) electrical isolation of the negative electrode active material, and (3) immobilization of lithium ions moving back and forth between the electrodes. do.
  • a lithium ion battery having a third electrode containing lithium inside is manufactured, and lithium ions are replenished from the third electrode to the positive electrode or the negative electrode. By doing so, it is possible to recover the reduced capacity.
  • the lithium ions are excessively replenished, the concentration of lithium ions in the positive electrode active material becomes excessive at the time of discharge, which causes a problem of promoting material deterioration of the positive electrode. In such a case, the capacity may be reduced due to the deterioration of the material of the positive electrode.
  • a third electrode for adjusting the amount of lithium ions of at least one of the positive electrode and the negative electrode is provided, and lithium ions are supplied from the third electrode to the positive electrode or the negative electrode.
  • a preferred embodiment described later is to suppress material deterioration of the positive electrode.
  • FIG. 1 is a cross-sectional view showing an example of a cell 100 applied to a preferred first embodiment.
  • the cell 100 is a cell of a lithium ion battery, and includes a power generation element 1, a positive electrode terminal 2, a negative electrode terminal 3, a capacity recovery electrode terminal 4, and an exterior material 6.
  • the power generation element 1 includes a separator 5.
  • the exterior material 6 is a laminated film or the like.
  • FIG. 2 is a cross-sectional view conceptually showing the power generation element of the cell in FIG.
  • the power generation element 1 includes a plurality of separators 5, a plurality of positive electrodes 12, a plurality of negative electrodes 13, and a pair of capacitance recovery electrodes 14.
  • the positive electrode 12 and the negative electrode 13 are alternately arranged with the separator 5 interposed therebetween.
  • the capacitance recovery electrode 14 is arranged on the outermost side as an electrode, and a separator 5 is also arranged on the outside of the capacitance recovery electrode 14.
  • the separator 5 is not particularly limited, but polypropylene or the like is used, for example. In addition to polypropylene, a microporous film made of polyolefin such as polyethylene, a non-woven fabric, or the like can be used as the separator 5.
  • the positive electrode 12, the negative electrode 13, and the capacity recovery electrode 14 are each produced by applying a mixture of an appropriate electrode active material, a conductive agent, a binder, and the like to an appropriate metal current collector foil.
  • the collecting foil of the positive electrode 12 and the capacity recovery electrode 14 is an aluminum foil having a thickness of 10 to 100 ⁇ m, an aluminum perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like. Is used.
  • As the material of the current collector foil stainless steel, titanium and the like can be applied in addition to aluminum.
  • the material, shape, manufacturing method, etc. of the current collector foil are not particularly limited, and any current collector can be used.
  • the electrode active material of the positive electrode 12 and the capacity recovery electrode 14 preferably contains a reaction species inside.
  • the reactive species of lithium-ion batteries is lithium-ion.
  • the lithium ion battery contains a lithium-containing compound capable of reversibly inserting and removing lithium ions.
  • the type of electrode active material of the positive electrode 12 and the capacity recovery electrode 14 is not particularly limited, but for example, phosphoric acid transitions such as lithium cobalt oxide, manganese-substituted lithium cobalt oxide, lithium manganate, lithium nickel oxide, and olivine-type lithium iron phosphate.
  • metallic lithium (wherein, w, x, y, z is 0 or a positive value) Li w Ni x Co y Mn z O 2 and the like.
  • the above materials may be contained alone or in combination of two or more. Further, the same configuration may be applied to the positive electrode 12 and the capacity recovery electrode 14. As described above, by applying the same configuration to the positive electrode 12 and the capacity recovery electrode 14, the manufacturing cost can be reduced.
  • the current collecting foil of the negative electrode 13 a copper foil having a thickness of 10 to 100 ⁇ m, a copper perforated foil having a thickness of 10 to 100 ⁇ m and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used.
  • the material of the negative electrode 13 stainless steel, titanium and the like can be applied in addition to copper, and any current collector can be used without being limited by the material, shape, manufacturing method and the like.
  • the electrode active material of the negative electrode 13 contains a substance capable of reversibly inserting and removing lithium ions.
  • the type of the electrode active material of the negative electrode 13 is not particularly limited, but for example, natural graphite, a composite carbonaceous material in which a film is formed on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a resin material such as epoxy or phenol or Artificial graphite, silicon (Si), graphite mixed with silicon, non-graphitized carbon material, lithium titanate, Li 4 Ti 5 O 12, etc., which are produced by firing using pitch-based materials obtained from petroleum or coal as raw materials, are used. be able to.
  • the above materials may be contained alone or in combination of two or more as the negative electrode active material.
  • the power generation element 1 is impregnated with an electrolytic solution.
  • the electrolytic solution is not particularly limited, but in the case of a lithium ion battery, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC). ), Methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC) and other aproton organic solvents can be applied.
  • EC ethylene carbonate
  • PC propylene carbonate
  • BC butylene carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • MPC Methylpropyl carbonate
  • EPC ethylpropyl carbonate
  • other aproton organic solvents can be applied.
  • lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium iodide, and lithium chloride are added to the solvent of two or more mixed organic compounds among these aprotonic organic solvents.
  • an electrolytic solution in which two or more of these mixed lithium salts are dissolved can be applied.
  • a solid electrolyte may be applied instead of the electrolytic solution.
  • the solid electrolyte is not particularly limited, and examples thereof include ionic conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide. When these solid polymer electrolytes are used, the separator 5 can be omitted.
  • a metal tab (not shown) is connected to the current collecting foils of the positive electrode 12, the negative electrode 13, and the capacity recovery electrode 14. Then, the exterior material 6 is sealed so that only these tab portions are exposed to the outside of the exterior material 6 (see FIG. 1) such as a laminated film. Then, what the tabs are connected to is the positive electrode terminal 2, the negative electrode terminal 3, and the capacitance recovery electrode terminal 4 shown in FIG.
  • the power generation element 1 is manufactured by facing the positive electrode 12 and the negative electrode 13 via the separator 5 and winding or laminating them.
  • the capacity recovery electrode 14 may be arranged near the winding axis (central axis) of the winding body or at the outermost peripheral portion. Further, when the power generation element 1 is configured by stacking, the capacity recovery pole 14 may be arranged as a part of the laminated body.
  • FIG. 3 is a circuit diagram showing an example of a charging / discharging device 350 (capacity recovery device, secondary battery system) applied to the present embodiment.
  • the battery pack 300 (secondary battery, secondary battery system) includes the cell 100 shown in FIG. 1, a protection circuit (not shown), a housing, and the like, and includes a positive electrode terminal 2 and a negative electrode. The terminal 3 and the capacity recovery electrode terminal 4 are projected.
  • the battery pack 300 may include a plurality of cells 100.
  • the battery pack 300 may be configured to include a plurality of battery modules (not shown) including a plurality of cells 100.
  • the term "secondary battery” is a concept that includes a cell, a battery module, or a battery pack of a lithium ion battery.
  • the charging / discharging device 350 includes an ammeter 351, a voltmeter 352, 359, a resistor 353, a power supply 354, a charge / discharge changeover switch 356, a capacity recovery switch 357, a positive / negative electrode changeover switch 358, and a control unit 500. , Is equipped. Of these, each of the switches 356, 357, and 358 has three terminals (unsigned) and switches the connection state between the three terminals. However, these switches 356, 357, and 358 can be set so that none of the three terminals is connected to each other.
  • the voltmeter 352 measures the voltage between the positive electrode terminal 2 and the negative electrode terminal 3, and the voltmeter 359 measures the voltage between the negative electrode terminal 3 and the capacitance recovery electrode terminal 4.
  • the control unit 500 calculates the voltage between the positive electrode terminal 2 and the capacitance recovery electrode terminal 4 by adding or subtracting the measurement results of the voltmeters 352 and 359.
  • the capacity recovery switch 357 and the charge / discharge changeover switch 356 have either the negative electrode terminal 3 or the capacity recovery electrode terminal 4 of the battery pack 300, and either the resistor 353 or the power supply 354, based on the control by the control unit 500. Connecting.
  • the positive / negative electrode changeover switch 358 connects either the positive electrode terminal 2 or the negative electrode terminal 3 to one end of the ammeter 351 based on the control by the control unit 500.
  • the other end of the ammeter 351 is connected to the resistor 353 and the power supply 354.
  • the voltmeter 352,359 and the ammeter 351 supply the measurement result to the control unit 500.
  • the control unit 500 makes the capacitance recovery switch 357 always select the capacitance recovery electrode terminal 4.
  • the configuration of the charging / discharging device 350 is not limited to that shown in FIG. 3, and any two terminals selected from the positive electrode terminal 2, the negative electrode terminal 3, and the capacity recovery electrode terminal 4 of the battery pack 300 are not limited to those shown in FIG. Any circuit can be used as long as it can be connected to the resistor 353, the power supply 354, and the like.
  • FIG. 4 is a circuit diagram of the charging / discharging device 370, which is a modification of the charging / discharging device 350.
  • the positive / negative electrode changeover switch 358 in FIG. 3 is omitted, and the negative electrode terminal 3 of the battery pack 300 and the ammeter 351 are directly connected.
  • the capacity recovery switch 357 and the charge / discharge changeover switch 356 in FIG. 4 are controlled by the control unit 500 with either the positive electrode terminal 2 or the capacity recovery electrode terminal 4 of the battery pack 300, and the resistor 353 or the power supply 354. Connect with any of.
  • the configuration of the charging / discharging device 370 other than the above is the same as that of the charging / discharging device 350 (see FIG. 3), and according to the configuration shown in FIG. 4, the circuit configuration and control can be made simpler.
  • control unit 500 includes hardware as a general computer such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory).
  • the control program to be executed and various data are stored.
  • the inside of the control unit 500 shows a function realized by a control program or the like as a block.
  • the control unit 500 includes an energization electric energy determination unit 502, a capacity recovery pole selection unit 504, a capacity recovery current control unit 506 (capacity recovery process), a discharge control unit 508 (discharge control process), and discharge necessity. It includes a determination unit 510 (discharging necessity determination process). Then, the discharge necessity determination unit 510 includes a detection mode selection unit 512, a determination potential calculation unit 514, an open circuit potential measurement unit 516, a potential comparison unit 518, a characteristic analysis unit 520, and a potential / discharge amount calculation unit. 522 and a discharge amount comparison unit 524 are provided.
  • the energizing electricity amount determining unit 502 determines the timing of capacitance recovery and the energizing electricity amount from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 based on the inputs from the ammeter 351 and the voltmeter 352 and 359. do.
  • the capacity recovery pole selection unit 504 causes the capacity recovery switch 357 to select the capacity recovery switch 357. As a result, the capacitance recovery electrode terminal 4 is connected to the positive electrode terminal 2 or the negative electrode terminal 3.
  • the capacity recovery current control unit 506 causes the charge / discharge changeover switch 356 to select the resistor 353 or the power supply 354 according to the desired capacity recovery current.
  • the current flowing between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 becomes a value according to the selection result in the charge / discharge changeover switch 356.
  • the capacitance is recovered from the positive electrode terminal 2 or the negative electrode terminal 3 by selecting the resistor 353 with the charge / discharge changeover switch 356.
  • a current can be passed through the electrode terminal 4.
  • the capacitance recovery current control unit 506 calculates the amount of electricity flowing between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 based on the output of the ammeter 351. Then, when the calculated electric energy reaches a predetermined target value, the capacity recovery current control unit 506 operates the capacity recovery switch 357 and the charge / discharge changeover switch 356 to operate the capacity recovery pole terminal 4 and the positive electrode terminal 2 or The current between the negative electrode terminal 3 and the negative electrode terminal 3 is cut off.
  • the discharge necessity determination unit 510 determines whether or not discharge should be performed between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 after the capacitance recovery current control unit 506 operates. That is, the discharge necessity determination unit 510 detects whether or not "use of the low potential region" (details will be described later) has occurred in the battery pack 300, and if it has occurred, "discharges". To that effect. When the discharge necessity determination unit 510 determines that the discharge necessity determination unit 510 "discharges", the discharge control unit 508 switches the positive / negative electrode changeover switch so that a current flows between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3. It controls 358 and the capacity recovery switch 357. When a current is passed between the capacity recovery electrode terminal 4 and the positive electrode terminal 2, the battery pack 300 is discharged to the discharge lower limit voltage in advance.
  • the discharge control unit 508 causes the charge / discharge changeover switch 356 to select either the resistor 353 or the power supply 354.
  • the resistor 353 when the resistor 353 is selected, a current spontaneously flows from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 due to the potential difference between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3, so that it is external. Eliminates the need to use electricity.
  • the power supply 354 is selected by the charge / discharge changeover switch 356, the current flowing through the power supply 354 can be controlled according to the voltage of the power supply 354. It is possible to prevent a large current from flowing.
  • the detection mode selection unit 512 selects either the first detection mode or the second detection mode based on a command from the user or the like.
  • This detection mode is a detection mode for detecting the above-mentioned "use of low potential region". That is, the first detection mode is a mode for determining "use of the low potential region” based on the open circuit potential of the positive electrode terminal 2, and the second detection mode is the "low potential region” from the charge / discharge curve of the battery pack 300. This is the mode for determining "use of”.
  • the user or the like may select the detection mode on the preferred side according to the type and characteristics of the battery pack 300.
  • FIG. 5 is a graph for conceptually explaining the open circuit potential curve C2 of the positive electrode terminal 2 and the detection method of "use of the low potential region" of the positive electrode terminal 2.
  • the horizontal axis of FIG. 5 represents the discharge capacity, and the vertical axis is the open circuit potential V OCV of the positive electrode terminal 2 with the potential of the capacity recovery electrode terminal 4 as a reference potential.
  • the determination potential V OCV0 shown by the broken line in the figure is a potential indicating the boundary of the low potential region.
  • the open-circuit potential measuring unit 516 measures V OCV when the battery is inactive in an arbitrary charging state.
  • the discharge control unit 508 connects the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 via the resistor 353 or the power supply 354, and connects the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or A current is passed through the negative electrode terminal 3.
  • the timing at which the open-circuit potential measuring unit 516 measures the open-circuit potential V OCV is not particularly limited, but it is preferably 5 minutes or later from the start of pause, and more preferably 30 minutes or later from the start of pause. As described above, after 5 minutes or 30 minutes have passed from the start of the pause, the polarization of the positive electrode potential due to charging / discharging of the battery pack 300 is eliminated, so that the equilibrium potential of the positive electrode can be measured more accurately.
  • the equilibrium potential of the capacitance recovery electrode terminal 4 changes depending on the amount of the reaction species extracted from the capacitance recovery electrode terminal 4. Therefore, returning to FIG. 3, the determination potential calculation unit 514 calculates and stores the determination potential V OCV0 described above. That is, the determination potential calculation unit 514 stores the integrated current value of the current flowing through the capacitance recovery pole terminal 4. Then, the determination potential calculation unit 514 determines the determination potential V by the amount of change in the equilibrium potential each time a current is passed through the capacitance recovery electrode terminal 4 based on the relationship between the charge amount and the equilibrium potential of the capacitance recovery electrode terminal 4 created in advance. Change OCV0 .
  • the determination potential calculation unit 514 updates the stored V OCV 0. Further, the potential comparison unit 518 compares the updated determination potential V OCV0 and V OCV again, and determines whether or not “the use of the low potential region” is present.
  • the operation of passing a current from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 may be continued until the open circuit potential V OCV becomes higher than the determination potential V OCV 0. Further, if the determination potential V OCV0 is set to a potential slightly higher than the discharge end, that is, a potential before the open circuit potential V OCV rapidly decreases, over-discharging of the positive electrode terminal 2 can be avoided. As a result, it is possible to avoid using the low potential region of the positive electrode terminal 2 after the capacity of the battery pack 300 is restored, and it is possible to suppress deterioration of the positive electrode material.
  • the determination potential V OCV0 is set to a potential corresponding to the SOC (state of charge) in the range of 0 to 10% based on the open circuit potential curve (FIG. 5) of the positive electrode terminal 2. Is preferable, and it is more preferable to set the potential to correspond within the range of 0 to 5%.
  • SOC represents the charge ratio with respect to the total capacity of the positive electrode. Frequent detection of the use of the low potential region of the positive electrode can interfere with the normal operation of the battery. However, if the determination potential V OCV0 is set as described above, the frequency of interfering with normal operation can be reduced.
  • FIG. 6 is a flowchart of the first detection mode processing routine executed by the control unit 500 in the first detection mode.
  • step S110 the capacity of the battery pack 300 is recovered by the energization electric energy determination unit 502 of the control unit 500 (see FIG. 1), the capacity recovery pole selection unit 504, and the capacity recovery current control unit 506.
  • the process is executed. That is, the capacity recovery electrode terminal 4 and, for example, the positive electrode terminal 2 are connected via a resistor 353 or a power supply 354, whereby the capacity of the battery pack 300 is recovered.
  • step S120 the open circuit potential measuring unit 516 measures the open circuit potential V OCV of the positive electrode terminal 2 with respect to the capacitance recovery electrode terminal 4. Further, in step S130, the determination potential calculation unit 514 updates the stored determination potential V OCV 0 based on the integrated current value of the current that has flowed to the capacitance recovery pole terminal 4 in the past.
  • step S140 the potential comparing unit 518 calculates a difference value between the open circuit potential V OCV and determination potential V OCV0 (V OCV -V OCV0) .
  • step S150 the potential comparison unit 518 determines whether or not the difference value (V OCV ⁇ V OCV0 ) is a negative value.
  • step S150 When it is determined in step S150 that “NO” (that is, V OCV ⁇ V OCV 0 ), the potential comparison unit 518 “does not discharge” in step S170, that is, “from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal”. It is decided that "no current is passed through 3". On the other hand, if “YES” (that is, V OCV ⁇ V OCV0 ) is determined in step S150, the potential comparison unit 518 “discharges” in step S160, that is, “from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode”. It is determined that "current is passed through the terminal 3". As a result, the discharge control unit 508 controls the positive / negative electrode changeover switch 358 and the capacitance recovery switch 357 so that a current flows between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3.
  • the battery pack 300 may be charged or discharged as a normal battery.
  • the first detection mode it is possible to determine whether or not the low potential region of the positive electrode is used when the battery pack 300 is paused without performing special charging / discharging of the battery pack 300.
  • the use of the low potential region in the positive electrode can be accurately detected.
  • the characteristic analysis unit 520, the potential / discharge amount calculation unit 522, and the discharge amount comparison unit 524 have a low positive electrode based on the charge / discharge curve. Determine the use of the potential region.
  • the voltage of the charge / discharge curve is preferably a value close to the open circuit voltage.
  • the energization method when calculating the charge / discharge curve data is arbitrary. For example, a method of discharging from a fully charged state to a fully discharged state or a method of charging from a fully discharged state to a fully charged state can be adopted with a minute and constant current.
  • a method may be adopted in which a cycle of discharging with a constant current for a certain period of time and then resting for a certain period of time is repeated from a fully charged state to a fully discharged state. Further, a method may be adopted in which a cycle of charging with a constant current for a certain period of time and then resting for a certain period of time is repeated from a fully discharged state to a fully charged state.
  • the current waveform and voltage waveform during operation are statistically processed, or regression calculation processing (reproduction calculation processing) is performed based on the equivalent circuit to estimate the open circuit voltage, and the charge / discharge amount and open circuit voltage are calculated.
  • the method of estimating the relationship between the two may be adopted. Further, in the various methods described above, “discharging from a fully charged state to a fully discharged state”, “charging from a fully discharged state to a fully charged state”, etc. have been described, but it is not always the case that the battery is discharged or charged within these ranges. It is not limited.
  • the range of charge / discharge is preferably wide, and most preferably 100%.
  • charging / discharging may be performed in a range of 50% or more of the range from the fully charged state to the fully discharged state. Further, if possible, charging / discharging may be performed in a range of less than 50% of the range from the fully charged state to the fully discharged state.
  • FIG. 7 is a diagram showing a battery discharge curve C4, a positive electrode discharge curve C6, and a negative electrode discharge curve C8.
  • the origin on the horizontal axis means the fully charged state of the battery.
  • the battery discharge curve C4 is a discharge curve of the battery pack 300, which is a lithium ion battery.
  • the positive electrode discharge curve C6 is a discharge curve of the positive electrode potential, that is, the potential of the positive electrode terminal 2
  • the negative electrode discharge curve C8 is a discharge curve of the negative electrode potential, that is, the potential of the negative electrode terminal 3.
  • the battery discharge curve C4 can be calculated based on the output values of the ammeter 351 and the voltmeter 352 and 359.
  • the positive electrode discharge curve C6 and the negative electrode discharge curve C8 are calculated values obtained by the characteristic analysis unit 520 in the regression calculation process (reproduction calculation process).
  • the characteristic analysis unit 520 can separate the battery discharge curve C4 of the lithium ion battery into a positive electrode discharge curve C6 and a negative electrode discharge curve C8 by analyzing the battery discharge curve C4.
  • Such a method of reproduction calculation processing is described in detail in Patent Document 2 described above.
  • the characteristic analysis unit 520 First, as correction parameters, the positive electrode active material amount m p , the negative electrode active material amount m n , the index C p of the positional relationship of the positive electrode discharge curve, and the index C n of the positional relationship of the negative electrode discharge curve are obtained. ,Remember. Next, characteristic analysis unit 520 multiplies the amount of the positive electrode active material m p in the discharge amount of the positive electrode 11, multiplied by the amount of the positive electrode active material m p in the discharge amount of the negative electrode 13, the reference of the positive electrode 11 (see FIG. 2) Based on the mass and the reference mass of the negative electrode 13 (see FIG. 2), the calculated values of the positive electrode discharge curve and the negative electrode discharge curve are obtained.
  • the characteristic analysis unit 520 adjusts the correction parameters m p , m n , C p , and C n so that the calculated battery discharge curve value C4'approaches the battery discharge curve C4 (preferably so that they match). Then, the positive electrode discharge curve calculated value C6'and the negative electrode discharge curve calculated value C8'are calculated and updated again based on the adjusted correction parameters m p , m n , C p , and C n. The results are the positive electrode discharge curve C6 and the negative electrode discharge curve C8 shown in FIG.
  • the potential / discharge amount calculation unit 522 calculates the discharge amount corresponding to the predetermined charging state. In other words, the potential / discharge amount calculation unit 522 calculates the discharge amount corresponding to each of the positive electrode potential and the negative electrode potential corresponding to a predetermined charging state.
  • the discharge amount means the capacity that the positive electrode or the negative electrode can discharge from the fully charged state of the battery, and is represented by the value on the horizontal axis in FIG. 7.
  • the positive electrode potential in the “predetermined charging state” is V p0 (first potential)
  • the discharge amount Q p0 (first discharge amount) corresponding to this positive electrode potential V p0 is the positive electrode discharge curve. Obtained from C6.
  • the discharge amount comparison unit 524 determines that "discharge is performed" when the difference value (Q n0 ⁇ Q p0) between the two is positive.
  • the discharge control unit 508 causes a current to flow from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3.
  • the amount of electricity flowing from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 is set to a value of "Q n0- Q p0" or more. More preferably, the amount of electricity required for the reaction species corresponding to (Q n0 ⁇ Q p0 ) to move from the positive electrode 12 or the negative electrode 13 to the capacitance recovery electrode 14 is transferred from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2. Alternatively, it may flow to the negative electrode terminal 3.
  • the negative electrode potential V n0 may be set to a potential corresponding to the range in which the charging ratio to the total capacity of the negative electrode is in the range of 0 to 5%, based on the open circuit potential curve of the negative electrode terminal 3. In any case, the negative electrode potential V n0 may be set at a position where the negative electrode discharge curve C8 rapidly rises.
  • V p0 is, for example, 3.4 V to 3.6 V based on the lithium metal, or a potential corresponding to the range where the charge ratio to the total capacity of the positive electrode is in the range of 0 to 10% based on the open circuit potential curve of the positive electrode terminal 2.
  • FIG. 8 is a flowchart of the second detection mode processing routine executed by the control unit 500 in the second detection mode.
  • step S210 the capacity of the battery pack 300 is recovered by the energization electric energy determination unit 502 of the control unit 500 (see FIG. 1), the capacity recovery pole selection unit 504, and the capacity recovery current control unit 506. The process is executed. That is, the reaction species is supplied from the capacity recovery electrode 14 (see FIG. 2) to the positive electrode 12 or the negative electrode 13.
  • step S220 the characteristic analysis unit 520 acquires the positive electrode discharge curve C6 and the negative electrode discharge curve C8 from the battery discharge curve C4. That is, the battery discharge curve C4 is separated into a positive electrode discharge curve C6 and a negative electrode discharge curve C8 by the reproduction calculation process.
  • step S230 the potential / discharge amount calculation unit 522 calculates the discharge amounts Q p0 and Q n0 corresponding to the “predetermined charging state” for each of the positive electrode terminal 2 and the negative electrode terminal 3.
  • step S240 the discharge amount comparison unit 524 calculates the difference value (Q n0 ⁇ Q p0 ) between the discharge amounts Q p0 and Q n0.
  • step S250 the discharge amount comparison unit 524 determines whether or not the difference value (Q n0 ⁇ Q p0 ) is a positive value.
  • step S250 When it is determined in step S250 that "NO” (that is, Q n0 ⁇ Q p0 ), the discharge amount comparison unit 524 "does not discharge” in step S270, that is, “from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode". It is determined that no current is passed through the terminal 3. On the other hand, if it is determined in step S250 that "YES” (that is, Q n0 > Q p0 ), the discharge amount comparison unit 524 "discharges” in step S260, that is, "from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or It is determined that a current is passed through the negative electrode terminal 3. As a result, the discharge control unit 508 controls the positive / negative electrode changeover switch 358 and the capacitance recovery switch 357 so that a current flows between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3.
  • the battery pack 300 may be arbitrarily charged and discharged as a normal battery.
  • the battery discharge curve C4, the positive electrode discharge curve C6, and the negative electrode discharge curve C8 applied in the above example were all “discharge curves", but instead of these, the corresponding "charge curve", that is, the battery charge curve, A positive electrode charging curve and a negative electrode charging curve (not shown) may be applied.
  • the battery discharge curve C4 of the battery pack 300 is analyzed to estimate the positive electrode discharge curve C6 and the negative electrode discharge curve C8, and the predetermined positive electrode potential V p0 and the predetermined negative electrode potential V A current can be passed from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 so as to coincide with n0. Therefore, according to the second detection mode, the amount of electricity flowing from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 can be calculated, and the discharge control unit 508 can be operated according to the calculation result. As a result, for example, it is possible to suppress the possibility that the current is excessively discharged and the recovery effect of the recovery process is unnecessarily reduced.
  • FIG. 9 is a diagram showing the relationship between the utilization rate of the positive electrode and the energization electric energy rate. That is, FIG. 9 shows the utilization rate of the positive electrode immediately after the recovery process after the capacity recovery process of the battery pack 300 is performed and the battery pack 300 is charged and discharged for 600 cycles at a current density of 1CA in an environment of 50 ° C. with respect to the energized electric energy rate. This is an example of the plotted results.
  • the positive electrode utilization rate on the vertical axis is an index indicating deterioration of the positive electrode material, and the lower the value, the more the deterioration has progressed.
  • the energizing electric energy ratio is the ratio of the electric energy flowing from the positive electrode or the negative electrode to the capacity recovery electrode with respect to the capacity of the battery.
  • the positive electrode utilization rate is lower than when the capacity is not recovered, and the rate of decrease tends to increase as the energization electric energy rate increases. This is because the material deterioration of the positive electrode was promoted by the charge / discharge cycle using the low potential region of the positive electrode due to the excessive recovery.
  • FIG. 10 is a graph showing an example of the capacity recovery rate with respect to the energization electric energy rate.
  • the capacity recovery rate is the ratio of the recovered capacity to the initial capacity of the battery.
  • the capacity recovery rate tends to increase as the energization electric energy rate increases, but tends to reach a plateau. This corresponds to the fact that the difference value (Q n0 ⁇ Q p0 ) of the capacitance between the positive electrode and the negative electrode shown in FIG. 7 becomes a positive value, that is, the excessive capacitance recovery treatment is performed.
  • FIGS. 10 is a graph showing an example of the capacity recovery rate with respect to the energization electric energy rate.
  • a high capacity recovery rate (capacity recovery effect) can be obtained while suppressing a decrease in the utilization rate of the positive electrode (material deterioration of the positive electrode). Can be done. If the energization electric energy ratio exceeds about 40% in the examples of FIGS. 9 and 10, by passing a current from the capacitance recovery electrode to the positive electrode or the negative electrode in order to detect the use of the low potential region of the positive electrode. , The energizing electric energy rate can be lowered. That is, according to this embodiment, it is possible to obtain a high capacity recovery effect while suppressing material deterioration of the positive electrode.
  • the capacity recovery device (350) moves the reaction species to the positive electrode terminal 2 connected to the positive electrode 12, the negative electrode terminal 3 connected to the negative electrode 13, and the positive electrode 12 or the negative electrode 13.
  • the reaction species By moving the reaction species from the capacity recovery electrode 14 to the positive electrode 12 or the negative electrode 13 of the secondary battery (300) including the capacity recovery electrode terminal 4 connected to the capacity recovery electrode 14, the secondary battery (300) Whether or not to discharge between the capacity recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 after the capacity recovery current control unit 506 that recovers the capacity and the capacity recovery current control unit 506 recovers the capacity.
  • Discharge control unit 508 that discharges between the positive electrode terminal 2 or the negative electrode terminal 3 and the capacitance recovery electrode terminal 4 when the determination result in the discharge necessity determination unit 510 and the discharge necessity determination unit 510 for determination is affirmative. And. As a result, discharge can be performed between the positive electrode terminal 2 or the negative electrode terminal 3 and the capacity recovery electrode terminal 4, and a long life can be realized while suppressing material deterioration of the positive electrode 12 of the secondary battery (300).
  • the discharge necessity determination unit 510 determines the determination potential from the open circuit potential measuring unit 516 that measures the open circuit potential V OCV of the positive electrode terminal 2 with respect to the capacitance recovery electrode terminal 4 and the integrated electric potential that flows through the capacitance recovery electrode terminal 4. and determining the potential calculating unit 514 for calculating a V OCV0, the potential comparing unit 518 that a positive determination result when the open circuit potential V OCV is less than the determination potential V OCV0, be provided with a more preferred. Thereby, it is possible to determine whether or not the low potential region of the positive electrode is used when the secondary battery (300) is inactive without performing special charging / discharging of the secondary battery (300).
  • the discharge necessity determination unit 510 determines the positive electrode charge curve or the positive electrode discharge curve C6 and the negative electrode charge curve or the negative electrode discharge curve C8 based on the battery charge curve or the battery discharge curve C4 of the secondary battery (300).
  • the desired characteristic analysis unit 520 a predetermined first potential V p0 at the positive electrode terminal 2, a first discharge amount Q p0 corresponding to the first potential V p0 , and a predetermined second potential V at the negative electrode terminal 3.
  • the potential / discharge amount calculation unit 522 that calculates n0 and the second discharge amount Q n0 corresponding to the second potential V n0 , and the first discharge amount Q p0 is subtracted from the second discharge amount Q n0.
  • a discharge amount comparison unit 524 that affirms the determination result when the difference value (Q n0 ⁇ Q p0 ) is a positive value, and the first potential V p0 is 3.4 V to 3 based on the lithium metal standard. It is a potential corresponding to the range of 0 to 10% of the charge ratio with respect to the total capacity of the positive electrode 12 obtained at .6 V or based on the open circuit potential curve C of the positive electrode terminal 2, and the second potential V n0 is 0.2V to 1.0V based on the lithium metal, or at the potential corresponding to the charging ratio of the negative electrode 13 to the total capacity of 0 to 5%, which is obtained based on the open circuit potential curve of the negative electrode terminal 3. It is more preferable to have.
  • the discharge amount comparison unit 524 By providing the discharge amount comparison unit 524, the amount of electricity flowing from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 can be calculated as a difference value (Q n0 ⁇ Q p0). As a result, for example, it is possible to suppress the possibility that the current is excessively discharged and the recovery effect of the recovery process is unnecessarily reduced.
  • the discharge control unit 508 moves the reaction species in an amount corresponding to the difference value (Q n0 ⁇ Q p0 ) or more from the positive electrode 12 or the negative electrode 13 to the capacitance recovery electrode 14. As a result, it is possible to more reliably achieve a longer life while suppressing material deterioration of the positive electrode 12 of the secondary battery (300).
  • a positive electrode, a negative electrode, and a capacity recovery electrode are built in and sealed, but the present invention can be applied to a cell that is not sealed.
  • the positive electrode and the negative electrode are wound or laminated and installed in a container, and the electrolytic solution is injected into the container and charged / discharged without sealing.
  • the temporary seal may be temporarily sealed and stored at a high temperature and high voltage, and the temporary seal may be removed.
  • the container may be a battery container before sealing the product, but may be another container for immersing the positive electrode, the negative electrode, and the capacity recovery electrode in the electrolytic solution.
  • FIGS. 8 and 6 and other processes described above have been described as software-like processes using a program in the above embodiment, but some or all of them are described as ASIC (Application Specific Integrated Circuit). It may be replaced with hardware-like processing using an application specific integrated circuit) or FPGA (Field Programmable Gate Array).
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Provided is a capacity recovery device capable of achieving a long lifespan while suppressing material degradation of a positive electrode of a secondary battery. To this end, a capacity recovery device (350) comprises: a capacity recovery current control unit (506) that recovers the capacity of a secondary battery (300) by moving reaction species from a capacity recovery electrode to a positive electrode or a negative electrode, the secondary battery (300) including a positive electrode terminal (2) connected to the positive electrode, a negative electrode terminal (3) connected to the negative electrode, and a capacity recovery electrode terminal (4) connected to the capacity recovery electrode for moving the reactive species to the positive electrode or the negative electrode; a discharge necessity determination unit (510) that determines whether or not to perform discharge between the capacity recovery electrode terminal (4) and the positive electrode terminal (2) or the negative electrode terminal (3) after the capacity recovery current control unit (506) recovers the capacity; and a discharge control unit (508) that performs the discharge between the positive electrode (2) or the negative electrode (3) and the capacity recovery electrode terminal (4) when the determination result by the discharge necessity determination unit (510) is positive.

Description

容量回復装置、容量回復方法および二次電池システムCapacity recovery device, capacity recovery method and secondary battery system
 本発明は、容量回復装置、容量回復方法および二次電池システムに関する。 The present invention relates to a capacity recovery device, a capacity recovery method, and a secondary battery system.
 本技術分野の背景技術として、下記特許文献1の要約には、「上記課題を解決するための電池システムは、複数のリチウムイオン電池を接続して構成される組電池を備える電池システムであって、リチウムイオン電池は、正極と、負極と、正極及び負極の少なくともいずれかのリチウムイオン量を調整する第3電極と、基準電位となる第4電極とを備えることを特徴とする。」と記載されている。
 また、下記特許文献2の明細書、段落0080には、「以上説明したように、本発明によって、二次電池の内部における正極全体の充放電カーブと負極全体の充放電カーブの状況を非破壊で知ることができる。これにより、非破壊で電池劣化の要因を特定でき、高精度な寿命判定が可能になる。さらに、本発明によれば、再現計算の結果を応用することによって、劣化電池の適切な使用範囲を高精度で判断したり、充放電反応種の減少量を非破壊で取得したりすることも可能である。」と記載されている。これら文献の記述は本願明細書の一部として包含される。
As a background technology in the present technical field, the following abstract of Patent Document 1 states, "The battery system for solving the above problems is a battery system including an assembled battery configured by connecting a plurality of lithium ion batteries. , The lithium ion battery is characterized by including a positive electrode, a negative electrode, a third electrode for adjusting the amount of lithium ions of at least one of the positive electrode and the negative electrode, and a fourth electrode serving as a reference potential. " Has been done.
Further, in the specification of Patent Document 2 below, paragraph 0080, "As described above, the present invention does not destroy the state of the charge / discharge curve of the entire positive electrode and the charge / discharge curve of the entire negative electrode inside the secondary battery. This makes it possible to identify the cause of battery deterioration in a non-destructive manner and to determine the life of the battery with high accuracy. Further, according to the present invention, the deteriorated battery can be determined by applying the result of the reproduction calculation. It is also possible to determine the appropriate range of use of the battery with high accuracy, and to obtain the amount of reduction of charge / discharge reaction species in a non-destructive manner. " The descriptions of these documents are included as part of the specification of the present application.
特開2016-091613号公報Japanese Unexamined Patent Publication No. 2016-091613 特許第4884404号公報Japanese Patent No. 4884404
 ところで、リチウムイオン電池等の二次電池については、正極の材料劣化を抑制しながら長寿命化を実現したいという要望がある。
 この発明は上述した事情に鑑みてなされたものであり、二次電池の正極の材料劣化を抑制しながら長寿命化を実現できる容量回復装置、容量回復方法および二次電池システムを提供することを目的とする。
By the way, with respect to a secondary battery such as a lithium ion battery, there is a demand to realize a long life while suppressing deterioration of the material of the positive electrode.
The present invention has been made in view of the above circumstances, and provides a capacity recovery device, a capacity recovery method, and a secondary battery system capable of achieving a long life while suppressing material deterioration of the positive electrode of the secondary battery. The purpose.
 上記課題を解決するため本発明の容量回復装置は、正極に接続された正極端子と負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池の容量回復装置であって、前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復電流制御部と、前記容量回復電流制御部が容量回復を行った後に、前記容量回復極端子と前記正極端子または前記負極端子との間で放電を行うか否かを判定する放電要否決定部と、前記放電要否決定部における判定結果が肯定である場合に、前記正極端子または前記負極端子と前記容量回復極端子との間で放電を行う放電制御部と、を備えることを特徴とする。 In order to solve the above problems, the capacity recovery device of the present invention is a capacity recovery device connected to a positive electrode terminal connected to a positive electrode, a negative electrode terminal connected to a negative electrode, and a capacity recovery electrode for moving a reaction species to the positive electrode or the negative electrode. A capacity recovery device for a secondary battery including a pole terminal, which is a capacity recovery current control unit that recovers the capacity of the secondary battery by moving the reaction species from the capacity recovery electrode to the positive electrode or the negative electrode. After the capacitance recovery current control unit recovers the capacitance, a discharge necessity determination unit that determines whether or not to discharge between the capacitance recovery electrode terminal and the positive electrode terminal or the negative electrode terminal, and the discharge necessity determination unit. It is characterized by including a discharge control unit that discharges between the positive electrode terminal or the negative electrode terminal and the capacitance recovery electrode terminal when the determination result in the discharge necessity determination unit is affirmative.
 本発明によれば、二次電池の正極の材料劣化を抑制しながら長寿命化を実現できる。 According to the present invention, it is possible to achieve a long life while suppressing material deterioration of the positive electrode of the secondary battery.
好適な第1実施形態に適用されるセルの一例を示す断面図である。FIG. 5 is a cross-sectional view showing an example of a cell applied to a preferred first embodiment. 図1におけるセルの発電要素を概念的に示す断面図である。It is sectional drawing which conceptually shows the power generation element of the cell in FIG. 本実施形態に適用される充放電装置の一例を示す回路図である。It is a circuit diagram which shows an example of the charge / discharge apparatus applied to this embodiment. 変形例による充放電装置の回路図である。It is a circuit diagram of a charge / discharge device according to a modification. 正極の開回路電位曲線の一例を示すグラフである。It is a graph which shows an example of the open circuit potential curve of a positive electrode. 第1検出モード処理ルーチンのフローチャートである。It is a flowchart of the 1st detection mode processing routine. 電池放電曲線、正極放電曲線および負極放電曲線を示す図である。It is a figure which shows the battery discharge curve, the positive electrode discharge curve and the negative electrode discharge curve. 第2検出モード処理ルーチンのフローチャートである。It is a flowchart of the 2nd detection mode processing routine. 正極の利用率と、通電電気量率との関係を示す図である。It is a figure which shows the relationship between the utilization rate of a positive electrode, and the electric energy rate of energization. 通電電気量率に対する容量回復率の一例を示すグラフである。It is a graph which shows an example of the capacity recovery rate with respect to the energization electric quantity rate.
[実施形態の前提]
 リチウムイオン電池は、非水電解質二次電池の一種であり、エネルギー密度が高いため、携帯機器のバッテリーや、近年では電気自動車のバッテリーとしても用いられている。但し、リチウムイオン電池は、使用に伴い劣化し、電池容量が減少することが知られている。リチウムイオン電池では、正極の活物質としてリチウム金属酸化物、負極の活物質とし黒鉛等の炭素材が用いられるのが一般的である。リチウムイオン電池の正極および負極は、微小な活物質粒子群にバインダや導電剤等を加えてスラリー化した後、金属箔に塗布して形成する。
[Premise of Embodiment]
Lithium-ion batteries are a type of non-aqueous electrolyte secondary batteries, and because of their high energy density, they are also used as batteries for portable devices and, in recent years, as batteries for electric vehicles. However, it is known that a lithium ion battery deteriorates with use and the battery capacity decreases. In a lithium ion battery, a lithium metal oxide is generally used as the active material of the positive electrode, and a carbon material such as graphite is generally used as the active material of the negative electrode. The positive electrode and the negative electrode of a lithium ion battery are formed by adding a binder, a conductive agent, or the like to a group of minute active material particles to form a slurry, and then applying the mixture to a metal foil.
 充電時には正極の活物質から放出されたリチウムイオンが負極の活物質に吸蔵され、放電時には負極の活物質に吸蔵されたリチウムイオンが放出され正極の活物質に吸蔵される。このように、リチウムイオンが電極間を移動することで電極間に電流が流れる。このようなリチウムイオン電池では、(1)正極活物質の電気的な孤立、(2)負極活物質の電気的な孤立、および(3)電極間を往来するリチウムイオンの固定化によって容量が減少する。 At the time of charging, the lithium ions released from the active material of the positive electrode are occluded in the active material of the negative electrode, and at the time of discharging, the lithium ions stored in the active material of the negative electrode are occluded and stored in the active material of the positive electrode. In this way, lithium ions move between the electrodes, causing a current to flow between the electrodes. In such a lithium ion battery, the capacity is reduced by (1) electrical isolation of the positive electrode active material, (2) electrical isolation of the negative electrode active material, and (3) immobilization of lithium ions moving back and forth between the electrodes. do.
 これらの要因のうち、上述した(3)による容量減少分については、内部にリチウムを含む第3の電極を備えたリチウムイオン電池を作製し、第3の電極から正極または負極にリチウムイオンを補充することによって容量減少分を回復させることが可能である。しかし、リチウムイオンを過剰に補充してしまうと、放電時に正極活物質中のリチウムイオン濃度が過剰になって正極の材料劣化を助長する問題が生じる。このような場合には、正極の材料劣化による容量減少を引き起こす可能性がある。 Among these factors, for the capacity decrease due to (3) described above, a lithium ion battery having a third electrode containing lithium inside is manufactured, and lithium ions are replenished from the third electrode to the positive electrode or the negative electrode. By doing so, it is possible to recover the reduced capacity. However, if the lithium ions are excessively replenished, the concentration of lithium ions in the positive electrode active material becomes excessive at the time of discharge, which causes a problem of promoting material deterioration of the positive electrode. In such a case, the capacity may be reduced due to the deterioration of the material of the positive electrode.
 そこで、特許文献1に示された技術を適用して、正極および負極のうち少なくとも何れかのリチウムイオン量を調製する第3電極を設け、第3電極から正極または負極にリチウムイオンを供給することが考えられる。しかし、第3電極から陽極にリチウムイオンを過剰に補充した場合には正極に材料劣化が生じる場合がある。そこで、後述する好適な実施形態は、正極の材料劣化を抑制しようとするものである。 Therefore, by applying the technique shown in Patent Document 1, a third electrode for adjusting the amount of lithium ions of at least one of the positive electrode and the negative electrode is provided, and lithium ions are supplied from the third electrode to the positive electrode or the negative electrode. Can be considered. However, when lithium ions are excessively replenished from the third electrode to the anode, material deterioration may occur in the positive electrode. Therefore, a preferred embodiment described later is to suppress material deterioration of the positive electrode.
[第1実施形態]
〈セル100の構成〉
 図1は、好適な第1実施形態に適用されるセル100の一例を示す断面図である。
 図1において、セル100は、リチウムイオン電池のセルであり、発電要素1と、正極端子2と、負極端子3と、容量回復極端子4と、外装材6と、を備えている。発電要素1にはセパレータ5が含まれている。外装材6は、ラミネートフィルム等である。
[First Embodiment]
<Structure of cell 100>
FIG. 1 is a cross-sectional view showing an example of a cell 100 applied to a preferred first embodiment.
In FIG. 1, the cell 100 is a cell of a lithium ion battery, and includes a power generation element 1, a positive electrode terminal 2, a negative electrode terminal 3, a capacity recovery electrode terminal 4, and an exterior material 6. The power generation element 1 includes a separator 5. The exterior material 6 is a laminated film or the like.
 図2は、図1におけるセルの発電要素を概念的に示す断面図である。
 図2において、発電要素1は、複数のセパレータ5と、複数の正極12と、複数の負極13と、一対の容量回復極14と、を備えている。正極12と、負極13とは、セパレータ5を挟んで交互に配置されている。容量回復極14は、電極としては最も外側に配置され、さらに容量回復極14の外側にも、セパレータ5が配置されている。セパレータ5は特に制限されないが、例えばポリプロピレン等が用いられる。セパレータ5としてポリプロピレン以外にも、ポリエチレン等のポリオレフィン製の微孔性フィルムや不織布等を用いることができる。
FIG. 2 is a cross-sectional view conceptually showing the power generation element of the cell in FIG.
In FIG. 2, the power generation element 1 includes a plurality of separators 5, a plurality of positive electrodes 12, a plurality of negative electrodes 13, and a pair of capacitance recovery electrodes 14. The positive electrode 12 and the negative electrode 13 are alternately arranged with the separator 5 interposed therebetween. The capacitance recovery electrode 14 is arranged on the outermost side as an electrode, and a separator 5 is also arranged on the outside of the capacitance recovery electrode 14. The separator 5 is not particularly limited, but polypropylene or the like is used, for example. In addition to polypropylene, a microporous film made of polyolefin such as polyethylene, a non-woven fabric, or the like can be used as the separator 5.
 正極12、負極13および容量回復極14は、それぞれ、適切な金属の集電箔に適切な電極活物質、導電剤、結着剤等の混合体を塗布して作製されたものである。正極12および容量回復極14の集電箔には、厚さが10~100μmのアルミニウム箔、厚さが10~100μm、孔径0.1~10mmのアルミニウム製穿孔箔、エキスパンドメタル、発泡金属板等が用いられる。集電箔の材質も、アルミニウムの他に、ステンレス鋼、チタン等も適用可能である。集電箔の材質、形状、製造方法等は、特に制限されることなく、任意の集電体を使用することができる。正極12および容量回復極14の電極活物質は、反応種を内部に含むものが好ましい。 The positive electrode 12, the negative electrode 13, and the capacity recovery electrode 14 are each produced by applying a mixture of an appropriate electrode active material, a conductive agent, a binder, and the like to an appropriate metal current collector foil. The collecting foil of the positive electrode 12 and the capacity recovery electrode 14 is an aluminum foil having a thickness of 10 to 100 μm, an aluminum perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like. Is used. As the material of the current collector foil, stainless steel, titanium and the like can be applied in addition to aluminum. The material, shape, manufacturing method, etc. of the current collector foil are not particularly limited, and any current collector can be used. The electrode active material of the positive electrode 12 and the capacity recovery electrode 14 preferably contains a reaction species inside.
 リチウムイオン電池の反応種は、リチウムイオンである。この場合、リチウムイオン電池は、リチウムイオンを可逆的に挿入脱離可能なリチウム含有化合物を含んでいる。正極12および容量回復極14の電極活物質の種類は特に制限されないが、例えば、コバルト酸リチウム、マンガン置換コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、オリビン型リン酸鉄リチウム等のリン酸遷移金属リチウム、LiwNixCoyMnz2(ここで、w、x、y、zは0または正の値)が挙げられる。正極12および容量回復極14の電極活物質として上記の材料が一種単独または二種以上含まれていてもよい。また、正極12と容量回復極14とは、同じ構成を適用してもよい。このように、正極12と容量回復極14とで同じ構成を適用することにより、製造コストを低減できる。 The reactive species of lithium-ion batteries is lithium-ion. In this case, the lithium ion battery contains a lithium-containing compound capable of reversibly inserting and removing lithium ions. The type of electrode active material of the positive electrode 12 and the capacity recovery electrode 14 is not particularly limited, but for example, phosphoric acid transitions such as lithium cobalt oxide, manganese-substituted lithium cobalt oxide, lithium manganate, lithium nickel oxide, and olivine-type lithium iron phosphate. metallic lithium, (wherein, w, x, y, z is 0 or a positive value) Li w Ni x Co y Mn z O 2 and the like. As the electrode active material of the positive electrode 12 and the capacity recovery electrode 14, the above materials may be contained alone or in combination of two or more. Further, the same configuration may be applied to the positive electrode 12 and the capacity recovery electrode 14. As described above, by applying the same configuration to the positive electrode 12 and the capacity recovery electrode 14, the manufacturing cost can be reduced.
 また、負極13の集電箔には、厚さが10~100μmの銅箔、厚さが10~100μm、孔径0.1~10mmの銅製穿孔箔、エキスパンドメタル、発泡金属板等が用いられる。但し、負極13の材質は、銅の他に、ステンレス鋼、チタン等も適用可能であり、材質、形状、製造方法などに制限されることなく、任意の集電体を使用することができる。負極13の電極活物質は、リチウムイオンを可逆的に挿入脱離可能な物質を含んでいる。負極13の電極活物質の種類は特に制限されないが、例えば、天然黒鉛や、天然黒鉛に乾式のCVD法もしくは湿式のスプレー法によって被膜を形成した複合炭素質材料、エポキシやフェノール等の樹脂材料もしくは石油や石炭から得られるピッチ系材料を原料として焼成により製造される人造黒鉛、シリコン(Si)、シリコンを混合した黒鉛、難黒鉛化炭素材、チタン酸リチウム、Li4Ti512等を用いることができる。負極活物質として上記の材料が一種単独または二種以上含まれていてもよい。 Further, as the current collecting foil of the negative electrode 13, a copper foil having a thickness of 10 to 100 μm, a copper perforated foil having a thickness of 10 to 100 μm and a pore diameter of 0.1 to 10 mm, an expanded metal, a foamed metal plate, or the like is used. However, as the material of the negative electrode 13, stainless steel, titanium and the like can be applied in addition to copper, and any current collector can be used without being limited by the material, shape, manufacturing method and the like. The electrode active material of the negative electrode 13 contains a substance capable of reversibly inserting and removing lithium ions. The type of the electrode active material of the negative electrode 13 is not particularly limited, but for example, natural graphite, a composite carbonaceous material in which a film is formed on natural graphite by a dry CVD method or a wet spray method, a resin material such as epoxy or phenol, or a resin material such as epoxy or phenol or Artificial graphite, silicon (Si), graphite mixed with silicon, non-graphitized carbon material, lithium titanate, Li 4 Ti 5 O 12, etc., which are produced by firing using pitch-based materials obtained from petroleum or coal as raw materials, are used. be able to. The above materials may be contained alone or in combination of two or more as the negative electrode active material.
 発電要素1には、電解液が含侵されている。電解液は特に制限されないが、リチウムイオン電池の場合、例えばエチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、エチルプロピルカーボネート(EPC)等の非プロトン性有機系溶媒を適用することができる。 The power generation element 1 is impregnated with an electrolytic solution. The electrolytic solution is not particularly limited, but in the case of a lithium ion battery, for example, ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC). ), Methylpropyl carbonate (MPC), ethylpropyl carbonate (EPC) and other aproton organic solvents can be applied.
 また、電解液として、これら非プロトン性有機系溶媒のうち2種以上の混合有機化合物の溶媒に、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウム、ヨウ化リチウム、塩化リチウム、臭化リチウム、LiB[OCOCF34、LiB[OCOCF2CF34、LiPF4(CF32、LiN(SO2CF32、LiN(SO2CF2CF32等のリチウム塩、あるいは、これらの2種以上の混合リチウム塩を溶解した電解液を適用することができる。 In addition, as the electrolytic solution, lithium hexafluorophosphate, lithium tetrafluoroborate, lithium perchlorate, lithium iodide, and lithium chloride are added to the solvent of two or more mixed organic compounds among these aprotonic organic solvents. Lithium, lithium bromide, LiB [OCOCF 3 ] 4 , LiB [OCOCF 2 CF 3 ] 4 , LiPF 4 (CF 3 ) 2 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2, etc. Or an electrolytic solution in which two or more of these mixed lithium salts are dissolved can be applied.
 また、電解液の代りに固体電解質を適用してもよい。固体電解質は特に制限されないが、例えば、ポリエチレンオキシド、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリメタクリル酸メチル、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド等のイオン伝導性ポリマーが挙げられる。これらの固体高分子電解質を用いた場合、セパレータ5を省略できる。 Alternatively, a solid electrolyte may be applied instead of the electrolytic solution. The solid electrolyte is not particularly limited, and examples thereof include ionic conductive polymers such as polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, polyhexafluoropropylene, and polyethylene oxide. When these solid polymer electrolytes are used, the separator 5 can be omitted.
 正極12、負極13および容量回復極14の集電箔には、金属のタブ(図示略)が接続されている。そして、これらタブ部分だけがラミネートフィルム等の外装材6(図1参照)の外部に露出するように外装材6を封止する。そして、タブを結合させたものが図1に示す正極端子2、負極端子3および容量回復極端子4となる。発電要素1は、正極12と負極13とをセパレータ5を介して対向させ、捲回または積層することにより、作製される。捲回によって発電要素1を構成する場合、容量回復極14は、捲回体の捲回軸(中心軸)付近または最外周部に配置してもよい。また、積層によって発電要素1を構成する場合、容量回復極14は、積層体の一部として配置してもよい。 A metal tab (not shown) is connected to the current collecting foils of the positive electrode 12, the negative electrode 13, and the capacity recovery electrode 14. Then, the exterior material 6 is sealed so that only these tab portions are exposed to the outside of the exterior material 6 (see FIG. 1) such as a laminated film. Then, what the tabs are connected to is the positive electrode terminal 2, the negative electrode terminal 3, and the capacitance recovery electrode terminal 4 shown in FIG. The power generation element 1 is manufactured by facing the positive electrode 12 and the negative electrode 13 via the separator 5 and winding or laminating them. When the power generation element 1 is configured by winding, the capacity recovery electrode 14 may be arranged near the winding axis (central axis) of the winding body or at the outermost peripheral portion. Further, when the power generation element 1 is configured by stacking, the capacity recovery pole 14 may be arranged as a part of the laminated body.
〈充放電装置350,370〉
 図3は、本実施形態に適用される充放電装置350(容量回復装置、二次電池システム)の一例を示す回路図である。
 図3において、電池パック300(二次電池、二次電池システム)は、図1に示すセル100、保護回路(図示せず)、および筐体等を含むものであり、正極端子2と、負極端子3と、容量回復極端子4とが突出している。但し、電池パック300は、複数個のセル100を含んでもよい。また、電池パック300は、複数個のセル100を含む電池モジュール(図示略)を複数個含む構成であってもよい。本明細書において、「二次電池」は、リチウムイオン電池のセル、電池モジュールまたは電池パックを含む概念である。
<Charging / discharging device 350, 370>
FIG. 3 is a circuit diagram showing an example of a charging / discharging device 350 (capacity recovery device, secondary battery system) applied to the present embodiment.
In FIG. 3, the battery pack 300 (secondary battery, secondary battery system) includes the cell 100 shown in FIG. 1, a protection circuit (not shown), a housing, and the like, and includes a positive electrode terminal 2 and a negative electrode. The terminal 3 and the capacity recovery electrode terminal 4 are projected. However, the battery pack 300 may include a plurality of cells 100. Further, the battery pack 300 may be configured to include a plurality of battery modules (not shown) including a plurality of cells 100. As used herein, the term "secondary battery" is a concept that includes a cell, a battery module, or a battery pack of a lithium ion battery.
 充放電装置350は、電流計351と、電圧計352,359と、抵抗353と、電源354と、充放電切替スイッチ356と、容量回復スイッチ357と、正負極切替スイッチ358と、制御部500と、を備えている。このうち、各スイッチ356,357,358は何れも3個の端子(符号なし)を有し、3個の端子間の接続状態を切り替えるものである。但し、これらスイッチ356,357,358は、3個の端子の何れもが相互に接続されない状態にすることができる。 The charging / discharging device 350 includes an ammeter 351, a voltmeter 352, 359, a resistor 353, a power supply 354, a charge / discharge changeover switch 356, a capacity recovery switch 357, a positive / negative electrode changeover switch 358, and a control unit 500. , Is equipped. Of these, each of the switches 356, 357, and 358 has three terminals (unsigned) and switches the connection state between the three terminals. However, these switches 356, 357, and 358 can be set so that none of the three terminals is connected to each other.
 電圧計352は、正極端子2と負極端子3の間の電圧を測定し、電圧計359は、負極端子3と容量回復極端子4の間の電圧を測定する。なお、制御部500は、電圧計352,359の計測結果を加算または減算することによって、正極端子2と容量回復極端子4との間の電圧を計算する。容量回復スイッチ357と、充放電切替スイッチ356とは、制御部500による制御に基づいて、電池パック300の負極端子3または容量回復極端子4の何れかと、抵抗353または電源354の何れかと、を接続する。正負極切替スイッチ358は、制御部500による制御に基づいて、正極端子2または負極端子3の何れかと、電流計351の一端とを接続する。電流計351の他端は、抵抗353と電源354とに接続されている。電圧計352,359および電流計351は、計測結果を制御部500に供給する。 The voltmeter 352 measures the voltage between the positive electrode terminal 2 and the negative electrode terminal 3, and the voltmeter 359 measures the voltage between the negative electrode terminal 3 and the capacitance recovery electrode terminal 4. The control unit 500 calculates the voltage between the positive electrode terminal 2 and the capacitance recovery electrode terminal 4 by adding or subtracting the measurement results of the voltmeters 352 and 359. The capacity recovery switch 357 and the charge / discharge changeover switch 356 have either the negative electrode terminal 3 or the capacity recovery electrode terminal 4 of the battery pack 300, and either the resistor 353 or the power supply 354, based on the control by the control unit 500. Connecting. The positive / negative electrode changeover switch 358 connects either the positive electrode terminal 2 or the negative electrode terminal 3 to one end of the ammeter 351 based on the control by the control unit 500. The other end of the ammeter 351 is connected to the resistor 353 and the power supply 354. The voltmeter 352,359 and the ammeter 351 supply the measurement result to the control unit 500.
 但し、制御部500は、正負極切替スイッチ358に負極端子3を選択させる場合、容量回復スイッチ357には必ず容量回復極端子4を選択させる。なお、充放電装置350の構成は図3のものに限られるわけではなく、電池パック300の正極端子2と、負極端子3と、容量回復極端子4と、から選択される任意の2つの端子を、抵抗353および電源354等に接続できる回路であればよい。 However, when the positive / negative electrode changeover switch 358 selects the negative electrode terminal 3, the control unit 500 makes the capacitance recovery switch 357 always select the capacitance recovery electrode terminal 4. The configuration of the charging / discharging device 350 is not limited to that shown in FIG. 3, and any two terminals selected from the positive electrode terminal 2, the negative electrode terminal 3, and the capacity recovery electrode terminal 4 of the battery pack 300 are not limited to those shown in FIG. Any circuit can be used as long as it can be connected to the resistor 353, the power supply 354, and the like.
 図4は、充放電装置350の変形例である充放電装置370の回路図である。
 図4においては、図3における正負極切替スイッチ358を省略して、電池パック300の負極端子3と、電流計351とを直結している。また、図4における容量回復スイッチ357と、充放電切替スイッチ356とは、制御部500による制御に基づいて、電池パック300の正極端子2または容量回復極端子4の何れかと、抵抗353または電源354の何れかと、を接続する。上述した以外の充放電装置370の構成は充放電装置350(図3参照)のものと同様であり、図4に示す構成によれば、回路構成および制御をより簡潔にできる。
FIG. 4 is a circuit diagram of the charging / discharging device 370, which is a modification of the charging / discharging device 350.
In FIG. 4, the positive / negative electrode changeover switch 358 in FIG. 3 is omitted, and the negative electrode terminal 3 of the battery pack 300 and the ammeter 351 are directly connected. Further, the capacity recovery switch 357 and the charge / discharge changeover switch 356 in FIG. 4 are controlled by the control unit 500 with either the positive electrode terminal 2 or the capacity recovery electrode terminal 4 of the battery pack 300, and the resistor 353 or the power supply 354. Connect with any of. The configuration of the charging / discharging device 370 other than the above is the same as that of the charging / discharging device 350 (see FIG. 3), and according to the configuration shown in FIG. 4, the circuit configuration and control can be made simpler.
〈制御部500〉
 図3において、制御部500は、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等、一般的なコンピュータとしてのハードウエアを備えており、ROMには、CPUによって実行される制御プログラムや、各種データ等が格納されている。図3において、制御部500の内部は、制御プログラム等によって実現される機能を、ブロックとして示している。
<Control unit 500>
In FIG. 3, the control unit 500 includes hardware as a general computer such as a CPU (Central Processing Unit), a RAM (Random Access Memory), and a ROM (Read Only Memory). The control program to be executed and various data are stored. In FIG. 3, the inside of the control unit 500 shows a function realized by a control program or the like as a block.
 すなわち、制御部500は、通電電気量決定部502と、容量回復極選択部504と、容量回復電流制御部506(容量回復過程)と、放電制御部508(放電制御過程)と、放電要否決定部510(放電要否決定過程)と、を備えている。そして、放電要否決定部510は、検出モード選択部512と、判定電位算出部514と、開回路電位計測部516と、電位比較部518と、特性分析部520と、電位・放電量算出部522と、放電量比較部524と、を備えている。 That is, the control unit 500 includes an energization electric energy determination unit 502, a capacity recovery pole selection unit 504, a capacity recovery current control unit 506 (capacity recovery process), a discharge control unit 508 (discharge control process), and discharge necessity. It includes a determination unit 510 (discharging necessity determination process). Then, the discharge necessity determination unit 510 includes a detection mode selection unit 512, a determination potential calculation unit 514, an open circuit potential measurement unit 516, a potential comparison unit 518, a characteristic analysis unit 520, and a potential / discharge amount calculation unit. 522 and a discharge amount comparison unit 524 are provided.
 通電電気量決定部502は、電流計351および電圧計352,359からの入力に基づいて、容量回復のタイミングと、容量回復極端子4から正極端子2または負極端子3への通電電気量を決定する。容量回復極選択部504は、容量回復スイッチ357に対して、容量回復スイッチ357を選択させる。これにより、容量回復極端子4と、正極端子2または負極端子3とが接続されることになる。 The energizing electricity amount determining unit 502 determines the timing of capacitance recovery and the energizing electricity amount from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 based on the inputs from the ammeter 351 and the voltmeter 352 and 359. do. The capacity recovery pole selection unit 504 causes the capacity recovery switch 357 to select the capacity recovery switch 357. As a result, the capacitance recovery electrode terminal 4 is connected to the positive electrode terminal 2 or the negative electrode terminal 3.
 容量回復電流制御部506は、所望の容量回復電流に応じて充放電切替スイッチ356において抵抗353または電源354を選択させる。これにより、容量回復極端子4と、正極端子2または負極端子3との間に流れる電流は、充放電切替スイッチ356における選択結果に応じた値になる。例えば、容量回復極端子4の電位が正極端子2または負極端子3の電位よりも低い場合には、充放電切替スイッチ356で抵抗353を選択させることによって、正極端子2または負極端子3から容量回復極端子4に電流を流すことができる。 The capacity recovery current control unit 506 causes the charge / discharge changeover switch 356 to select the resistor 353 or the power supply 354 according to the desired capacity recovery current. As a result, the current flowing between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 becomes a value according to the selection result in the charge / discharge changeover switch 356. For example, when the potential of the capacitance recovery electrode terminal 4 is lower than the potential of the positive electrode terminal 2 or the negative electrode terminal 3, the capacitance is recovered from the positive electrode terminal 2 or the negative electrode terminal 3 by selecting the resistor 353 with the charge / discharge changeover switch 356. A current can be passed through the electrode terminal 4.
 また、容量回復電流制御部506は、電流計351の出力に基づいて、容量回復極端子4と、正極端子2または負極端子3との間に流れた電気量を算出する。そして、容量回復電流制御部506は、算出した電気量が所定の目標値に到達すると、容量回復スイッチ357と充放電切替スイッチ356とを操作して、容量回復極端子4と、正極端子2または負極端子3との間の電流を遮断する。 Further, the capacitance recovery current control unit 506 calculates the amount of electricity flowing between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 based on the output of the ammeter 351. Then, when the calculated electric energy reaches a predetermined target value, the capacity recovery current control unit 506 operates the capacity recovery switch 357 and the charge / discharge changeover switch 356 to operate the capacity recovery pole terminal 4 and the positive electrode terminal 2 or The current between the negative electrode terminal 3 and the negative electrode terminal 3 is cut off.
 放電要否決定部510は、容量回復電流制御部506が動作した後、容量回復極端子4と正極端子2または負極端子3との間で放電を行うべきか否かを決定する。すなわち、放電要否決定部510は、電池パック300において「低電位領域の使用」(詳細は後述する)が発生しているか否かを検出して、発生している場合には「放電を行う」旨を決定する。放電制御部508は、放電要否決定部510が「放電を行う」旨を決定すると、容量回復極端子4と正極端子2または負極端子3との間に電流を流すように、正負極切替スイッチ358と、容量回復スイッチ357とを制御する。なお、容量回復極端子4と正極端子2との間に電流を流す際は、電池パック300を予め放電下限電圧まで放電しておく。 The discharge necessity determination unit 510 determines whether or not discharge should be performed between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 after the capacitance recovery current control unit 506 operates. That is, the discharge necessity determination unit 510 detects whether or not "use of the low potential region" (details will be described later) has occurred in the battery pack 300, and if it has occurred, "discharges". To that effect. When the discharge necessity determination unit 510 determines that the discharge necessity determination unit 510 "discharges", the discharge control unit 508 switches the positive / negative electrode changeover switch so that a current flows between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3. It controls 358 and the capacity recovery switch 357. When a current is passed between the capacity recovery electrode terminal 4 and the positive electrode terminal 2, the battery pack 300 is discharged to the discharge lower limit voltage in advance.
 また、放電制御部508は、充放電切替スイッチ356において、抵抗353または電源354のうち一方を選択させる。ここで、抵抗353を選択させると、容量回復極端子4と正極端子2または負極端子3との電位差によって自発的に容量回復極端子4から正極端子2または負極端子3に電流が流れるため、外部電力を使う必要がなくなる。一方、充放電切替スイッチ356において電源354を選択させると、電源354の電圧に応じて電源354に流れる電流を制御できるため、容量回復極端子4と正極端子2または負極端子3との間に突発的に大電流が流れることを防止できる。 Further, the discharge control unit 508 causes the charge / discharge changeover switch 356 to select either the resistor 353 or the power supply 354. Here, when the resistor 353 is selected, a current spontaneously flows from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 due to the potential difference between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3, so that it is external. Eliminates the need to use electricity. On the other hand, when the power supply 354 is selected by the charge / discharge changeover switch 356, the current flowing through the power supply 354 can be controlled according to the voltage of the power supply 354. It is possible to prevent a large current from flowing.
 検出モード選択部512は、ユーザ等の指令に基づいて、第1検出モードまたは第2検出モードのうち何れかの検出モードを選択する。この検出モードとは、上述した「低電位領域の使用」を検出するための検出モードである。すなわち、第1検出モードは、正極端子2の開回路電位に基づいて「低電位領域の使用」を判定するモードであり、第2検出モードは、電池パック300の充放電曲線から「低電位領域の使用」を判定するモードである。ユーザ等は、電池パック300の種類や特性等に応じて、好ましい側の検出モードを選択するとよい。 The detection mode selection unit 512 selects either the first detection mode or the second detection mode based on a command from the user or the like. This detection mode is a detection mode for detecting the above-mentioned "use of low potential region". That is, the first detection mode is a mode for determining "use of the low potential region" based on the open circuit potential of the positive electrode terminal 2, and the second detection mode is the "low potential region" from the charge / discharge curve of the battery pack 300. This is the mode for determining "use of". The user or the like may select the detection mode on the preferred side according to the type and characteristics of the battery pack 300.
 図5は、正極端子2の開回路電位曲線C2と、正極端子2の「低電位領域の使用」の検出方法を概念的に説明するためのグラフである。
 図5の横軸は放電容量を表し、縦軸は容量回復極端子4の電位を基準電位とした、正極端子2の開回路電位VOCVである。また、図中の破線で示す判定電位VOCV0は、低電位領域の境界を示す電位である。開回路電位計測部516は、第1検出モードが選択されている場合、任意の充電状態における電池の休止時においてVOCVを計測する。
FIG. 5 is a graph for conceptually explaining the open circuit potential curve C2 of the positive electrode terminal 2 and the detection method of "use of the low potential region" of the positive electrode terminal 2.
The horizontal axis of FIG. 5 represents the discharge capacity, and the vertical axis is the open circuit potential V OCV of the positive electrode terminal 2 with the potential of the capacity recovery electrode terminal 4 as a reference potential. The determination potential V OCV0 shown by the broken line in the figure is a potential indicating the boundary of the low potential region. When the first detection mode is selected, the open-circuit potential measuring unit 516 measures V OCV when the battery is inactive in an arbitrary charging state.
 電位比較部518は、そして判定電位VOCV0よりもVOCVが低い場合に、「低電位領域の使用」が発生したと判定する。これにより、上述したように、放電制御部508は、抵抗353または電源354を介して容量回復極端子4と正極端子2または負極端子3とを接続し、容量回復極端子4から正極端子2または負極端子3に電流を流す。開回路電位計測部516が開回路電位VOCVを計測するタイミングは特に限定されないが、好ましくは休止開始から5分後以降とし、より好ましくは休止開始から30分後以降にするとよい。このように、休止開始から5分または30分後経過した以降においては、電池パック300の充放電による正極電位の分極が解消されるため、正極の平衡電位をより正確に計測することができる。 Potential comparison unit 518, and determines if V OCV than the determination voltage V OCV0 low, "Use of the low potential region" occurs. As a result, as described above, the discharge control unit 508 connects the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 via the resistor 353 or the power supply 354, and connects the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or A current is passed through the negative electrode terminal 3. The timing at which the open-circuit potential measuring unit 516 measures the open-circuit potential V OCV is not particularly limited, but it is preferably 5 minutes or later from the start of pause, and more preferably 30 minutes or later from the start of pause. As described above, after 5 minutes or 30 minutes have passed from the start of the pause, the polarization of the positive electrode potential due to charging / discharging of the battery pack 300 is eliminated, so that the equilibrium potential of the positive electrode can be measured more accurately.
 容量回復極端子4の平衡電位は、容量回復極端子4から反応種が引き抜かれた量によって変化する。そこで、図3に戻り、判定電位算出部514は、上述した判定電位VOCV0を算出し、記憶する。すなわち、判定電位算出部514は、容量回復極端子4に流れた電流の積算電流値を記憶する。そして、判定電位算出部514は、予め作成した容量回復極端子4の充電量と平衡電位の関係に基づいて、容量回復極端子4に電流を流す度に平衡電位の変化量分だけ判定電位VOCV0を変化させる。換言すれば、容量回復極端子4から正極端子2または負極端子3に所定の電気量の電流が流れると、判定電位算出部514は、記憶しているVOCV0を更新する。また、電位比較部518は、更新された判定電位VOCV0と、VOCVとを改めて比較し、「低電位領域の使用」の有無を判定する。 The equilibrium potential of the capacitance recovery electrode terminal 4 changes depending on the amount of the reaction species extracted from the capacitance recovery electrode terminal 4. Therefore, returning to FIG. 3, the determination potential calculation unit 514 calculates and stores the determination potential V OCV0 described above. That is, the determination potential calculation unit 514 stores the integrated current value of the current flowing through the capacitance recovery pole terminal 4. Then, the determination potential calculation unit 514 determines the determination potential V by the amount of change in the equilibrium potential each time a current is passed through the capacitance recovery electrode terminal 4 based on the relationship between the charge amount and the equilibrium potential of the capacitance recovery electrode terminal 4 created in advance. Change OCV0 . In other words, when a predetermined amount of electric current flows from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3, the determination potential calculation unit 514 updates the stored V OCV 0. Further, the potential comparison unit 518 compares the updated determination potential V OCV0 and V OCV again, and determines whether or not “the use of the low potential region” is present.
 容量回復極端子4から正極端子2または負極端子3に電流を流す操作は、開回路電位VOCVが判定電位VOCV0よりも高くなるまで続けるとよい。また、判定電位VOCV0を放電末端よりも少し高い電位、すなわち開回路電位VOCVが急速に低下する前の電位に設定しておけば、正極端子2の過放電を回避できる。これにより、電池パック300の容量回復後に正極端子2の低電位領域の使用を回避でき、正極材料の劣化を抑制することができる。 The operation of passing a current from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 may be continued until the open circuit potential V OCV becomes higher than the determination potential V OCV 0. Further, if the determination potential V OCV0 is set to a potential slightly higher than the discharge end, that is, a potential before the open circuit potential V OCV rapidly decreases, over-discharging of the positive electrode terminal 2 can be avoided. As a result, it is possible to avoid using the low potential region of the positive electrode terminal 2 after the capacity of the battery pack 300 is restored, and it is possible to suppress deterioration of the positive electrode material.
 ここで、判定電位VOCV0は、正極端子2の開回路電位曲線(図5)に基づいて、SOC(state of charge;充電率)が0~10%の範囲内に対応する電位に設定することが好ましく、0~5%の範囲内に対応する電位に設定することがより好ましい。ここで、SOCは正極の全容量に対する充電割合を表す。正極の低電位領域の使用を頻繁に検知してしまうと、電池の通常動作を妨げることが起こり得る。しかし、上述のように判定電位VOCV0を設定すると、通常動作を妨げる頻度を下げることができる。 Here, the determination potential V OCV0 is set to a potential corresponding to the SOC (state of charge) in the range of 0 to 10% based on the open circuit potential curve (FIG. 5) of the positive electrode terminal 2. Is preferable, and it is more preferable to set the potential to correspond within the range of 0 to 5%. Here, SOC represents the charge ratio with respect to the total capacity of the positive electrode. Frequent detection of the use of the low potential region of the positive electrode can interfere with the normal operation of the battery. However, if the determination potential V OCV0 is set as described above, the frequency of interfering with normal operation can be reduced.
 図6は、第1検出モードにおいて制御部500で実行される、第1検出モード処理ルーチンのフローチャートである。
 図6において、ステップS110においては、制御部500(図1参照)の通電電気量決定部502と、容量回復極選択部504と、容量回復電流制御部506と、によって、電池パック300の容量回復処理が実行される。すなわち、容量回復極端子4と例えば正極端子2とが、抵抗353または電源354を介して接続され、これによって電池パック300の容量が回復される。
FIG. 6 is a flowchart of the first detection mode processing routine executed by the control unit 500 in the first detection mode.
In FIG. 6, in step S110, the capacity of the battery pack 300 is recovered by the energization electric energy determination unit 502 of the control unit 500 (see FIG. 1), the capacity recovery pole selection unit 504, and the capacity recovery current control unit 506. The process is executed. That is, the capacity recovery electrode terminal 4 and, for example, the positive electrode terminal 2 are connected via a resistor 353 or a power supply 354, whereby the capacity of the battery pack 300 is recovered.
 ステップS110の容量回復処理が完了すると、ステップS120による開回路電位測定処理と、ステップS130による判定電位更新処理と、が並列して実行される。まず、ステップS120において、開回路電位計測部516は、容量回復極端子4に対する正極端子2の開回路電位VOCVを計測する。また、ステップS130において、判定電位算出部514は、過去に容量回復極端子4に流れた電流の積算電流値に基づいて、記憶している判定電位VOCV0を更新する。 When the capacity recovery process in step S110 is completed, the open circuit potential measurement process in step S120 and the determination potential update process in step S130 are executed in parallel. First, in step S120, the open circuit potential measuring unit 516 measures the open circuit potential V OCV of the positive electrode terminal 2 with respect to the capacitance recovery electrode terminal 4. Further, in step S130, the determination potential calculation unit 514 updates the stored determination potential V OCV 0 based on the integrated current value of the current that has flowed to the capacitance recovery pole terminal 4 in the past.
 次に、ステップS140において、電位比較部518は、開回路電位VOCVと判定電位VOCV0との差分値(VOCV-VOCV0)を計算する。次に、ステップS150において、電位比較部518は、差分値(VOCV-VOCV0)が負の値であるか否かを判定する。 Next, in step S140, the potential comparing unit 518 calculates a difference value between the open circuit potential V OCV and determination potential V OCV0 (V OCV -V OCV0) . Next, in step S150, the potential comparison unit 518 determines whether or not the difference value (V OCV − V OCV0 ) is a negative value.
 ステップS150において「NO」(すなわちVOCV≧VOCV0)と判定されると、電位比較部518は、ステップS170において、「放電を行わない」すなわち「容量回復極端子4から正極端子2または負極端子3に電流を流さない」旨を決定する。一方、ステップS150において「YES」(すなわちVOCV<VOCV0)と判定されると、電位比較部518は、ステップS160において、「放電を行う」すなわち「容量回復極端子4から正極端子2または負極端子3に電流を流す」旨を決定する。これにより、放電制御部508は、容量回復極端子4と正極端子2または負極端子3との間に電流を流すように、正負極切替スイッチ358と、容量回復スイッチ357とを制御する。 When it is determined in step S150 that “NO” (that is, V OCVV OCV 0 ), the potential comparison unit 518 “does not discharge” in step S170, that is, “from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal”. It is decided that "no current is passed through 3". On the other hand, if “YES” (that is, V OCV <V OCV0 ) is determined in step S150, the potential comparison unit 518 “discharges” in step S160, that is, “from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode”. It is determined that "current is passed through the terminal 3". As a result, the discharge control unit 508 controls the positive / negative electrode changeover switch 358 and the capacitance recovery switch 357 so that a current flows between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3.
 なお、ステップS110と、ステップS120またはS130との間の期間では、電池パック300に対して、通常の電池として任意の充放電を行ってもよい。このように、第1検出モードによれば、電池パック300に対して特別な充放電を行うことなく、電池パック300の休止時に正極の低電位領域の使用の有無を判定できる。特に、電池パック300が完全放電状態に近い状態であるときに、正極における低電位領域の使用を正確に検出することができる。 In the period between step S110 and step S120 or S130, the battery pack 300 may be charged or discharged as a normal battery. As described above, according to the first detection mode, it is possible to determine whether or not the low potential region of the positive electrode is used when the battery pack 300 is paused without performing special charging / discharging of the battery pack 300. In particular, when the battery pack 300 is in a state close to a completely discharged state, the use of the low potential region in the positive electrode can be accurately detected.
 また、検出モード選択部512によって第2検出モードが選択されると、特性分析部520と、電位・放電量算出部522と、放電量比較部524とは、充放電曲線に基づいて正極の低電位領域の使用を判定する。この際、充放電曲線の電圧は、開回路電圧に近い値であることが好ましい。充放電曲線のデータを算出する際における通電方法は任意である。例えば、微小かつ一定の電流で、満充電状態から全放電状態まで放電する方法、または、全放電状態から満充電状態まで充電する方法を採用することができる。また、一定の電流で一定時間放電した後、一定時間休止するサイクルを満充電状態から全放電状態まで繰り返す方法を採用してもよい。また、一定の電流で一定時間充電した後、一定時間休止するサイクルを全放電状態から満充電状態まで繰り返す方法を採用してもよい。 When the second detection mode is selected by the detection mode selection unit 512, the characteristic analysis unit 520, the potential / discharge amount calculation unit 522, and the discharge amount comparison unit 524 have a low positive electrode based on the charge / discharge curve. Determine the use of the potential region. At this time, the voltage of the charge / discharge curve is preferably a value close to the open circuit voltage. The energization method when calculating the charge / discharge curve data is arbitrary. For example, a method of discharging from a fully charged state to a fully discharged state or a method of charging from a fully discharged state to a fully charged state can be adopted with a minute and constant current. Further, a method may be adopted in which a cycle of discharging with a constant current for a certain period of time and then resting for a certain period of time is repeated from a fully charged state to a fully discharged state. Further, a method may be adopted in which a cycle of charging with a constant current for a certain period of time and then resting for a certain period of time is repeated from a fully discharged state to a fully charged state.
 また、運転中の電流波形および電圧波形を統計的に処理し、または等価回路に基づいて回帰計算処理(再現計算処理)を行って、開回路電圧を推定し、充放電量と開回路電圧との関係を推定する方法を採用してもよい。また、上述した様々な方法において、「満充電状態から全放電状態まで放電」、「全放電状態から満充電状態まで充電」等と述べたが、必ずしも、これらの範囲で放電または充電するものに限定されるものではない。充放電の範囲は、広いほうが好ましく、100%の範囲で充放電するのが最も好ましい。但し、その後の工程を円滑に行える場合は、満充電状態から全放電状態までの範囲のうち、50%以上の範囲で充放電を行ってもよい。また、さらに、可能であれば、満充電状態から全放電状態までの範囲のうち、50%未満の範囲で充放電を行ってもよい。 In addition, the current waveform and voltage waveform during operation are statistically processed, or regression calculation processing (reproduction calculation processing) is performed based on the equivalent circuit to estimate the open circuit voltage, and the charge / discharge amount and open circuit voltage are calculated. The method of estimating the relationship between the two may be adopted. Further, in the various methods described above, "discharging from a fully charged state to a fully discharged state", "charging from a fully discharged state to a fully charged state", etc. have been described, but it is not always the case that the battery is discharged or charged within these ranges. It is not limited. The range of charge / discharge is preferably wide, and most preferably 100%. However, if the subsequent steps can be smoothly performed, charging / discharging may be performed in a range of 50% or more of the range from the fully charged state to the fully discharged state. Further, if possible, charging / discharging may be performed in a range of less than 50% of the range from the fully charged state to the fully discharged state.
 図7は、電池放電曲線C4、正極放電曲線C6および負極放電曲線C8を示す図である。横軸の原点は、電池の満充電状態を意味する。
 電池放電曲線C4は、リチウムイオン電池である電池パック300の放電曲線である。また、正極放電曲線C6は、正極電位、すなわち正極端子2の電位の放電曲線であり、負極放電曲線C8は、負極電位、すなわち負極端子3の電位の放電曲線である。電池放電曲線C4は、電流計351および電圧計352,359の出力値に基づいて算出できる。一方、正極放電曲線C6および負極放電曲線C8は、特性分析部520が回帰計算処理(再現計算処理)で得た計算値である。換言すれば、特性分析部520は、リチウムイオン電池の電池放電曲線C4を、解析することによって、これを正極放電曲線C6と、負極放電曲線C8とに分離することができる。このような再現計算処理の方法は、上述した特許文献2に詳述されている。
FIG. 7 is a diagram showing a battery discharge curve C4, a positive electrode discharge curve C6, and a negative electrode discharge curve C8. The origin on the horizontal axis means the fully charged state of the battery.
The battery discharge curve C4 is a discharge curve of the battery pack 300, which is a lithium ion battery. Further, the positive electrode discharge curve C6 is a discharge curve of the positive electrode potential, that is, the potential of the positive electrode terminal 2, and the negative electrode discharge curve C8 is a discharge curve of the negative electrode potential, that is, the potential of the negative electrode terminal 3. The battery discharge curve C4 can be calculated based on the output values of the ammeter 351 and the voltmeter 352 and 359. On the other hand, the positive electrode discharge curve C6 and the negative electrode discharge curve C8 are calculated values obtained by the characteristic analysis unit 520 in the regression calculation process (reproduction calculation process). In other words, the characteristic analysis unit 520 can separate the battery discharge curve C4 of the lithium ion battery into a positive electrode discharge curve C6 and a negative electrode discharge curve C8 by analyzing the battery discharge curve C4. Such a method of reproduction calculation processing is described in detail in Patent Document 2 described above.
 以下、その内容について概要を説明する。まず、特性分析部520は、
 まず、補正パラメータとして、正極活物質量mpと、負極活物質量mnと、正極の放電カーブの位置関係の指標Cpと、負極の放電カーブの位置関係の指標Cnと、を求め、記憶する。次に、特性分析部520は、正極11の放電量に正極活物質量mpを乗算し、負極13の放電量に正極活物質量mpを乗算し、正極11(図2参照)の基準質量および負極13(図2参照)の基準質量に基づいて、正極放電曲線および負極放電曲線の計算値を得る。
The outline of the contents will be described below. First, the characteristic analysis unit 520
First, as correction parameters, the positive electrode active material amount m p , the negative electrode active material amount m n , the index C p of the positional relationship of the positive electrode discharge curve, and the index C n of the positional relationship of the negative electrode discharge curve are obtained. ,Remember. Next, characteristic analysis unit 520 multiplies the amount of the positive electrode active material m p in the discharge amount of the positive electrode 11, multiplied by the amount of the positive electrode active material m p in the discharge amount of the negative electrode 13, the reference of the positive electrode 11 (see FIG. 2) Based on the mass and the reference mass of the negative electrode 13 (see FIG. 2), the calculated values of the positive electrode discharge curve and the negative electrode discharge curve are obtained.
 これら計算値を、正極放電曲線計算値C6’および負極放電曲線計算値C8’(図示せず)と呼ぶ。また、これら計算値C6’,C8’の差を電池放電曲線計算値C4’とする。特性分析部520は、電池放電曲線計算値C4’が電池放電曲線C4に近づくように(望ましくは両者が一致するように)補正パラメータmp,mn,Cp,Cnを調整する。そして、調整後の補正パラメータmp,mn,Cp,Cnに基づいて、正極放電曲線計算値C6’および負極放電曲線計算値C8’を再度計算して更新する。その結果が、図7に示す正極放電曲線C6および負極放電曲線C8である。 These calculated values are referred to as a positive electrode discharge curve calculated value C6'and a negative electrode discharge curve calculated value C8'(not shown). Further, the difference between these calculated values C6'and C8' is defined as the battery discharge curve calculated value C4'. The characteristic analysis unit 520 adjusts the correction parameters m p , m n , C p , and C n so that the calculated battery discharge curve value C4'approaches the battery discharge curve C4 (preferably so that they match). Then, the positive electrode discharge curve calculated value C6'and the negative electrode discharge curve calculated value C8'are calculated and updated again based on the adjusted correction parameters m p , m n , C p , and C n. The results are the positive electrode discharge curve C6 and the negative electrode discharge curve C8 shown in FIG.
 図3に戻り、電位・放電量算出部522は、所定の充電状態に対応する放電量を算出する。換言すれば、電位・放電量算出部522は、所定の充電状態に対応する正極電位および負極電位のそれぞれに対応する放電量を算出する。ここで、放電量とは、電池の満充電状態から正極または負極が放電可能な容量を意味し、図7における横軸の値で表される。図7において、「所定の充電状態」における正極電位がVp0(第1の電位)であったとすると、この正極電位Vp0に対応する放電量Qp0(第1の放電量)が正極放電曲線C6から求まる。また、上記「所定の充電状態」における負極電位がVn0(第2の電位)であったとすると、この負極電位Vn0に対応する放電量Qn0(第2の放電量)が負極放電曲線C8から求まる。そして、放電量比較部524は、両者の差分値(Qn0-Qp0)が正であるとき、「放電を行う」旨を決定する。 Returning to FIG. 3, the potential / discharge amount calculation unit 522 calculates the discharge amount corresponding to the predetermined charging state. In other words, the potential / discharge amount calculation unit 522 calculates the discharge amount corresponding to each of the positive electrode potential and the negative electrode potential corresponding to a predetermined charging state. Here, the discharge amount means the capacity that the positive electrode or the negative electrode can discharge from the fully charged state of the battery, and is represented by the value on the horizontal axis in FIG. 7. In FIG. 7, assuming that the positive electrode potential in the “predetermined charging state” is V p0 (first potential), the discharge amount Q p0 (first discharge amount) corresponding to this positive electrode potential V p0 is the positive electrode discharge curve. Obtained from C6. Further, assuming that the negative electrode potential in the above "predetermined charging state" is V n0 (second potential), the discharge amount Q n0 (second discharge amount) corresponding to this negative electrode potential V n0 is the negative electrode discharge curve C8. Obtained from. Then, the discharge amount comparison unit 524 determines that "discharge is performed" when the difference value (Q n0 −Q p0) between the two is positive.
 放電量比較部524が「放電を行う」旨を決定すると、放電制御部508は、容量回復極端子4から正極端子2または負極端子3に電流を流す。その際、容量回復極端子4から正極端子2または負極端子3に流す電気量は、「Qn0-Qp0」またはそれ以上の値にする。より好ましくは、(Qn0-Qp0)に相当する量の反応種が、正極12または負極13から容量回復極14に移動するために必要な電気量を、容量回復極端子4から正極端子2または負極端子3に流すとよい。 When the discharge amount comparison unit 524 determines that "discharging is performed", the discharge control unit 508 causes a current to flow from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3. At that time, the amount of electricity flowing from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 is set to a value of "Q n0- Q p0" or more. More preferably, the amount of electricity required for the reaction species corresponding to (Q n0 −Q p0 ) to move from the positive electrode 12 or the negative electrode 13 to the capacitance recovery electrode 14 is transferred from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2. Alternatively, it may flow to the negative electrode terminal 3.
 これにより、容量回復極端子4から正極端子2または負極端子3に電流を流した後には、正極電位がVp0のときに、負極電位がVn0に至るようになる。そのため、負極電位Vn0を、放電末端の電位、例えばリチウム金属基準で0.2V~1.0Vとしておくとよい。あるいは、これに代えて、負極端子3の開回路電位曲線に基づいて、負極電位Vn0を、負極の全容量に対する充電割合が0~5%の範囲内に対応する電位としてもよい。何れの場合も、負極電位Vn0は、負極放電曲線C8が急速に立ち上がる箇所に設定しておくとよい。これにより、電池の放電終了時の負極電位はVn0に近い値になる。従って、その際の正極電位はVp0となる。すなわち、電池の放電時に正極の開回路電位はVp0以下にはならないので、正極電位Vp0を正極放電曲線C6が急速に低下する前の電位に設定しておけば、正極の過放電を回避できる。Vp0は、例えばリチウム金属基準で3.4V~3.6V、あるいは正極端子2の開回路電位曲線に基づいて、正極の全容量に対する充電割合が0~10%の範囲内に対応する電位に設定することが好ましく、0~5%の範囲内に対応する電位に設定することがより好ましい。これにより、容量回復後に正極の低電位領域の使用を回避でき、正極の材料劣化を抑制することができる。 As a result, after the current is passed from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3, the negative electrode potential reaches V n0 when the positive electrode potential is V p0. Therefore, it is preferable to set the negative electrode potential V n0 to the potential at the discharge end, for example, 0.2 V to 1.0 V based on the lithium metal. Alternatively, instead of this, the negative electrode potential V n0 may be set to a potential corresponding to the range in which the charging ratio to the total capacity of the negative electrode is in the range of 0 to 5%, based on the open circuit potential curve of the negative electrode terminal 3. In any case, the negative electrode potential V n0 may be set at a position where the negative electrode discharge curve C8 rapidly rises. As a result, the negative electrode potential at the end of battery discharge becomes a value close to V n0. Therefore, the positive electrode potential at that time is V p0 . That is, since the open circuit potential of the positive electrode does not become V p0 or less when the battery is discharged, if the positive electrode potential V p0 is set to the potential before the positive electrode discharge curve C6 rapidly decreases, over-discharging of the positive electrode can be avoided. can. V p0 is, for example, 3.4 V to 3.6 V based on the lithium metal, or a potential corresponding to the range where the charge ratio to the total capacity of the positive electrode is in the range of 0 to 10% based on the open circuit potential curve of the positive electrode terminal 2. It is preferable to set it, and it is more preferable to set it to the corresponding potential within the range of 0 to 5%. As a result, the use of the low potential region of the positive electrode can be avoided after the capacity is restored, and the material deterioration of the positive electrode can be suppressed.
 図8は、第2検出モードにおいて制御部500で実行される、第2検出モード処理ルーチンのフローチャートである。
 図8において、ステップS210においては、制御部500(図1参照)の通電電気量決定部502と、容量回復極選択部504と、容量回復電流制御部506と、によって、電池パック300の容量回復処理が実行される。すなわち、容量回復極14(図2参照)から正極12または負極13に反応種を供給する。
FIG. 8 is a flowchart of the second detection mode processing routine executed by the control unit 500 in the second detection mode.
In FIG. 8, in step S210, the capacity of the battery pack 300 is recovered by the energization electric energy determination unit 502 of the control unit 500 (see FIG. 1), the capacity recovery pole selection unit 504, and the capacity recovery current control unit 506. The process is executed. That is, the reaction species is supplied from the capacity recovery electrode 14 (see FIG. 2) to the positive electrode 12 or the negative electrode 13.
 次に、ステップS220において、特性分析部520は、電池放電曲線C4から正極放電曲線C6および負極放電曲線C8を取得する。すなわち、再現計算処理によって、電池放電曲線C4を正極放電曲線C6と負極放電曲線C8とに分離する。次に、ステップS230において、電位・放電量算出部522は、正極端子2および負極端子3の各々について、「所定の充電状態」に対応する放電量Qp0,Qn0を算出する。 Next, in step S220, the characteristic analysis unit 520 acquires the positive electrode discharge curve C6 and the negative electrode discharge curve C8 from the battery discharge curve C4. That is, the battery discharge curve C4 is separated into a positive electrode discharge curve C6 and a negative electrode discharge curve C8 by the reproduction calculation process. Next, in step S230, the potential / discharge amount calculation unit 522 calculates the discharge amounts Q p0 and Q n0 corresponding to the “predetermined charging state” for each of the positive electrode terminal 2 and the negative electrode terminal 3.
 次に、ステップS240において、放電量比較部524は、上記放電量Qp0,Qn0の差分値(Qn0-Qp0)を算出する。次に、ステップS250において、放電量比較部524は、差分値(Qn0-Qp0)が正の値であるか否かを判定する。 Next, in step S240, the discharge amount comparison unit 524 calculates the difference value (Q n0 −Q p0 ) between the discharge amounts Q p0 and Q n0. Next, in step S250, the discharge amount comparison unit 524 determines whether or not the difference value (Q n0 −Q p0 ) is a positive value.
 ステップS250において「NO」(すなわちQn0≦Qp0)と判定されると、放電量比較部524は、ステップS270において、「放電を行わない」すなわち「容量回復極端子4から正極端子2または負極端子3に電流を流さない」旨を決定する。一方、ステップS250において「YES」(すなわちQn0>Qp0)と判定されると、放電量比較部524は、ステップS260において、「放電を行う」すなわち「容量回復極端子4から正極端子2または負極端子3に電流を流す」旨を決定する。これにより、放電制御部508は、容量回復極端子4と正極端子2または負極端子3との間に電流を流すように、正負極切替スイッチ358と、容量回復スイッチ357とを制御する。 When it is determined in step S250 that "NO" (that is, Q n0 ≤ Q p0 ), the discharge amount comparison unit 524 "does not discharge" in step S270, that is, "from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode". It is determined that no current is passed through the terminal 3. On the other hand, if it is determined in step S250 that "YES" (that is, Q n0 > Q p0 ), the discharge amount comparison unit 524 "discharges" in step S260, that is, "from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or It is determined that a current is passed through the negative electrode terminal 3. As a result, the discharge control unit 508 controls the positive / negative electrode changeover switch 358 and the capacitance recovery switch 357 so that a current flows between the capacitance recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3.
 なお、ステップS210と、ステップS220の間の期間では、電池パック300に対して、通常の電池として任意の充放電を行ってもよい。なお、上述の例で適用した電池放電曲線C4、正極放電曲線C6および負極放電曲線C8は、何れも「放電曲線」であったが、これらに代えて対応する「充電曲線」すなわち電池充電曲線、正極充電曲線および負極充電曲線(図示略)を適用してもよい。 In the period between step S210 and step S220, the battery pack 300 may be arbitrarily charged and discharged as a normal battery. The battery discharge curve C4, the positive electrode discharge curve C6, and the negative electrode discharge curve C8 applied in the above example were all "discharge curves", but instead of these, the corresponding "charge curve", that is, the battery charge curve, A positive electrode charging curve and a negative electrode charging curve (not shown) may be applied.
 以上のように、第2検出モードによれば、電池パック300の電池放電曲線C4を解析して正極放電曲線C6および負極放電曲線C8を推定し、所定の正極電位Vp0と所定の負極電位Vn0とが一致するように容量回復極端子4から正極端子2または負極端子3に電流を流すことができる。従って、第2検出モードによれば、容量回復極端子4から正極端子2または負極端子3に流す電気量を算出できるため、その算出結果に応じて放電制御部508を動作させることができる。これにより、例えば電流を過剰に放電してしまい、回復処理による回復効果を不必要に低下させてしまう可能性を抑制することができる。 As described above, according to the second detection mode, the battery discharge curve C4 of the battery pack 300 is analyzed to estimate the positive electrode discharge curve C6 and the negative electrode discharge curve C8, and the predetermined positive electrode potential V p0 and the predetermined negative electrode potential V A current can be passed from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 so as to coincide with n0. Therefore, according to the second detection mode, the amount of electricity flowing from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 can be calculated, and the discharge control unit 508 can be operated according to the calculation result. As a result, for example, it is possible to suppress the possibility that the current is excessively discharged and the recovery effect of the recovery process is unnecessarily reduced.
 以下、本実施形態の適用例について説明する。
 図9は、正極の利用率と、通電電気量率との関係を示す図である。すなわち、図9は、電池パック300の容量回復処理を行い、50℃環境下において1CAの電流密度で600サイクル充放電した後の、回復処理直後に対する正極の利用率を通電電気量率に対してプロットした結果の一例である。縦軸の正極利用率は、正極材料劣化を示す指標であり、値が低いほど劣化が進行した状態であることを表す。通電電気量率は、電池の容量に対し、正極または負極から容量回復極に流した電気量の割合である。
Hereinafter, application examples of this embodiment will be described.
FIG. 9 is a diagram showing the relationship between the utilization rate of the positive electrode and the energization electric energy rate. That is, FIG. 9 shows the utilization rate of the positive electrode immediately after the recovery process after the capacity recovery process of the battery pack 300 is performed and the battery pack 300 is charged and discharged for 600 cycles at a current density of 1CA in an environment of 50 ° C. with respect to the energized electric energy rate. This is an example of the plotted results. The positive electrode utilization rate on the vertical axis is an index indicating deterioration of the positive electrode material, and the lower the value, the more the deterioration has progressed. The energizing electric energy ratio is the ratio of the electric energy flowing from the positive electrode or the negative electrode to the capacity recovery electrode with respect to the capacity of the battery.
 容量回復処理を行った後に充放電サイクルを行うと、容量回復していない場合よりも正極利用率は低下し、低下割合は通電電気量率が大きいほど増加傾向にある。これは、過剰な回復によって、正極の低電位領域まで使用して充放電サイクルしたことにより、正極の材料劣化が促進されたためである。 When the charge / discharge cycle is performed after the capacity recovery process, the positive electrode utilization rate is lower than when the capacity is not recovered, and the rate of decrease tends to increase as the energization electric energy rate increases. This is because the material deterioration of the positive electrode was promoted by the charge / discharge cycle using the low potential region of the positive electrode due to the excessive recovery.
 図10は、通電電気量率に対する容量回復率の一例を示すグラフである。容量回復率は、電池の初期容量に対する回復した容量の割合である。容量回復率は、通電電気量率が増加するほど増加傾向にある一方で、頭打ちの傾向にある。これは、図7に示す正極と負極との容量の差分値(Qn0-Qp0)が正の値になるまで、すなわち過剰な容量回復処理を施していることに相当する。
 図9および図10の例では、通電電気量率が30~40%程度であれば、正極の利用率低下(正極の材料劣化)を抑えつつ、高い容量回復率(容量回復効果)を得ることができる。仮に、図9および図10の例において通電電気量率が約40%を超過した場合には、正極の低電位領域の使用を検知するため、容量回復極から正極または負極に電流を流すことにより、通電電気量率を下げることができる。すなわち、本実施形態により、正極の材料劣化を抑えつつ、高い容量回復効果を得ることができる。
FIG. 10 is a graph showing an example of the capacity recovery rate with respect to the energization electric energy rate. The capacity recovery rate is the ratio of the recovered capacity to the initial capacity of the battery. The capacity recovery rate tends to increase as the energization electric energy rate increases, but tends to reach a plateau. This corresponds to the fact that the difference value (Q n0 −Q p0 ) of the capacitance between the positive electrode and the negative electrode shown in FIG. 7 becomes a positive value, that is, the excessive capacitance recovery treatment is performed.
In the examples of FIGS. 9 and 10, when the energization electricity amount rate is about 30 to 40%, a high capacity recovery rate (capacity recovery effect) can be obtained while suppressing a decrease in the utilization rate of the positive electrode (material deterioration of the positive electrode). Can be done. If the energization electric energy ratio exceeds about 40% in the examples of FIGS. 9 and 10, by passing a current from the capacitance recovery electrode to the positive electrode or the negative electrode in order to detect the use of the low potential region of the positive electrode. , The energizing electric energy rate can be lowered. That is, according to this embodiment, it is possible to obtain a high capacity recovery effect while suppressing material deterioration of the positive electrode.
[実施形態の効果]
 以上のように好ましい実施形態によれば、容量回復装置(350)は、正極12に接続された正極端子2と負極13に接続された負極端子3と正極12または負極13に反応種を移動させる容量回復極14に接続された容量回復極端子4とを備える二次電池(300)の、容量回復極14から正極12または負極13に反応種を移動させることによって、二次電池(300)の容量回復を行う容量回復電流制御部506と、容量回復電流制御部506が容量回復を行った後に、容量回復極端子4と正極端子2または負極端子3との間で放電を行うか否かを判定する放電要否決定部510と、放電要否決定部510における判定結果が肯定である場合に、正極端子2または負極端子3と容量回復極端子4との間で放電を行う放電制御部508と、を備える。これにより、正極端子2または負極端子3と容量回復極端子4との間で放電を行うことができ、二次電池(300)の正極12の材料劣化を抑制しながら長寿命化を実現できる。
[Effect of Embodiment]
According to the preferred embodiment as described above, the capacity recovery device (350) moves the reaction species to the positive electrode terminal 2 connected to the positive electrode 12, the negative electrode terminal 3 connected to the negative electrode 13, and the positive electrode 12 or the negative electrode 13. By moving the reaction species from the capacity recovery electrode 14 to the positive electrode 12 or the negative electrode 13 of the secondary battery (300) including the capacity recovery electrode terminal 4 connected to the capacity recovery electrode 14, the secondary battery (300) Whether or not to discharge between the capacity recovery electrode terminal 4 and the positive electrode terminal 2 or the negative electrode terminal 3 after the capacity recovery current control unit 506 that recovers the capacity and the capacity recovery current control unit 506 recovers the capacity. Discharge control unit 508 that discharges between the positive electrode terminal 2 or the negative electrode terminal 3 and the capacitance recovery electrode terminal 4 when the determination result in the discharge necessity determination unit 510 and the discharge necessity determination unit 510 for determination is affirmative. And. As a result, discharge can be performed between the positive electrode terminal 2 or the negative electrode terminal 3 and the capacity recovery electrode terminal 4, and a long life can be realized while suppressing material deterioration of the positive electrode 12 of the secondary battery (300).
 また、放電要否決定部510は、容量回復極端子4に対する正極端子2の開回路電位VOCVを計測する開回路電位計測部516と、容量回復極端子4に流した積算電気量から判定電位VOCV0を算出する判定電位算出部514と、開回路電位VOCVが判定電位VOCV0よりも低い場合に判定結果を肯定にする電位比較部518と、を備えることが、さらに好ましい。これにより、二次電池(300)に対して特別な充放電を行うことなく、二次電池(300)の休止時に正極の低電位領域の使用の有無を判定できる。 Further, the discharge necessity determination unit 510 determines the determination potential from the open circuit potential measuring unit 516 that measures the open circuit potential V OCV of the positive electrode terminal 2 with respect to the capacitance recovery electrode terminal 4 and the integrated electric potential that flows through the capacitance recovery electrode terminal 4. and determining the potential calculating unit 514 for calculating a V OCV0, the potential comparing unit 518 that a positive determination result when the open circuit potential V OCV is less than the determination potential V OCV0, be provided with a more preferred. Thereby, it is possible to determine whether or not the low potential region of the positive electrode is used when the secondary battery (300) is inactive without performing special charging / discharging of the secondary battery (300).
 また、放電要否決定部510は、二次電池(300)の電池充電曲線または電池放電曲線C4に基づいて、正極充電曲線または正極放電曲線C6と、負極充電曲線または負極放電曲線C8と、を求める特性分析部520と、正極端子2における所定の第1の電位Vp0と、第1の電位Vp0に対応する第1の放電量Qp0と、負極端子3における所定の第2の電位Vn0と、第2の電位Vn0に対応する第2の放電量Qn0と、を算出する電位・放電量算出部522と、第2の放電量Qn0から第1の放電量Qp0を減算した差分値(Qn0-Qp0)が正値である場合に判定結果を肯定にする放電量比較部524と、を備え、第1の電位Vp0は、リチウム金属基準で3.4V~3.6V、または正極端子2の開回路電位曲線Cに基づいて求められた、正極12の全容量に対する充電割合が0~10%の範囲内に対応する電位であり、第2の電位Vn0は、リチウム金属基準で0.2V~1.0V、または負極端子3の開回路電位曲線に基づいて求められた、負極13の全容量に対する充電割合が0~5%の範囲内に対応する電位であることが、さらに好ましい。放電量比較部524を設けたことにより、容量回復極端子4から正極端子2または負極端子3に流す電気量を差分値(Qn0-Qp0)として算出できる。これにより、例えば電流を過剰に放電してしまい、回復処理による回復効果を不必要に低下させてしまう可能性を抑制することができる。 Further, the discharge necessity determination unit 510 determines the positive electrode charge curve or the positive electrode discharge curve C6 and the negative electrode charge curve or the negative electrode discharge curve C8 based on the battery charge curve or the battery discharge curve C4 of the secondary battery (300). The desired characteristic analysis unit 520, a predetermined first potential V p0 at the positive electrode terminal 2, a first discharge amount Q p0 corresponding to the first potential V p0 , and a predetermined second potential V at the negative electrode terminal 3. The potential / discharge amount calculation unit 522 that calculates n0 and the second discharge amount Q n0 corresponding to the second potential V n0 , and the first discharge amount Q p0 is subtracted from the second discharge amount Q n0. It is provided with a discharge amount comparison unit 524 that affirms the determination result when the difference value (Q n0 −Q p0 ) is a positive value, and the first potential V p0 is 3.4 V to 3 based on the lithium metal standard. It is a potential corresponding to the range of 0 to 10% of the charge ratio with respect to the total capacity of the positive electrode 12 obtained at .6 V or based on the open circuit potential curve C of the positive electrode terminal 2, and the second potential V n0 is 0.2V to 1.0V based on the lithium metal, or at the potential corresponding to the charging ratio of the negative electrode 13 to the total capacity of 0 to 5%, which is obtained based on the open circuit potential curve of the negative electrode terminal 3. It is more preferable to have. By providing the discharge amount comparison unit 524, the amount of electricity flowing from the capacitance recovery electrode terminal 4 to the positive electrode terminal 2 or the negative electrode terminal 3 can be calculated as a difference value (Q n0 −Q p0). As a result, for example, it is possible to suppress the possibility that the current is excessively discharged and the recovery effect of the recovery process is unnecessarily reduced.
 また、放電制御部508は、差分値(Qn0-Qp0)以上に相当する量の反応種を、正極12または負極13から容量回復極14に移動させることが、さらに好ましい。これにより、より確実に二次電池(300)の正極12の材料劣化を抑制しながら長寿命化を実現できる。 Further, it is more preferable that the discharge control unit 508 moves the reaction species in an amount corresponding to the difference value (Q n0 −Q p0 ) or more from the positive electrode 12 or the negative electrode 13 to the capacitance recovery electrode 14. As a result, it is possible to more reliably achieve a longer life while suppressing material deterioration of the positive electrode 12 of the secondary battery (300).
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能であり、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられる他の形態についても、本発明の範囲内に含まれる。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、上記実施形態の構成に他の構成を追加してもよく、構成の一部について他の構成に置換をすることも可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification example]
The present invention is not limited to the above-described embodiment, and various modifications are possible, and other embodiments that can be considered within the scope of the technical idea of the present invention are also described as long as the features of the present invention are not impaired. Included within the scope of the invention. The above-described embodiments are exemplified for the purpose of explaining the present invention in an easy-to-understand manner, and are not necessarily limited to those having all the configurations described. Further, another configuration may be added to the configuration of the above embodiment, and a part of the configuration may be replaced with another configuration. In addition, the control lines and information lines shown in the figure show what is considered necessary for explanation, and do not necessarily show all the control lines and information lines necessary for the product. In practice, it can be considered that almost all configurations are interconnected. Possible modifications to the above embodiment are, for example, as follows.
(1)図1のセル100の場合、正極、負極および容量回復極を内蔵し、封止されているが、本発明は、封止していないセルについても適用可能である。
 例えば、セルの製造段階において、正極・負極を捲回あるいは積層して容器に設置し、その容器に電解液を注液し、封止せずに充放電する。あるいは、仮の封止をして高温度・高電圧で保管し、仮の封止を外してもよい。なお、容器としては、製品の封止前の電池容器でもよいが、正極、負極および容量回復極を電解液に浸漬するための別の容器であってもよい。
(1) In the case of the cell 100 of FIG. 1, a positive electrode, a negative electrode, and a capacity recovery electrode are built in and sealed, but the present invention can be applied to a cell that is not sealed.
For example, in the cell manufacturing stage, the positive electrode and the negative electrode are wound or laminated and installed in a container, and the electrolytic solution is injected into the container and charged / discharged without sealing. Alternatively, the temporary seal may be temporarily sealed and stored at a high temperature and high voltage, and the temporary seal may be removed. The container may be a battery container before sealing the product, but may be another container for immersing the positive electrode, the negative electrode, and the capacity recovery electrode in the electrolytic solution.
(2)上記実施形態における制御部500のハードウエアは一般的なコンピュータによって実現できるため、図8、図6に示したフローチャート、その他上述した各種処理を実行するプログラム等を記憶媒体に格納し、または伝送路を介して頒布してもよい。 (2) Since the hardware of the control unit 500 in the above embodiment can be realized by a general computer, the flowcharts shown in FIGS. 8 and 6 and other programs for executing the above-mentioned various processes are stored in the storage medium. Alternatively, it may be distributed via a transmission line.
(3)図8、図6に示した処理、その他上述した各処理は、上記実施形態ではプログラムを用いたソフトウエア的な処理として説明したが、その一部または全部をASIC(Application Specific Integrated Circuit;特定用途向けIC)、あるいはFPGA(Field Programmable Gate Array)等を用いたハードウエア的な処理に置き換えてもよい。 (3) The processes shown in FIGS. 8 and 6 and other processes described above have been described as software-like processes using a program in the above embodiment, but some or all of them are described as ASIC (Application Specific Integrated Circuit). It may be replaced with hardware-like processing using an application specific integrated circuit) or FPGA (Field Programmable Gate Array).
2 正極端子
3 負極端子
4 容量回復極端子
12 正極
13 負極
14 容量回復極
300 電池パック(二次電池、二次電池システム)
350 充放電装置(容量回復装置、二次電池システム)
506 容量回復電流制御部(容量回復過程)
508 放電制御部(放電制御過程)
510 放電要否決定部(放電要否決定過程)
514 判定電位算出部
516 開回路電位計測部
518 電位比較部
520 特性分析部
522 電位・放電量算出部
524 放電量比較部
C4 電池放電曲線
C6 正極放電曲線
C8 負極放電曲線
p0 放電量(第1の放電量)
n0 放電量(第2の放電量)
p0 正極電位(第1の電位)
n0 負極電位(第2の電位)
OCV 開回路電位
OCV0 判定電位
n0-Qp0 差分値
2 Positive electrode terminal 3 Negative electrode terminal 4 Capacity recovery electrode terminal 12 Positive electrode 13 Negative electrode 14 Capacity recovery electrode 300 Battery pack (secondary battery, secondary battery system)
350 charge / discharge device (capacity recovery device, secondary battery system)
506 Capacity recovery current control unit (capacity recovery process)
508 Discharge control unit (discharge control process)
510 Discharge necessity determination unit (Discharge necessity determination process)
514 Judgment potential calculation unit 516 Open circuit potential measurement unit 518 Potential comparison unit 520 Characteristic analysis unit 522 Potential / discharge amount calculation unit 524 Discharge amount comparison unit C4 Battery discharge curve C6 Positive electrode discharge curve C8 Negative electrode discharge curve Q p0 Discharge amount (1st Discharge amount)
Q n0 discharge amount (second discharge amount)
V p0 positive electrode potential (first potential)
V n0 Negative potential (second potential)
V OCV open circuit potential V OCV0 Judgment potential Q n0- Q p0 Difference value

Claims (6)

  1.  正極に接続された正極端子と負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池の容量回復装置であって、
     前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復電流制御部と、
     前記容量回復電流制御部が容量回復を行った後に、前記容量回復極端子と前記正極端子または前記負極端子との間で放電を行うか否かを判定する放電要否決定部と、
     前記放電要否決定部における判定結果が肯定である場合に、前記正極端子または前記負極端子と前記容量回復極端子との間で放電を行う放電制御部と、を備える
     ことを特徴とする容量回復装置。
    A capacity recovery device for a secondary battery including a positive electrode terminal connected to a positive electrode, a negative electrode terminal connected to a negative electrode, and a capacity recovery electrode terminal connected to a capacity recovery electrode for moving a reaction species to the positive electrode or the negative electrode. hand,
    A capacity recovery current control unit that recovers the capacity of the secondary battery by moving the reaction species from the capacity recovery electrode to the positive electrode or the negative electrode.
    After the capacitance recovery current control unit recovers the capacitance, a discharge necessity determination unit for determining whether or not to discharge between the capacitance recovery electrode terminal and the positive electrode terminal or the negative electrode terminal, and a discharge necessity determination unit.
    A capacity recovery unit comprising a discharge control unit that discharges between the positive electrode terminal or the negative electrode terminal and the capacity recovery electrode terminal when the determination result in the discharge necessity determination unit is affirmative. Device.
  2.  前記放電要否決定部は、
     前記容量回復極端子に対する前記正極端子の開回路電位を計測する開回路電位計測部と、
     前記容量回復極端子に流した積算電気量から判定電位を算出する判定電位算出部と、
     前記開回路電位が前記判定電位よりも低い場合に前記判定結果を肯定にする電位比較部と、を備える
     ことを特徴とする請求項1に記載の容量回復装置。
    The discharge necessity determination unit is
    An open circuit potential measuring unit that measures the open circuit potential of the positive electrode terminal with respect to the capacitance recovery electrode terminal,
    A determination potential calculation unit that calculates the determination potential from the integrated amount of electricity passed through the capacitance recovery electrode terminal,
    The capacity recovery device according to claim 1, further comprising a potential comparison unit that affirms the determination result when the open circuit potential is lower than the determination potential.
  3.  前記放電要否決定部は、
     前記二次電池の電池充電曲線または電池放電曲線に基づいて、正極充電曲線または正極放電曲線と、負極充電曲線または負極放電曲線と、を求める特性分析部と、
     前記正極端子における所定の第1の電位と、前記第1の電位に対応する第1の放電量と、前記負極端子における所定の第2の電位と、前記第2の電位に対応する第2の放電量と、を算出する電位・放電量算出部と、
     前記第2の放電量から前記第1の放電量を減算した差分値が正値である場合に前記判定結果を肯定にする放電量比較部と、を備え、
     前記第1の電位は、リチウム金属基準で3.4V~3.6V、または前記正極端子の開回路電位曲線に基づいて求められた、前記正極の全容量に対する充電割合が0~10%の範囲内に対応する電位であり、
     前記第2の電位は、リチウム金属基準で0.2V~1.0V、または前記負極端子の開回路電位曲線に基づいて求められた、前記負極の全容量に対する充電割合が0~5%の範囲内に対応する電位である
     ことを特徴とする請求項1に記載の容量回復装置。
    The discharge necessity determination unit is
    A characteristic analysis unit that obtains a positive electrode charge curve or a positive electrode discharge curve and a negative electrode charge curve or a negative electrode discharge curve based on the battery charge curve or the battery discharge curve of the secondary battery.
    A predetermined first potential at the positive electrode terminal, a first discharge amount corresponding to the first potential, a predetermined second potential at the negative electrode terminal, and a second potential corresponding to the second potential. The potential / discharge amount calculation unit that calculates the discharge amount,
    A discharge amount comparison unit for affirming the determination result when the difference value obtained by subtracting the first discharge amount from the second discharge amount is a positive value is provided.
    The first potential is 3.4 V to 3.6 V based on the lithium metal, or a charging ratio of 0 to 10% with respect to the total capacity of the positive electrode determined based on the open circuit potential curve of the positive electrode terminal. It is the potential corresponding to the inside,
    The second potential is 0.2 V to 1.0 V based on the lithium metal, or a range in which the charging ratio to the total capacity of the negative electrode is 0 to 5%, which is obtained based on the open circuit potential curve of the negative electrode terminal. The capacity recovery device according to claim 1, wherein the potential is corresponding to the inside.
  4.  前記放電制御部は、前記差分値以上に相当する量の反応種を、前記正極または前記負極から前記容量回復極に移動させる
     ことを特徴とする請求項3に記載の容量回復装置。
    The capacity recovery device according to claim 3, wherein the discharge control unit moves a reaction species in an amount corresponding to the difference value or more from the positive electrode or the negative electrode to the capacity recovery electrode.
  5.  正極に接続された正極端子と負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池の容量回復方法であって、
     前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復過程と、
     前記容量回復過程において容量回復を行った後に、前記容量回復極端子と前記正極端子または前記負極端子との間で放電を行うか否かを判定する放電要否決定過程と、
     前記放電要否決定過程における判定結果が肯定である場合に、前記正極端子または前記負極端子と前記容量回復極端子との間で放電を行う放電制御過程と、を備える
     ことを特徴とする容量回復方法。
    It is a capacity recovery method of a secondary battery including a positive electrode terminal connected to a positive electrode, a negative electrode terminal connected to a negative electrode, and a capacity recovery electrode terminal connected to a capacity recovery electrode for moving a reaction species to the positive electrode or the negative electrode. hand,
    A capacity recovery process for recovering the capacity of the secondary battery by moving the reaction species from the capacity recovery electrode to the positive electrode or the negative electrode.
    After performing capacity recovery in the capacity recovery process, a discharge necessity determination process for determining whether or not to discharge between the capacity recovery electrode terminal and the positive electrode terminal or the negative electrode terminal, and a discharge necessity determination process.
    A capacity recovery including a discharge control process for discharging between the positive electrode terminal or the negative electrode terminal and the capacity recovery electrode terminal when the determination result in the discharge necessity determination process is affirmative. Method.
  6.  正極に接続された正極端子と負極に接続された負極端子と前記正極または前記負極に反応種を移動させる容量回復極に接続された容量回復極端子とを備える二次電池と、
     前記二次電池の容量回復を行う容量回復装置と、を備える二次電池システムであって、
     前記容量回復装置は、
     前記容量回復極から前記正極または前記負極に前記反応種を移動させることによって、前記二次電池の容量回復を行う容量回復電流制御部と、
     前記容量回復電流制御部が容量回復を行った後に、前記容量回復極端子と前記正極端子または前記負極端子との間で放電を行うか否かを判定する放電要否決定部と、
     前記放電要否決定部における判定結果が肯定である場合に、前記正極端子または前記負極端子と前記容量回復極端子との間で放電を行う放電制御部と、を備える
     ことを特徴とする二次電池システム。
    A secondary battery including a positive electrode terminal connected to a positive electrode, a negative electrode terminal connected to a negative electrode, and a capacitance recovery electrode terminal connected to a capacitance recovery electrode for moving a reaction species to the positive electrode or the negative electrode.
    A secondary battery system including a capacity recovery device for recovering the capacity of the secondary battery.
    The capacity recovery device is
    A capacity recovery current control unit that recovers the capacity of the secondary battery by moving the reaction species from the capacity recovery electrode to the positive electrode or the negative electrode.
    After the capacitance recovery current control unit recovers the capacitance, a discharge necessity determination unit for determining whether or not to discharge between the capacitance recovery electrode terminal and the positive electrode terminal or the negative electrode terminal, and a discharge necessity determination unit.
    A secondary feature is provided with a discharge control unit that discharges between the positive electrode terminal or the negative electrode terminal and the capacitance recovery electrode terminal when the determination result in the discharge necessity determination unit is affirmative. Battery system.
PCT/JP2020/039621 2020-03-16 2020-10-21 Capacity recovery device, capacity recovery method, and secondary battery system WO2021186781A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-045466 2020-03-16
JP2020045466A JP2021150028A (en) 2020-03-16 2020-03-16 Capacity recovery device, capacity recovery method, and secondary battery system

Publications (1)

Publication Number Publication Date
WO2021186781A1 true WO2021186781A1 (en) 2021-09-23

Family

ID=77771149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039621 WO2021186781A1 (en) 2020-03-16 2020-10-21 Capacity recovery device, capacity recovery method, and secondary battery system

Country Status (2)

Country Link
JP (1) JP2021150028A (en)
WO (1) WO2021186781A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023157506A1 (en) * 2022-02-18 2023-08-24

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049017A (en) * 2010-08-27 2012-03-08 Hitachi Vehicle Energy Ltd Discharge control system
JP2013045507A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Secondary battery control system
WO2014128902A1 (en) * 2013-02-22 2014-08-28 株式会社 日立製作所 Deterioration diagnosing method for secondary battery and device using same
JP2016051570A (en) * 2014-08-29 2016-04-11 株式会社日立製作所 Lithium ion battery system
JP2016091613A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Battery system and soc recovery method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012049017A (en) * 2010-08-27 2012-03-08 Hitachi Vehicle Energy Ltd Discharge control system
JP2013045507A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Secondary battery control system
WO2014128902A1 (en) * 2013-02-22 2014-08-28 株式会社 日立製作所 Deterioration diagnosing method for secondary battery and device using same
JP2016051570A (en) * 2014-08-29 2016-04-11 株式会社日立製作所 Lithium ion battery system
JP2016091613A (en) * 2014-10-30 2016-05-23 株式会社日立製作所 Battery system and soc recovery method

Also Published As

Publication number Publication date
JP2021150028A (en) 2021-09-27

Similar Documents

Publication Publication Date Title
JP5289558B2 (en) Non-aqueous electrolyte secondary battery charging method and charging device
EP3051305B1 (en) Status determining method for secondary battery, status determining apparatus for secondary battery, secondary battery system, and charge/discharge control apparatus having status determining apparatus
JP5904039B2 (en) Secondary battery control device
WO2011007805A1 (en) Monitoring system for lithium ion secondary cell and monitoring method for lithium ion secondary cell
KR20180068708A (en) Method and apparatus for assessing lifetime of secondary battery
JP6478121B2 (en) Secondary battery recovery processing method and reuse processing method
JP2009181907A (en) Charging method and charging system for lithium-ion secondary battery
WO2021100247A1 (en) Capacity recovering method and manufacturing method for secondary battery
KR101674289B1 (en) Method for manufacturing non-aqueous electrolyte secondary battery
CN112585839A (en) Charging system for secondary battery
KR20190039075A (en) High-temperature aging process of lithium-ion battery
WO2021186781A1 (en) Capacity recovery device, capacity recovery method, and secondary battery system
JP6120083B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP2008113545A (en) Discharge control unit
WO2021186804A1 (en) Battery capacity recovery quantity diagnosis method
WO2021186777A1 (en) Capacity restoration device, manufacturing method of secondary battery, capacity restoration method, and secondary battery system
WO2022034717A1 (en) Capacity restoration device and program
JP2000195558A (en) Charging/discharging control device for nonaqueous electrolyte secondary battery
WO2023032544A1 (en) Secondary battery control device, secondary battery system, and secondary battery capacity recovery method
WO2022168367A1 (en) Capacity recovery device and program
WO2023157506A1 (en) Secondary battery control device and secondary battery system
EP4300626A1 (en) Method for recovering capacity of alkaline rechargeable battery
CN116298978B (en) Method for qualitatively analyzing capacity loss of lithium ion battery
WO2022244561A1 (en) Capacity recovery device, secondary battery system, and capacity recovery method
JP2024030741A (en) Secondary battery control device and secondary battery control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20925520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20925520

Country of ref document: EP

Kind code of ref document: A1