JP7526026B2 - Carbon fiber reinforced plastic plate, processed product, and method for manufacturing carbon fiber reinforced plastic plate - Google Patents

Carbon fiber reinforced plastic plate, processed product, and method for manufacturing carbon fiber reinforced plastic plate Download PDF

Info

Publication number
JP7526026B2
JP7526026B2 JP2020077559A JP2020077559A JP7526026B2 JP 7526026 B2 JP7526026 B2 JP 7526026B2 JP 2020077559 A JP2020077559 A JP 2020077559A JP 2020077559 A JP2020077559 A JP 2020077559A JP 7526026 B2 JP7526026 B2 JP 7526026B2
Authority
JP
Japan
Prior art keywords
carbon fiber
reinforced plastic
fiber reinforced
nonwoven fabric
plastic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020077559A
Other languages
Japanese (ja)
Other versions
JP2021172012A (en
Inventor
亮 杉浦
有佑 保科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futaba Corp
Original Assignee
Futaba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futaba Corp filed Critical Futaba Corp
Priority to JP2020077559A priority Critical patent/JP7526026B2/en
Priority to CN202110418120.3A priority patent/CN113547800B/en
Publication of JP2021172012A publication Critical patent/JP2021172012A/en
Application granted granted Critical
Publication of JP7526026B2 publication Critical patent/JP7526026B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/08Impregnating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/06Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by a fibrous or filamentary layer mechanically connected, e.g. by needling to another layer, e.g. of fibres, of paper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/12Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer characterised by the relative arrangement of fibres or filaments of different layers, e.g. the fibres or filaments being parallel or perpendicular to each other
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B2038/0052Other operations not otherwise provided for
    • B32B2038/0076Curing, vulcanising, cross-linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/20All layers being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、炭素繊維強化プラスチック板、加工品および炭素繊維強化プラスチック板の製造方法に関する。 The present invention relates to carbon fiber reinforced plastic plates, processed products, and methods for manufacturing carbon fiber reinforced plastic plates.

炭素繊維強化プラスチック(以下、「CFRP」とする場合がある)は、軽量で高い強度を有し、釣竿やゴルフクラブのシャフト等のスポーツ用途、自動車や航空機等の産業用途などの他、建築物の補強等の建設分野等にも幅広く用いられている。 Carbon fiber reinforced plastics (hereinafter sometimes referred to as "CFRP") are lightweight and strong, and are widely used in sports applications such as fishing rods and golf club shafts, industrial applications such as automobiles and aircraft, and in the construction industry, such as for reinforcing buildings.

例えば、特許文献1には、トウ状の炭素繊維糸の複数本が互いに並列に配列されてなるシートの複数枚が、それぞれのシートの炭素繊維糸の配列方向が基準とする方向に対して異なる角度をもって積層された状態で、ステッチ糸で一体化されたステッチ基材について、開示されている。 For example, Patent Document 1 discloses a stitch substrate in which multiple sheets each having multiple tow-shaped carbon fiber threads arranged in parallel with each other are stacked together with the carbon fiber threads of each sheet arranged at different angles to a reference direction, and the sheets are integrated with stitch threads.

また、特許文献2では、強化繊維束を単糸1000本当たりの幅が1.3mm以上になるように開繊拡幅して得られた一軸配向強化繊維シートに目付け10g/m以下のホットメルト接着剤から成る繊維ウェブを接合してなる複合材料用の強化繊維配向シートについて、開示されている。 Patent Document 2 discloses a reinforcing fiber oriented sheet for composite materials, which is obtained by bonding a fiber web made of a hot melt adhesive having a basis weight of 10 g/m2 or less to a uniaxially oriented reinforcing fiber sheet obtained by spreading and widening a reinforcing fiber bundle so that the width per 1,000 single yarns is 1.3 mm or more.

特許第4534409号公報Patent No. 4534409 特開2005-231151号公報JP 2005-231151 A

特許文献1、2のように、炭素繊維の織布に母材を含侵させたCFRPの場合、炭素繊維の織布の配向方向と同一方向に対する強度に優れているものの、炭素繊維の織布の配向方向とは異なる方向に対しては、強度に劣る。そのため、炭素繊維の織布を用いたCFRPとしては強度に異方性があることとなり、ローラーや研削用ホイール等の、強度に極端な偏りが無い程度に等方性の要求される加工品の用途としてこのようなCFRPは不向きである。 In the case of CFRP in which a base material is impregnated into a woven carbon fiber fabric, as in Patent Documents 1 and 2, the strength is excellent in the same direction as the orientation direction of the woven carbon fiber fabric, but the strength is inferior in directions different from the orientation direction of the woven carbon fiber fabric. Therefore, CFRP using woven carbon fiber fabric has anisotropy in strength, and such CFRP is not suitable for use in processed products that require isotropy without extreme bias in strength, such as rollers and grinding wheels.

そこで、本発明は、極端な偏りが無い程度に等方性のある強度を満足することのできる、炭素繊維強化プラスチック板、加工品および炭素繊維強化プラスチック板の製造方法を提供することを目的とする。 The present invention aims to provide a carbon fiber reinforced plastic plate, processed product, and method for manufacturing a carbon fiber reinforced plastic plate that can satisfy isotropic strength without extreme bias.

上記課題を解決するため、本発明の炭素繊維強化プラスチック板は、繊維長が10~70mmの炭素繊維を含み、配向方向を有する第1炭素繊維不織布と、母材とを有する第1炭素繊維強化プラスチック層と、繊維長が10~70mmの炭素繊維を含み、前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向と直交する配向方向を有する第2炭素繊維不織布と、母材とを有する第2炭素繊維強化プラスチック層と、を備え、少なくとも前記第1炭素繊維強化プラスチック層と前記第2炭素繊維強化プラスチック層とが1層ずつ同数積層する。 In order to solve the above problems, the carbon fiber reinforced plastic plate of the present invention comprises a first carbon fiber reinforced plastic layer having a first carbon fiber nonwoven fabric containing carbon fibers with a fiber length of 10 to 70 mm and having an orientation direction, and a matrix, and a second carbon fiber reinforced plastic layer having a second carbon fiber nonwoven fabric containing carbon fibers with a fiber length of 10 to 70 mm and having an orientation direction perpendicular to the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer, and a matrix, and at least one of the first carbon fiber reinforced plastic layer and one of the second carbon fiber reinforced plastic layer are laminated in equal numbers.

繊維長が10~70mmの炭素繊維を含み、前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する配向方向を有する第3炭素繊維不織布と、母材とを有する第3炭素繊維強化プラスチック層と、繊維長が10~70mmの炭素繊維を含み、前記第3炭素繊維強化プラスチック層の前記第3炭素繊維不織布の配向方向と直交し、かつ前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する配向方向を有する第4炭素繊維不織布と、母材とを有する第4炭素繊維強化プラスチック層と、を備え、前記第1炭素繊維強化プラスチック層と、前記第2炭素繊維強化プラスチック層と、前記第3炭素繊維強化プラスチック層と、前記第4炭素繊維強化プラスチック層とが少なくとも1層ずつ同数積層してもよい。 A third carbon fiber reinforced plastic layer including a third carbon fiber nonwoven fabric having a fiber length of 10 to 70 mm and an orientation direction intersecting at an angle of 45 degrees with the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer, and a base material; and a fourth carbon fiber reinforced plastic layer including a fourth carbon fiber nonwoven fabric having a fiber length of 10 to 70 mm and an orientation direction perpendicular to the orientation direction of the third carbon fiber nonwoven fabric of the third carbon fiber reinforced plastic layer and intersecting at an angle of 45 degrees with the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer, and a base material, and the first carbon fiber reinforced plastic layer, the second carbon fiber reinforced plastic layer, the third carbon fiber reinforced plastic layer, and the fourth carbon fiber reinforced plastic layer may be laminated in the same number of layers, at least one each.

前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向と平行な方向における第1曲げ強度と、前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と平行な方向における第2曲げ強度と、前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する交差方向と平行な方向における第3曲げ強度と、の強度比が1:0.8~1.2:0.8~1.2であってもよい。 The strength ratio of a first bending strength in a direction parallel to the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer, a second bending strength in a direction parallel to the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer, and a third bending strength in a direction parallel to a cross direction that crosses the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer at an angle of 45 degrees may be 1:0.8-1.2:0.8-1.2.

前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向と平行な方向における第1曲げ弾性率と、前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と平行な方向における第2曲げ弾性率と、前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する交差方向と平行な方向における第3曲げ弾性率と、の比率が1:0.8~1.2:0.8~1.2であってもよい。 The ratio of a first flexural modulus in a direction parallel to the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer, a second flexural modulus in a direction parallel to the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer, and a third flexural modulus in a direction parallel to a cross direction that crosses the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer at an angle of 45 degrees may be 1:0.8-1.2:0.8-1.2.

前記母材が熱硬化性樹脂であってもよい。 The base material may be a thermosetting resin.

前記炭素繊維強化プラスチック板に対する炭素繊維不織布の繊維体積含有率が20~40体積%であってもよい。 The fiber volume content of the carbon fiber nonwoven fabric relative to the carbon fiber reinforced plastic plate may be 20 to 40 volume percent.

前記炭素繊維強化プラスチック板の表面の平面度が50mmあたり0.005~0.05mmであってもよい。 The flatness of the surface of the carbon fiber reinforced plastic plate may be 0.005 to 0.05 mm per 50 mm.

また、上記課題を解決するために、本発明の加工品は、本発明の炭素繊維強化プラスチック板を研削加工した加工品である。 In order to solve the above problems, the processed product of the present invention is a processed product obtained by grinding the carbon fiber reinforced plastic plate of the present invention.

前記加工品がローラーであってもよい。 The processed product may be a roller.

前記加工品が研削用ホイールであってもよい。 The workpiece may be a grinding wheel.

また、上記課題を解決するために、本発明の炭素繊維強化プラスチック板の製造方法は、本発明の炭素繊維強化プラスチック板の製造方法であって、母材を含浸させた積層体を硬化させる硬化工程を含み、前記積層体は、少なくとも前記第1炭素繊維強化プラスチック層と前記第2炭素繊維強化プラスチック層とが1層ずつ同数積層した積層体である。 In order to solve the above problems, the method for producing a carbon fiber reinforced plastic plate of the present invention includes a curing step of curing a laminate impregnated with a base material, and the laminate is a laminate in which at least one of the first carbon fiber reinforced plastic layer and one of the second carbon fiber reinforced plastic layer are laminated in equal numbers.

前記積層体は、前記第1炭素繊維強化プラスチック層と、前記第2炭素繊維強化プラスチック層と、前記第3炭素繊維強化プラスチック層と、前記第4炭素繊維強化プラスチック層とが少なくとも1層ずつ同数積層した積層体であってもよい。 The laminate may be a laminate in which at least one each of the first carbon fiber reinforced plastic layer, the second carbon fiber reinforced plastic layer, the third carbon fiber reinforced plastic layer, and the fourth carbon fiber reinforced plastic layer are laminated in equal numbers.

前記硬化工程後、前記積層体の表面をフライス加工するフライス加工工程を含んでもよい。 After the curing step, a milling step may be included in which the surface of the laminate is milled.

本発明によれば、極端な偏りが無い程度に等方性のある強度を満足することのできる、炭素繊維強化プラスチック板、加工品および炭素繊維強化プラスチック板の製造方法を提供することができる。 The present invention provides carbon fiber reinforced plastic plates, processed products, and methods for manufacturing carbon fiber reinforced plastic plates that can satisfy isotropic strength without extreme bias.

炭素繊維の配向方向について説明する炭素繊維不織布の模式斜視図である。FIG. 2 is a schematic perspective view of a carbon fiber nonwoven fabric illustrating the orientation direction of carbon fibers. 本発明の一実施形態に係る炭素繊維強化プラスチック板200の模式斜視図である。FIG. 1 is a schematic perspective view of a carbon fiber reinforced plastic plate 200 according to one embodiment of the present invention. 図2とは異なる態様の、本発明の一実施形態に係る炭素繊維強化プラスチック板300の模式斜視図である。FIG. 3 is a schematic perspective view of a carbon fiber reinforced plastic plate 300 according to one embodiment of the present invention, which is different from FIG. 2 . 炭素繊維強化プラスチック板200、300の模式斜視図である。1 is a schematic perspective view of carbon fiber reinforced plastic plates 200 and 300. FIG. ローラー400、研削用ホイール500の斜視図である。4 is a perspective view of a roller 400 and a grinding wheel 500. FIG. 実施例において、炭素繊維強化プラスチック板について行った曲げ強度の評価結果を示すグラフである。1 is a graph showing the results of bending strength evaluation performed on a carbon fiber reinforced plastic plate in an example. 実施例において、炭素繊維強化プラスチック板について行った弾性率の評価結果を示すグラフである。1 is a graph showing the results of evaluation of elastic modulus performed on a carbon fiber reinforced plastic plate in an example.

以下、本発明に係る炭素繊維強化プラスチック板、加工品および炭素繊維強化プラスチック板の製造方法の一実施形態について、図面を参照しつつ説明する。なお、本発明は以下の例に限定されるものではない。 Below, an embodiment of the carbon fiber reinforced plastic plate, processed product, and method for manufacturing the carbon fiber reinforced plastic plate according to the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following example.

[炭素繊維強化プラスチック板]
本発明の炭素繊維強化プラスチック板は、第1炭素繊維強化プラスチック層と、第2炭素繊維強化プラスチック層と、を備える。CFRPシートやプリプレグ、フィルムのように曲げられるような柔軟性はなく、硬く剛性のある板である。
[Carbon fiber reinforced plastic plate]
The carbon fiber reinforced plastic plate of the present invention includes a first carbon fiber reinforced plastic layer and a second carbon fiber reinforced plastic layer. The plate does not have the flexibility to be bent like a CFRP sheet, prepreg, or film, but is hard and rigid.

〈第1炭素繊維強化プラスチック層〉
第1炭素繊維強化プラスチック層は、第1炭素繊維不織布と、母材とを有する層である。炭素繊維として不織布を採用し、母材と組み合わせた複合材料層とする。
<First carbon fiber reinforced plastic layer>
The first carbon fiber reinforced plastic layer is a layer having a first carbon fiber nonwoven fabric and a base material. The nonwoven fabric is used as carbon fibers, and is combined with the base material to form a composite material layer.

(第1炭素繊維不織布)
本発明に用いることのできる炭素繊維不織布は、炭素繊維を織らずニードルパンチ法によって3次元に絡み合わせたシート状の布である。炭素繊維は、軽くて強いという長所があり、例えば鉄と比較すると比重で1/4倍、比強度で10倍、比弾性率が7倍ある。その他にも、耐摩耗性、耐熱性、熱伸縮性、耐酸性、電気伝導性に優れる。例えば、アクリル繊維またはピッチを原料とし、原料を高温で炭化して作ることが可能であり、炭素繊維としては有機繊維の前駆体を加熱炭素化処理して得られる、質量比で90%以上が炭素で構成される繊維が挙げられる。
(First carbon fiber nonwoven fabric)
The carbon fiber nonwoven fabric that can be used in the present invention is a sheet-like cloth in which carbon fibers are not woven but are three-dimensionally entangled by a needle punch method. Carbon fibers have the advantage of being light and strong, and for example, compared to iron, it has 1/4 the specific gravity, 10 times the specific strength, and 7 times the specific elastic modulus. In addition, it has excellent abrasion resistance, heat resistance, thermal expansion and contraction resistance, acid resistance, and electrical conductivity. For example, it can be made by using acrylic fiber or pitch as a raw material and carbonizing the raw material at high temperature. Examples of carbon fibers include fibers that are obtained by heating and carbonizing an organic fiber precursor and are composed of 90% or more by mass of carbon.

炭素繊維として、アクリル繊維を使った炭素繊維はPAN(Polyacrylonitrile)系炭素繊維、ピッチを使った炭素繊維はピッチ(PITCH)系炭素繊維と区分される。さらにピッチ系炭素繊維の場合、等方性ピッチ系炭素繊維からは汎用の炭素繊維が製造され、メソフェーズピッチ系からは高強度で高弾性率の炭素繊維が製造される。本発明では、PAN系炭素繊維およびピッチ系炭素繊維のいずれも使用することができる。例えば、剛性のあるCFRPを得るために、剛性に優れるピッチ系炭素繊維を使用することができ、また、強度のあるCFRPを得るために、強度に優れるPAN系炭素繊維を使用することができる。 Carbon fibers are classified as PAN (Polyacrylonitrile)-based carbon fibers, which use acrylic fibers, and pitch-based carbon fibers, which use pitch. In the case of pitch-based carbon fibers, general-purpose carbon fibers are produced from isotropic pitch-based carbon fibers, and high-strength, high-elasticity carbon fibers are produced from mesophase pitch-based carbon fibers. In the present invention, both PAN-based carbon fibers and pitch-based carbon fibers can be used. For example, pitch-based carbon fibers, which have excellent rigidity, can be used to obtain a rigid CFRP, and PAN-based carbon fibers, which have excellent strength, can be used to obtain a strong CFRP.

このような炭素繊維不織布としては、例えばPAN系の炭素繊維を基本とし、質量300~1500g/m、厚みが3~15mmのものを使用することができる。また、炭素繊維へレイヨン繊維、アクリル繊維、可塑性樹脂繊維、その他各種繊維を所定比率で複合した混合繊維を用いることもできる。 Such carbon fiber nonwoven fabrics may be, for example, based on PAN-based carbon fibers, have a mass of 300 to 1500 g/ m2 , and a thickness of 3 to 15 mm. Also, mixed fibers may be used in which carbon fibers are combined with rayon fibers, acrylic fibers, plastic resin fibers, or other types of fibers in a predetermined ratio.

炭素繊維不織布として、航空機の端材を再利用することができるため、連続繊維の中間基材を炭素繊維不織布にしたものと比較して、航空機の端材を再利用した炭素繊維不織布の方が、コストが安い点がメリットとなる。また、炭素繊維不織布は、炭素繊維織布と比べてフライス加工等の加工時に毛羽立ちが抑えられるため、加工性に優れ、また、加工後の加工品の表面状態が平滑で仕上がり性にも優れる。 Carbon fiber nonwoven fabric can be made from recycled aircraft scraps, so compared to carbon fiber nonwoven fabric made from continuous fiber intermediate substrates, the advantage of recycled aircraft scraps is that they are less expensive. In addition, carbon fiber nonwoven fabric is easier to process than carbon fiber woven fabric because it is less likely to fuzz during milling and other processing, and the surface condition of the processed product after processing is smooth and has excellent finish.

(炭素繊維の繊維長)
炭素繊維不織布は繊維長が10~70mmの炭素繊維を含む。繊維長が10~70mmであることにより、ニードルパンチ法により炭素繊維を3次元に絡み合わせることが出来ると共に、炭素繊維に配向性を付与することができる。繊維長が10mm未満の場合には、炭素繊維を3次元に絡み合わせること困難となり、不織布を形成することができない場合がある。また、繊維長が70mmよりも長い炭素繊維は、繊維長が長すぎることにより炭素繊維に配向性を付与することが困難となるおそれがある。
(Carbon fiber length)
The carbon fiber nonwoven fabric contains carbon fibers having a fiber length of 10 to 70 mm. The fiber length of 10 to 70 mm allows the carbon fibers to be three-dimensionally entangled by the needle punch method and allows the carbon fibers to be oriented. If the fiber length is less than 10 mm, it may be difficult to entangle the carbon fibers three-dimensionally, and it may not be possible to form a nonwoven fabric. In addition, if the fiber length of the carbon fibers is longer than 70 mm, it may be difficult to impart orientation to the carbon fibers due to the excessive fiber length.

(炭素繊維不織布の繊維の配向方向)
炭素繊維不織布の繊維の配向方向について、図1を用いて説明する。図1は、炭素繊維の配向方向について説明する炭素繊維不織布の模式斜視図である。炭素繊維不織布シート100は、ニードルパンチ法により形成されたシートであり、矢印で示す配向方向に炭素繊維が配向している。この配向方向は、ニードルパンチ法において、例えばバーブと呼ばれる突起のついた針を数10回/cm以上突き刺すことにより繊維同士を機械的に絡ませて不織布に加工する際の、炭素繊維の進行方向(すなわちマシンディレクション)と直交する。
(Orientation direction of fibers in carbon fiber nonwoven fabric)
The orientation direction of the fibers in the carbon fiber nonwoven fabric will be described with reference to FIG. 1. FIG. 1 is a schematic perspective view of the carbon fiber nonwoven fabric to explain the orientation direction of the carbon fibers. The carbon fiber nonwoven fabric sheet 100 is a sheet formed by a needle punching method, and the carbon fibers are oriented in the orientation direction indicated by the arrow. This orientation direction is perpendicular to the traveling direction of the carbon fibers (i.e., the machine direction) when the fibers are mechanically entangled with each other and processed into a nonwoven fabric by piercing the nonwoven fabric with a needle having a protrusion called a barb several tens of times/cm2 or more in the needle punching method.

ただし、織布とは異なり、不織布の場合には炭素繊維の全てが同一方向に配向するのではなく、点線で示す繊維のように、配向方向とは異なる方向を向く炭素繊維も存在する。本発明では、配向している割合が一番高い方向を配向方向とする。配向比率が一番高い方向の機械特性が一番高くなる。 However, unlike woven fabrics, in nonwoven fabrics, not all carbon fibers are oriented in the same direction; some carbon fibers, such as those shown by the dotted lines, are oriented in a direction different from the oriented direction. In the present invention, the direction with the highest degree of orientation is regarded as the oriented direction. The mechanical properties of the direction with the highest degree of orientation are the highest.

(母材)
本発明の炭素繊維強化プラスチック板において、母材は炭素繊維の間隙を充填する材料であり、合成樹脂や天然樹脂を用いることができる。CFRP板としての強度を確保する観点から、エポキシ樹脂やウレタン樹脂等の熱硬化性樹脂を母材として用いることができる。また、炭素繊維との相溶性の点から、ポリブチレンサクシネート(PBS)やポリフェニレンサルファイド(PPS)も用いることができる。
(Base material)
In the carbon fiber reinforced plastic plate of the present invention, the base material is a material that fills the gaps between the carbon fibers, and synthetic resins or natural resins can be used. From the viewpoint of ensuring the strength of the CFRP plate, thermosetting resins such as epoxy resins and urethane resins can be used as the base material. In addition, polybutylene succinate (PBS) and polyphenylene sulfide (PPS) can also be used from the viewpoint of compatibility with carbon fibers.

特に、母材としてエポキシ樹脂を使用する場合には、ビスフェノールAやビスフェノールFとエピクロルヒドリンとの共重合体を主剤とし、種々のポリアミンや無水フタル酸等の酸無水物を硬化剤として使用することができる。また、CFRP板に溶剤が含まれないよう、また、板としての痩せが生じないよう、無溶剤型の樹脂を使用することが好ましく、炭素繊維との複合の容易性の観点から、常温で固形の樹脂よりも液状の樹脂を用いることが好ましい。 In particular, when epoxy resin is used as the base material, a copolymer of bisphenol A or bisphenol F and epichlorohydrin can be used as the main agent, and various polyamines or acid anhydrides such as phthalic anhydride can be used as the hardener. In order to prevent the CFRP plate from containing solvents and to prevent the plate from shrinking, it is preferable to use a solvent-free resin, and from the viewpoint of ease of compounding with carbon fiber, it is preferable to use a liquid resin rather than a solid resin at room temperature.

エポキシ樹脂としては、具体的にはエポキシ当量150~300の液状無溶剤型のビスフェノールAを主剤とし、これと相溶し反応硬化可能なビスアミノ化合物を硬化剤として使用することができる。例えば、これらの主剤と硬化剤を混合後、ポットライフ以前に炭素繊維と複合化することで、CFRP板とすることができる。 Specifically, the epoxy resin can be a liquid solvent-free bisphenol A with an epoxy equivalent of 150 to 300 as the base, and a bisamino compound that is compatible with this and can be reactively cured as the hardener. For example, after mixing the base and hardener, it can be composited with carbon fiber before the pot life ends to make a CFRP plate.

〈第2炭素繊維強化プラスチック層〉
第2炭素繊維強化プラスチック層は、繊維長が10~70mmの炭素繊維を含み、前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向と直交する配向方向を有する第2炭素繊維不織布と、母材とを有する層である。母材の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
<Second carbon fiber reinforced plastic layer>
The second carbon fiber reinforced plastic layer is a layer having a base material and a second carbon fiber nonwoven fabric containing carbon fibers having a fiber length of 10 to 70 mm and having an orientation direction perpendicular to the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer. Details of the base material are the same as those described in the section "First carbon fiber reinforced plastic layer," and therefore will not be described here.

(第2炭素繊維不織布)
第2炭素繊維不織布に用いることのできる炭素繊維不織布の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
(Second carbon fiber nonwoven fabric)
Details of the carbon fiber nonwoven fabric that can be used for the second carbon fiber nonwoven fabric are similar to those explained in the section entitled "First carbon fiber reinforced plastic layer," and therefore will not be explained here.

(第2炭素繊維不織布の配向方向)
第2炭素繊維不織布は、配向方向が第1炭素繊維不織布の配向方向と直交する点で、第1炭素繊維不織布とは異なる。そこで、第1炭素繊維不織布と同様の不織布の配向方向を変えたものを第2炭素繊維不織布として使用してもよく、第1炭素繊維不織布とは異なる不織布を使用してもよい。ただし、炭素繊維強化プラスチック板の強度の等方性を考慮すると、第1炭素繊維不織布と同様の不織布の配向方向を変えたものを第2炭素繊維不織布として使用することが好ましい。なお、配向方向の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
(Orientation direction of second carbon fiber nonwoven fabric)
The second carbon fiber nonwoven fabric is different from the first carbon fiber nonwoven fabric in that the orientation direction of the second carbon fiber nonwoven fabric is perpendicular to the orientation direction of the first carbon fiber nonwoven fabric. Therefore, a nonwoven fabric similar to the first carbon fiber nonwoven fabric but with a different orientation direction may be used as the second carbon fiber nonwoven fabric, or a nonwoven fabric different from the first carbon fiber nonwoven fabric may be used. However, considering the isotropy of the strength of the carbon fiber reinforced plastic plate, it is preferable to use a nonwoven fabric similar to the first carbon fiber nonwoven fabric but with a different orientation direction as the second carbon fiber nonwoven fabric. Details of the orientation direction are the same as those described in the section on the first carbon fiber reinforced plastic layer, and therefore will not be described here.

本発明の炭素繊維強化プラスチック板の具体例について、図2を用いて説明する。図2は、本発明の一実施形態に係る炭素繊維強化プラスチック板の模式斜視図である。図2(a)は4枚の炭素繊維不織布シート100を積層する順に重ねたものである。シート平面において左右方向(図2の横方向)をx方向とした場合、x方向に対して90度の方向d1が炭素繊維の配向方向となる炭素繊維不織布のシートを第1炭素繊維不織布シート101とすると、x方向に対して0度の方向、すなわちx方向と平行な方向d2が炭素繊維の配向方向となる炭素繊維不織布のシートが、第2炭素繊維不織布シート102となる。 A specific example of the carbon fiber reinforced plastic plate of the present invention will be described with reference to FIG. 2. FIG. 2 is a schematic perspective view of a carbon fiber reinforced plastic plate according to one embodiment of the present invention. FIG. 2(a) shows four carbon fiber nonwoven fabric sheets 100 stacked in the order of lamination. If the left-right direction (horizontal direction in FIG. 2) on the sheet plane is the x direction, and a carbon fiber nonwoven fabric sheet in which the direction d1 at 90 degrees to the x direction is the carbon fiber orientation direction is the first carbon fiber nonwoven fabric sheet 101, a carbon fiber nonwoven fabric sheet in which the direction d2 at 0 degrees to the x direction, i.e., parallel to the x direction, is the carbon fiber orientation direction is the second carbon fiber nonwoven fabric sheet 102.

図2(b)は、図2(a)の4枚の炭素繊維不織布シート100が、第1炭素繊維不織布シート101と第2炭素繊維不織布シート102とが交互に2枚ずつ積層して母材で固められ、炭素繊維強化プラスチック板200となったものである。炭素繊維強化プラスチック板200では、第1炭素繊維不織布シート101と第2炭素繊維不織布シート102が、母材で固められて第1炭素繊維強化プラスチック層111と第2炭素繊維強化プラスチック層112となっている。 In FIG. 2(b), the four carbon fiber nonwoven fabric sheets 100 in FIG. 2(a) are stacked alternately in pairs of first carbon fiber nonwoven fabric sheets 101 and second carbon fiber nonwoven fabric sheets 102 and solidified with a base material to form a carbon fiber reinforced plastic plate 200. In the carbon fiber reinforced plastic plate 200, the first carbon fiber nonwoven fabric sheet 101 and the second carbon fiber nonwoven fabric sheet 102 are solidified with a base material to form a first carbon fiber reinforced plastic layer 111 and a second carbon fiber reinforced plastic layer 112.

炭素繊維強化プラスチック板200は、少なくとも第1炭素繊維強化プラスチック層111と第2炭素繊維強化プラスチック層112とが1層ずつ同数積層する。このように炭素繊維の配向方向が異なる炭素繊維強化プラスチック層が同数積層し、さらに、それぞれの炭素繊維強化プラスチック層において、配向方向とは異なる方向を向く炭素繊維が存在することにより、極端な偏りが無い程度に等方性のある強度を満足することのできる、炭素繊維強化プラスチック板となる。 The carbon fiber reinforced plastic plate 200 is formed by laminating at least one first carbon fiber reinforced plastic layer 111 and one second carbon fiber reinforced plastic layer 112 in equal numbers. In this way, the same number of carbon fiber reinforced plastic layers with different carbon fiber orientation directions are laminated, and further, in each carbon fiber reinforced plastic layer, there are carbon fibers oriented in a direction different from the orientation direction, resulting in a carbon fiber reinforced plastic plate that can satisfy isotropic strength without extreme bias.

〈第3炭素繊維強化プラスチック層〉
第3炭素繊維強化プラスチック層は、繊維長が10~70mmの炭素繊維を含み、前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する配向方向を有する第3炭素繊維不織布と、母材とを有する層である。母材の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
<Third carbon fiber reinforced plastic layer>
The third carbon fiber reinforced plastic layer is a layer having a third carbon fiber nonwoven fabric containing carbon fibers having a fiber length of 10 to 70 mm and having an orientation direction that intersects at an angle of 45 degrees with the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer, and a base material. Details of the base material are the same as those explained in the section "First carbon fiber reinforced plastic layer", and therefore will not be explained here.

(第3炭素繊維不織布)
第3炭素繊維不織布に用いることのできる炭素繊維不織布の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
(Third carbon fiber nonwoven fabric)
Details of the carbon fiber nonwoven fabric that can be used for the third carbon fiber nonwoven fabric are similar to those explained in the section entitled "First carbon fiber reinforced plastic layer," and therefore will not be explained here.

(第3炭素繊維不織布の配向方向)
第3炭素繊維不織布は、配向方向が第1炭素繊維強化プラスチック層の第1炭素繊維不織布の配向方向および第2炭素繊維強化プラスチック層の第2炭素繊維不織布の配向方向と45度の角度で交差する点で、第1炭素繊維不織布および第2炭素繊維不織布とは異なる。そこで、第1炭素繊維不織布および第2炭素繊維不織布と同様の不織布の配向方向を変えたものを第3炭素繊維不織布として使用してもよく、第1炭素繊維不織布や第2炭素繊維不織布とは異なる不織布を使用してもよい。ただし、炭素繊維強化プラスチック板の強度の等方性を考慮すると、第1炭素繊維不織布および第2炭素繊維不織布と同様の不織布の配向方向を変えたものを第3炭素繊維不織布として使用することが好ましい。なお、配向方向の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
(Orientation direction of third carbon fiber nonwoven fabric)
The third carbon fiber nonwoven fabric is different from the first carbon fiber nonwoven fabric and the second carbon fiber nonwoven fabric in that the orientation direction of the third carbon fiber nonwoven fabric intersects with the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer at an angle of 45 degrees. Therefore, a nonwoven fabric similar to the first carbon fiber nonwoven fabric and the second carbon fiber nonwoven fabric but with a different orientation direction may be used as the third carbon fiber nonwoven fabric, or a nonwoven fabric different from the first carbon fiber nonwoven fabric and the second carbon fiber nonwoven fabric may be used. However, considering the isotropy of the strength of the carbon fiber reinforced plastic plate, it is preferable to use a nonwoven fabric similar to the first carbon fiber nonwoven fabric and the second carbon fiber nonwoven fabric but with a different orientation direction as the third carbon fiber nonwoven fabric. Details of the orientation direction are the same as those described in the section on the first carbon fiber reinforced plastic layer, and therefore will not be described here.

〈第4炭素繊維強化プラスチック層〉
第4炭素繊維強化プラスチック層は、繊維長が10~70mmの炭素繊維を含み、前記第3炭素繊維強化プラスチック層の前記第3炭素繊維不織布の配向方向と直交し、かつ前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する配向方向を有する第4炭素繊維不織布と、母材とを有する層である。母材の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
<Fourth carbon fiber reinforced plastic layer>
The fourth carbon fiber reinforced plastic layer is a layer having a fourth carbon fiber nonwoven fabric containing carbon fibers having a fiber length of 10 to 70 mm and having an orientation direction perpendicular to the orientation direction of the third carbon fiber nonwoven fabric of the third carbon fiber reinforced plastic layer and intersecting at an angle of 45 degrees with the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer, and a base material. Details of the base material are the same as those described in the section "First carbon fiber reinforced plastic layer", so description thereof will be omitted here.

(第4炭素繊維不織布)
第4炭素繊維不織布に用いることのできる炭素繊維不織布の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
(4th carbon fiber nonwoven fabric)
Details of the carbon fiber nonwoven fabric that can be used for the fourth carbon fiber nonwoven fabric are similar to those described in the section entitled "First carbon fiber reinforced plastic layer," and therefore will not be described here.

(第4炭素繊維不織布の配向方向)
第4炭素繊維不織布は、配向方向が前記第3炭素繊維強化プラスチック層の前記第3炭素繊維不織布の配向方向と直交し、かつ前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する点で、第1炭素繊維不織布、第2炭素繊維不織布および第3炭素繊維不織布とは異なる。そこで、第1炭素繊維不織布、第2炭素繊維不織布および第3炭素繊維不織布と同様の不織布の配向方向を変えたものを第4炭素繊維不織布として使用してもよく、第1炭素繊維不織布、第2炭素繊維不織布または第3炭素繊維不織布とは異なる不織布を使用してもよい。ただし、炭素繊維強化プラスチック板の強度の等方性を考慮すると、第1炭素繊維不織布、第2炭素繊維不織布および第3炭素繊維不織布と同様の不織布の配向方向を変えたものを第4炭素繊維不織布として使用することが好ましい。なお、配向方向の詳細については、〈第1炭素繊維強化プラスチック層〉の項目において説明した内容と同様であるため、ここでは説明は省略する。
(Orientation direction of the fourth carbon fiber nonwoven fabric)
The fourth carbon fiber nonwoven fabric is different from the first carbon fiber nonwoven fabric, the second carbon fiber nonwoven fabric, and the third carbon fiber nonwoven fabric in that the orientation direction of the fourth carbon fiber nonwoven fabric is perpendicular to the orientation direction of the third carbon fiber nonwoven fabric of the third carbon fiber reinforced plastic layer, and intersects with the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer at an angle of 45 degrees. Therefore, a nonwoven fabric similar to the first carbon fiber nonwoven fabric, the second carbon fiber nonwoven fabric, and the third carbon fiber nonwoven fabric, but with a different orientation direction, may be used as the fourth carbon fiber nonwoven fabric, or a nonwoven fabric different from the first carbon fiber nonwoven fabric, the second carbon fiber nonwoven fabric, or the third carbon fiber nonwoven fabric may be used. However, considering the isotropy of the strength of the carbon fiber reinforced plastic plate, it is preferable to use a nonwoven fabric similar to the first carbon fiber nonwoven fabric, the second carbon fiber nonwoven fabric, and the third carbon fiber nonwoven fabric, but with a different orientation direction, as the fourth carbon fiber nonwoven fabric. Details of the orientation direction are the same as those explained in the section "First carbon fiber reinforced plastic layer," so a detailed explanation will be omitted here.

図2とは異なる態様の、本発明の炭素繊維強化プラスチック板の具体例について、図3を用いて説明する。図2とは異なる態様の、本発明の一実施形態に係る炭素繊維強化プラスチック板の模式斜視図である。図3(a)は8枚の炭素繊維不織布シート100を積層する順に重ねたものである。シート平面において左右方向(図3の横方向)をx方向とした場合、x方向に対して90度の方向d1が炭素繊維の配向方向となる炭素繊維不織布のシートを第1炭素繊維不織布シート101とすると、x方向に対して0度の方向、すなわちx方向と平行な方向d2が炭素繊維の配向方向となる炭素繊維不織布のシートが、第2炭素繊維不織布シート102となる。 A specific example of the carbon fiber reinforced plastic plate of the present invention, which is different from that shown in FIG. 2, will be described with reference to FIG. 3. A schematic perspective view of a carbon fiber reinforced plastic plate according to an embodiment of the present invention, which is different from that shown in FIG. 2. FIG. 3(a) shows eight carbon fiber nonwoven fabric sheets 100 stacked in the order of lamination. If the left-right direction (horizontal direction in FIG. 3) on the sheet plane is the x direction, and the carbon fiber nonwoven fabric sheet in which the direction d1 at 90 degrees to the x direction is the carbon fiber orientation direction is the first carbon fiber nonwoven fabric sheet 101, the carbon fiber nonwoven fabric sheet in which the direction d2 at 0 degrees to the x direction, i.e., parallel to the x direction, is the carbon fiber orientation direction is the second carbon fiber nonwoven fabric sheet 102.

そして、x方向に対して45度の方向d3が炭素繊維の配向方向となる炭素繊維不織布のシートが第3炭素繊維不織布シート103となる。第3炭素繊維不織布シート103の炭素繊維の配向方向は、第1炭素繊維不織布シート101の炭素繊維の配向方向および第2炭素繊維不織布シート102の炭素繊維の配向方向と45度の角度で交差する。 Then, the carbon fiber nonwoven fabric sheet in which the carbon fiber orientation direction is in the direction d3 at 45 degrees to the x direction becomes the third carbon fiber nonwoven fabric sheet 103. The carbon fiber orientation direction of the third carbon fiber nonwoven fabric sheet 103 intersects with the carbon fiber orientation direction of the first carbon fiber nonwoven fabric sheet 101 and the carbon fiber orientation direction of the second carbon fiber nonwoven fabric sheet 102 at an angle of 45 degrees.

さらに、x方向に対して135度の方向d4が炭素繊維の配向方向となる炭素繊維不織布のシートが第4炭素繊維不織布シート104となる。第4炭素繊維不織布シート104の炭素繊維の配向方向は、第1炭素繊維不織布シート101の炭素繊維の配向方向および第2炭素繊維不織布シート102の炭素繊維の配向方向と45度の角度で交差し、かつ第3炭素繊維不織布シート103の炭素繊維の配向方向と直交する。 Furthermore, a carbon fiber nonwoven fabric sheet in which the carbon fiber orientation direction is a direction d4 at 135 degrees to the x direction becomes the fourth carbon fiber nonwoven fabric sheet 104. The carbon fiber orientation direction of the fourth carbon fiber nonwoven fabric sheet 104 intersects with the carbon fiber orientation direction of the first carbon fiber nonwoven fabric sheet 101 and the carbon fiber orientation direction of the second carbon fiber nonwoven fabric sheet 102 at an angle of 45 degrees, and is perpendicular to the carbon fiber orientation direction of the third carbon fiber nonwoven fabric sheet 103.

図3(b)は、図3(a)の8枚の炭素繊維不織布シート100が、第1炭素繊維不織布シート101、第4炭素繊維不織布シート104、第3炭素繊維不織布シート103、第2炭素繊維不織布シート102が順番に2枚ずつ積層して母材で固められ、炭素繊維強化プラスチック板300となったものである。炭素繊維強化プラスチック板300では、第1炭素繊維不織布シート101、第2炭素繊維不織布シート102、第3炭素繊維不織布シート103、第4炭素繊維不織布シート104が、母材で固められて第1炭素繊維強化プラスチック層111、第2炭素繊維強化プラスチック層112、第3炭素繊維強化プラスチック層113、第4炭素繊維強化プラスチック層114となっている。 In FIG. 3(b), the eight carbon fiber nonwoven fabric sheets 100 in FIG. 3(a) are stacked in order of two each of the first carbon fiber nonwoven fabric sheet 101, the fourth carbon fiber nonwoven fabric sheet 104, the third carbon fiber nonwoven fabric sheet 103, and the second carbon fiber nonwoven fabric sheet 102, which are then solidified with a base material to form a carbon fiber reinforced plastic plate 300. In the carbon fiber reinforced plastic plate 300, the first carbon fiber nonwoven fabric sheet 101, the second carbon fiber nonwoven fabric sheet 102, the third carbon fiber nonwoven fabric sheet 103, and the fourth carbon fiber nonwoven fabric sheet 104 are solidified with a base material to form a first carbon fiber reinforced plastic layer 111, a second carbon fiber reinforced plastic layer 112, a third carbon fiber reinforced plastic layer 113, and a fourth carbon fiber reinforced plastic layer 114.

炭素繊維強化プラスチック板300は、第1炭素繊維強化プラスチック層111、第2炭素繊維強化プラスチック層112、第3炭素繊維強化プラスチック層113、第4炭素繊維強化プラスチック層114が少なくとも1層ずつ同数積層する。このように炭素繊維の配向方向が異なる炭素繊維強化プラスチック層が同数積層し、さらに、それぞれの炭素繊維強化プラスチック層において、配向方向とは異なる方向を向く炭素繊維が存在することにより、極端な偏りが無い程度に等方性のある強度を満足することのできる、炭素繊維強化プラスチック板となる。また、第3炭素繊維強化プラスチック層113および第4炭素繊維強化プラスチック層114を備えることにより、炭素繊維強化プラスチック板300は炭素繊維強化プラスチック板200よりもより等方性のある強度を満足することができる。 The carbon fiber reinforced plastic plate 300 is formed by laminating at least one each of the first carbon fiber reinforced plastic layer 111, the second carbon fiber reinforced plastic layer 112, the third carbon fiber reinforced plastic layer 113, and the fourth carbon fiber reinforced plastic layer 114 in equal numbers. In this way, the same number of carbon fiber reinforced plastic layers with different carbon fiber orientation directions are laminated, and further, in each carbon fiber reinforced plastic layer, carbon fibers facing in a direction different from the orientation direction are present, resulting in a carbon fiber reinforced plastic plate that can satisfy isotropic strength without extreme bias. In addition, by providing the third carbon fiber reinforced plastic layer 113 and the fourth carbon fiber reinforced plastic layer 114, the carbon fiber reinforced plastic plate 300 can satisfy more isotropic strength than the carbon fiber reinforced plastic plate 200.

(その他の構成)
本発明の炭素繊維強化プラスチック板は、第1炭素繊維強化プラスチック層~第4炭素繊維強化プラスチック層に加え、他の構成を備えてもよい。例えば、第1炭素繊維強化プラスチック層~第4炭素繊維強化プラスチック層のそれぞれの層を接着して積層する場合には、これらの層の間に母材との相性の良い樹脂系の接着剤層を備えることができる。また、第1炭素繊維強化プラスチック層~第4炭素繊維強化プラスチック層のいずれかの表面に傷が発生したり、表面が汚染したりしないよう、炭素繊維強化プラスチック板を使用する直前まで、炭素繊維強化プラスチック板の表面を保護する保護層や保護フィルム等を備えてもよい。
(Other configurations)
The carbon fiber reinforced plastic plate of the present invention may have other configurations in addition to the first carbon fiber reinforced plastic layer to the fourth carbon fiber reinforced plastic layer. For example, when the first carbon fiber reinforced plastic layer to the fourth carbon fiber reinforced plastic layer are laminated by bonding each other, a resin-based adhesive layer that is compatible with the base material may be provided between these layers. In addition, a protective layer or protective film that protects the surface of the carbon fiber reinforced plastic plate until immediately before use of the carbon fiber reinforced plastic plate may be provided so that the surface of any of the first carbon fiber reinforced plastic layer to the fourth carbon fiber reinforced plastic layer is not scratched or contaminated.

図4に炭素繊維強化プラスチック板200、300の模式斜視図を示す。炭素繊維強化プラスチック板200、300のそれぞれの同一平面上において、第1炭素繊維強化プラスチック層の第1炭素繊維不織布の配向方向についてD1を付した矢印、第2炭素繊維強化プラスチック層の第2炭素繊維不織布の配向方向についてD2を付した矢印、第1炭素繊維強化プラスチック層の第1炭素繊維不織布の配向方向D1および第2炭素繊維強化プラスチック層の第2炭素繊維不織布の配向方向D2と45度の角度で交差する交差方向についてD3を付した矢印で示す。なお、炭素繊維強化プラスチック板300において、交差方向D3は、第3炭素繊維強化プラスチック層の第3炭素繊維不織布の配向方向であり、かつ、第4炭素繊維強化プラスチック層の第4炭素繊維不織布の配向方向である。 Figure 4 shows a schematic perspective view of the carbon fiber reinforced plastic plates 200 and 300. On the same plane of the carbon fiber reinforced plastic plates 200 and 300, the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer is indicated by an arrow labeled D1, the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer is indicated by an arrow labeled D2, and the cross direction that crosses the orientation direction D1 of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction D2 of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer at an angle of 45 degrees is indicated by an arrow labeled D3. In the carbon fiber reinforced plastic plate 300, the cross direction D3 is the orientation direction of the third carbon fiber nonwoven fabric of the third carbon fiber reinforced plastic layer and the orientation direction of the fourth carbon fiber nonwoven fabric of the fourth carbon fiber reinforced plastic layer.

炭素繊維強化プラスチック板200、300では、第1炭素繊維強化プラスチック層の第1炭素繊維不織布の配向方向D1と平行な方向における曲げ強度(第1曲げ強度)、第2炭素繊維強化プラスチック層の第2炭素繊維不織布の配向方向D2と平行な方向における曲げ強度(第2曲げ強度)、第1炭素繊維強化プラスチック層の第1炭素繊維不織布の配向方向D1および第2炭素繊維強化プラスチック層の第2炭素繊維不織布の配向方向D2と45度の角度で交差する交差方向D3と平行な方向における曲げ強度(第3曲げ強度)との強度比が、以下の比となることが好ましい。 In the carbon fiber reinforced plastic plates 200 and 300, it is preferable that the strength ratio of the bending strength in a direction parallel to the orientation direction D1 of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer (first bending strength), the bending strength in a direction parallel to the orientation direction D2 of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer (second bending strength), and the bending strength in a direction parallel to the intersecting direction D3 that intersects the orientation direction D1 of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction D2 of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer at an angle of 45 degrees (third bending strength) is as follows.

第1曲げ強度:第2曲げ強度:第3曲げ強度=1:0.8~1.2:0.8~1.2 First bending strength: Second bending strength: Third bending strength = 1: 0.8-1.2: 0.8-1.2

強度比が上記の比を満たすことにより、本発明の炭素繊維強化プラスチック板は、より等方性のある強度を満足することができる。強度比が上記の比を満たさない場合には、強度に異方性が生じてしまうことにより、所定の方向における強度が極端に小さくなってしまうおそれがある。 When the strength ratio satisfies the above ratio, the carbon fiber reinforced plastic plate of the present invention can satisfy a more isotropic strength. If the strength ratio does not satisfy the above ratio, anisotropy will occur in the strength, and there is a risk that the strength in a specified direction will become extremely small.

なお、炭素繊維強化プラスチック板300では、方向D1および方向D3と22.5度の角度で交差する交差方向D4、および、方向D2および方向D3と22.5度の角度で交差する交差方向D5についても、方向D1の80%~120%の曲げ強度を有する。そのため、炭素繊維強化プラスチック板200と比べて、炭素繊維強化プラスチック板300はより等方性のある強度を満足することができる。 The carbon fiber reinforced plastic plate 300 has a bending strength of 80% to 120% of that of direction D1 in cross direction D4, which crosses directions D1 and D3 at an angle of 22.5 degrees, and in cross direction D5, which crosses directions D2 and D3 at an angle of 22.5 degrees. Therefore, compared to carbon fiber reinforced plastic plate 200, carbon fiber reinforced plastic plate 300 can satisfy a more isotropic strength.

また、炭素繊維強化プラスチック板200、300では、第1炭素繊維強化プラスチック層の第1炭素繊維不織布の配向方向D1と平行な方向における曲げ弾性率(第1曲げ弾性率)、第2炭素繊維強化プラスチック層の第2炭素繊維不織布の配向方向D2と平行な方向における曲げ弾性率(第2曲げ弾性率)、第1炭素繊維強化プラスチック層の第1炭素繊維不織布の配向方向D1および第2炭素繊維強化プラスチック層の第2炭素繊維不織布の配向方向D2と45度の角度で交差する交差方向D3と平行な方向における曲げ弾性率(第3曲げ弾性率)との比率が、以下の比となることが好ましい。 In addition, in the carbon fiber reinforced plastic plates 200 and 300, the ratio of the bending modulus in a direction parallel to the orientation direction D1 of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer (first bending modulus), the bending modulus in a direction parallel to the orientation direction D2 of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer (second bending modulus), and the bending modulus in a direction parallel to the intersecting direction D3 that intersects the orientation direction D1 of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction D2 of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer at an angle of 45 degrees (third bending modulus) is preferably as follows:

第1曲げ弾性率:第2曲げ弾性率:第3曲げ弾性率=1:0.8~1.2:0.8~1.2 First bending modulus: Second bending modulus: Third bending modulus = 1: 0.8-1.2: 0.8-1.2

弾性率の比率が上記の比を満たすことにより、本発明の炭素繊維強化プラスチック板は、より等方性のある弾性を満足することができる。弾性率の比率が上記の比を満たさない場合には、弾性に異方性が生じてしまうことにより、所定の方向における弾性が極端に小さくなってしまうおそれがある。 When the elastic modulus ratio satisfies the above ratio, the carbon fiber reinforced plastic plate of the present invention can satisfy more isotropic elasticity. If the elastic modulus ratio does not satisfy the above ratio, anisotropy will occur in the elasticity, and there is a risk that the elasticity in a certain direction will become extremely small.

また、炭素繊維強化プラスチック板300では、方向D1および方向D3と22.5度の角度で交差する交差方向D4、および、方向D2および方向D3と22.5度の角度で交差する交差方向D5についても、方向D1の80%~120%の弾性率を有する。そのため、炭素繊維強化プラスチック板200と比べて、炭素繊維強化プラスチック板300はより等方性のある弾性を有することができる。 In addition, the carbon fiber reinforced plastic plate 300 has an elastic modulus of 80% to 120% of that of direction D1 in cross direction D4, which crosses direction D1 and direction D3 at an angle of 22.5 degrees, and in cross direction D5, which crosses direction D2 and direction D3 at an angle of 22.5 degrees. Therefore, compared to carbon fiber reinforced plastic plate 200, carbon fiber reinforced plastic plate 300 can have more isotropic elasticity.

本発明の炭素繊維強化プラスチック板としては、板の厚みが5~100mmであることが一般的であり、特には8~40mmの厚みの板が汎用的に用いられる。 The carbon fiber reinforced plastic plate of the present invention generally has a plate thickness of 5 to 100 mm, and plates with a thickness of 8 to 40 mm are particularly commonly used.

本発明では、本発明の炭素繊維強化プラスチック板に対する炭素繊維不織布の繊維体積含有率(Vf)が、第1炭素繊維強化プラスチック層~第4炭素繊維強化プラスチック層のいずれにおいても20~40体積%であることが好ましい。Vfが高いと、機械特性や物理特性に優れるという長所があるが、母材の量が少なくなるため、第1炭素繊維強化プラスチック層~第4炭素繊維強化プラスチック層を形成することが困難となるおそれがある。また、Vfが高いと、靱性や加工性、表面平滑性に劣るおそれがある。一方で、Vfが低いと、母材の特性が優先的に発現してしまい、炭素繊維による強化向上効果が損なわれるおそれがある。これらの点を考慮して、第1炭素繊維強化プラスチック層~第4炭素繊維強化プラスチック層の場合には、いずれの層においてもVfを20~40体積%とすることで、加工性や表面の平滑性を満足することができる。 In the present invention, the fiber volume content (Vf) of the carbon fiber nonwoven fabric in the carbon fiber reinforced plastic plate of the present invention is preferably 20 to 40 volume % in each of the first carbon fiber reinforced plastic layer to the fourth carbon fiber reinforced plastic layer. A high Vf has the advantage of excellent mechanical properties and physical properties, but the amount of base material is small, so it may be difficult to form the first carbon fiber reinforced plastic layer to the fourth carbon fiber reinforced plastic layer. In addition, a high Vf may result in poor toughness, processability, and surface smoothness. On the other hand, a low Vf may result in the characteristics of the base material being preferentially expressed, and the reinforcement improvement effect of the carbon fibers may be impaired. In consideration of these points, in the case of the first carbon fiber reinforced plastic layer to the fourth carbon fiber reinforced plastic layer, by setting the Vf to 20 to 40 volume % in each layer, it is possible to satisfy the processability and surface smoothness.

本発明では、本発明の炭素繊維強化プラスチック板の表面の平面度が50mmあたり0.005~0.05mmであってもよい。例えば、炭素繊維強化プラスチック板の表面をフライス加工することにより、このような平面度の表面を得ることができる。なお、炭素繊維強化プラスチック板の表面の平滑性が要求される場合には、本発明の炭素繊維強化プラスチック板の表面の平面度を100mmあたり0.005~0.05mmとすることがより好ましい。また、炭素繊維強化プラスチック板の表面の平滑性が更に厳密に要求される場合には、本発明の炭素繊維強化プラスチック板の表面の平面度を500mmあたり0.005~0.05mmとすることが更に好ましい。 In the present invention, the flatness of the surface of the carbon fiber reinforced plastic plate of the present invention may be 0.005 to 0.05 mm per 50 mm. For example, a surface with such flatness can be obtained by milling the surface of the carbon fiber reinforced plastic plate. If smoothness of the surface of the carbon fiber reinforced plastic plate is required, it is more preferable that the flatness of the surface of the carbon fiber reinforced plastic plate of the present invention is 0.005 to 0.05 mm per 100 mm. If even stricter smoothness of the surface of the carbon fiber reinforced plastic plate is required, it is even more preferable that the flatness of the surface of the carbon fiber reinforced plastic plate of the present invention is 0.005 to 0.05 mm per 500 mm.

[加工品]
本発明の加工品は、上記した本発明の炭素繊維強化プラスチック板を研削加工した加工品である。このような加工品としては、特に限定されない。例えば、ある程度の等方性のある強度が求められる加工品として、回転させて使用するローラーや研削用ホイールが挙げられる。図5に、一例としてローラー400、研削用ホイール500の斜視図を示す。
[Processed goods]
The processed product of the present invention is a processed product obtained by grinding the carbon fiber reinforced plastic plate of the present invention described above. Such processed products are not particularly limited. For example, rollers and grinding wheels that are used while rotating are examples of processed products that require a certain degree of isotropic strength. Fig. 5 shows perspective views of a roller 400 and a grinding wheel 500 as examples.

ローラーや研削用ホイールを回転させて使用する間は、それらの使用面410、510やその付近に均等に負荷がかかるため、使用面410、510の強度は均等であることが好ましい。本発明の炭素繊維強化プラスチック板は、このような使用面に要求される強度を満たすことができる程度に、等方性のある強度を満足することができる。 When rollers or grinding wheels are rotated and used, load is evenly applied to their use surfaces 410, 510 and their vicinity, so it is preferable that the strength of the use surfaces 410, 510 is even. The carbon fiber reinforced plastic plate of the present invention can satisfy isotropic strength to the extent that it can meet the strength required for such use surfaces.

[炭素繊維強化プラスチック板の製造方法]
次に、上記した本発明の炭素繊維強化プラスチック板について、その製造方法を説明する。
[Method of manufacturing carbon fiber reinforced plastic plate]
Next, a method for producing the carbon fiber reinforced plastic plate of the present invention will be described.

〈硬化工程〉
硬化工程は、母材を含浸させた積層体を硬化させる工程である。例えば母材が熱硬化性樹脂であれば、加熱させることで硬化させることができる。また、熱可塑性樹脂であれば、加熱溶融させた状態で炭素繊維不織布に樹脂を含浸させた後に、常温まで冷却することで硬化させることができる。
<Curing process>
The curing step is a step of curing the laminate impregnated with the base material. For example, if the base material is a thermosetting resin, it can be cured by heating. If the base material is a thermoplastic resin, it can be cured by impregnating the carbon fiber nonwoven fabric with the resin in a heated and molten state and then cooling it to room temperature.

(積層体)
積層体は、少なくとも第1炭素繊維強化プラスチック層101と第2炭素繊維強化プラスチック層102とが1層ずつ同数積層した積層体であってもよい。このような積層体を硬化させることにより、炭素繊維強化プラスチック板200や炭素繊維強化プラスチック板300を製造することができる。
(Laminate)
The laminate may be a laminate in which at least one first carbon fiber reinforced plastic layer 101 and one second carbon fiber reinforced plastic layer 102 are laminated in equal numbers. By curing such a laminate, the carbon fiber reinforced plastic plate 200 or the carbon fiber reinforced plastic plate 300 can be manufactured.

また、積層体は、第1炭素繊維強化プラスチック層101と、第2炭素繊維強化プラスチック層102と、第3炭素繊維強化プラスチック層103と、第4炭素繊維強化プラスチック層104とが少なくとも1層ずつ同数積層した積層体であってもよい。このような積層体を硬化させることにより、炭素繊維強化プラスチック板300を製造することができる。 The laminate may also be a laminate in which at least one each of the first carbon fiber reinforced plastic layer 101, the second carbon fiber reinforced plastic layer 102, the third carbon fiber reinforced plastic layer 103, and the fourth carbon fiber reinforced plastic layer 104 are laminated in equal numbers. By hardening such a laminate, the carbon fiber reinforced plastic plate 300 can be manufactured.

本発明の炭素繊維強化プラスチック板の製造手順としては、硬化工程の前に、第1炭素繊維強化プラスチック層101および第2炭素繊維強化プラスチック層102等を積層して積層体とし、この積層体に母材を含浸させて、その後に硬化工程を実施する手順とすることができる。また、第1炭素繊維強化プラスチック層101および第2炭素繊維強化プラスチック層102等のそれぞれに母材を含浸させてから、これらを積層して積層体とし、その後に硬化工程を実施する手順により、炭素繊維強化プラスチック板を製造してもよい。 The carbon fiber reinforced plastic plate of the present invention can be manufactured by stacking the first carbon fiber reinforced plastic layer 101, the second carbon fiber reinforced plastic layer 102, etc., to form a laminate before the curing step, impregnating this laminate with a base material, and then carrying out the curing step. Alternatively, the carbon fiber reinforced plastic plate can be manufactured by impregnating each of the first carbon fiber reinforced plastic layer 101, the second carbon fiber reinforced plastic layer 102, etc., with a base material, stacking these to form a laminate, and then carrying out the curing step.

また、複数の炭素繊維強化プラスチック板200を接着剤によって接着し、厚みを増した炭素繊維強化プラスチック板200を形成してもよい。炭素繊維強化プラスチック板300の場合も同様に、複数の炭素繊維強化プラスチック板300を接着剤によって接着し、厚みを増した炭素繊維強化プラスチック板300を形成してもよい。なお、接着剤層があることによって炭素繊維強化プラスチック板の強度が低下するおそれがある場合には、例えばVaRTM法により、積層体に母材を含浸させて、その後に室温硬化と加熱硬化を行うことにより、接着剤層が存在しない炭素繊維強化プラスチック板を製造することができる。 In addition, multiple carbon fiber reinforced plastic plates 200 may be bonded together with an adhesive to form a thicker carbon fiber reinforced plastic plate 200. Similarly, multiple carbon fiber reinforced plastic plates 300 may be bonded together with an adhesive to form a thicker carbon fiber reinforced plastic plate 300. If there is a risk that the strength of the carbon fiber reinforced plastic plate will decrease due to the presence of an adhesive layer, a carbon fiber reinforced plastic plate without an adhesive layer can be manufactured by impregnating the laminate with a base material using, for example, the VaRTM method, followed by room temperature curing and heat curing.

〈フライス加工工程〉
本発明では、硬化工程後、前記積層体の表面をフライス加工する工程を設けてもよい、CFRP板の表面平滑性を向上させるべく、例えば表面の平面度は50mmあたり0.005~0.05mmにする場合には、フライス加工を行えばよい。
<Milling process>
In the present invention, a step of milling the surface of the laminate may be provided after the curing step. In order to improve the surface smoothness of the CFRP plate, for example, when the surface flatness is to be 0.005 to 0.05 mm per 50 mm, milling may be performed.

(その他の工程)
本発明の炭素繊維強化プラスチック板の製造方法は、硬化工程やフライス加工工程に加え、他の構成を備えてもよい。例えば、積層体を得るべく、第1炭素繊維不織布~第4炭素繊維不織布のそれぞれについて、繊維の配向方向を調整して積層する積層工程や、積層体へ母材を含浸させる含浸工程が挙げられる。
(Other processes)
The method for producing a carbon fiber reinforced plastic plate of the present invention may include other configurations in addition to the curing step and the milling step, such as a lamination step of laminating the first to fourth carbon fiber nonwoven fabrics while adjusting the fiber orientation direction to obtain a laminate, and an impregnation step of impregnating the laminate with a base material.

以下、本発明について、実施例を用いてさらに具体的に説明するが、本発明は、実施例に何ら限定されるものではない。以下の実施例では、炭素繊維強化プラスチック板を製造し、製造した炭素繊維強化プラスチック板に対してフライス加工、曲げ強度および弾性率の評価を行った。 The present invention will be described in more detail below using examples, but the present invention is not limited to these examples. In the following examples, carbon fiber reinforced plastic plates were manufactured, and milling and bending strength and elastic modulus were evaluated for the manufactured carbon fiber reinforced plastic plates.

[炭素繊維強化プラスチック板の製造]
〈実施例1〉
金型(内部寸法:15×15×1cm)内に、ニードルパンチ法により製造された炭素繊維不織布シート(日本ポリマー産業株式会社製CFZ-1000SD)を4層配置した。ここで、炭素繊維不織布シートの配置は図2(a)に示すように、炭素繊維の配向方向が90度異なるように第1炭素繊維不織布シート101と第2炭素繊維不織布シート102とを交互に2枚ずつ積層した。なお、第1炭素繊維不織布シート101と第2炭素繊維不織布シート102としては、同一の炭素繊維不織布シートを用いた。そして、エポキシ樹脂主剤(三菱ケミカル株式会社製jER806)と硬化剤(東京化成工業株式会社製4,4’-メチレンビス(2-メチルシクロヘキシルアミン))を質量比で100:36の割合で混合後、100℃に加熱して密閉した金型内に混合した樹脂を0.5MPaの圧力で加圧注入した。混合した樹脂の注入後、100℃で20分の加熱硬化を行い、厚みが10mm、Vf21%の炭素繊維強化プラスチック板200を得た。なお、炭素繊維織布は使用しなかった。
[Manufacture of carbon fiber reinforced plastic plates]
Example 1
In a mold (inner dimensions: 15 x 15 x 1 cm), four layers of carbon fiber nonwoven fabric sheets (CFZ-1000SD manufactured by Nippon Polymer Sangyo Co., Ltd.) manufactured by the needle punch method were arranged. Here, the carbon fiber nonwoven fabric sheets were arranged as shown in FIG. 2(a), with the first carbon fiber nonwoven fabric sheet 101 and the second carbon fiber nonwoven fabric sheet 102 alternately stacked in pairs so that the orientation directions of the carbon fibers differed by 90 degrees. Note that the same carbon fiber nonwoven fabric sheet was used as the first carbon fiber nonwoven fabric sheet 101 and the second carbon fiber nonwoven fabric sheet 102. Then, an epoxy resin base material (jER806 manufactured by Mitsubishi Chemical Corporation) and a curing agent (4,4'-methylenebis(2-methylcyclohexylamine) manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed in a mass ratio of 100:36, and the mixed resin was heated to 100 ° C. and injected into a sealed mold at a pressure of 0.5 MPa. After the mixed resin was injected, it was heat-cured at 100° C. for 20 minutes to obtain a carbon fiber reinforced plastic plate 200 having a thickness of 10 mm and a Vf of 21%. Note that no carbon fiber woven fabric was used.

〈実施例2〉
金型(内部寸法:15×15×1cm)内に、ニードルパンチ法により製造された炭素繊維不織布シート(日本ポリマー産業株式会社製CFZ-1000SD)を8層配置した。ここで、炭素繊維不織布シートの配置は図3(a)に示すように、第1炭素繊維不織布シート101、第4炭素繊維不織布シート104、第3炭素繊維不織布シート103、第2炭素繊維不織布シート102の順に2枚ずつ積層した。なお、第1炭素繊維不織布シート101、第2炭素繊維不織布シート102、第3炭素繊維不織布シート103、および第4炭素繊維不織布シート104としては、同一の炭素繊維不織布シートを用いた。そして、エポキシ樹脂主剤(三菱ケミカル株式会社製jER806)と硬化剤(東京化成工業株式会社製4,4’-メチレンビス(2-メチルシクロヘキシルアミン))を質量比で100:36の割合で混合後、100℃に加熱して密閉した金型内に混合した樹脂を0.5MPaの圧力で加圧注入した。混合した樹脂の注入後、100℃で20分の加熱硬化を行い、厚みが20mm、Vf21%の炭素繊維強化プラスチック板300を得た。なお、炭素繊維織布は使用しなかった。
Example 2
Eight layers of carbon fiber nonwoven fabric sheets (CFZ-1000SD manufactured by Nippon Polymer Sangyo Co., Ltd.) manufactured by the needle punch method were arranged in a mold (internal dimensions: 15 x 15 x 1 cm). Here, the carbon fiber nonwoven fabric sheets were arranged as shown in FIG. 3(a), in the order of the first carbon fiber nonwoven fabric sheet 101, the fourth carbon fiber nonwoven fabric sheet 104, the third carbon fiber nonwoven fabric sheet 103, and the second carbon fiber nonwoven fabric sheet 102, two sheets were laminated. Note that the same carbon fiber nonwoven fabric sheet was used as the first carbon fiber nonwoven fabric sheet 101, the second carbon fiber nonwoven fabric sheet 102, the third carbon fiber nonwoven fabric sheet 103, and the fourth carbon fiber nonwoven fabric sheet 104. Then, an epoxy resin base material (jER806 manufactured by Mitsubishi Chemical Corporation) and a curing agent (4,4'-methylenebis(2-methylcyclohexylamine) manufactured by Tokyo Chemical Industry Co., Ltd.) were mixed in a mass ratio of 100:36, and the mixed resin was injected under pressure at a pressure of 0.5 MPa into a mold that had been heated to 100°C and sealed. After the mixed resin was injected, it was heated and cured at 100°C for 20 minutes to obtain a carbon fiber reinforced plastic plate 300 having a thickness of 20 mm and a Vf of 21%. Note that no carbon fiber woven fabric was used.

〈比較例1〉
縦12cm、横12cmの炭素繊維織布(東レ株式会社製BT70-20)を10層重ねた炭素繊維を金属板上に配置し、母材が漏えいしないように炭素繊維の周囲をフィルムとシーラントで密閉した。そして、エポキシ樹脂主剤(三菱ケミカル株式会社製jER806)と硬化剤(三菱ガス化学株式会社製1,3-BAC)を質量比で100:21の割合で混合後、VaRTM法により、混合した樹脂を炭素繊維へ注入した。注入後に室温硬化させ、さらに150℃、60分の条件で加熱硬化を行い、厚さが2mm、Vf57体積%の炭素繊維強化プラスチック板を得た。なお、炭素繊維不織布は使用しなかった。
Comparative Example 1
A carbon fiber consisting of 10 layers of carbon fiber woven fabric (BT70-20 manufactured by Toray Industries, Inc.) measuring 12 cm in length and 12 cm in width was placed on a metal plate, and the periphery of the carbon fiber was sealed with a film and a sealant to prevent leakage of the base material. Then, an epoxy resin base material (jER806 manufactured by Mitsubishi Chemical Corporation) and a hardener (1,3-BAC manufactured by Mitsubishi Gas Chemical Co., Ltd.) were mixed in a mass ratio of 100:21, and the mixed resin was injected into the carbon fiber by the VaRTM method. After the injection, the mixture was cured at room temperature, and further heated and cured at 150°C for 60 minutes to obtain a carbon fiber reinforced plastic plate having a thickness of 2 mm and a Vf of 57% by volume. No carbon fiber nonwoven fabric was used.

〈比較例2〉
金型(内部寸法:15×15×1cm)内に、ニードルパンチ法により製造された炭素繊維不織布シート(日本ポリマー産業株式会社製CFZ-1000SD)を4層配置した。ここで、各層の炭素繊維不織布シートは、炭素繊維の配向方向を同一方向に揃えて積層した。そして、エポキシ樹脂主剤(三菱ケミカル株式会社製jER806)と硬化剤(東京化成工業株式会社製4,4’-メチレンビス(2-メチルシクロヘキシルアミン))を質量比で100:36の割合で混合後、100℃に加熱して密閉した金型内に混合した樹脂を0.5MPaの圧力で加圧注入した。混合した樹脂の注入後、100℃で20分の加熱硬化を行い、厚みが10mm、Vf21%の炭素繊維強化プラスチック板を得た。なお、炭素繊維織布は使用しなかった。
Comparative Example 2
In a mold (inner dimensions: 15 x 15 x 1 cm), four layers of carbon fiber nonwoven fabric sheets (CFZ-1000SD manufactured by Nippon Polymer Sangyo Co., Ltd.) manufactured by the needle punch method were placed. Here, the carbon fiber nonwoven fabric sheets of each layer were laminated with the orientation direction of the carbon fibers aligned in the same direction. Then, an epoxy resin base material (jER806 manufactured by Mitsubishi Chemical Corporation) and a curing agent (4,4'-methylenebis(2-methylcyclohexylamine) manufactured by Tokyo Kasei Kogyo Co., Ltd.) were mixed in a mass ratio of 100:36, and the mixed resin was injected under pressure at a pressure of 0.5 MPa into a mold that had been heated to 100 ° C and sealed. After the mixed resin was injected, it was heated and cured at 100 ° C for 20 minutes to obtain a carbon fiber reinforced plastic plate with a thickness of 10 mm and a Vf of 21%. Note that no carbon fiber woven fabric was used.

[フライス加工後の平面度の評価]
〈フライス加工処理〉
製造した実施例1、実施例2、比較例1および比較例2の炭素繊維強化プラスチック板を3体使用し、以下の条件により表面を0.5mm研削するフライス加工を行った。
[Evaluation of flatness after milling]
<Milling processing>
Three carbon fiber reinforced plastic plates manufactured according to Example 1, Example 2, Comparative Example 1, and Comparative Example 2 were used, and milling was performed to grind the surface by 0.5 mm under the following conditions.

(フライス加工条件)
装置:スクリューオン式汎用正面フライス(三菱マテリアル製)
カッタ型式:ASX44R10005D
インサート:SEGT13T3AGFN-JP HTi10
回転数:S=615min-1(V=193m/min)
送り速度:F=369mm/min
(Milling conditions)
Equipment: Screw-on type general-purpose face milling cutter (manufactured by Mitsubishi Materials)
Cutter model: ASX44R10005D
Insert: SEGT13T3AGFN-JP HTi10
Rotation speed: S=615min -1 (V=193m/min)
Feed speed: F=369mm/min

フライス加工後の実施例1、実施例2、比較例1および比較例2の炭素繊維強化プラスチック板について、これらの表面の平面度(平面形体の幾何学的に正しい平面からの狂いの大きさ)を、3次元精密測定機(ZEISS社製 型番:UPMC850)を用いて測定した。各例の炭素繊維強化プラスチック板3体の平面度の平均値を、表1に示す。 After milling, the flatness of the surfaces of the carbon fiber reinforced plastic plates of Example 1, Example 2, Comparative Example 1, and Comparative Example 2 (the degree of deviation of the planar shape from a geometrically correct plane) was measured using a three-dimensional precision measuring machine (ZEISS, model number: UPMC850). The average flatness of the three carbon fiber reinforced plastic plates of each example is shown in Table 1.

Figure 0007526026000001
Figure 0007526026000001

実施例1、実施例2および比較例2の炭素繊維強化プラスチック板では、炭素繊維織布は使用せず、炭素繊維不織布を用いたことにより、フライス加工後の平面度に問題は無く、平面性は高い結果となった。 In the carbon fiber reinforced plastic plates of Example 1, Example 2, and Comparative Example 2, carbon fiber woven cloth was not used, but carbon fiber nonwoven cloth was used, so there were no problems with flatness after milling, and the flatness was high.

一方で、炭素繊維不織布を使用せずに炭素繊維織布を用いた比較例1の炭素繊維強化プラスチック板は、フライス加工によって繊維が毛羽立ち、毛羽立ちによって平面度の値が大きくなり平面性の低い板であった。 On the other hand, the carbon fiber reinforced plastic plate of Comparative Example 1, which used woven carbon fiber cloth instead of nonwoven carbon fiber cloth, had fibers that became frayed during the milling process, and the fraying caused the flatness value to increase, resulting in a plate with low flatness.

[曲げ強度および弾性率の評価]
実施例1の炭素繊維強化プラスチック板200について、JIS K7074に基づき以下の条件にて、図4(a)に示すD1、D2、D3方向の曲げ試験を実施し、D1方向の曲げ強度および弾性率を100%とした場合のD2、D3方向の曲げ強度および弾性率を比較した。曲げ強度の結果を図6、弾性率の結果を図7に示す。また、比較例1の炭素繊維強化プラスチック板についても同様に、D1、D2、D3方向の曲げ強度および弾性率を比較し、図6、7に示した。
[Evaluation of bending strength and elastic modulus]
For the carbon fiber reinforced plastic plate 200 of Example 1, bending tests were carried out in the D1, D2, and D3 directions shown in Fig. 4(a) under the following conditions based on JIS K7074, and the bending strength and elastic modulus in the D2 and D3 directions were compared when the bending strength and elastic modulus in the D1 direction were taken as 100%. The bending strength results are shown in Fig. 6, and the elastic modulus results in Fig. 7. Similarly, the bending strength and elastic modulus in the D1, D2, and D3 directions of the carbon fiber reinforced plastic plate of Comparative Example 1 were compared in the same manner, and the results are shown in Figs. 6 and 7.

試験片の寸法:100×15mm、厚み2mm
試験速度:5mm/分
支点間距離L:L=40×h(80mm)
圧子の半径R1:R1=5mm
支持台の半径R2:R2=2mm
曲げ弾性率:接線法
Test piece dimensions: 100 x 15 mm, thickness 2 mm
Test speed: 5 mm/min Distance between fulcrums L: L = 40 x h (80 mm)
Indenter radius R1: R1 = 5 mm
Radius R2 of the support base: R2 = 2 mm
Flexural modulus: tangent method

実施例1の炭素繊維強化プラスチック板は、D1~D3方向の曲げ強度比が、D1:D2:D3=100:101:98であり、また、曲げ弾性率の比率がD1:D2:D3=100:101:96であることから、極端な偏りが無い程度に等方性のある強度および弾性を満足することがわかった。この炭素繊維強化プラスチック板であれば、回転させて使用するローラーや研削用ホイールとしての用途に有用であった。 The carbon fiber reinforced plastic plate of Example 1 had a bending strength ratio in the D1 to D3 directions of D1:D2:D3 = 100:101:98, and a bending modulus ratio of D1:D2:D3 = 100:101:96, demonstrating that it satisfied isotropic strength and elasticity without extreme bias. This carbon fiber reinforced plastic plate was useful for use as a roller or grinding wheel that is rotated.

一方で、比較例1の炭素繊維強化プラスチック板は、D1~D3方向の曲げ強度比が、D1:D2:D3=100:114:30であり、また、曲げ弾性率の比率がD1:D2:D3=100:88:30であることから、D3方向の強度および弾性が弱い結果となった。比較例1に使用した炭素繊維織布は、縦糸および横糸を用いて織られた織布であり、D1方向およびD2方向が炭素繊維織布の縦糸および横糸のいずれかと平行な方向であることにより、一定の強度および弾性を有した。その一方で、D3方向は縦糸および横糸と45度の角度で交差する方向であり、炭素繊維による補強効果が十分ではないことにより、D1方向やD2方向と比べて強度および弾性が劣る結果となった。この結果より、比較例1の炭素繊維強化プラスチック板は、D3方向の強度および弾性が弱く、強度および弾性に異方性があるため、回転させて使用するローラーや研削用ホイールとしての用途には不向きであることが明らかとなった。 On the other hand, the carbon fiber reinforced plastic plate of Comparative Example 1 had a bending strength ratio in the D1 to D3 directions of D1:D2:D3 = 100:114:30, and a bending modulus ratio of D1:D2:D3 = 100:88:30, resulting in weak strength and elasticity in the D3 direction. The carbon fiber woven fabric used in Comparative Example 1 was a fabric woven using warp and weft threads, and the D1 and D2 directions were parallel to either the warp or weft threads of the carbon fiber woven fabric, so it had a certain level of strength and elasticity. On the other hand, the D3 direction intersects with the warp and weft threads at an angle of 45 degrees, and the reinforcing effect of the carbon fibers was insufficient, resulting in inferior strength and elasticity compared to the D1 and D2 directions. These results make it clear that the carbon fiber reinforced plastic plate of Comparative Example 1 is unsuitable for use as a roller or grinding wheel that is rotated, because it has weak strength and elasticity in the D3 direction and has anisotropy in strength and elasticity.

〈まとめ〉
このように、本発明の炭素繊維強化プラスチック板であれば、極端な偏りが無い程度に等方性のある強度を満足することができ、また、フライス加工性やフライス加工後の平滑性を満足することができる。そのため、本発明の炭素繊維強化プラスチック板は、回転させて使用するローラーや研削用ホイール等の用途に有用である。
<summary>
In this way, the carbon fiber reinforced plastic plate of the present invention can satisfy the isotropic strength without extreme bias, and can also satisfy the milling workability and smoothness after milling. Therefore, the carbon fiber reinforced plastic plate of the present invention is useful for applications such as rollers and grinding wheels that are used while rotating.

100 炭素繊維不織布シート
101 第1炭素繊維不織布シート
102 第2炭素繊維不織布シート
103 第3炭素繊維不織布シート
104 第4炭素繊維不織布シート
111 第1炭素繊維強化プラスチック層
112 第2炭素繊維強化プラスチック層
113 第3炭素繊維強化プラスチック層
114 第4炭素繊維強化プラスチック層
200 炭素繊維強化プラスチック板
300 炭素繊維強化プラスチック板
400 ローラー
410 使用面
500 研削用ホイール
510 使用面
D1 配向方向
D2 配向方向
D3 交差方向
REFERENCE SIGNS LIST 100 Carbon fiber nonwoven fabric sheet 101 First carbon fiber nonwoven fabric sheet 102 Second carbon fiber nonwoven fabric sheet 103 Third carbon fiber nonwoven fabric sheet 104 Fourth carbon fiber nonwoven fabric sheet 111 First carbon fiber reinforced plastic layer 112 Second carbon fiber reinforced plastic layer 113 Third carbon fiber reinforced plastic layer 114 Fourth carbon fiber reinforced plastic layer 200 Carbon fiber reinforced plastic plate 300 Carbon fiber reinforced plastic plate 400 Roller 410 Use surface 500 Grinding wheel 510 Use surface D1 Orientation direction D2 Orientation direction D3 Intersecting direction

Claims (12)

繊維長が10~70mmの炭素繊維を含み、配向方向を有する第1炭素繊維不織布と、母材とを有する第1炭素繊維強化プラスチック層と、
繊維長が10~70mmの炭素繊維を含み、前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向と直交する配向方向を有する第2炭素繊維不織布と、母材とを有する第2炭素繊維強化プラスチック層と、を備え、
前記第1炭素繊維不織布は、質量300~1500g/m2の炭素繊維不織布であり、
前記第2炭素繊維不織布は、質量300~1500g/m2の炭素繊維不織布であり、
少なくとも前記第1炭素繊維強化プラスチック層と前記第2炭素繊維強化プラスチック層とが1層ずつ同数積層する、炭素繊維強化プラスチック板。
A first carbon fiber reinforced plastic layer including a first carbon fiber nonwoven fabric containing carbon fibers having a fiber length of 10 to 70 mm and having an orientation direction, and a base material;
a second carbon fiber reinforced plastic layer including a base material and a second carbon fiber nonwoven fabric including carbon fibers having a fiber length of 10 to 70 mm and having an orientation direction perpendicular to an orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer;
The first carbon fiber nonwoven fabric is a carbon fiber nonwoven fabric having a mass of 300 to 1500 g/m2,
The second carbon fiber nonwoven fabric is a carbon fiber nonwoven fabric having a mass of 300 to 1500 g/m2,
A carbon fiber reinforced plastic plate, comprising at least one first carbon fiber reinforced plastic layer and one second carbon fiber reinforced plastic layer laminated in equal numbers.
繊維長が10~70mmの炭素繊維を含み、前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する配向方向を有する第3炭素繊維不織布と、母材とを有する第3炭素繊維強化プラスチック層と、
繊維長が10~70mmの炭素繊維を含み、前記第3炭素繊維強化プラスチック層の前記第3炭素繊維不織布の配向方向と直交し、かつ前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する配向方向を有する第4炭素繊維不織布と、母材とを有する第4炭素繊維強化プラスチック層と、を備え、
前記第3炭素繊維不織布は、質量300~1500g/m2の炭素繊維不織布であり、
前記第4炭素繊維不織布は、質量300~1500g/m2の炭素繊維不織布であり、
前記第1炭素繊維強化プラスチック層と、前記第2炭素繊維強化プラスチック層と、前記第3炭素繊維強化プラスチック層と、前記第4炭素繊維強化プラスチック層とが少なくとも1層ずつ同数積層する、請求項1に記載の炭素繊維強化プラスチック板。
a third carbon fiber reinforced plastic layer including a base material and a third carbon fiber nonwoven fabric including carbon fibers having a fiber length of 10 to 70 mm and having an orientation direction intersecting at an angle of 45 degrees with an orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and an orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer;
a fourth carbon fiber reinforced plastic layer including a base material and a fourth carbon fiber nonwoven fabric containing carbon fibers having a fiber length of 10 to 70 mm and having an orientation direction perpendicular to the orientation direction of the third carbon fiber nonwoven fabric of the third carbon fiber reinforced plastic layer and intersecting at an angle of 45 degrees with the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer;
The third carbon fiber nonwoven fabric is a carbon fiber nonwoven fabric having a mass of 300 to 1500 g/m2,
The fourth carbon fiber nonwoven fabric is a carbon fiber nonwoven fabric having a mass of 300 to 1500 g/m2,
The carbon fiber reinforced plastic plate according to claim 1, wherein the first carbon fiber reinforced plastic layer, the second carbon fiber reinforced plastic layer, the third carbon fiber reinforced plastic layer, and the fourth carbon fiber reinforced plastic layer are laminated in equal numbers of at least one layer each.
前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向と平行な方向における第1曲げ強度と、
前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と平行な方向における第2曲げ強度と、
前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する交差方向と平行な方向における第3曲げ強度と、の強度比が1:0.8~1.2:0.8~1.2である、請求項1または2に記載の炭素繊維強化プラスチック板。
a first bending strength in a direction parallel to an orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer;
A second bending strength in a direction parallel to an orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer; and
The carbon fiber reinforced plastic plate according to claim 1 or 2, wherein a strength ratio between the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer and a third bending strength in a direction parallel to a cross direction that intersects with the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer at an angle of 45 degrees is 1:0.8-1.2:0.8-1.2.
前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向と平行な方向における第1曲げ弾性率と、
前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と平行な方向における第2曲げ弾性率と、
前記第1炭素繊維強化プラスチック層の前記第1炭素繊維不織布の配向方向および前記第2炭素繊維強化プラスチック層の前記第2炭素繊維不織布の配向方向と45度の角度で交差する交差方向と平行な方向における第3曲げ弾性率と、の比率が1:0.8~1.2:0.8~1.2である、請求項1~3のいずれかに記載の炭素繊維強化プラスチック板。
a first bending modulus in a direction parallel to an orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer;
a second bending modulus in a direction parallel to an orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer;
The carbon fiber reinforced plastic plate according to any one of claims 1 to 3, wherein the ratio of the third bending elastic modulus in a direction parallel to a cross direction that intersects with the orientation direction of the first carbon fiber nonwoven fabric of the first carbon fiber reinforced plastic layer at an angle of 45 degrees to the orientation direction of the second carbon fiber nonwoven fabric of the second carbon fiber reinforced plastic layer is 1:0.8-1.2:0.8-1.2.
前記母材が熱硬化性樹脂である、請求項1~4のいずれかに記載の炭素繊維強化プラスチック板。 A carbon fiber reinforced plastic plate according to any one of claims 1 to 4, wherein the base material is a thermosetting resin. 前記炭素繊維強化プラスチック板に対する炭素繊維不織布の繊維体積含有率が20~40体積%である、請求項1~5のいずれかに記載の炭素繊維強化プラスチック板。 A carbon fiber reinforced plastic plate according to any one of claims 1 to 5, in which the fiber volume content of the carbon fiber nonwoven fabric relative to the carbon fiber reinforced plastic plate is 20 to 40 volume %. 前記炭素繊維強化プラスチック板の表面の平面度が50mmあたり0.005~0.05mmである、請求項1~6のいずれかに記載の炭素繊維強化プラスチック板。 A carbon fiber reinforced plastic plate according to any one of claims 1 to 6, in which the flatness of the surface of the carbon fiber reinforced plastic plate is 0.005 to 0.05 mm per 50 mm. 請求項1~7のいずれかに記載の炭素繊維強化プラスチック板を研削加工した加工品。 A processed product obtained by grinding the carbon fiber reinforced plastic plate according to any one of claims 1 to 7. 前記加工品がローラーであり、当該ローラーの使用面は炭素繊維強化プラスチックである、請求項8に記載の加工品。 The processed product according to claim 8, wherein the processed product is a roller, and the working surface of the roller is made of carbon fiber reinforced plastic. 前記加工品が研削用ホイールであり、当該研削用ホイールの使用面は炭素繊維強化プラスチックである、請求項8に記載の加工品。 The processed product according to claim 8, wherein the processed product is a grinding wheel, and the working surface of the grinding wheel is carbon fiber reinforced plastic. 請求項1~7のいずれかに記載の炭素繊維強化プラスチック板の製造方法であって、
母材を含浸させた積層体を硬化させる硬化工程を含み、
前記積層体は、少なくとも前記第1炭素繊維強化プラスチック層と前記第2炭素繊維強化プラスチック層とが1層ずつ同数積層した積層体である、炭素繊維強化プラスチック板の製造方法。
A method for producing a carbon fiber reinforced plastic plate according to any one of claims 1 to 7,
A curing step of curing the laminate impregnated with the base material,
The method for manufacturing a carbon fiber reinforced plastic plate, wherein the laminate is a laminate in which at least one first carbon fiber reinforced plastic layer and one second carbon fiber reinforced plastic layer are laminated in equal numbers.
前記硬化工程後、前記積層体の表面をフライス加工するフライス加工工程を含む、請求項11に記載の炭素繊維強化プラスチック板の製造方法。 The method for producing a carbon fiber reinforced plastic plate according to claim 11, further comprising a milling step of milling the surface of the laminate after the curing step.
JP2020077559A 2020-04-24 2020-04-24 Carbon fiber reinforced plastic plate, processed product, and method for manufacturing carbon fiber reinforced plastic plate Active JP7526026B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020077559A JP7526026B2 (en) 2020-04-24 2020-04-24 Carbon fiber reinforced plastic plate, processed product, and method for manufacturing carbon fiber reinforced plastic plate
CN202110418120.3A CN113547800B (en) 2020-04-24 2021-04-19 Carbon fiber-reinforced plastic sheet, processed product, and method for producing carbon fiber-reinforced plastic sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077559A JP7526026B2 (en) 2020-04-24 2020-04-24 Carbon fiber reinforced plastic plate, processed product, and method for manufacturing carbon fiber reinforced plastic plate

Publications (2)

Publication Number Publication Date
JP2021172012A JP2021172012A (en) 2021-11-01
JP7526026B2 true JP7526026B2 (en) 2024-07-31

Family

ID=78130118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077559A Active JP7526026B2 (en) 2020-04-24 2020-04-24 Carbon fiber reinforced plastic plate, processed product, and method for manufacturing carbon fiber reinforced plastic plate

Country Status (2)

Country Link
JP (1) JP7526026B2 (en)
CN (1) CN113547800B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7454197B2 (en) * 2021-10-20 2024-03-22 株式会社大一商会 gaming machine
JP7454195B2 (en) * 2021-10-20 2024-03-22 株式会社大一商会 gaming machine
JP7454196B2 (en) * 2021-10-20 2024-03-22 株式会社大一商会 gaming machine
JP7500032B2 (en) * 2021-10-20 2024-06-17 株式会社大一商会 Gaming Machines
JP7511601B2 (en) 2022-04-22 2024-07-05 双葉電子工業株式会社 Carbon fiber reinforced plastic plate and method for producing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191073A1 (en) 2012-06-18 2013-12-27 東レ株式会社 Carbon fiber mat and carbon fiber composite material including same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04286633A (en) * 1991-03-15 1992-10-12 Petoca:Kk Fiber reinforced plastic roll and manufacture thereof
JP2005336407A (en) * 2004-05-28 2005-12-08 Toho Tenax Co Ltd Composite material excellent in surface smoothness
WO2012165076A1 (en) * 2011-05-31 2012-12-06 東レ株式会社 Carbon-fiber-reinforced plastic and process for producing same
KR102041989B1 (en) * 2011-11-16 2019-11-07 도레이 카부시키가이샤 Fiber-reinforced composite material and process for producing fiber-reinforced composite material
US10780670B2 (en) * 2015-04-02 2020-09-22 Mitsubishi Chemical Corporation Laminate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013191073A1 (en) 2012-06-18 2013-12-27 東レ株式会社 Carbon fiber mat and carbon fiber composite material including same

Also Published As

Publication number Publication date
CN113547800B (en) 2023-06-27
CN113547800A (en) 2021-10-26
JP2021172012A (en) 2021-11-01

Similar Documents

Publication Publication Date Title
JP7526026B2 (en) Carbon fiber reinforced plastic plate, processed product, and method for manufacturing carbon fiber reinforced plastic plate
US8354156B2 (en) Prepreg base material, layered base material, fiber-reinforced plastic, process for producing prepreg base material, and process for producing fiber-reinforced plastic
CN102514284B (en) Thin ply laminates
JP5272418B2 (en) Cut prepreg base material, composite cut prepreg base material, laminated base material, fiber reinforced plastic, and method for producing cut prepreg base material
US10800894B2 (en) Resin supply material, preform, and method of producing fiber-reinforced resin
US20150274913A1 (en) Prepreg, carbon-fiber-reinforced composite material, and robot hand
JP5336225B2 (en) Multi-axis stitch base material and preform using it
KR20160074296A (en) Method for manufacturing hybrid ceramic fiber reinforced composite material and hybrid ceramic fiber reinforced composite material manufactured thereby
JP2015030950A (en) Stitch base material and fiber-reinforced plastic using the same
JP2010214704A (en) Base material for preform using binder including superfine fiber, and method of manufacturing the same
JP4613298B2 (en) Composite sheet and composite material having smooth surface using the same
JP2014050981A (en) Substrate for molding fiber reinforced plastic and fiber reinforced plastic
JP7005557B2 (en) Manufacturing method of carbon fiber reinforced plastic plate and carbon fiber reinforced plastic plate
JP2014162858A (en) Prepreg and production method of the same, and fiber reinforced composite material
CN113547801B (en) Carbon fiber-reinforced plastic sheet, processed product, and method for producing carbon fiber-reinforced plastic sheet
JP7511601B2 (en) Carbon fiber reinforced plastic plate and method for producing the same
CN209869584U (en) Light high-strength unidirectional carbon fiber laminated board
JP4558398B2 (en) Composite material with smooth surface
KR20170140587A (en) Multilayer Composite Agent Stitched With Reinforcing Fibers And The Process For Producing The Same
JP7467906B2 (en) Fiber-reinforced resin molded body and composite molded body
US20240059031A1 (en) Prepreg laminate, composite structure, and method for manufacturing composite structure
WO2022024939A1 (en) Fiber-reinforced plastic and production method for fiber-reinforced plastic
WO2021117460A1 (en) Prepreg, laminate and integrated molded article
EP3548262B1 (en) Fibre-reinforced preform with serrated edge
KR20230157552A (en) Sandwich composite and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240719

R150 Certificate of patent or registration of utility model

Ref document number: 7526026

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150