JP7511858B2 - How to correct measurement data - Google Patents

How to correct measurement data Download PDF

Info

Publication number
JP7511858B2
JP7511858B2 JP2023063676A JP2023063676A JP7511858B2 JP 7511858 B2 JP7511858 B2 JP 7511858B2 JP 2023063676 A JP2023063676 A JP 2023063676A JP 2023063676 A JP2023063676 A JP 2023063676A JP 7511858 B2 JP7511858 B2 JP 7511858B2
Authority
JP
Japan
Prior art keywords
curved surface
curvature
surface portion
data
gauge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023063676A
Other languages
Japanese (ja)
Other versions
JP2023082223A (en
Inventor
義也 福原
正人 寺澤
理 佐藤
和也 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2023063676A priority Critical patent/JP7511858B2/en
Publication of JP2023082223A publication Critical patent/JP2023082223A/en
Application granted granted Critical
Publication of JP7511858B2 publication Critical patent/JP7511858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Description

本発明は、測定データの補正方法に関する。 The present invention relates to a method for correcting measurement data.

三次元形状物の形状を測定する際には、形状測定機が用いられる。この形状測定機による測定精度を高めるため、以下の特許文献1には、キャリブレーションゲージを用いて、形状測定機の測定誤差等を求める方法や形状測定機の測定データを補正する方法等が記載されている。 A shape measuring machine is used to measure the shape of a three-dimensional object. In order to improve the measurement accuracy of this shape measuring machine, the following Patent Document 1 describes a method of using a calibration gauge to determine the measurement error of the shape measuring machine and a method of correcting the measurement data of the shape measuring machine.

特許文献1に記載されているキャリブレーションゲージは、平面を有するブロックと、この平面から凹んでいる凹状の第一半球面と、この平面から突出している凸状の第二半球面と、を有する。第一半球面と第二半球面との間には、平面が介在している。第一半球面と第二半球面とは、互い同じ曲率半径の曲面である。 The calibration gauge described in Patent Document 1 has a block having a flat surface, a first concave hemisphere recessed from the flat surface, and a second convex hemisphere protruding from the flat surface. A flat surface is interposed between the first and second hemispheres. The first and second hemispheres are curved surfaces with the same radius of curvature.

特開2006-349411号公報JP 2006-349411 A

特許文献1に記載のキャリブレーションゲージを用いて、形状測定機の精度評価の実施や、この形状測定機で得られた測定データを補正することは可能である。 The calibration gauge described in Patent Document 1 can be used to evaluate the accuracy of a shape measuring machine and to correct the measurement data obtained by this shape measuring machine.

しかしながら、製造業等の分野では、自由曲面を含む三次元形状物の形状を測定する場合の形状測定機の計測結果の確からしさを評価し、計測精度を高めたい、という要望がある。さらに、製造業等の分野では、形状測定機で得られた測定データを精度よく補正したい、という要望もある。 However, in fields such as manufacturing, there is a demand to evaluate the reliability of the measurement results of shape measuring machines when measuring the shapes of three-dimensional objects including free-form surfaces, and to improve the measurement accuracy. Furthermore, in fields such as manufacturing, there is also a demand to accurately correct the measurement data obtained by shape measuring machines.

そこで、本発明は、形状測定機の計測結果の確からしさを評価し、計測精度を高めることができると共に、形状測定機で得られた測定データを精度よく補正することができる技術を提供することを目的とする。 The present invention aims to provide a technology that can evaluate the reliability of the measurement results of a shape measuring machine, improve the measurement accuracy, and accurately correct the measurement data obtained by the shape measuring machine.

上記目的を達成するための発明に係る一態様の測定データの補正方法は、
ゲージを製造するゲージ製造工程と、前記ゲージ製造工程で製造された前記ゲージに関するゲージ証明データを取得する証明取得工程と、形状測定機を用いて、互いに異なる曲率半径を有する複数の曲面部を含み、複数の前記曲面部のそれぞれが、複数の前記曲面部のうちの他の曲面部に連続してつながっている自由曲面を有する測定対象の形状を測定して、対象測定データを取得する対象測定工程と、前記ゲージ証明データと前記対象測定データとの比較結果に応じて、前記対象測定データを補正する補正データを求める補正データ算出工程と、前記補正データを用いて、前記対象測定データを補正する補正工程と、を実行する。前記ゲージ製造工程では、前記測定対象から、前記自由曲面に含まれる少なくとも一部の自由曲線を含む評価領域を定める評価領域特定工程と、前記評価領域から前記自由曲線に含まれる複数の曲線部を抽出する要素抽出工程と、前記要素抽出工程で抽出した複数の前記曲線部に関する設計データを取得する設計データ取得工程と、互いに位置が異なり、座標系を定めることができる複数の基準部を有する基準体を数学的に定義する基準部定義工程と、前記設計データ取得工程で取得した複数の前記曲線部毎の前記設計データを用いて、複数の前記曲線部を含む前記自由曲線を、前記基準部で定まる前記座標系中に、数学的に定義する自由曲面定義工程と、前記基準部を有する基準体と、前記自由曲線を含み、前記基準体に接続されているゲージ本体と、を製造する製造工程と、を実行する。前記自由曲面定義工程では、前記自由曲面の形状を示す関数を二次微分可能な関数にする。前記製造工程では、数学的に定義された前記基準部のデータに従って、前記基準部を有する前記基準体を製造すると共に、数学的に定義された前記自由曲線のデータに従って、前記ゲージ本体を製造する。前記証明取得工程で取得する前記ゲージ証明データは、前記ゲージ中で、前記測定対象の前記評価領域に対応する評価対応領域の形状を証明するデータである。前記対象測定工程で取得する前記対象測定データは、前記形状測定機を用いて、前記測定対象の前記評価領域の形状を測定して得られたデータである。
In order to achieve the above object, a method for correcting measurement data according to one aspect of the present invention comprises the steps of:
The method includes a gauge manufacturing process for manufacturing a gauge, a certification acquisition process for acquiring gauge certification data related to the gauge manufactured in the gauge manufacturing process, an object measurement process for measuring the shape of a measurement object having a free-form surface including a plurality of curved portions having different radii of curvature, each of which is continuously connected to other curved portions among the plurality of curved portions using a shape measuring machine, to acquire object measurement data, a correction data calculation process for determining correction data for correcting the object measurement data according to a comparison result between the gauge certification data and the object measurement data, and a correction process for correcting the object measurement data using the correction data. The gauge manufacturing process includes an evaluation area specification process for determining an evaluation area including at least a part of a free curve included in the free curve from the measurement object, an element extraction process for extracting a plurality of curved portions included in the free curve from the evaluation area, a design data acquisition process for acquiring design data related to the plurality of curved portions extracted in the element extraction process, a reference part definition process for mathematically defining a reference body having a plurality of reference parts that are different in position from each other and can determine a coordinate system, a free curved surface definition process for mathematically defining the free curve including the plurality of curved portions in the coordinate system determined by the reference parts using the design data for each of the plurality of curved portions acquired in the design data acquisition process, and a manufacturing process for manufacturing a reference body having the reference part and a gauge body including the free curve and connected to the reference body. In the free curved surface definition process, a function indicating the shape of the free curved surface is made into a quadratic differentiable function. In the manufacturing process, the reference body having the reference part is manufactured according to the mathematically defined data of the reference part, and the gauge body is manufactured according to the mathematically defined data of the free curve. The gauge certification data acquired in the certification acquisition step is data that certifies the shape of an evaluation corresponding area in the gauge that corresponds to the evaluation area of the measurement object. The object measurement data acquired in the object measurement step is data obtained by measuring the shape of the evaluation area of the measurement object using the shape measuring machine.

本発明の一態様によれば、形状測定機の計測結果の確からしさを評価し、計測精度を高めることができると共に、形状測定機で得られた測定データを精度よく補正することができる。 According to one aspect of the present invention, it is possible to evaluate the reliability of the measurement results of a shape measuring machine, improve the measurement accuracy, and accurately correct the measurement data obtained by the shape measuring machine.

本発明に係る一実施形態における測定対象としての動翼の斜視図である。FIG. 2 is a perspective view of a rotor blade as a measurement target in one embodiment according to the present invention. 図1及び図4におけるII-II線断面図である。2 is a cross-sectional view taken along line II-II in FIG. 1 and FIG. 図1及び図4におけるIII-III線断面図である。3 is a cross-sectional view taken along line III-III in FIG. 1 and FIG. 本発明に係る一実施形態におけるゲージの斜視図である。FIG. 1 is a perspective view of a gauge according to an embodiment of the present invention. 本発明に係る一実施形態におけるゲージの製造方法を示すフローチャートである。4 is a flowchart showing a method for manufacturing a gauge in one embodiment according to the present invention. 本発明に係る一実施形態における形状測定機の精度評価方法を示すフローチャートである。1 is a flowchart showing a method for evaluating accuracy of a shape measuring machine in an embodiment according to the present invention. 本発明に係る一実施形態におけるゲージの証明データを示す説明図である。FIG. 2 is an explanatory diagram showing certification data of a gauge in one embodiment according to the present invention. 本発明に係る一実施形態における座標上に展開した証明データを示す説明図である。FIG. 10 is an explanatory diagram showing proof data expanded on a coordinate system according to an embodiment of the present invention. 本発明に係る一実施形態における形状測定機の斜視図である。1 is a perspective view of a shape measuring machine according to an embodiment of the present invention. 本発明に係る一実施形態におけるゲージの測定データの一部を示す説明図である。FIG. 4 is an explanatory diagram showing a portion of measurement data of a gauge in one embodiment according to the present invention. 本発明に係る一実施形態におけるゲージの測定データと証明データとの比較結果を示す説明図である。FIG. 10 is an explanatory diagram showing a comparison result between measurement data and certification data of a gauge in one embodiment according to the present invention. 本発明に係る一実施形態における測定データの校正(補正)方法を示すフローチャートである。4 is a flowchart showing a method for calibrating (correcting) measurement data in one embodiment of the present invention. 本発明に係る一実施形態における補正関数を示す説明図である。FIG. 4 is an explanatory diagram showing a correction function in an embodiment according to the present invention. 本発明に係る一実施形態の変形例における第一補正関数を示す説明図である。FIG. 11 is an explanatory diagram showing a first correction function in a modified example of an embodiment according to the present invention. 本発明に係る一実施形態の変形例における第二補正関数を示す説明図である。FIG. 11 is an explanatory diagram showing a second correction function in a modified example of an embodiment according to the present invention. 本発明に係る一実施形態における第一変形例のゲージの斜視図である。FIG. 11 is a perspective view of a gauge according to a first modified example of an embodiment of the present invention. 本発明に係る一実施形態における第二変形例のゲージの斜視図である。FIG. 11 is a perspective view of a gauge according to a second modified example of the embodiment of the present invention. 本発明に係る一実施形態における第三変形例のゲージの斜視図である。FIG. 11 is a perspective view of a gauge according to a third modified example of the embodiment of the present invention.

以下、本発明に係るゲージ、これを用いた測定データの校正(補正)方法等の一実施形態について、図面を用いて説明する。 Below, an embodiment of the gauge according to the present invention and a method for calibrating (correcting) measurement data using the gauge will be described with reference to the drawings.

「測定対象」
測定対象の実施形態について、図1~図3を用いて説明する。
"Measurement object"
An embodiment of the measurement target will be described with reference to FIGS.

本実施形態の測定対象は、図1に示すように、タービンの動翼10である。動翼10は、回転軸線Arを中心に回転するロータ軸に取り付けられる。ここで、便宜上、回転軸線Arが延びている方向をY方向、回転軸線Arに対する径方向をZ方向、Y方向及びZ方向に垂直な方向をX方向とする。 The measurement object in this embodiment is a turbine rotor blade 10, as shown in FIG. 1. The rotor blade 10 is attached to a rotor shaft that rotates around a rotation axis Ar. For convenience, the direction in which the rotation axis Ar extends is defined as the Y direction, the radial direction relative to the rotation axis Ar is defined as the Z direction, and the direction perpendicular to the Y direction and Z direction is defined as the X direction.

動翼10は、プラットフォーム11と、ロータ軸にはめ込まれる翼根12と、翼型を成す翼体13と、を有する。プラットフォーム11の(+)Z側を向く面は、作動流体であるガスに接するガスパス面11pを成す。翼体13は、プラットフォーム11のガスパス面11pから、(+)Z側に延びている。翼根12は、プラットフォーム11で(-)Z側を向く面から、(-)Z側に延びている。 The rotor blade 10 has a platform 11, a blade root 12 that fits onto the rotor shaft, and a blade body 13 that forms an airfoil shape. The surface of the platform 11 facing the (+)Z side forms a gas path surface 11p that is in contact with gas, which is the working fluid. The blade body 13 extends from the gas path surface 11p of the platform 11 to the (+)Z side. The blade root 12 extends from the surface of the platform 11 facing the (-)Z side to the (-)Z side.

翼体13は、前縁14と、後縁15と、負圧面16と、正圧面17と、チップ面18と、を有する。前縁14と後縁15とは、負圧面16及び正圧面17で接続されている。負圧面16は、前縁14と後縁15とを結ぶキャンバーラインを基準にして、(-)X側に配置され、(-)X側を向く面で、基本的に凸面である。正圧面17は、キャンバーラインを基準にして、(+)X側に配置され、(+)X側を向く面で、基本的に凹面である。チップ面18は、(+)Z側を向き、正圧面17の(+)Z側の縁と負圧面16の(+)Z側の縁とを接続する。 The blade body 13 has a leading edge 14, a trailing edge 15, a suction surface 16, a pressure surface 17, and a tip surface 18. The leading edge 14 and the trailing edge 15 are connected by the suction surface 16 and the pressure surface 17. The suction surface 16 is located on the (-)X side with respect to the camber line connecting the leading edge 14 and the trailing edge 15, and is a surface facing the (-)X side, and is basically a convex surface. The pressure surface 17 is located on the (+)X side with respect to the camber line, and is a surface facing the (+)X side, and is basically a concave surface. The tip surface 18 faces the (+)Z side, and connects the (+)Z side edge of the pressure surface 17 and the (+)Z side edge of the suction surface 16.

図2は、図1中のII-II線断面図である。すなわち、図2は、Z方向に垂直な仮想平面Pz(図1参照)での翼体13の断面図である。翼体13は、この断面中に、第一曲面部C1、第一接続曲面部B1、第二曲面部C2、第二接続曲面部B2、第三曲面部C3、第三接続曲面部B3、第四曲面部C4、第四接続曲面部B4を有する。第一曲面部C1は、正圧面17中の前縁14側の部分から、前縁14を経て、負圧面16中の前縁14側の部分までの範囲内の部分である。この第一曲面部C1の曲率半径は、r1である。第三曲面部C3は、負圧面16中で後縁15側の部分から、後縁15を経て、正圧面17の後縁15側の部分までの範囲内の部分である。この第三曲面部C3の曲率半径は、r3である。 Figure 2 is a cross-sectional view of line II-II in Figure 1. That is, Figure 2 is a cross-sectional view of the wing body 13 on a virtual plane Pz (see Figure 1) perpendicular to the Z direction. The wing body 13 has a first curved surface portion C1, a first connecting curved surface portion B1, a second curved surface portion C2, a second connecting curved surface portion B2, a third curved surface portion C3, a third connecting curved surface portion B3, a fourth curved surface portion C4, and a fourth connecting curved surface portion B4 in this cross-section. The first curved surface portion C1 is a portion within a range from a portion on the leading edge 14 side of the positive pressure surface 17, through the leading edge 14, to a portion on the leading edge 14 side of the negative pressure surface 16. The radius of curvature of this first curved surface portion C1 is r1. The third curved surface portion C3 is a portion within a range from a portion on the trailing edge 15 side of the negative pressure surface 16, through the trailing edge 15, to a portion on the trailing edge 15 side of the positive pressure surface 17. The radius of curvature of this third curved surface portion C3 is r3.

負圧面16中で第一曲面部C1の後縁15側の縁には、第一接続曲面部B1が接続されている。負圧面16中で第一接続曲面部B1の後縁15側の縁には、第二曲面部C2が接続されている。第二曲面部C2の曲率半径は、r2である。負圧面16中で第二曲面部C2の後縁15側の縁には、第二接続曲面部B2が接続されている。負圧面16中で第二接続曲面部B2の後縁15側の縁には、第三曲面部C3が接続されている。この第三曲面部C3の曲率半径は、r3である。第一接続曲面部B1は、第一曲面部C1の縁に接続されている前縁側接続部(第一接続部)B1fと、第二曲面部C2の縁に接続されている後縁側接続部(第二接続部)B1bと、を有する。前縁側接続部B1fの曲率半径は、第一曲面部C1の曲率半径r1と同じである。後縁側接続部B1bの曲率半径は、第二曲面部C2の曲率半径r2と同じである。第一接続曲面部B1の曲率半径は、前縁側接続部B1fから後縁側接続部B1bにかけて、滑らかに連続的に変化する。第二接続曲面部B2は、第二曲面部C2の縁に接続されている前縁側接続部(第一接続部)B2fと、第三曲面部C3の縁に接続されている後縁側接続部(第二接続部)B2bと、を有する。前縁側接続部B2fの曲率半径は、第二曲面部C2の曲率半径r2と同じである。後縁側接続部B2bの曲率半径は、第三曲面部C3の曲率半径r3と同じである。第二接続曲面部B2の曲率半径は、前縁側接続部B2fから後縁側接続部B2bにかけて、滑らかに連続的に変化する。なお、以上において、二つの接続部が滑らかに接続されていれば、二つの接続部間は直線であってよい。このため、以上の各曲面部は、曲率半径が無限大である平面部であってもよい。また、曲率半径が滑らかに連続的に変化するとは、例えば、曲率半径の二次微分係数が連続的に変化するような場合である。 A first connecting curved surface portion B1 is connected to the edge of the first curved surface portion C1 on the rear edge 15 side in the negative pressure surface 16. A second curved surface portion C2 is connected to the edge of the first connecting curved surface portion B1 on the rear edge 15 side in the negative pressure surface 16. The radius of curvature of the second curved surface portion C2 is r2. A second connecting curved surface portion B2 is connected to the edge of the second curved surface portion C2 on the rear edge 15 side in the negative pressure surface 16. A third curved surface portion C3 is connected to the edge of the second connecting curved surface portion B2 on the rear edge 15 side in the negative pressure surface 16. The radius of curvature of this third curved surface portion C3 is r3. The first connecting curved surface portion B1 has a leading edge side connecting portion (first connecting portion) B1f connected to the edge of the first curved surface portion C1 and a trailing edge side connecting portion (second connecting portion) B1b connected to the edge of the second curved surface portion C2. The radius of curvature of the leading connection portion B1f is the same as the radius of curvature r1 of the first curved surface portion C1. The radius of curvature of the trailing connection portion B1b is the same as the radius of curvature r2 of the second curved surface portion C2. The radius of curvature of the first connection curved surface portion B1 changes smoothly and continuously from the leading connection portion B1f to the trailing connection portion B1b. The second connection curved surface portion B2 has a leading connection portion (first connection portion) B2f connected to the edge of the second curved surface portion C2 and a trailing connection portion (second connection portion) B2b connected to the edge of the third curved surface portion C3. The radius of curvature of the leading connection portion B2f is the same as the radius of curvature r2 of the second curved surface portion C2. The radius of curvature of the trailing connection portion B2b is the same as the radius of curvature r3 of the third curved surface portion C3. The radius of curvature of the second connecting curved surface portion B2 changes smoothly and continuously from the leading edge side connecting portion B2f to the trailing edge side connecting portion B2b. Note that in the above, as long as the two connecting portions are smoothly connected, the line between the two connecting portions may be a straight line. Therefore, each of the above curved surface portions may be a flat portion with an infinite radius of curvature. In addition, a smooth and continuous change in the radius of curvature refers to, for example, a case in which the second derivative of the radius of curvature changes continuously.

正圧面17中で第三曲面部C3の前縁14側の縁には、第三接続曲面部B3が接続されている。正圧面17中で第三接続曲面部B3の前縁14側の縁には、第四曲面部C4が接続されている。この第四曲面部C4の曲率半径は、r4である。正圧面17中で第四曲面部C4の前縁14側の縁には、第四接続曲面部B4が接続されている。正圧面17中で第四接続曲面部B4の前縁14側の縁には、第一曲面部C1が接続されている。第三接続曲面部B3は、第三曲面部C3の縁に接続されている後縁側接続部(第二接続部)B3bと、第四曲面部C4の縁に接続されている前縁側接続部(第一接続部)B3fと、を有する。後縁側接続部B3bの曲率半径は、第三曲面部C3の曲率半径r3と同じである。前縁側接続部B3fの曲率半径は、第四曲面部C4の曲率半径r4と同じである。第三接続曲面部B3の曲率半径は、後縁側接続部B3bから前縁側接続部B3fにかけて、滑らかに連続的に変化する。第四接続曲面部B4は、第四曲面部C4の縁に接続されている後縁側接続部(第二接続部)B4bと、第一曲面部C1の縁に接続されている前縁側接続部(第一接続部)B4fと、を有する。後縁側接続部B4bの曲率半径は、第四曲面部C4の曲率半径r4と同じである。前縁側接続部B4fの曲率半径は、第一曲面部C1の曲率半径r1と同じである。第四接続曲面部B4の曲率半径は、後縁側接続部B4bから前縁側接続部B4fにかけて、滑らかに連続的に変化する。なお、以上において、二つの接続部が滑らかに接続されていれば、二つの接続部間は直線であってよい。このため、以上の各曲面部は、曲率半径が無限大である平面部であってもよい。また、曲率半径が滑らかに連続的に変化するとは、例えば、曲率半径の二次微分係数が連続的に変化するような場合である。 The third connecting curved surface portion B3 is connected to the edge of the third connecting curved surface portion C3 on the leading edge 14 side in the positive pressure surface 17. The fourth curved surface portion C4 is connected to the edge of the third connecting curved surface portion B3 on the leading edge 14 side in the positive pressure surface 17. The radius of curvature of this fourth curved surface portion C4 is r4. The fourth connecting curved surface portion B4 is connected to the edge of the fourth curved surface portion C4 on the leading edge 14 side in the positive pressure surface 17. The first curved surface portion C1 is connected to the edge of the fourth connecting curved surface portion B4 on the leading edge 14 side in the positive pressure surface 17. The third connecting curved surface portion B3 has a trailing edge side connecting portion (second connecting portion) B3b connected to the edge of the third curved surface portion C3 and a leading edge side connecting portion (first connecting portion) B3f connected to the edge of the fourth curved surface portion C4. The radius of curvature of the trailing edge side connecting portion B3b is the same as the radius of curvature r3 of the third curved surface portion C3. The radius of curvature of the leading edge side connection portion B3f is the same as the radius of curvature r4 of the fourth curved surface portion C4. The radius of curvature of the third connecting curved surface portion B3 changes smoothly and continuously from the trailing edge side connection portion B3b to the leading edge side connection portion B3f. The fourth connecting curved surface portion B4 has a trailing edge side connection portion (second connection portion) B4b connected to the edge of the fourth curved surface portion C4 and a leading edge side connection portion (first connection portion) B4f connected to the edge of the first curved surface portion C1. The radius of curvature of the trailing edge side connection portion B4b is the same as the radius of curvature r4 of the fourth curved surface portion C4. The radius of curvature of the leading edge side connection portion B4f is the same as the radius of curvature r1 of the first curved surface portion C1. The radius of curvature of the fourth connecting curved surface portion B4 changes smoothly and continuously from the trailing edge side connection portion B4b to the leading edge side connection portion B4f. In the above, the two connection parts may be connected by a straight line as long as they are smoothly connected. Therefore, each of the curved surface parts may be a flat surface with an infinite radius of curvature. In addition, the radius of curvature smoothly and continuously changes when, for example, the second derivative of the radius of curvature changes continuously.

ここで、各曲面部C1,C2,C3,C4の曲率半径の大小関係は、以下の通りである。
r2>r4>r1>r3、叉は、r2>r4>r3>r1
The magnitude relationship between the radii of curvature of the curved surface portions C1, C2, C3, and C4 is as follows.
r2>r4>r1>r3, or r2>r4>r3>r1

また、第一曲面部C1の曲率半径r1、第二曲面部C2の曲率半径r2、及び第三曲面部C3の曲率半径r3は、いずれも、外側半径である。一方、第四曲面部C4の曲率半径r4は、内側半径である。よって、第一曲面部C1、第二曲面部C2、及び第三曲面部C3は、凸曲面であり、第四曲面部C4は、凹曲面である。 The radius of curvature r1 of the first curved surface portion C1, the radius of curvature r2 of the second curved surface portion C2, and the radius of curvature r3 of the third curved surface portion C3 are all outer radii. On the other hand, the radius of curvature r4 of the fourth curved surface portion C4 is an inner radius. Therefore, the first curved surface portion C1, the second curved surface portion C2, and the third curved surface portion C3 are convex curved surfaces, and the fourth curved surface portion C4 is a concave curved surface.

翼体13は、以上で説明した第一曲面部C1、第一接続曲面部B1、第二曲面部C2、第二接続曲面部B2、第三曲面部C3、第三接続曲面部B3、第四曲面部C4、第四接続曲面部B4で構成される翼形自由曲面Fbを有する。 The wing body 13 has an airfoil-shaped free-form surface Fb that is composed of the first curved surface portion C1, the first connecting curved surface portion B1, the second curved surface portion C2, the second connecting curved surface portion B2, the third curved surface portion C3, the third connecting curved surface portion B3, the fourth curved surface portion C4, and the fourth connecting curved surface portion B4 described above.

この翼形自由曲面Fbは、一次微分係数が連続している。すなわち、この翼形自由曲面Fbの形状を示す関数は、一次微分可能な関数である。なお、この翼形自由曲面Fbは、二次微分係数も連続していることが好ましい。すなわち、この翼形自由曲面Fbの形状を示す関数は、二次微分可能な関数であることが好ましい。 The airfoil-shaped free-form surface Fb has a continuous first derivative. That is, the function that represents the shape of the airfoil-shaped free-form surface Fb is a function that can be differentiated first. It is preferable that the airfoil-shaped free-form surface Fb also has a continuous second derivative. That is, it is preferable that the function that represents the shape of the airfoil-shaped free-form surface Fb is a function that can be differentiated second.

図3は、図1中のIII-III線断面図である。すなわち、図3は、Y方向に垂直な仮想平面Py(図1参照)での翼体13の断面図である。翼体13は、この断面中に、負圧側自由曲面Fsと、正圧側自由曲面Fpとを有する。 Figure 3 is a cross-sectional view taken along line III-III in Figure 1. That is, Figure 3 is a cross-sectional view of the wing body 13 on a virtual plane Py (see Figure 1) perpendicular to the Y direction. The wing body 13 has a negative pressure side free curved surface Fs and a positive pressure side free curved surface Fp in this cross section.

負圧側自由曲面Fsは、第五曲面部C5、第五接続曲面部B5、第六曲面部C6を有する。第五曲面部C5の(-)Z側の縁は、プラットフォーム11のガスパス面11pに接続されている。第五曲面部C5の(+)Z側の縁には、第五接続曲面部B5が接続されている。第五接続曲面部B5の(+)Z側の縁には、第六曲面部C6が接続されている。第六曲面部C6の(+)Z側の縁には、チップ面18が接続されている。第五曲面部C5の曲率半径は、r5である。なお、第五曲面部C5を形成する部分は、フィレットと呼ばれる場合がある。第六曲面部C6の曲率半径は、r6である。第五接続曲面部B5は、第五曲面部C5の縁に接続されている基部側接続部(第一接続部)B5bと、第六曲面部C6の縁に接続されているチップ側接続部(第二接続部)B5tと、を有する。基部側接続部B5bの曲率半径は、第五曲面部C5の曲率半径r5と同じである。チップ側接続部B5tの曲率半径は、第六曲面部C6の曲率半径r6と同じである。第五接続曲面部B5の曲率半径は、基部側接続部B5bからチップ側接続部B5tにかけて、滑らかに連続的に変化する。なお、以上において、二つの接続部が滑らかに接続されていれば、二つの接続部間は直線であってよい。このため、以上の各曲面部は、曲率半径が無限大である平面部であってもよい。また、曲率半径が滑らかに連続的に変化するとは、例えば、曲率半径の二次微分係数が連続的に変化するような場合である。 The negative pressure side free curved surface Fs has a fifth curved surface portion C5, a fifth connecting curved surface portion B5, and a sixth curved surface portion C6. The (-)Z side edge of the fifth curved surface portion C5 is connected to the gas path surface 11p of the platform 11. The fifth connecting curved surface portion B5 is connected to the (+)Z side edge of the fifth curved surface portion C5. The sixth curved surface portion C6 is connected to the (+)Z side edge of the fifth connecting curved surface portion B5. The tip surface 18 is connected to the (+)Z side edge of the sixth curved surface portion C6. The radius of curvature of the fifth curved surface portion C5 is r5. The portion forming the fifth curved surface portion C5 may be called a fillet. The radius of curvature of the sixth curved surface portion C6 is r6. The fifth curved connection portion B5 has a base side connection portion (first connection portion) B5b connected to the edge of the fifth curved surface portion C5, and a chip side connection portion (second connection portion) B5t connected to the edge of the sixth curved surface portion C6. The radius of curvature of the base side connection portion B5b is the same as the radius of curvature r5 of the fifth curved surface portion C5. The radius of curvature of the chip side connection portion B5t is the same as the radius of curvature r6 of the sixth curved surface portion C6. The radius of curvature of the fifth curved connection portion B5 changes smoothly and continuously from the base side connection portion B5b to the chip side connection portion B5t. Note that in the above, as long as the two connection portions are smoothly connected, the two connection portions may be connected in a straight line. For this reason, each of the above curved surface portions may be a flat portion with an infinite radius of curvature. In addition, the radius of curvature changes smoothly and continuously when, for example, the second derivative of the radius of curvature changes continuously.

第五曲面部C5の曲率半径r5は、内側半径あり、第六曲面部C6C6gの曲率半径r6は、外側半径である。よって、第五曲面部C5は、凹曲面であり、第六曲面部C6は凸曲面である。 The radius of curvature r5 of the fifth curved surface portion C5 is the inner radius, and the radius of curvature r6 of the sixth curved surface portion C6C6g is the outer radius. Therefore, the fifth curved surface portion C5 is a concave curved surface, and the sixth curved surface portion C6 is a convex curved surface.

正圧側自由曲面Fpは、第七曲面部C7、第七接続曲面部B7、第八曲面部C8を有する。第七曲面部C7の(-)Z側の縁は、プラットフォーム11のガスパス面11pに接続されている。第七曲面部C7の(+)Z側の縁には、第七接続曲面部B7が接続されている。第七接続曲面部B7の(+)Z側の縁には、第八曲面部C8が接続されている。第八曲面部C8の(+)Z側の縁には、チップ面18が接続されている。第七曲面部C7の曲率半径は、r7である。なお、第七曲面部C7を形成する部分は、フィレットと呼ばれる場合がある。第八曲面部C8の曲率半径は、r8である。第七接続曲面部B7は、第七曲面部C7の縁に接続されている基側接続部(第一接続部)B7bと、第八曲面部C8の縁に接続されているチップ側接続部(第二接続部)B7tと、を有する。基側接続部B7bの曲率半径は、第七曲面部C7の曲率半径r7と同じである。チップ側接続部B7tの曲率半径は、第八曲面部C8の曲率半径r8と同じである。第七接続曲面部B7の曲率半径は、基側接続部B7bからチップ側接続部B7tにかけて、滑らかに連続的に変化する。なお、以上において、二つの接続部が滑らかに接続されていれば、二つの接続部間は直線であってよい。このため、以上の各曲面部は、曲率半径が無限大である平面部であってもよい。また、曲率半径が滑らかに連続的に変化するとは、例えば、曲率半径の二次微分係数が連続的に変化するような場合である。 The positive pressure side free curved surface Fp has a seventh curved surface portion C7, a seventh connecting curved surface portion B7, and an eighth curved surface portion C8. The (-)Z side edge of the seventh curved surface portion C7 is connected to the gas path surface 11p of the platform 11. The seventh connecting curved surface portion B7 is connected to the (+)Z side edge of the seventh curved surface portion C7. The eighth curved surface portion C8 is connected to the (+)Z side edge of the seventh connecting curved surface portion B7. The tip surface 18 is connected to the (+)Z side edge of the eighth curved surface portion C8. The seventh curved surface portion C7 has a radius of curvature r7. The portion forming the seventh curved surface portion C7 is sometimes called a fillet. The eighth curved surface portion C8 has a radius of curvature r8. The seventh curved connection portion B7 has a base side connection portion (first connection portion) B7b connected to the edge of the seventh curved surface portion C7 and a chip side connection portion (second connection portion) B7t connected to the edge of the eighth curved surface portion C8. The radius of curvature of the base side connection portion B7b is the same as the radius of curvature r7 of the seventh curved surface portion C7. The radius of curvature of the chip side connection portion B7t is the same as the radius of curvature r8 of the eighth curved surface portion C8. The radius of curvature of the seventh curved connection portion B7 changes smoothly and continuously from the base side connection portion B7b to the chip side connection portion B7t. Note that in the above, as long as the two connection portions are smoothly connected, the two connection portions may be connected in a straight line. For this reason, each of the above curved surface portions may be a flat portion with an infinite radius of curvature. In addition, the radius of curvature changes smoothly and continuously when, for example, the second derivative of the radius of curvature changes continuously.

第七曲面部C7の曲率半径r7及び第八曲面部C8の曲率半径r8は、いずれも内側半径である。よって、第七曲面部C7及び第八曲面部C8は、いずれも凹曲面である。 The radius of curvature r7 of the seventh curved surface portion C7 and the radius of curvature r8 of the eighth curved surface portion C8 are both inner radii. Therefore, the seventh curved surface portion C7 and the eighth curved surface portion C8 are both concave curved surfaces.

以上で説明した正圧側自由曲面Fp及び負圧側自由曲面Fsは、いずれも、一次微分的に連続している。すなわち、正圧側自由曲面Fp及び負圧側自由曲面Fsの形状を示す関数は、いずれも、一次微分可能な関数である。なお、正圧側自由曲面Fp及び負圧側自由曲面Fsは、いずれも、二次微分的にも連続していることが好ましい。すなわち、正圧側自由曲面Fp及び負圧側自由曲面Fsの形状を示す関数は、いずれも、二次微分可能な関数であることが好ましい。 The positive pressure side free curved surface Fp and the negative pressure side free curved surface Fs described above are both linearly differentiable. In other words, the functions that represent the shapes of the positive pressure side free curved surface Fp and the negative pressure side free curved surface Fs are both linearly differentiable functions. It is preferable that the positive pressure side free curved surface Fp and the negative pressure side free curved surface Fs are both quadratically differentiable. In other words, it is preferable that the functions that represent the shapes of the positive pressure side free curved surface Fp and the negative pressure side free curved surface Fs are both quadratically differentiable functions.

「ゲージ」
ゲージの実施形態について、図2~図5を用いて説明する。
"gauge"
An embodiment of the gauge will be described with reference to FIGS.

本実施形態のゲージは、自由曲面を有する測定対象の形状を測定する際に使用する形状測定機の精度評価を行うためのゲージである。さらに、このゲージは、形状測定機を用いて測定対象の形状を測定して得た測定データを校正するためのゲージでもある。このため、このゲージは、測定機の精度評価ゲージであり、測定データの校正ゲージでもある。 The gauge of this embodiment is a gauge for evaluating the accuracy of a shape measuring machine used when measuring the shape of a measurement object having a free-form surface. Furthermore, this gauge is also a gauge for calibrating measurement data obtained by measuring the shape of the measurement object using the shape measuring machine. Therefore, this gauge is both an accuracy evaluation gauge for the measuring machine and a calibration gauge for measurement data.

また、本実施形態のゲージは、測定対象である動翼10の形状及びサイズに合わせたゲージである。このため、図4に示すように、本実施形態のゲージ10gは、動翼10中で自由曲面を有する翼体13の形状を模したゲージ本体13gを有する。このゲージ10gは、さらに、ゲージ本体13gに接続されている基準体11gを有する。 The gauge of this embodiment is a gauge that is adapted to the shape and size of the blade 10 that is the measurement target. Therefore, as shown in FIG. 4, the gauge 10g of this embodiment has a gauge body 13g that mimics the shape of the blade body 13 that has a free-form surface in the blade 10. This gauge 10g further has a reference body 11g that is connected to the gauge body 13g.

翼体13の形状を模したゲージ本体13gは、翼体13と同様、前縁14gと、後縁15gと、正圧面17gと、負圧面16gと、チップ面18gと、を有する。 The gauge body 13g, which mimics the shape of the wing body 13, has a leading edge 14g, a trailing edge 15g, a positive pressure surface 17g, a negative pressure surface 16g, and a tip surface 18g, just like the wing body 13.

基準体11gは、互いに位置が異なる複数の基準部20を有する。基準部20は、ゲージ本体13gの各部を測定する際の座標系を特定するための部分である。基準体11gは、基準部20として、第一基準平面21、第二基準平面22、及び第三基準平面23を有する。ここで、互いに垂直な三方向をそれぞれ、X方向、Y方向、Z方向とする。第一基準平面21は、X方向に垂直な平面である。第二基準平面22は、Y方向に垂直な平面である。第三基準平面23は、Z方向に垂直な平面である。第一基準平面21と第二基準平面22と第三基準平面23との交差点は、座標系の原点Oを成す。第一基準平面21と第二基準平面22とが交差する箇所に形成される辺は、座標系のZ軸を成す。第二基準平面22と第三基準平面23とが交差する箇所に形成される辺は、座標系のX軸を成す。第三基準平面23と第一基準平面21とが交差する箇所に形成される辺は、座標系のY軸を成す。 The reference body 11g has a plurality of reference parts 20 whose positions are different from each other. The reference parts 20 are parts for specifying the coordinate system when measuring each part of the gauge body 13g. The reference body 11g has a first reference plane 21, a second reference plane 22, and a third reference plane 23 as the reference parts 20. Here, the three mutually perpendicular directions are the X direction, the Y direction, and the Z direction, respectively. The first reference plane 21 is a plane perpendicular to the X direction. The second reference plane 22 is a plane perpendicular to the Y direction. The third reference plane 23 is a plane perpendicular to the Z direction. The intersection of the first reference plane 21, the second reference plane 22, and the third reference plane 23 forms the origin O of the coordinate system. The side formed at the intersection of the first reference plane 21 and the second reference plane 22 forms the Z axis of the coordinate system. The side formed at the intersection of the second reference plane 22 and the third reference plane 23 forms the X axis of the coordinate system. The edge formed at the intersection of the third reference plane 23 and the first reference plane 21 forms the Y axis of the coordinate system.

第三基準平面23上には、ゲージ本体13gが設けられている。 The gauge body 13g is provided on the third reference plane 23.

ゲージ本体13gは、各基準部で定められる座標系内で、Z方向に垂直な仮想平面Pzgでのゲージ本体13gの断面中に、翼体13と同様、図2に示すように、第一曲面部C1g、第一接続曲面部B1g、第二曲面部C2g、第二接続曲面部B2g、第三曲面部C3g、第三接続曲面部B3g、第四曲面部C4g、第四接続曲面部B4gを有する。これら、第一曲面部C1g、第一接続曲面部B1g、第二曲面部C2g、第二接続曲面部B2g、第三曲面部C3g、第三接続曲面部B3g、第四曲面部C4g、第四接続曲面部B4gにより、ゲージ本体13gの翼形自由曲面Fbgが構成される。 The gauge body 13g has, in a cross section of the gauge body 13g on a virtual plane Pzg perpendicular to the Z direction in a coordinate system determined by each reference portion, a first curved surface portion C1g, a first connecting curved surface portion B1g, a second curved surface portion C2g, a second connecting curved surface portion B2g, a third curved surface portion C3g, a third connecting curved surface portion B3g, a fourth curved surface portion C4g, and a fourth connecting curved surface portion B4g, as shown in FIG. 2, in the same manner as the wing body 13. The first curved surface portion C1g, the first connecting curved surface portion B1g, the second curved surface portion C2g, the second connecting curved surface portion B2g, the third curved surface portion C3g, the third connecting curved surface portion B3g, the fourth curved surface portion C4g, and the fourth connecting curved surface portion B4g form the wing-shaped free-form surface Fbg of the gauge body 13g.

ゲージ本体13gは、各基準部で定められる座標系内で、Y方向に垂直な仮想平面Pygでのゲージ本体13gの断面中に、翼体13と同様、図3に示すように、第五曲面部C5g、第五接続曲面部B5g、第六曲面部C6g、第七曲面部C7g、第七接続曲面部B7g、第八曲面部C8gを有する。ゲージ本体13gの第五曲面部C5g、第五接続曲面部B5g、第六曲面部C6gにより、ゲージ本体13gの負圧側自由曲面Fsgが構成される。また、ゲージ本体13gの第七曲面部C7g、第七接続曲面部B7g、第八曲面部C8gにより、ゲージ本体13gの正圧側自由曲面Fpgが構成される。 In the cross section of the gauge body 13g on the virtual plane Pyg perpendicular to the Y direction in the coordinate system determined by each reference portion, the gauge body 13g has a fifth curved surface portion C5g, a fifth connecting curved surface portion B5g, a sixth curved surface portion C6g, a seventh curved surface portion C7g, a seventh connecting curved surface portion B7g, and an eighth curved surface portion C8g, as shown in FIG. 3, in the same manner as the wing body 13. The fifth curved surface portion C5g, the fifth connecting curved surface portion B5g, and the sixth curved surface portion C6g of the gauge body 13g form the negative pressure side free curved surface Fsg of the gauge body 13g. In addition, the seventh curved surface portion C7g, the seventh connecting curved surface portion B7g, and the eighth curved surface portion C8g of the gauge body 13g form the positive pressure side free curved surface Fpg of the gauge body 13g.

ゲージ本体13gは、第三基準平面23上に設けられている。 The gauge body 13g is provided on the third reference plane 23.

次に、ゲージ10gの製造手順について、図5に示すフローチャートに従って説明する。 Next, the manufacturing procedure for the gauge 10g will be explained according to the flowchart shown in Figure 5.

まず、測定対象である動翼10の1以上の評価領域を定める(S1:評価領域特定工程)。ここでは、図1に示すように、Z方向に垂直な複数の仮想平面での翼体13の断面の縁、及びY方向に垂直な複数の仮想平面での翼体13の断面の縁を、それぞれ、評価領域Az,Ayとする。Z方向に垂直な複数の仮想平面の一つは、図1中の仮想平面Pzである。この仮想平面Pzでの翼体13の断面の縁は、前述の評価領域Azの一つである。この仮想平面Pzでの翼体13の断面の縁線は、前述の翼形自由曲面Fb中で、仮想平面Pzと翼体13との交線である翼型自由曲線である。また、Y方向に垂直な複数の仮想平面の一つは、図1中の仮想平面Pyである。この仮想平面Pyでの翼体13の断面の縁は、前述の評価領域Ayの一つである。この仮想平面Pyでの翼体13の断面の縁線の一部は、前述の負圧側自由曲面Fs中で、仮想平面Pyと翼体13の交線である負圧側自由曲線である。さらに、この仮想平面Pyでの翼体13の断面の縁線の他の一部は、前述の正圧側自由曲面Fp中で、仮想平面Pyと翼体13との交線である正圧側自由曲線である。 First, one or more evaluation areas of the rotor blade 10 to be measured are determined (S1: evaluation area identification process). Here, as shown in FIG. 1, the edges of the cross section of the wing body 13 in multiple imaginary planes perpendicular to the Z direction and the edges of the cross section of the wing body 13 in multiple imaginary planes perpendicular to the Y direction are the evaluation areas Az and Ay, respectively. One of the multiple imaginary planes perpendicular to the Z direction is the imaginary plane Pz in FIG. 1. The edge of the cross section of the wing body 13 in this imaginary plane Pz is one of the aforementioned evaluation areas Az. The edge line of the cross section of the wing body 13 in this imaginary plane Pz is an airfoil free curve that is the intersection line between the imaginary plane Pz and the wing body 13 in the aforementioned airfoil free curved surface Fb. Also, one of the multiple imaginary planes perpendicular to the Y direction is the imaginary plane Py in FIG. 1. The edge of the cross section of the wing body 13 in this imaginary plane Py is one of the aforementioned evaluation areas Ay. A part of the edge line of the cross section of the blade body 13 on this imaginary plane Py is a negative pressure side free curve that is the intersection line of the imaginary plane Py and the blade body 13 in the above-mentioned negative pressure side free curved surface Fs. Furthermore, another part of the edge line of the cross section of the blade body 13 on this imaginary plane Py is a positive pressure side free curve that is the intersection line of the imaginary plane Py and the blade body 13 in the above-mentioned positive pressure side free curved surface Fp.

次に、各評価領域Az,Ayにおける各自由曲線を構成する要素を抽出する(S2:要素抽出工程)。この要素抽出工程(S2)では、例えば、仮想平面Pzでの翼体13の断面の縁である評価領域Azから、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4を抽出する。また、この要素抽出工程(S2)では、例えば、仮想平面Pyでの翼体13の断面の縁である評価領域Ayから、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8を抽出する。なお、評価領域Azが曲率半径一定の曲面部を有していない場合、叉は、評価対象としたい部位が曲率半径一定の曲面部ではない場合、その部位を一つ又は複数の曲面部で近似するものとする。 Next, elements constituting each free curve in each evaluation area Az, Ay are extracted (S2: element extraction process). In this element extraction process (S2), for example, the first curved surface C1, the second curved surface C2, the third curved surface C3, and the fourth curved surface C4 are extracted from the evaluation area Az, which is the edge of the cross section of the wing body 13 on the virtual plane Pz. In addition, in this element extraction process (S2), for example, the fifth curved surface C5, the sixth curved surface C6, the seventh curved surface C7, and the eighth curved surface C8 are extracted from the evaluation area Ay, which is the edge of the cross section of the wing body 13 on the virtual plane Py. Note that if the evaluation area Az does not have a curved surface with a constant radius of curvature, or if the part to be evaluated is not a curved surface with a constant radius of curvature, the part is approximated by one or more curved surfaces.

次に、要素抽出工程(S2)で抽出した要素に関する動翼10の設計データを取得する(S3:設計データ取得工程)。この設計データ取得工程(S3)では、例えば、評価領域Az中の、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4に関するそれぞれの曲率半径及び曲率中心の座標を取得する。また、この設計データ取得工程(S3)では、例えば、評価領域Ay中の、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8に関するそれぞれの曲率半径及び曲率中心の座標を取得する。 Next, design data for the blade 10 related to the elements extracted in the element extraction process (S2) is acquired (S3: design data acquisition process). In this design data acquisition process (S3), for example, the radii of curvature and the coordinates of the center of curvature for the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the fourth curved surface portion C4 in the evaluation area Az are acquired. In addition, in this design data acquisition process (S3), for example, the radii of curvature and the coordinates of the center of curvature for the fifth curved surface portion C5, the sixth curved surface portion C6, the seventh curved surface portion C7, and the eighth curved surface portion C8 in the evaluation area Ay are acquired.

次に、各評価領域Az,Ayに含まれる複数の要素に対する許容製造誤差を定める(S4:製造誤差設定工程)。この許容製造誤差は、これから製造するゲージ10gに対する許容製造誤差である。この製造誤差設定工程(S4)では、例えば、設計データ取得工程(S3)で取得した、評価領域Az中の、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4に関するそれぞれの曲率半径及び曲率中心の座標に対する許容製造誤差を定める。また、この製造誤差設定工程(S4)では、例えば、設計データ取得工程(S3)で取得した、評価領域Ay中の、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8に関するそれぞれの曲率半径及び曲率中心座標に対する許容製造誤差を定める。これらの許容製造誤差は、設計資料などから性能や製造上の問題を考慮して定めてもよい。 Next, the allowable manufacturing error for the multiple elements included in each evaluation area Az, Ay is determined (S4: manufacturing error setting process). This allowable manufacturing error is the allowable manufacturing error for the gauge 10g to be manufactured. In this manufacturing error setting process (S4), for example, the allowable manufacturing error for each of the radii of curvature and the coordinates of the center of curvature for the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the fourth curved surface portion C4 in the evaluation area Az acquired in the design data acquisition process (S3) is determined. In addition, in this manufacturing error setting process (S4), for example, the allowable manufacturing error for each of the radii of curvature and the coordinates of the center of curvature for the fifth curved surface portion C5, the sixth curved surface portion C6, the seventh curved surface portion C7, and the eighth curved surface portion C8 in the evaluation area Ay acquired in the design data acquisition process (S3) is determined. These allowable manufacturing errors may be determined in consideration of performance and manufacturing problems from design materials, etc.

次に、ゲージ10gが有する基準部20を数学的に定義する(S5:基準部定義工程)。具体的に、この基準部定義工程(S5)では、基準部20としての、第一基準平面21、第二基準平面22、及び第三基準平面23を数学的に定義する。ここで、定義対象を数学的に定義するとは、定義対象の形状を数値データ化する、又は定義対象の形状等を数式で表すことである。 Next, the reference portion 20 of the gauge 10g is mathematically defined (S5: reference portion definition process). Specifically, in this reference portion definition process (S5), the first reference plane 21, the second reference plane 22, and the third reference plane 23 as the reference portion 20 are mathematically defined. Here, mathematically defining the definition object means converting the shape of the definition object into numerical data, or expressing the shape of the definition object, etc., in a mathematical formula.

次に、動翼10の評価領域Azに対応するゲージ10gの評価対応領域Azgが有する翼形自由曲面Fbgを数学的に定義すると共に、動翼10の評価領域Ayに対応するゲージ10gの評価対応領域Aygが有する、正圧側自由曲面Fpg及び負圧側自由曲面Fsgを数学的に定義する(S6:自由曲面定義工程)。 Next, the airfoil free-form surface Fbg of the evaluation corresponding area Azg of the gauge 10g corresponding to the evaluation area Az of the blade 10 is mathematically defined, and the pressure side free-form surface Fpg and the suction side free-form surface Fsg of the evaluation corresponding area Ayg of the gauge 10g corresponding to the evaluation area Ay of the blade 10 are mathematically defined (S6: free-form surface definition process).

図4に示すように、Z方向に垂直な複数の仮想平面Pzgでのゲージ本体13gの断面の縁は、前述した翼体13の評価領域Azに対応する評価対応領域Azgである。この仮想平面Pzgでのゲージ本体13gの断面の縁線は、前述の翼形自由曲面Fbg中で、仮想平面Pzgとゲージ本体13gとの交線である翼型自由曲線である。また、Y方向に垂直な仮想平面Pygでのゲージ本体13gの断面の縁は、前述した翼体13の評価領域Ayに対応する評価対応領域Aygである。この仮想平面Pygでのゲージ本体13gの断面の縁線の一部は、前述の負圧側自由曲面Fsg中で、仮想平面Pygとゲージ本体13gの交線である負圧側自由曲線である。さらに、この仮想平面Pygでのゲージ本体13gの断面の縁線の他の一部は、前述の正圧側自由曲面Fpg中で、仮想平面Pygとゲージ本体13gとの交線である正圧側自由曲線である。 As shown in FIG. 4, the edges of the cross section of the gauge body 13g on a plurality of imaginary planes Pzg perpendicular to the Z direction are the evaluation corresponding area Azg corresponding to the evaluation area Az of the wing body 13 described above. The edge line of the cross section of the gauge body 13g on this imaginary plane Pzg is an airfoil free curve that is the intersection line between the imaginary plane Pzg and the gauge body 13g in the airfoil free curved surface Fbg described above. Also, the edge of the cross section of the gauge body 13g on the imaginary plane Pyg perpendicular to the Y direction is the evaluation corresponding area Ayg corresponding to the evaluation area Ay of the wing body 13 described above. A part of the edge line of the cross section of the gauge body 13g on this imaginary plane Pyg is a negative pressure side free curve that is the intersection line between the imaginary plane Pyg and the gauge body 13g in the negative pressure side free curved surface Fsg described above. Furthermore, another part of the edge line of the cross section of the gauge body 13g on this imaginary plane Pyg is a positive pressure side free curve that is the intersection line between the imaginary plane Pyg and the gauge body 13g in the above-mentioned positive pressure side free curved surface Fpg.

自由曲面定義工程(S6)では、例えば、動翼10の評価領域Az中の、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4に関するそれぞれの曲率半径の設定データを、そのまま、ゲージ10gの評価対応領域Azg中の、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率半径とする。また、動翼10の評価領域Az中の、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4に関するそれぞれの曲率中心座標の設定データを、基準部20で定義される座標系に変換して、ゲージ10gの評価対応領域Azg中の、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率中心座標とする。さらに、評価対応領域Azg中の第一接続曲面部B1g、第二接続曲面部B2g、第三接続曲面部B3g、及び第四接続曲面部B4gに関するそれぞれの曲率半径も定義する。例えば、第一接続曲面部B1gに関しては、この第一接続曲面部B1g中の前縁側接続部B1fgの曲率半径を、第一曲面部C1gの曲率半径r1と同じにする。また、この第一接続曲面部B1g中の後縁側接続部B1bgの曲率半径を、第二曲面部C2gの曲率半径r2と同じにする。そして、この第一接続曲面部B1gの曲率半径を、前縁側接続部(第一接続部)B1fgから後縁側接続部(第二接続部)B1bgにかけて、滑らかに連続的に変化させる。以上で、ゲージ10gの評価対応領域Azgにおける翼形自由曲面Fbgが数学的に定義される。 In the free curved surface definition step (S6), for example, the setting data of the respective radii of curvature for the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the fourth curved surface portion C4 in the evaluation area Az of the blade 10 is directly set as the radii of curvature for the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g in the evaluation corresponding area Azg of the gauge 10g. In addition, the setting data of the respective curvature center coordinates for the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the fourth curved surface portion C4 in the evaluation corresponding area Az of the blade 10 is converted into the coordinate system defined by the reference portion 20 and set as the curvature center coordinates for the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g in the evaluation corresponding area Azg of the gauge 10g. Furthermore, the respective radii of curvature for the first connecting curved surface portion B1g, the second connecting curved surface portion B2g, the third connecting curved surface portion B3g, and the fourth connecting curved surface portion B4g in the evaluation corresponding area Azg are also defined. For example, for the first connecting curved surface portion B1g, the radius of curvature of the leading edge side connecting portion B1fg in this first connecting curved surface portion B1g is set to the same as the radius of curvature r1 of the first curved surface portion C1g. Also, the radius of curvature of the trailing edge side connecting portion B1bg in this first connecting curved surface portion B1g is set to the same as the radius of curvature r2 of the second curved surface portion C2g. Then, the radius of curvature of this first connecting curved surface portion B1g is changed smoothly and continuously from the leading edge side connecting portion (first connecting portion) B1fg to the trailing edge side connecting portion (second connecting portion) B1bg. Thus, the airfoil free curved surface Fbg in the evaluation corresponding area Azg of the gauge 10g is mathematically defined.

さらに、この自由曲面定義工程(S6)では、例えば、動翼10の評価領域Ay中の、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8の曲率半径の設計データを、そのまま、ゲージ10gの評価対応領域Ayg中の、第五曲面部C5g、第六曲面部C6g、第七曲面部C7g、及び第八曲面部C8gの曲率半径とする。また、動翼10の評価領域Ay中の、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8に関するそれぞれの曲率中心座標の設計データを、基準部20で定義される座標系に変換して、ゲージ10gの評価対応領域Ayg中の、第五曲面部C5g、第六曲面部C6g、第七曲面部C7g、及び第八曲面部C8gの曲率中心座標とする。さらに、評価対応領域Ayg中の第五接続曲面部B5g、及び第七接続曲面部B7gに関するそれぞれの曲率半径も定義する。例えば、第五接続曲面部B5gに関しては、この第五接続曲面部B5g中の基側接続部(第一接続部)B5bgの曲率半径を、第五曲面部C5gの曲率半径r5と同じにする。また、この第五接続曲面部B5g中のチップ側接続部(第二接続部)B5tgを第六曲面部C6gの曲率半径r6と同じにする。そして、この第五接続曲面部B5gの曲率半径を、基側接続部B5bgからチップ側接続部B5tgにかけて、滑らかに連続的に変化させる。以上で、ゲージ10gの評価対応領域Aygにおける正圧側自由曲面Fpg及び負圧側自由曲面Fsgが数学的に定義される。 Furthermore, in this free curved surface definition step (S6), for example, the design data of the curvature radius of the fifth curved surface portion C5, the sixth curved surface portion C6, the seventh curved surface portion C7, and the eighth curved surface portion C8 in the evaluation area Ay of the blade 10 is directly set as the curvature radius of the fifth curved surface portion C5g, the sixth curved surface portion C6g, the seventh curved surface portion C7g, and the eighth curved surface portion C8g in the evaluation corresponding area Ayg of the gauge 10g. In addition, the design data of the curvature center coordinates for the fifth curved surface portion C5, the sixth curved surface portion C6, the seventh curved surface portion C7, and the eighth curved surface portion C8 in the evaluation corresponding area Ay of the blade 10 is converted into the coordinate system defined by the reference portion 20 and set as the curvature center coordinates of the fifth curved surface portion C5g, the sixth curved surface portion C6g, the seventh curved surface portion C7g, and the eighth curved surface portion C8g in the evaluation corresponding area Ayg of the gauge 10g. Furthermore, the respective radii of curvature for the fifth connection curved surface portion B5g and the seventh connection curved surface portion B7g in the evaluation corresponding area Ayg are also defined. For example, for the fifth connection curved surface portion B5g, the radius of curvature of the base side connection portion (first connection portion) B5bg in this fifth connection curved surface portion B5g is set to the same as the radius of curvature r5 of the fifth curved surface portion C5g. Also, the tip side connection portion (second connection portion) B5tg in this fifth connection curved surface portion B5g is set to the same as the radius of curvature r6 of the sixth curved surface portion C6g. Then, the radius of curvature of this fifth connection curved surface portion B5g is changed smoothly and continuously from the base side connection portion B5bg to the tip side connection portion B5tg. Thus, the positive pressure side free curved surface Fpg and the negative pressure side free curved surface Fsg in the evaluation corresponding area Ayg of the gauge 10g are mathematically defined.

次に、基準部20を有する基準体11gと、この基準体11gに接続されているゲージ本体13gとを製造する(S7:製造工程)。この製造工程(S7)では、製造するゲージ10g中の各要素が、製造誤差設定工程(S4)で定めた許容製造誤差内に収め得る三次元形状製造装置を用いて、製造する。三次元形状製造装置としては、例えば、マシニングセンタ、3Dプリンタ等がある。三次元形状製造装置は、装置本体と、装置本体の動作を制御する制御装置と、を有する。この製造工程(S7)では、数学的に定義された各自由曲面(自由曲線)のデータと、数学的に定義された各基準部20のデータとを、制御装置に入力する。そして、この制御装置からの指示で装置本体を動作させて、ゲージ10gを製造する。 Next, the reference body 11g having the reference portion 20 and the gauge body 13g connected to this reference body 11g are manufactured (S7: manufacturing process). In this manufacturing process (S7), each element in the gauge 10g to be manufactured is manufactured using a three-dimensional shape manufacturing device that can fit within the allowable manufacturing error determined in the manufacturing error setting process (S4). Examples of three-dimensional shape manufacturing devices include machining centers and 3D printers. The three-dimensional shape manufacturing device has a device body and a control device that controls the operation of the device body. In this manufacturing process (S7), data for each mathematically defined free-form surface (free curve) and data for each mathematically defined reference portion 20 are input to the control device. Then, the device body is operated according to instructions from the control device to manufacture the gauge 10g.

以上のように製造されたゲージ10gのゲージ本体13gは、図4に示すように、自由曲面を含む測定対象を模した形状及びサイズになる。特に、ゲージ本体13g中で、評価領域特定工程(S4)で定めた測定対象中の複数の評価領域Az,Ayに対応する評価対応領域Azg,Aygの形状及びサイズは、測定対象の設計データで定められた、測定対象中の複数の評価領域Az,Ayの形状及びサイズに実質的に同一、若しくは許容製造誤差の範囲内での形状及びサイズとなる。 The gauge body 13g of the gauge 10g manufactured as described above has a shape and size that imitates the measurement object including a free-form surface, as shown in Figure 4. In particular, in the gauge body 13g, the shape and size of the evaluation corresponding areas Azg, Ayg corresponding to the multiple evaluation areas Az, Ay in the measurement object defined in the evaluation area specification step (S4) are substantially identical to the shape and size of the multiple evaluation areas Az, Ay in the measurement object defined in the design data of the measurement object, or are within the range of the allowable manufacturing error.

以上のように製造されたゲージ10gの翼形自由曲面Fbg、負圧側自由曲面Fsg及び正圧側自由曲面Fpgは、一次微分的に連続している。すなわち、ゲージ10gの翼形自由曲面Fbg、正圧側自由曲面Fpg及び負圧側自由曲面Fsgの形状を示す関数は、一次微分可能な関数である。なお、ゲージ10gの翼形自由曲面Fbg、正圧側自由曲面Fpg及び負圧側自由曲面Fsgは、二次微分的にも連続していることが好ましい。すなわち、ゲージ10gの翼形自由曲面Fbg、正圧側自由曲面Fpg及び負圧側自由曲面Fsgの形状を示す関数は、二次微分可能な関数であることが好ましい。 The airfoil free-form surface Fbg, the negative pressure side free-form surface Fsg, and the positive pressure side free-form surface Fpg of the gauge 10g manufactured as described above are linearly continuous. That is, the function indicating the shapes of the airfoil free-form surface Fbg, the positive pressure side free-form surface Fpg, and the negative pressure side free-form surface Fsg of the gauge 10g is a linearly differentiable function. It is preferable that the airfoil free-form surface Fbg, the positive pressure side free-form surface Fpg, and the negative pressure side free-form surface Fsg of the gauge 10g are also quadratically continuous. That is, it is preferable that the function indicating the shapes of the airfoil free-form surface Fbg, the positive pressure side free-form surface Fpg, and the negative pressure side free-form surface Fsg of the gauge 10g is a quadratically differentiable function.

以上で説明したゲージ10gの製造方法では、許容製造誤差設定工程(S4)の後で且つ自由曲面定義工程(S6)の前に、基準部定義工程(S5)を実行している。しかしながら、基準部定義工程(S5)は、自由曲面定義工程(S6)の前であれば、どの段階で行ってもよく、例えば、評価領域特定工程(S1)の前に実行してもよい。また、その形状と寸法も、JIS B 07443-3に記載された類似性の要求事項を満たすものであればよい。 In the manufacturing method of the gauge 10g described above, the reference part definition process (S5) is performed after the allowable manufacturing error setting process (S4) and before the free-form surface definition process (S6). However, the reference part definition process (S5) may be performed at any stage before the free-form surface definition process (S6), for example, it may be performed before the evaluation area specification process (S1). In addition, the shape and dimensions may also satisfy the similarity requirements described in JIS B 07443-3.

ゲージ本体13gは、測定対象の翼体13を模した形状である。しかしながら、ゲージ本体13gは、翼体13の各部を完全に模した形状である必要はなく、少なくとも、ゲージ本体13g中で評価対応領域の形状が、測定対象の評価領域Az、Ayの形状を模した形状であればよい。 The gauge body 13g has a shape that imitates the wing body 13 to be measured. However, the gauge body 13g does not need to have a shape that perfectly imitates each part of the wing body 13, and it is sufficient that at least the shape of the evaluation corresponding area in the gauge body 13g imitates the shape of the evaluation areas Az, Ay of the measurement object.

「形状測定機の精度評価方法」
形状測定機の精度評価方法の実施形態について、図6~図11を用いて説明する。
"Accuracy evaluation method for shape measuring machines"
An embodiment of the method for evaluating the accuracy of a shape measuring machine will be described with reference to FIGS.

本実施形態の精度評価方法では、図6のフローチャートに示すように、まず、図5のフローチャートに示すS1~S7を含むゲージ製造工程(S10)を実行する。 In the accuracy evaluation method of this embodiment, as shown in the flowchart of Figure 6, first, the gauge manufacturing process (S10) including S1 to S7 shown in the flowchart of Figure 5 is performed.

次に、ゲージ製造工程(S10)で製造されたゲージ10gの形状証明を、校正事業者等に依頼して、この校正事業者等からゲージ10gの形状を証明する証明書を取得する(S11)。この証明書には、ゲージ10gの形状を証明する証明データの他、証明を行った際の各種条件が記載されている。各種条件としては、ゲージ10gの形状測定に用いた測定機の種類、この測定機の管理状況、測定機で形状が行われている際のゲージ10gの温度等がある。 Next, a calibration service provider or the like is requested to certify the shape of the gauge 10g manufactured in the gauge manufacturing process (S10), and a certificate certifying the shape of the gauge 10g is obtained from the calibration service provider or the like (S11). This certificate contains certification data that certifies the shape of the gauge 10g, as well as various conditions under which the certification was performed. The various conditions include the type of measuring device used to measure the shape of the gauge 10g, the management status of this measuring device, the temperature of the gauge 10g when the shape was measured with the measuring device, etc.

証明データには、ゲージ10gにおける複数の評価対応領域の形状等を示すためのデータが含まれる。具体的には、ゲージ10gの各基準平面21,22,23で定義される座標系で、Z方向に垂直な仮想平面でゲージ本体13gの断面の縁の形状等を示すためのデータ、つまり評価対応領域のデータが含まれる。例えば、図7に示すように、Z座標値が10mmの仮想平面でのゲージ本体13gの断面の縁の形状等を示すためのデータ、Z座標値が30mmの仮想平面でのゲージ本体13gの断面の縁の形状等を示すためのデータ、Z座標値が50mmの仮想平面でのゲージ本体13gの断面の縁の形状等を示すためのデータが含まれる。各仮想平面でのゲージ本体13gの断面の縁の形状等を示すためのデータには、図7及び図8に示すように、このゲージ本体13gの断面の縁に含まれる、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率中心座標(X,Y)のデータが含まれている。さらに、各仮想平面でゲージ本体13gの断面の縁の形状等を示すためのデータには、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率半径のデータが含まれる。 The certification data includes data for indicating the shapes of multiple evaluation corresponding regions in the gauge 10g. Specifically, in the coordinate system defined by each reference plane 21, 22, 23 of the gauge 10g, data for indicating the shape of the edge of the cross section of the gauge body 13g on a virtual plane perpendicular to the Z direction, that is, data for the evaluation corresponding regions, is included. For example, as shown in FIG. 7, data for indicating the shape of the edge of the cross section of the gauge body 13g on a virtual plane with a Z coordinate value of 10 mm, data for indicating the shape of the edge of the cross section of the gauge body 13g on a virtual plane with a Z coordinate value of 30 mm, and data for indicating the shape of the edge of the cross section of the gauge body 13g on a virtual plane with a Z coordinate value of 50 mm are included. The data for indicating the shape of the edge of the cross section of the gauge body 13g on each virtual plane includes the data of the curvature center coordinates (X, Y) of the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g included in the edge of the cross section of the gauge body 13g, as shown in FIG. 7 and FIG. 8. Furthermore, data for indicating the shape of the cross-sectional edge of the gauge body 13g on each virtual plane includes data on the radii of curvature of the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g.

なお、図7中で、Z座標値が10mmの仮想平面である第一仮想平面でのゲージ本体13gの断面の縁に含まれる第一曲面部C1gに関する証明データをC1gc1とし、Z座標値が30mmの仮想平面である第二仮想平面のゲージ本体13gの断面の縁に含まれる第一曲面部C1gに関する証明データをC1gc2とし、Z座標値が50mmの仮想平面である第三仮想平面でのゲージ本体13gの断面の縁に含まれる第一曲面部C1gに関する証明データをC1gc3としている。同様に、第一仮想平面でのゲージ本体13gの断面の縁に含まれる第二曲面部C2g、第三曲面部C3g、及び第四曲面C4gに関する証明データをC2gc1,C3gc1,C4gc1としている。また、第二仮想平面でのゲージ本体13gの断面の縁に含まれる第二曲面部C2g、第三曲面部C3g、及び第四曲面C4gに関する証明データをC2gc2,C3gc2,C4gc2としている。さらに、第三仮想平面でのゲージ本体13gの断面の縁に含まれる第二曲面部C2g、第三曲面部C3g、及び第四曲面C4gに関する証明データをC2gc3,C3gc3,C4gc3としている。 7, the proof data for the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g on the first imaginary plane, which is a virtual plane with a Z coordinate value of 10 mm, is C1gc1, the proof data for the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g on the second imaginary plane, which is a virtual plane with a Z coordinate value of 30 mm, is C1gc2, and the proof data for the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g on the third imaginary plane, which is a virtual plane with a Z coordinate value of 50 mm, is C1gc3. Similarly, the proof data for the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g included in the edge of the cross section of the gauge body 13g on the first imaginary plane are C2gc1, C3gc1, and C4gc1. Furthermore, the certification data for the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface C4g included in the edge of the cross section of the gauge body 13g on the second imaginary plane are C2gc2, C3gc2, and C4gc2. Furthermore, the certification data for the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface C4g included in the edge of the cross section of the gauge body 13g on the third imaginary plane are C2gc3, C3gc3, and C4gc3.

さらに、各仮想平面でゲージ本体13gの断面の縁の形状等を示すためのデータには、複数の仮想平面毎の第一曲面部C1gに関するデータの拡張不確かさ、複数の仮想平面毎の第二曲面部C2gに関するデータの拡張不確かさ、複数の仮想平面毎の第三曲面部C3gに関するデータの拡張不確かさ、複数の仮想平面毎の第四曲面部C4gに関するデータの拡張不確かさが含まれている。なお、拡張不確かさは、例えば、包含係数k=2を合成標準不確かさに乗じた値である。具体的に、第一曲面部C1gに関しては、複数の仮想平面毎の曲率中心座標のX座標値に関する拡張不確かさUx、複数の仮想平面毎の曲率中心座標のY座標値に関する拡張不確かさUy、複数の仮想平面毎の曲率半径に関する拡張不確かさUrが含まれる。 Furthermore, the data for indicating the shape of the edge of the cross section of the gauge body 13g in each virtual plane includes the expanded uncertainty of the data for the first curved surface portion C1g for each of the multiple virtual planes, the expanded uncertainty of the data for the second curved surface portion C2g for each of the multiple virtual planes, the expanded uncertainty of the data for the third curved surface portion C3g for each of the multiple virtual planes, and the expanded uncertainty of the data for the fourth curved surface portion C4g for each of the multiple virtual planes. The expanded uncertainty is, for example, a value obtained by multiplying the combined standard uncertainty by a coverage factor k = 2. Specifically, for the first curved surface portion C1g, the expanded uncertainty Ux for the X coordinate value of the curvature center coordinate for each of the multiple virtual planes, the expanded uncertainty Uy for the Y coordinate value of the curvature center coordinate for each of the multiple virtual planes, and the expanded uncertainty Ur for the curvature radius for each of the multiple virtual planes are included.

次に、形状測定機を用いて、ゲージ10gにおける複数の評価対応領域の形状等を示す測定データを取得する(S12:ゲージ測定工程)。 Next, a shape measuring machine is used to obtain measurement data indicating the shapes of multiple evaluation corresponding areas in the gauge 10g (S12: gauge measurement process).

図9に示すように、このゲージ測定工程(S12)で用いる形状測定機50は、例えば、ベース51と、X方向移動機構52xと、Y方向移動機構52yと、Z方向移動機構52zと、プローブ56と、プローブ56を回転させるプローブ回転機構57と、を有する接触式の測定機である。プローブ回転機構57は、Z移動体55zの下端に設けられている。プローブ回転機構57には、プローブ56が取り付けられる。プローブ56の端部には、球体56aが設けられている。この形状測定機50は、球体56aを測定対象の表面に接触させつつ、プローブ56を移動させ、移動中の球体56aの軌跡データから測定対象の形状に関する測定データを得る。 As shown in FIG. 9, the shape measuring machine 50 used in this gauge measurement process (S12) is a contact type measuring machine having, for example, a base 51, an X-direction movement mechanism 52x, a Y-direction movement mechanism 52y, a Z-direction movement mechanism 52z, a probe 56, and a probe rotation mechanism 57 that rotates the probe 56. The probe rotation mechanism 57 is provided at the lower end of the Z moving body 55z. The probe 56 is attached to the probe rotation mechanism 57. A sphere 56a is provided at the end of the probe 56. This shape measuring machine 50 moves the probe 56 while bringing the sphere 56a into contact with the surface of the measurement object, and obtains measurement data regarding the shape of the measurement object from the trajectory data of the moving sphere 56a.

この形状測定機50を用いて、測定対象であるゲージ10gにおける複数の評価対応領域の形状を測定する際、形状測定機50の原点をゲージ10gの各基準平面で定まる座標系の原点Oにする。この結果、この形状測定機50で得られた測定データは、ゲージ10gの各基準平面で定まる座標系で示される。また、この測定の際、複数のスキャンスピードでプローブ56を移動させて、複数のスキャンスピード毎に測定データを得ることが好ましい。 When using this shape measuring machine 50 to measure the shapes of multiple evaluation corresponding areas on the gauge 10g to be measured, the origin of the shape measuring machine 50 is set to the origin O of the coordinate system determined by each reference plane of the gauge 10g. As a result, the measurement data obtained by this shape measuring machine 50 is shown in the coordinate system determined by each reference plane of the gauge 10g. Furthermore, during this measurement, it is preferable to move the probe 56 at multiple scan speeds and obtain measurement data for each of the multiple scan speeds.

例えば、Z座標値が50mmの第三仮想平面でゲージ本体13gの断面の縁の形状等を示すための測定データには、図10に示すように、ゲージ本体13gの第三仮想平面での断面の縁に含まれる、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率中心座標及び曲率半径の測定データC1gm3,C2gm3,C3gm3,C4gm3が含まれる。 For example, the measurement data for indicating the shape of the edge of the cross section of the gauge body 13g on the third imaginary plane with a Z coordinate value of 50 mm includes the measurement data C1gm3, C2gm3, C3gm3, and C4gm3 of the center of curvature coordinates and radii of curvature of the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g, which are included in the edge of the cross section of the gauge body 13g on the third imaginary plane, as shown in FIG. 10.

次に、ゲージ10gの証明データとゲージ10gの測定データとを比較し、この比較結果に応じて、形状測定機50の精度を評価する(S13:評価工程)。この評価工程(S13)では、測定データと証明データとの差を求め、これを比較結果とする。例えば、図11に示すように、Z座標値が50mmの第三仮想平面でのゲージ本体13gの断面の縁に含まれる第一曲面部C1gの測定データC1gm3と、この第一曲面部C1gの証明データC1gc3との差を求める。具体的に、このゲージ本体13gの第三仮想平面での断面の縁に含まれる第一曲面部C1gのX座標値に関する測定データと証明データの差、この第一曲面部C1gのY座標値に関する測定データと証明データの差、この第一曲面部C1gの曲率半径に関する測定データと証明データの差を求める。同様に、第三仮想平面でのゲージ本体13gの断面の縁に含まれる第二曲面部C2gの測定データC2gm3と、この第二曲面部C2gの証明データC2gc3との差を求める。第三仮想平面でのゲージ本体13gの断面の縁に含まれる第三曲面部C3gの測定データC3gm3と、この第三曲面部C3gの証明データC3gc3との差を求める。第三仮想平面でのゲージ本体13gの断面の縁に含まれる第四曲面部C4gの測定データC4gm3と、この第四曲面部C4gの証明データC4gc3との差を求める。 Next, the certification data of the gauge 10g is compared with the measurement data of the gauge 10g, and the accuracy of the shape measuring machine 50 is evaluated according to the comparison result (S13: evaluation step). In this evaluation step (S13), the difference between the measurement data and the certification data is obtained, and this is the comparison result. For example, as shown in FIG. 11, the difference between the measurement data C1gm3 of the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g on the third imaginary plane with a Z coordinate value of 50 mm and the certification data C1gc3 of this first curved surface portion C1g is obtained. Specifically, the difference between the measurement data and the certification data regarding the X coordinate value of the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g on the third imaginary plane, the difference between the measurement data and the certification data regarding the Y coordinate value of this first curved surface portion C1g, and the difference between the measurement data and the certification data regarding the radius of curvature of this first curved surface portion C1g are obtained. Similarly, the difference is calculated between the measurement data C2gm3 of the second curved surface portion C2g included in the edge of the cross section of the gauge body 13g on the third imaginary plane and the certification data C2gc3 of this second curved surface portion C2g. The difference is calculated between the measurement data C3gm3 of the third curved surface portion C3g included in the edge of the cross section of the gauge body 13g on the third imaginary plane and the certification data C3gc3 of this third curved surface portion C3g. The difference is calculated between the measurement data C4gm3 of the fourth curved surface portion C4g included in the edge of the cross section of the gauge body 13g on the third imaginary plane and the certification data C4gc3 of this fourth curved surface portion C4g.

なお、ゲージ測定工程(S12)で、複数のスキャンスピード毎に測定データを得た場合には、複数のスキャンスピード毎の測定データのうち、証明データとの差が最小になる測定データを採用し、この測定データと証明データとの差を比較結果とする。また、証明データとの差が最小になる測定データを得た際のスキャンスピードを、形状測定機50で測定対象である翼の形状を測定する際のプローブ56のスキャンスピードに設定する。 When measurement data is obtained for each of a plurality of scan speeds in the gauge measurement process (S12), the measurement data for each of the plurality of scan speeds that has the smallest difference with the certification data is adopted, and the difference between this measurement data and the certification data is taken as the comparison result. In addition, the scan speed at which the measurement data with the smallest difference with the certification data is obtained is set as the scan speed of the probe 56 when measuring the shape of the wing to be measured by the shape measuring instrument 50.

この評価工程(S13)では、次に、測定データと証明データとの差が予め定められた許容値を超えるか否か判断する。そして、測定データと証明データとの差が例えば許容値を超える場合には、この形状測定機50の測定精度が低いと判断し、測定データと証明データとの差が例えば許容値以下である場合には、この形状測定機50の測定精度が高いと判断する。形状測定機50の測定精度が低いと判断した場合には、例えば、この形状測定機50の製造メーカーに、この形状測定機50の校正又は修理等を依頼する。 In this evaluation step (S13), it is next determined whether the difference between the measurement data and the certification data exceeds a predetermined tolerance. If the difference between the measurement data and the certification data exceeds, for example, a tolerance, the measurement accuracy of the shape measuring machine 50 is determined to be low, whereas if the difference between the measurement data and the certification data is equal to or less than, for example, the measurement accuracy of the shape measuring machine 50 is determined to be high. If it is determined that the measurement accuracy of the shape measuring machine 50 is low, for example, the manufacturer of the shape measuring machine 50 is requested to calibrate or repair the shape measuring machine 50.

許容値としては、例えば、曲率中心のX座標値及びY座標値の測定データと証明データと差に関する座標許容値がある。複数の曲面部毎の曲率中心のX座標値及びY座標値に関する測定データと証明データと差のうち、いずれかが許容値を超えていれば、ここでは形状測定機50の測定精度が低いと判断する。また、許容値としては、曲率半径の測定データと証明データとの差に関する半径許容値がある。この半径許容値は、曲率半径の証明データに応じて設定してもよい。複数の曲面部毎の曲率半径に関する測定データと証明データと差のうち、いずれかが、証明データの曲率半径に応じた許容値を超えていれば、ここでは形状測定機50の測定精度が低いと判断する。 The tolerance may be, for example, a coordinate tolerance for the difference between the measurement data and certification data for the X and Y coordinate values of the center of curvature. If any of the differences between the measurement data and certification data for the X and Y coordinate values of the center of curvature for each of the multiple curved surface portions exceeds the tolerance, the measurement accuracy of the shape measuring machine 50 is determined to be low. Another tolerance may be a radius tolerance for the difference between the measurement data and certification data for the radius of curvature. This radius tolerance may be set according to the certification data for the radius of curvature. If any of the differences between the measurement data and certification data for the radius of curvature for each of the multiple curved surface portions exceeds the tolerance corresponding to the radius of curvature in the certification data, the measurement accuracy of the shape measuring machine 50 is determined to be low.

本実施形態のゲージ10gは、互いに異なる曲率半径を有する複数の曲面部を有するので、複数の曲面部毎のゲージ証明データとゲージ測定データとを比較することで、形状測定機50の精度に関する評価精度を高めることができる。 The gauge 10g of this embodiment has multiple curved surfaces with different radii of curvature, so by comparing the gauge certification data and gauge measurement data for each of the multiple curved surfaces, the evaluation accuracy of the shape measuring machine 50 can be improved.

また、このゲージ10gが有する複数の曲面部のそれぞれは、複数の曲面部のうちの他の曲面部に滑らかに連続してつながっている。このため、ゲージ10gの形状を示すゲージ測定データを取得する場合、形状測定機50で、このゲージ10gの表面をスキャンする際のスキャンスピードを一定にすることができる。よって、形状測定機50の制御が容易になる。さらに、前述したように、証明データとの差が最小になるゲージ測定データを得た際の一定のスキャンスピードを、この形状測定機50で測定対象の形状を測定する際のスキャンスピードにすることで、不連続な部位でスキャンスピードを低下させるなどの複雑な操作が不要になり、対象測定データの精度を高めることができる。 In addition, each of the multiple curved surface portions of the gauge 10g is smoothly and continuously connected to the other curved surface portions of the multiple curved surface portions. Therefore, when obtaining gauge measurement data showing the shape of the gauge 10g, the scan speed when scanning the surface of the gauge 10g with the shape measuring machine 50 can be made constant. This makes it easier to control the shape measuring machine 50. Furthermore, as described above, by setting the constant scan speed when obtaining the gauge measurement data that minimizes the difference with the proof data as the scan speed when measuring the shape of the measurement target with the shape measuring machine 50, complex operations such as reducing the scan speed at discontinuous parts are no longer necessary, and the accuracy of the target measurement data can be improved.

「形状測定機による測定データの校正(補正)方法」
形状測定機による測定データの校正(補正)方法の実施形態について、図12~図15を用いて説明する。
"Method of calibrating (correcting) measurement data using a shape measuring instrument"
An embodiment of a method for calibrating (correcting) measurement data obtained by a shape measuring instrument will be described with reference to FIGS.

本実施形態の形状測定機による測定データの校正(補正)方法では、図12のフローチャートに示すように、図5のフローチャートを用いて説明した形状測定機50の精度評価方法における、ゲージ製造工程(S10)及び証明取得工程(S11)を実行する。 In the method for calibrating (correcting) measurement data using a shape measuring machine of this embodiment, as shown in the flowchart of FIG. 12, the gauge manufacturing process (S10) and the certification acquisition process (S11) in the method for evaluating the accuracy of the shape measuring machine 50 described using the flowchart of FIG. 5 are executed.

この実施形態では、証明取得工程(S11)の後に、形状測定機を用いて、測定対象の評価領域の形状を測定して、評価領域の形状を示す対象測定データを取得する(S14:対象測定工程)。この対象測定工程(S14)で用いる形状測定機は、ゲージ測定工程(S12)で用いた形状測定機50と異なる測定機であってもよい。但し、前述した評価方法で、測定精度が高いと評価された形状測定機50を対象測定工程(S14)でも用いることが好ましい。 In this embodiment, after the certification acquisition process (S11), a shape measuring machine is used to measure the shape of the evaluation area of the measurement object, and object measurement data indicating the shape of the evaluation area is obtained (S14: object measurement process). The shape measuring machine used in this object measurement process (S14) may be a measuring machine different from the shape measuring machine 50 used in the gauge measurement process (S12). However, it is preferable to also use the shape measuring machine 50 evaluated as having high measurement accuracy by the evaluation method described above in the object measurement process (S14).

次に、ゲージ10gの証明データと対象測定データとを比較結果に応じて、対象測定データを補正する補正データを求める(S15:補正データ算出工程)。この補正データ算出工程(S15)では、まず、対象測定データを補正する補正データと曲率半径との関係を示す補正関数を定める(S15a:補正関数設定工程)。この補正関数設定工程(S15a)では、図13に示すように、対象測定データが示す曲率半径rmをx軸とし、この曲率半径rmとゲージ10gに関する証明データが示す曲率半径rcとの差(rm-rc)をy軸とする座標系を準備する。次に、この座標系中に、評価対象に含まれる複数の曲面部毎の、曲率半径rmと差(rm-rc)とで定まる点をプロットする。座標系中にプロットした複数の点毎のx座標値及びy座標値から、x座標値とy座標値との関係を近似する補正関数を定める。 Next, correction data for correcting the target measurement data is obtained according to the comparison result between the certification data of the gauge 10g and the target measurement data (S15: correction data calculation step). In this correction data calculation step (S15), first, a correction function is determined that indicates the relationship between the correction data for correcting the target measurement data and the radius of curvature (S15a: correction function setting step). In this correction function setting step (S15a), as shown in FIG. 13, a coordinate system is prepared in which the radius of curvature rm indicated by the target measurement data is the x-axis, and the difference (rm-rc) between this radius of curvature rm and the radius of curvature rc indicated by the certification data related to the gauge 10g is the y-axis. Next, in this coordinate system, points determined by the radius of curvature rm and the difference (rm-rc) for each of the multiple curved surface portions included in the evaluation target are plotted. A correction function that approximates the relationship between the x-coordinate value and the y-coordinate value is determined from the x-coordinate value and the y-coordinate value for each of the multiple points plotted in the coordinate system.

ここでは、この補正関数は、図13に示すように、以下の一次関数である。
y=0.2869x-5.6142
Here, the correction function is the following linear function as shown in FIG.
y = 0.2869x - 5.6142

また、以上の補正データ算出工程(S15)における補正関数設定工程(S15a)では、対象測定データを補正する補正データと曲率中心座標との関係を示す補正関数を定めてもよい。この補正関数設定工程(S15a)では、二つの座標系を準備する。二つの座標系のうち第一座標系として、図14に示すように、対象測定データが示す曲率中心x座標xmをx軸とし、この曲率中心x座標xmとゲージ10gに関する証明データが示す曲率中心x座標xcとの差(xm-xc)をy軸とする座標系を準備する。二つの座標系のうち第二座標系として、図15に示すように、対象測定データが示す曲率中心y座標ymをx軸とし、この曲率中心y座標ymとゲージ10gに関する証明データが示す曲率中心y座標ycとの差(ym-yc)をy軸とする座標系を準備する。次に、第一座標系中に、評価対象に含まれる複数の曲面部毎の、曲率中心x座標xmと差(xm-xc)とで定まる点をプロットする。第一座標系中にプロットした複数の点毎のx座標値及びy座標値から、x座標値とy座標値との関係を近似する第一補正関数を定める。さらに、第二座標系中に、評価対象に含まれる複数の曲面部毎の、曲率中心y座標ymと差(ym-yc)とで定まる点をプロットする。第二座標系中にプロットした複数の点毎のx座標値及びy座標値から、x座標値とy座標値との関係を近似する第二補正関数を定める。 In addition, in the correction function setting step (S15a) in the above correction data calculation step (S15), a correction function indicating the relationship between the correction data for correcting the target measurement data and the curvature center coordinate may be determined. In this correction function setting step (S15a), two coordinate systems are prepared. As the first of the two coordinate systems, as shown in FIG. 14, a coordinate system is prepared in which the x-axis is the curvature center x-coordinate xm indicated by the target measurement data, and the y-axis is the difference (xm-xc) between this curvature center x-coordinate xm and the curvature center x-coordinate xc indicated by the certification data for the gauge 10g. As the second of the two coordinate systems, as shown in FIG. 15, a coordinate system is prepared in which the x-axis is the curvature center y-coordinate ym indicated by the target measurement data, and the y-axis is the difference (ym-yc) between this curvature center y-coordinate ym and the curvature center y-coordinate yc indicated by the certification data for the gauge 10g. Next, in the first coordinate system, a point determined by the x-coordinate xm of the center of curvature and the difference (xm-xc) is plotted for each of the multiple curved surface portions included in the evaluation target. A first correction function that approximates the relationship between the x-coordinate value and the y-coordinate value is determined from the x-coordinate value and the y-coordinate value for each of the multiple points plotted in the first coordinate system. Furthermore, in the second coordinate system, a point determined by the y-coordinate ym of the center of curvature and the difference (ym-yc) is plotted for each of the multiple curved surface portions included in the evaluation target. A second correction function that approximates the relationship between the x-coordinate value and the y-coordinate value is determined from the x-coordinate value and the y-coordinate value for each of the multiple points plotted in the second coordinate system.

ここでは、第一補正関数は、図14に示すように、以下の一次関数である。
y=0.0017x-0.8804
Here, the first correction function is the following linear function as shown in FIG.
y = 0.0017x - 0.8804

また、第二補正関数も、図15に示すように、以下の一次関数である。
y=-0.0134x-0.0143
Moreover, the second correction function is also the following linear function as shown in FIG.
y = -0.0134x -0.0143

補正データ算出工程(S15)では、補正関数設定工程(S15a)後に、評価対象に含まれる複数の曲面部毎の、対象測定データが示す曲率半径を前述の補正関数のxに代入して、評価対象に含まれる複数の曲面部毎の補正データyを求める(S15b:補正データ演算工程)。以上で補正データ算出工程(S15)が終了する。なお、補正関数設定工程(S15a)において、補正データと曲率中心座標との関係を示す第一及び第二補正関数を定めた場合には、補正データ演算工程(S15b)で、評価対象に含まれる複数の曲面部毎の、対象測定データが示す曲率中心x座標を前述の第一補正関数のxに代入して、評価対象に含まれる複数の曲面部毎のx座標に関数する補正データyを求める。さらに、評価対象に含まれる複数の曲面部毎の、対象測定データが示す曲率中心y座標を前述の第二補正関数のxに代入して、評価対象に含まれる複数の曲面部毎のy座標に関数する補正データyを求める。 In the correction data calculation step (S15), after the correction function setting step (S15a), the radius of curvature indicated by the target measurement data for each of the multiple curved surfaces included in the evaluation target is substituted into the x of the correction function described above to obtain correction data y for each of the multiple curved surfaces included in the evaluation target (S15b: correction data calculation step). This completes the correction data calculation step (S15). Note that, if the first and second correction functions indicating the relationship between the correction data and the curvature center coordinates are determined in the correction function setting step (S15a), the correction data calculation step (S15b) substitutes the curvature center x coordinate indicated by the target measurement data for each of the multiple curved surfaces included in the evaluation target into the x of the first correction function described above to obtain correction data y that functions on the x coordinate of each of the multiple curved surfaces included in the evaluation target. Furthermore, the curvature center y coordinate indicated by the target measurement data for each of the multiple curved surfaces included in the evaluation target is substituted into the x of the second correction function described above to obtain correction data y that functions on the y coordinate of each of the multiple curved surfaces included in the evaluation target.

補正データ算出工程(S15)が終了すると、この補正データ算出工程(S15)で求めた補正データを用いて、対象測定データが示す曲率半径、及び/又、対象測定データが示す曲率中心座標を補正する。具体的には、対象測定データが示す曲率半径から補正データを減算し、及び/又対象データが示す曲率中心座標から補正データを減算し、この減算結果を校正された対象測定データとする。 When the correction data calculation step (S15) is completed, the correction data calculated in this correction data calculation step (S15) is used to correct the radius of curvature indicated by the target measurement data and/or the coordinates of the center of curvature indicated by the target measurement data. Specifically, the correction data is subtracted from the radius of curvature indicated by the target measurement data and/or the correction data is subtracted from the coordinates of the center of curvature indicated by the target data, and the result of this subtraction is regarded as the calibrated target measurement data.

以上で、対象測定データの校正(補正)が終了する。 This completes the calibration (correction) of the target measurement data.

本実施形態のゲージ10gは、互いに異なる曲率半径及び/又は曲率中心座標を有する複数の曲面部を有するので、複数の曲面部毎のゲージ証明データと対象測定データとを比較することで、対象測定データの補正に好ましい補正データを得ることができる。よって、このゲージ10gを用いることで、対象測定データを精度よく補正することができる。 The gauge 10g of this embodiment has multiple curved portions with different radii of curvature and/or curvature center coordinates, so that by comparing the gauge certification data for each of the multiple curved portions with the target measurement data, correction data that is suitable for correcting the target measurement data can be obtained. Therefore, by using this gauge 10g, the target measurement data can be corrected with high accuracy.

以上の補正関数設定工程(S15a)で定める補正関数は、一次関数である。しかしながら、この補正関数は、多次元関数等、他の関数であってもよい。また、以上の補正関数設定工程(S15a)を、人が実行してもよいが、補正関数設定工程(S15a)を実行するためのプログラムが組み込まれているコンピュータが実行してもよい。 The correction function determined in the above correction function setting step (S15a) is a linear function. However, this correction function may be another function, such as a multidimensional function. Furthermore, the above correction function setting step (S15a) may be performed by a person, or may be performed by a computer incorporating a program for executing the correction function setting step (S15a).

「ゲージの変形例」
以上の実施形態のゲージ10gは、ゲージ本体13gのチップ面18g側とは反対側の端に基準体11gが設けられている。しかしながら、図16に示すように、ゲージ本体13gのチップ面18に基準体11gaが設けられていてもよい。また、図17に示すように、ゲージ本体13gのZ方向における中間部に基準体11gbが設けられていてもよい。
"Gauge Variation"
In the gauge 10g of the above embodiment, the reference body 11g is provided at the end of the gauge body 13g opposite to the tip surface 18g side. However, as shown in Fig. 16, the reference body 11ga may be provided on the tip surface 18 of the gauge body 13g. Also, as shown in Fig. 17, the reference body 11gb may be provided at the middle part of the gauge body 13g in the Z direction.

以上の実施形態のゲージ10gの基準体11gは、基準部20として、互いに垂直な第一基準平面21、第二基準平面22及び第三基準平面23を有する。しかしながら、図18に示すように、基準体11gcは、ベース25と、基準部として、ベース25上に固定され、互いの中心が一の仮想平面Pcを規定する三以上の球面部26と、を有してもよい。この基準体11gcのベース25は、直方体形状を成している。このベース25上の一の平面25p上には、ゲージ本体13gが設けられている。この一の平面25p上には、さらに、四つの球面部26が設けられている。四つの球面部26の中心は、前述したように、一つの仮想平面Pcを規定する。さらに、この仮想平面Pc内に描かれる長方形の頂点に、各球面部26の中心が位置する。四つの球面部26の中心のうち、第一球面部26aの中心は、ゲージ本体13gの各部を測定する際の座標系の原点Oを成す。第一球面部26aの中心と第二球面部26bの中心とを結ぶ仮想線は、この座標系のX軸を成す。第一球面部26aの中心と第三球面部26cの中心とを結ぶ仮想線は、この座標系のY軸を成す。第一球面部26aの中心を通り、X軸及びY軸に垂直な仮想線は、この座標系のZ軸を成す。よって、四つの球面部26の中心が規定している仮想平面Pcは、この座標系のXY平面になる。 The reference body 11g of the gauge 10g in the above embodiment has a first reference plane 21, a second reference plane 22, and a third reference plane 23 that are perpendicular to each other as the reference portion 20. However, as shown in FIG. 18, the reference body 11gc may have a base 25 and three or more spherical portions 26 fixed on the base 25 as the reference portion and whose centers define a virtual plane Pc. The base 25 of the reference body 11gc has a rectangular parallelepiped shape. The gauge body 13g is provided on a plane 25p on the base 25. Four spherical portions 26 are further provided on the plane 25p. The centers of the four spherical portions 26 define a virtual plane Pc as described above. Furthermore, the centers of the spherical portions 26 are located at the vertices of a rectangle drawn in the virtual plane Pc. Of the centers of the four spherical portions 26, the center of the first spherical portion 26a forms the origin O of the coordinate system when each portion of the gauge body 13g is measured. An imaginary line connecting the center of the first spherical portion 26a and the center of the second spherical portion 26b forms the X-axis of this coordinate system. An imaginary line connecting the center of the first spherical portion 26a and the center of the third spherical portion 26c forms the Y-axis of this coordinate system. An imaginary line passing through the center of the first spherical portion 26a and perpendicular to the X-axis and Y-axis forms the Z-axis of this coordinate system. Therefore, the imaginary plane Pc defined by the centers of the four spherical portions 26 becomes the XY plane of this coordinate system.

なお、この変形例の基準体11gcは、四つの球面部26を有するが、球面部26の数は三つでもよい。また、この変形例の基準体11gcにおける第一球面部26aと第二球面部26bとを結ぶ仮想線に対して、この基準体11gcにおける第一球面部26aと第三球面部26cとを結ぶ仮想線は、垂直である。しかしながら、第一球面部26aと第二球面部26bとを結ぶ仮想線に対して、第一球面部26aと第三球面部26cとを結ぶ仮想線は、垂直でなくてもよい。この場合、第一球面部26aと第二球面部26bとを結ぶ仮想線をX軸にし、仮想平面Pc中でこのX軸に垂直な仮想線をY軸にする。また、各球面部は、真球であることが望ましいが、座標系を規定することができる形状であれば、真球でなくてもよい。また、複数の基準部は、座標系を定めることができれば、以上で例示した形状等に限られない。 The reference body 11gc of this modified example has four spherical portions 26, but the number of spherical portions 26 may be three. In addition, the virtual line connecting the first spherical portion 26a and the third spherical portion 26c in this reference body 11gc is perpendicular to the virtual line connecting the first spherical portion 26a and the second spherical portion 26b in this modified example. However, the virtual line connecting the first spherical portion 26a and the third spherical portion 26c does not have to be perpendicular to the virtual line connecting the first spherical portion 26a and the second spherical portion 26b. In this case, the virtual line connecting the first spherical portion 26a and the second spherical portion 26b is the X-axis, and the virtual line perpendicular to this X-axis in the virtual plane Pc is the Y-axis. In addition, each spherical portion is preferably a true sphere, but it does not have to be a true sphere as long as it has a shape that can define a coordinate system. In addition, the multiple reference portions are not limited to the shapes exemplified above as long as it is possible to define a coordinate system.

「その他の変形例」
以上の実施形態の測定対象は、タービンの動翼10である。しかしながら、自由曲面を有する物体であれば、いかなる物体を測定対象にしてもよい。この場合、ゲージ本体は、この測定対象に対応した形状及びサイズになる。
"Other Modifications"
The measurement object in the above embodiment is a turbine blade 10. However, any object having a free-form surface may be used as the measurement object. In this case, the gauge body has a shape and size corresponding to the measurement object.

また、測定対象は、互いに平行な複数の仮想平面による各断面の形状及びサイズが同一の物体であってもよい。言い換えると、測定対象は、柱状を成し、この柱の底面及び天面の外縁形状が互いに同一の自由曲線であってもよい。このような測定対象としては、例えば、平板形カムがある。 The measurement object may also be an object whose cross sections, defined by multiple imaginary planes parallel to one another, have the same shape and size. In other words, the measurement object may be a columnar object whose bottom and top surfaces have the same outer edge shapes as free curves. An example of such a measurement object is a flat cam.

以上の実施形態の形状測定機50は、接触式の測定機である。しかしながら、形状測定機は、非接触式の測定機であってもよい。非接触式の測定機としては、例えば、レーザの光を測定対象に照射し、この測定対象からの反射光に応じて、測定対象の形状を測定するレーザ形状測定機等がある。 The shape measuring machine 50 in the above embodiment is a contact type measuring machine. However, the shape measuring machine may be a non-contact type measuring machine. An example of a non-contact type measuring machine is a laser shape measuring machine that irradiates a measurement object with laser light and measures the shape of the measurement object according to the reflected light from the measurement object.

10:動翼
Ar;回転軸線
11:プラットフォーム
11p;ガスパス面
12:翼根
13:翼体(測定対象)
14:前縁
15:後縁
16:負圧面
17:正圧面
18:チップ面
Fb:翼形自由曲面
C1:第一曲面部
B1:第一接続曲面部
B1f,B2f,B3f,B4f:前縁側接続部(第一接続部)
B1b,B2b,B3b,B4b:後縁側接続部(第二接続部)
C2:第二曲面部
B2:第二接続曲面部
C3:第三曲面部
B3:第三接続曲面部
C4:第四曲面部
B4:第四接続曲面部
Fs:負圧側自由曲面
C5:第五曲面部
B5:第五接続曲面部
B5b,B7b:基側接続部(第一接続部)
B5t,B7t:チップ側接続部(第二接続部)
C6:第六曲面部
Fp:正圧側自由曲面
C7:第七曲面部
B7:第七接続曲面部
C8:第八曲面部
Pz:Z方向に垂直な仮想平面
Py:Y方向に垂直な仮想平面
Az,Ay:評価領域
10g:ゲージ
11g,11ga,11gb,11gc:基準体
13g:ゲージ本体
14g:前縁
15g:後縁
16g:負圧面
17g:正圧面
18g:チップ面
Fbg:翼形自由曲面
C1g:第一曲面部
B1g:第一接続曲面部
B1fg:前縁側接続部(第一接続部)
B1bg:後縁側接続部(第二接続部)
C2g:第二曲面部
B2g:第二接続曲面部
C3g:第三曲面部
B3g:第三接続曲面部
C4g:第四曲面部
B4g:第四接続曲面部
Fsg:負圧側自由曲面
C5g:第五曲面部
B5g:第五接続曲面部
B5bg:基側接続部(第一接続部)
B5tg:チップ側接続部(第二接続部)
C6g:第六曲面部
Fpg:正圧側自由曲面
C7g:第七曲面部
B7g:第七接続曲面部
C8g:第八曲面部
Pzg:Z方向に垂直な仮想平面
Pyg:Y方向に垂直な仮想平面
Azg,Ayg:評価対応領域
20:基準部
21;第一基準平面(基準体)
22;第二基準平面(基準体)
23;第三基準平面(基準体)
25:ベース
26:球面部
26a:第一球面部
26b:第二球面部
26c:第三球面部
Pc:仮想平面
50:形状測定機
51:ベース
52x:X方向移動機構
52y:Y方向移動機構
52z:Z方向移動機構
56:プローブ
56a:球体
57:プローブ回転機構
10: rotor blade Ar; axis of rotation 11: platform 11p; gas path surface 12: blade root 13: blade body (measurement object)
14: leading edge 15: trailing edge 16: suction surface 17: pressure surface 18: tip surface Fb: airfoil free curved surface C1: first curved surface portion B1: first connecting curved surface portion B1f, B2f, B3f, B4f: leading edge side connecting portion (first connecting portion)
B1b, B2b, B3b, B4b: trailing edge side connection portion (second connection portion)
C2: Second curved surface portion B2: Second connecting curved surface portion C3: Third curved surface portion B3: Third connecting curved surface portion C4: Fourth curved surface portion B4: Fourth connecting curved surface portion Fs: Negative pressure side free curved surface C5: Fifth curved surface portion B5: Fifth connecting curved surface portion B5b, B7b: Base side connecting portion (first connecting portion)
B5t, B7t: Chip side connection portion (second connection portion)
C6: Sixth curved surface portion Fp: Pressure side free curved surface C7: Seventh curved surface portion B7: Seventh connecting curved surface portion C8: Eighth curved surface portion Pz: Imaginary plane Py perpendicular to the Z direction: Imaginary planes Az, Ay perpendicular to the Y direction: Evaluation area 10g: Gauge 11g, 11ga, 11gb, 11gc: Reference body 13g: Gauge body 14g: Leading edge 15g: Trailing edge 16g: Negative pressure surface 17g: Positive pressure surface 18g: Tip surface Fbg: Airfoil free curved surface C1g: First curved surface portion B1g: First connecting curved surface portion B1fg: Leading edge side connecting portion (first connecting portion)
B1bg: trailing edge side connection portion (second connection portion)
C2g: second curved surface portion B2g: second connecting curved surface portion C3g: third curved surface portion B3g: third connecting curved surface portion C4g: fourth curved surface portion B4g: fourth connecting curved surface portion Fsg: negative pressure side free curved surface C5g: fifth curved surface portion B5g: fifth connecting curved surface portion B5bg: base side connecting portion (first connecting portion)
B5tg: Chip side connection part (second connection part)
C6g: sixth curved surface portion Fpg: positive pressure side free curved surface C7g: seventh curved surface portion B7g: seventh connecting curved surface portion C8g: eighth curved surface portion Pzg: imaginary plane perpendicular to the Z direction Pyg: imaginary plane perpendicular to the Y direction Azg, Ayg: evaluation corresponding area 20: reference portion 21; first reference plane (reference body)
22: Second reference plane (reference body)
23: Third reference plane (reference body)
25: Base 26: Spherical surface portion 26a: First spherical surface portion 26b: Second spherical surface portion 26c: Third spherical surface portion Pc: Virtual plane 50: Shape measuring device 51: Base 52x: X-direction moving mechanism 52y: Y-direction moving mechanism 52z: Z-direction moving mechanism 56: Probe 56a: Sphere 57: Probe rotation mechanism

Claims (8)

ゲージを製造するゲージ製造工程と、
前記ゲージ製造工程で製造された前記ゲージに関するゲージ証明データを取得する証明取得工程と、
形状測定機を用いて、互いに異なる曲率半径を有する複数の曲面部を含み、複数の前記曲面部のそれぞれが、複数の前記曲面部のうちの他の曲面部に連続してつながっている自由曲面を有する測定対象の形状を測定して、対象測定データを取得する対象測定工程と、
前記ゲージ証明データと前記対象測定データとの比較結果に応じて、前記対象測定データを補正する補正データを求める補正データ算出工程と、
前記補正データを用いて、前記対象測定データを補正する補正工程と、
を実行し、
前記ゲージ製造工程では、
前記測定対象から、前記自由曲面に含まれる少なくとも一部の自由曲線を含む評価領域を定める評価領域特定工程と、
前記評価領域から前記自由曲線に含まれる複数の曲線部を抽出する要素抽出工程と、
前記要素抽出工程で抽出した複数の前記曲線部に関する設計データを取得する設計データ取得工程と、
互いに位置が異なり、座標系を定めることができる複数の基準部を有する基準体を数学的に定義する基準部定義工程と、
前記設計データ取得工程で取得した複数の前記曲線部毎の前記設計データを用いて、複数の前記曲線部を含む前記自由曲線を、前記基準部で定まる前記座標系中に、数学的に定義する自由曲面定義工程と、
前記基準部を有する基準体と、前記自由曲線を含み、前記基準体に接続されているゲージ本体と、を製造する製造工程と、
を実行し、
前記自由曲面定義工程では、前記自由曲面の形状を示す関数を二次微分可能な関数にし、
前記製造工程では、数学的に定義された前記基準部のデータに従って、前記基準部を有する前記基準体を製造すると共に、数学的に定義された前記自由曲線のデータに従って、前記ゲージ本体を製造し、
前記証明取得工程で取得する前記ゲージ証明データは、前記ゲージ中で、前記測定対象の前記評価領域に対応する評価対応領域の形状を証明するデータであり、
前記対象測定工程で取得する前記対象測定データは、前記形状測定機を用いて、前記測定対象の前記評価領域の形状を測定して得られたデータである、
測定データの補正方法。
a gauge manufacturing process for manufacturing a gauge;
a certification obtaining step of obtaining gauge certification data relating to the gauge manufactured in the gauge manufacturing step;
an object measuring process for measuring a shape of a measurement object having a free-form surface including a plurality of curved surface portions having mutually different radii of curvature, each of the plurality of curved surface portions being continuously connected to other curved surface portions among the plurality of curved surface portions, using a shape measuring machine, to obtain object measurement data;
a correction data calculation step of determining correction data for correcting the target measurement data according to a comparison result between the gauge certification data and the target measurement data;
a correction step of correcting the target measurement data using the correction data;
Run
In the gauge manufacturing process,
an evaluation area specifying step of determining an evaluation area including at least a part of the free curve included in the free curved surface from the measurement object;
an element extraction step of extracting a plurality of curved lines included in the free curve from the evaluation region;
a design data acquisition step of acquiring design data relating to the plurality of curved portions extracted in the element extraction step;
a reference part definition step of mathematically defining a reference body having a plurality of reference parts whose positions differ from each other and on which a coordinate system can be defined;
a free curved surface definition step of mathematically defining the free curve including the plurality of curved portions in the coordinate system determined by the reference portion, using the design data for each of the plurality of curved portions acquired in the design data acquisition step;
a manufacturing process for manufacturing a reference body having the reference portion and a gauge body including the free curve and connected to the reference body;
Run
In the free-form surface definition step, a function representing the shape of the free-form surface is made into a quadratically differentiable function;
In the manufacturing step, the reference body having the reference portion is manufactured according to data of the mathematically defined reference portion, and the gauge body is manufactured according to data of the mathematically defined free curve;
the gauge certification data acquired in the certification acquisition step is data that certifies the shape of an evaluation corresponding area in the gauge that corresponds to the evaluation area of the measurement target,
The object measurement data acquired in the object measurement step is data obtained by measuring the shape of the evaluation area of the measurement object using the shape measuring machine.
How to correct measurement data.
請求項1に記載の測定データの補正方法において、
前記基準部定義工程で定義する前記基準部は、第一基準平面と、前記第一基準平面に対して垂直な第二基準平面と、前記第一基準平面及び前記第二基準平面に対して垂直な第三基準平面と、を有する、
測定データの補正方法。
2. The method for correcting measurement data according to claim 1,
The reference portion defined in the reference portion definition step has a first reference plane, a second reference plane perpendicular to the first reference plane, and a third reference plane perpendicular to the first reference plane and the second reference plane.
How to correct measurement data.
請求項1に記載の測定データの補正方法において、
前記基準部定義工程で定義する前記基準部は、互いの中心が一の仮想平面を規定する三以上の球面部を有する、
測定データの補正方法。
2. The method for correcting measurement data according to claim 1,
The reference portion defined in the reference portion definition step has three or more spherical portions whose centers define one imaginary plane.
How to correct measurement data.
請求項1から3のいずれか一項に記載の測定データの補正方法において、
複数の前記曲面部は、曲率半径が一定で且つ該曲率半径が第一曲率半径の第一曲面部と、曲率半径が一定で且つ該曲率半径が前記第一曲率半径とは異なる第二曲率半径の第二曲面部と、を有し、
前記自由曲面は、前記第一曲面部と前記第二曲面部の間に存在する接続曲面部を含み、
前記接続曲面部は、前記第一曲面部の縁に接続されている第一接続部と、前記第二曲面部の縁に接続されている第二接続部と、を有し、
前記自由曲面定義工程では、前記第一接続部の曲率半径を前記第一曲率半径にし、前記第二接続部の曲率半径を前記第二曲率半径にし、前記接続曲面部の曲率半径を、前記第一接続部から前記第二接続部にかけて連続的に変化させる、若しくは無限大にする、
測定データの補正方法。
4. The method for correcting measurement data according to claim 1,
The plurality of curved surface portions include a first curved surface portion having a constant radius of curvature, the radius of curvature being a first radius of curvature, and a second curved surface portion having a constant radius of curvature, the radius of curvature being a second radius of curvature different from the first radius of curvature,
the free curved surface includes a connecting curved surface portion between the first curved surface portion and the second curved surface portion,
The connecting curved surface portion has a first connecting portion connected to an edge of the first curved surface portion and a second connecting portion connected to an edge of the second curved surface portion,
In the free curved surface definition step, the radius of curvature of the first connection portion is set to the first radius of curvature, the radius of curvature of the second connection portion is set to the second radius of curvature, and the radius of curvature of the connection curved surface portion is changed continuously from the first connection portion to the second connection portion or set to infinity.
How to correct measurement data.
請求項1から4のいずれか一項に記載の測定データの補正方法において、
前記評価領域に含まれる複数の前記曲線部のそれぞれに対する許容製造誤差を定める製造誤差設定工程をさらに実行し、
前記製造工程では、前記ゲージにおける複数の前記曲線部を、それぞれの前記曲線部に対する前記許容製造誤差範囲内に製造する、
測定データの補正方法。
5. The method for correcting measurement data according to claim 1 ,
A manufacturing error setting step is further performed to determine an allowable manufacturing error for each of the plurality of curved portions included in the evaluation area;
In the manufacturing process, the plurality of curved portions of the gauge are manufactured within the allowable manufacturing error range for each of the curved portions.
How to correct measurement data.
請求項1から5のいずれか一項に記載の測定データの補正方法において、
前記製造工程では、数学的に定義された前記自由曲線のデータと、数学的に定義された前記基準部のデータとを、三次元形状物を形成する三次元形状製造装置に入力し、前記三次元形状製造装置を動作させて前記ゲージを製造する、
測定データの補正方法。
6. The method for correcting measurement data according to claim 1,
In the manufacturing process, data of the mathematically defined free curve and data of the mathematically defined reference portion are input to a three-dimensional shape manufacturing device that forms a three-dimensional shape, and the three-dimensional shape manufacturing device is operated to manufacture the gauge.
How to correct measurement data.
請求項1から6のいずれか一項に記載の測定データの補正方法において、
前記補正データ算出工程は、
前記対象測定データ中の複数の前記曲面部毎の曲率半径のうちで最大曲率半径及び最小曲率半径を含む範囲内における曲率半径と、前記対象測定データを補正する補正データとの関係を示す補正関数を定める補正関数設定工程と、
前記対象測定データ中の複数の前記曲面部毎の曲率半径を前記補正関数に代入して、前記対象測定データ中の複数の前記曲面部毎の前記補正データを求める補正データ演算工程と、
を含む、
測定データの補正方法。
7. The method for correcting measurement data according to claim 1,
The correction data calculation step includes:
a correction function setting step of determining a correction function indicating a relationship between a radius of curvature within a range including a maximum radius of curvature and a minimum radius of curvature among the radii of curvature for each of the plurality of curved surface portions in the object measurement data, and correction data for correcting the object measurement data;
a correction data calculation step of substituting the radius of curvature for each of the plurality of curved surface portions in the object measurement data into the correction function to obtain the correction data for each of the plurality of curved surface portions in the object measurement data;
including,
How to correct measurement data.
請求項1から6のいずれか一項に記載の測定データの補正方法において、
前記補正データ算出工程は、
前記対象測定データ中の複数の前記曲面部毎の曲率中心座標のうちで最大座標値及び最小座標値を含む範囲内における曲率中心座標と、前記対象測定データを補正する補正データとの関係を示す補正関数を定める補正関数設定工程と、
前記対象測定データ中の複数の前記曲面部毎の曲率中心座標を前記補正関数に代入して、前記対象測定データ中の複数の前記曲面部毎の前記補正データを求める補正データ演算工程と、
を含む、
測定データの補正方法。
7. The method for correcting measurement data according to claim 1,
The correction data calculation step includes:
a correction function setting step of determining a correction function indicating a relationship between the curvature center coordinates within a range including a maximum coordinate value and a minimum coordinate value among the curvature center coordinates for each of the plurality of curved surface portions in the object measurement data and correction data for correcting the object measurement data;
a correction data calculation step of substituting the coordinates of the center of curvature for each of the plurality of curved surface portions in the object measurement data into the correction function to obtain the correction data for each of the plurality of curved surface portions in the object measurement data;
including,
How to correct measurement data.
JP2023063676A 2019-03-27 2023-04-10 How to correct measurement data Active JP7511858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023063676A JP7511858B2 (en) 2019-03-27 2023-04-10 How to correct measurement data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060510A JP2020159911A (en) 2019-03-27 2019-03-27 Gauge, method for measuring the same, method for evaluating accuracy of shape measurement machine, and method for correcting measurement data
JP2023063676A JP7511858B2 (en) 2019-03-27 2023-04-10 How to correct measurement data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019060510A Division JP2020159911A (en) 2019-03-27 2019-03-27 Gauge, method for measuring the same, method for evaluating accuracy of shape measurement machine, and method for correcting measurement data

Publications (2)

Publication Number Publication Date
JP2023082223A JP2023082223A (en) 2023-06-13
JP7511858B2 true JP7511858B2 (en) 2024-07-08

Family

ID=72611490

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019060510A Pending JP2020159911A (en) 2019-03-27 2019-03-27 Gauge, method for measuring the same, method for evaluating accuracy of shape measurement machine, and method for correcting measurement data
JP2023063676A Active JP7511858B2 (en) 2019-03-27 2023-04-10 How to correct measurement data

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019060510A Pending JP2020159911A (en) 2019-03-27 2019-03-27 Gauge, method for measuring the same, method for evaluating accuracy of shape measurement machine, and method for correcting measurement data

Country Status (2)

Country Link
JP (2) JP2020159911A (en)
WO (1) WO2020196030A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033880A1 (en) 2001-10-10 2003-04-24 Hitachi, Ltd. Turbine blade
JP2003139526A (en) 2001-10-30 2003-05-14 Incs Inc Shape measurement program preparing method
JP2005519277A (en) 2002-03-06 2005-06-30 レニショウ パブリック リミテッド カンパニー Dynamic workpiece comparison method
JP2007263977A (en) 2007-06-12 2007-10-11 National Institute Of Advanced Industrial & Technology Remote calibration system and method for weighing machine
JP2007534933A (en) 2004-01-26 2007-11-29 カール ツァイス インドゥストリエレ メステヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for determining workpiece coordinates
JP2008145298A (en) 2006-12-11 2008-06-26 Tohoku Electric Power Engineering & Construction Co Ltd Three-dimensional defect inspection device for hydraulic turbine structure
WO2018037831A1 (en) 2016-08-25 2018-03-01 信越半導体株式会社 Resistivity standard sample manufacturing method and epitaxial wafer resistivity measuring method
JP2018105654A (en) 2016-12-22 2018-07-05 株式会社ミツトヨ Method of measuring coefficient of linear expansion and measuring device
WO2018193656A1 (en) 2017-04-17 2018-10-25 株式会社Ihi Method for designing blade of axial-flow fluid machine and blade

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4908782A (en) * 1983-05-19 1990-03-13 Compressor Components Textron Inc. Airfoil inspection method
JP2501694Y2 (en) * 1989-09-14 1996-06-19 石川島播磨重工業株式会社 Groove processing accuracy measuring device
GB9417406D0 (en) * 1994-08-30 1994-10-19 Gec Alsthom Ltd Turbine blade
US6016684A (en) * 1998-03-10 2000-01-25 Vlsi Standards, Inc. Certification of an atomic-level step-height standard and instrument calibration with such standards
JP4480769B2 (en) * 2008-01-11 2010-06-16 パナソニック株式会社 Shape measurement method
JP6417691B2 (en) * 2014-03-27 2018-11-07 日本精工株式会社 Dimension measuring apparatus and dimension measuring method
JP2016085057A (en) * 2014-10-23 2016-05-19 株式会社キーエンス Coordinate measurement device
JP6730857B2 (en) * 2016-06-15 2020-07-29 株式会社ミツトヨ Step height gauge, reference plane measuring method, and reference plane measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003033880A1 (en) 2001-10-10 2003-04-24 Hitachi, Ltd. Turbine blade
JP2003139526A (en) 2001-10-30 2003-05-14 Incs Inc Shape measurement program preparing method
JP2005519277A (en) 2002-03-06 2005-06-30 レニショウ パブリック リミテッド カンパニー Dynamic workpiece comparison method
JP2007534933A (en) 2004-01-26 2007-11-29 カール ツァイス インドゥストリエレ メステヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for determining workpiece coordinates
JP2008145298A (en) 2006-12-11 2008-06-26 Tohoku Electric Power Engineering & Construction Co Ltd Three-dimensional defect inspection device for hydraulic turbine structure
JP2007263977A (en) 2007-06-12 2007-10-11 National Institute Of Advanced Industrial & Technology Remote calibration system and method for weighing machine
WO2018037831A1 (en) 2016-08-25 2018-03-01 信越半導体株式会社 Resistivity standard sample manufacturing method and epitaxial wafer resistivity measuring method
JP2018105654A (en) 2016-12-22 2018-07-05 株式会社ミツトヨ Method of measuring coefficient of linear expansion and measuring device
WO2018193656A1 (en) 2017-04-17 2018-10-25 株式会社Ihi Method for designing blade of axial-flow fluid machine and blade

Also Published As

Publication number Publication date
JP2020159911A (en) 2020-10-01
WO2020196030A1 (en) 2020-10-01
JP2023082223A (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US4908782A (en) Airfoil inspection method
JP6199870B2 (en) Measuring method
JP5908102B2 (en) Preparation for operation of contact scanning coordinate measuring instrument
Lotze et al. 3D gear measurement by CMM
US6985238B2 (en) Non-contact measurement system for large airfoils
US11976920B2 (en) Automated test plan validation for object measurement by a coordinate measuring machine
CN111256591B (en) External parameter calibration device and method for structured light sensor
CN110806571A (en) Multi-structure optical sensor spatial attitude calibration piece and calibration method thereof
Sabri et al. Fixtureless profile inspection of non-rigid parts using the numerical inspection fixture with improved definition of displacement boundary conditions
Rhinithaa et al. Comparative study of roundness evaluation algorithms for coordinate measurement and form data
WO2020049911A1 (en) Method of creating wafer shape data
CN102147244A (en) Method for examining data file of curve surface reverse product
Backhaus et al. A parametrization describing blisk airfoil variations referring to modal analysis
JP7511858B2 (en) How to correct measurement data
Liu et al. Online approach to measuring relative location of spatial geometric features of long rotating parts
Van Gestel et al. Determining measurement uncertainties of feature measurements on CMMs
Backhaus et al. Validation methods for 3D digitizing precision concerning jet engine blisks
CN114782315B (en) Shaft hole assembly pose precision detection method, device, equipment and storage medium
Yu et al. An approach for machining distortion measurements and evaluation of thin-walled blades with small datum
CN115164809A (en) Six-axis measurement and error compensation method for blisk
JP3999063B2 (en) CMM, CMM calibration method, and computer-readable storage medium storing program for executing the method
JP4093111B2 (en) Work accuracy measuring device and accuracy measuring method
JP4634657B2 (en) Calibration method for surface texture measuring device
CN104006781A (en) Computing method of curved surface normal vector measurement accuracy
JP7415856B2 (en) Object recognition device, object recognition method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240618