JP2023082223A - Correction method for measurement data - Google Patents

Correction method for measurement data Download PDF

Info

Publication number
JP2023082223A
JP2023082223A JP2023063676A JP2023063676A JP2023082223A JP 2023082223 A JP2023082223 A JP 2023082223A JP 2023063676 A JP2023063676 A JP 2023063676A JP 2023063676 A JP2023063676 A JP 2023063676A JP 2023082223 A JP2023082223 A JP 2023082223A
Authority
JP
Japan
Prior art keywords
curved surface
data
surface portion
gauge
curvature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2023063676A
Other languages
Japanese (ja)
Other versions
JP7511858B2 (en
Inventor
義也 福原
Yoshiya Fukuhara
正人 寺澤
Masato Terasawa
理 佐藤
Osamu Sato
和也 松崎
Kazuya Matsuzaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Heavy Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2023063676A priority Critical patent/JP7511858B2/en
Priority claimed from JP2023063676A external-priority patent/JP7511858B2/en
Publication of JP2023082223A publication Critical patent/JP2023082223A/en
Application granted granted Critical
Publication of JP7511858B2 publication Critical patent/JP7511858B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

To evaluate reliability of a measurement result of a measuring instrument, to improve measurement accuracy, and to correct measurement data obtained by the measuring instrument with high accuracy.SOLUTION: A gauge 10 g has a reference body 11 g and a gauge body 13 g. The reference body 11 g has a plurality of reference parts 20 having different positions from each other and capable of defining a coordinate system. The gauge body 13 g is connected to the reference body 11 g. The gauge body 13 g includes a plurality of curved surface parts C1 g, C2 g, C3 g, C4 g or plane parts having different radii of curvature from each other, and has a free-form surface Fbg in which each of the plurality of curved surface parts or plane parts is continuously connected to another curved surface or plane part of the plurality of curved surface parts or plane parts.SELECTED DRAWING: Figure 4

Description

本発明は、測定データの補正方法に関する。 The present invention relates to a method of correcting measurement data.

三次元形状物の形状を測定する際には、形状測定機が用いられる。この形状測定機による測定精度を高めるため、以下の特許文献1には、キャリブレーションゲージを用いて、形状測定機の測定誤差等を求める方法や形状測定機の測定データを補正する方法等が記載されている。 A shape measuring machine is used to measure the shape of a three-dimensional object. In order to improve the measurement accuracy of this shape measuring machine, Patent Document 1 below describes a method of obtaining measurement errors of the shape measuring machine and a method of correcting the measurement data of the shape measuring machine using a calibration gauge. It is

特許文献1に記載されているキャリブレーションゲージは、平面を有するブロックと、この平面から凹んでいる凹状の第一半球面と、この平面から突出している凸状の第二半球面と、を有する。第一半球面と第二半球面との間には、平面が介在している。第一半球面と第二半球面とは、互い同じ曲率半径の曲面である。 The calibration gauge described in Patent Document 1 has a block having a flat surface, a concave first hemispherical surface recessed from the flat surface, and a convex second hemispherical surface protruding from the flat surface. . A plane is interposed between the first hemispherical surface and the second hemispherical surface. The first hemispherical surface and the second hemispherical surface are curved surfaces having the same radius of curvature.

特開2006-349411号公報JP 2006-349411 A

特許文献1に記載のキャリブレーションゲージを用いて、形状測定機の精度評価の実施や、この形状測定機で得られた測定データを補正することは可能である。 Using the calibration gauge described in Patent Document 1, it is possible to evaluate the accuracy of the shape measuring machine and correct the measurement data obtained by this shape measuring machine.

しかしながら、製造業等の分野では、自由曲面を含む三次元形状物の形状を測定する場合の形状測定機の計測結果の確からしさを評価し、計測精度を高めたい、という要望がある。さらに、製造業等の分野では、形状測定機で得られた測定データを精度よく補正したい、という要望もある。 However, in fields such as the manufacturing industry, there is a demand to evaluate the certainty of the measurement result of a shape measuring machine when measuring the shape of a three-dimensional object including a free-form surface, and to improve the measurement accuracy. Furthermore, in the field of manufacturing and the like, there is a demand for accurate correction of measurement data obtained by a shape measuring machine.

そこで、本発明は、形状測定機の計測結果の確からしさを評価し、計測精度を高めることができると共に、形状測定機で得られた測定データを精度よく補正することができる技術を提供することを目的とする。 Accordingly, the present invention provides a technology capable of evaluating the certainty of the measurement results of a shape measuring machine, improving the measurement accuracy, and accurately correcting the measurement data obtained by the shape measuring machine. With the goal.

上記目的を達成するための発明に係る一態様の測定データの補正方法は、
ゲージを製造するゲージ製造工程と、前記ゲージ製造工程で製造された前記ゲージに関するゲージ証明データを取得する証明取得工程と、形状測定機を用いて、互いに異なる曲率半径を有する複数の曲面部を含み、複数の前記曲面部のそれぞれが、複数の前記曲面部のうちの他の曲面部に連続してつながっている自由曲面を有する測定対象の形状を測定して、対象測定データを取得する対象測定工程と、前記ゲージ証明データと前記対象測定データとの比較結果に応じて、前記対象測定データを補正する補正データを求める補正データ算出工程と、前記補正データを用いて、前記対象測定データを補正する補正工程と、を実行する。前記ゲージ製造工程では、前記測定対象から、前記自由曲面に含まれる少なくとも一部の自由曲線を含む評価領域を定める評価領域特定工程と、前記評価領域から前記自由曲線に含まれる複数の曲線部を抽出する要素抽出工程と、前記要素抽出工程で抽出した複数の前記曲線部に関する設計データを取得する設計データ取得工程と、互いに位置が異なり、座標系を定めることができる複数の基準部を有する基準体を数学的に定義する基準部定義工程と、前記設計データ取得工程で取得した複数の前記曲線部毎の前記設計データを用いて、複数の前記曲線部を含む前記自由曲線を、前記基準部で定まる前記座標系中に、数学的に定義する自由曲面定義工程と、前記基準部を有する基準体と、前記自由曲線を含み、前記基準体に接続されているゲージ本体と、を製造する製造工程と、を実行する。前記自由曲面定義工程では、前記自由曲面の形状を示す関数を二次微分可能な関数にする。前記製造工程では、数学的に定義された前記基準部のデータに従って、前記基準部を有する前記基準体を製造すると共に、数学的に定義された前記自由曲線のデータに従って、前記ゲージ本体を製造する。前記証明取得工程で取得する前記ゲージ証明データは、前記ゲージ中で、前記測定対象の前記評価領域に対応する評価対応領域の形状を証明するデータである。前記対象測定工程で取得する前記対象測定データは、前記形状測定機を用いて、前記測定対象の前記評価領域の形状を測定して得られたデータである。
A method for correcting measurement data according to one aspect of the invention for achieving the above object includes:
A gauge manufacturing process for manufacturing a gauge, a certification acquisition process for acquiring gauge certification data relating to the gauge manufactured in the gauge manufacturing process, and a plurality of curved surface portions having different curvature radii using a shape measuring machine. , measuring a shape of a measurement object in which each of the plurality of curved surface portions has a free curved surface continuously connected to another curved surface portion of the plurality of curved surface portions to obtain object measurement data a correction data calculation step of obtaining correction data for correcting the target measurement data according to a comparison result between the gauge certification data and the target measurement data; and correcting the target measurement data using the correction data. and a correction step. In the gauge manufacturing process, an evaluation area specifying step of determining an evaluation area including at least a part of the free curve included in the free curved surface from the measurement target, and a plurality of curved portions included in the free curve from the evaluation area an element extraction step for extracting; a design data acquisition step for acquiring design data relating to the plurality of curved portions extracted in the element extraction step; The free curve including the plurality of curved portions is obtained by using the reference portion defining step of mathematically defining the body and the design data for each of the plurality of curved portions obtained in the design data obtaining step. a step of defining a free-form surface mathematically defined in the coordinate system defined by, a reference body having the reference portion, and a gauge body including the free-form curve and connected to the reference body Execute the steps. In the free-form surface defining step, the function indicating the shape of the free-form surface is made to be a quadratically differentiable function. In the manufacturing process, the reference body having the reference portion is manufactured according to the mathematically defined data of the reference portion, and the gauge body is manufactured according to the mathematically defined free curve data. . The gauge certification data acquired in the certification acquisition step is data that certifies the shape of the evaluation corresponding area corresponding to the evaluation area to be measured in the gauge. The object measurement data acquired in the object measurement step is data obtained by measuring the shape of the evaluation region of the measurement object using the shape measuring machine.

本発明の一態様によれば、形状測定機の計測結果の確からしさを評価し、計測精度を高めることができると共に、形状測定機で得られた測定データを精度よく補正することができる。 ADVANTAGE OF THE INVENTION According to one aspect of the present invention, it is possible to evaluate the certainty of the measurement result of the shape measuring machine, improve the measurement accuracy, and accurately correct the measurement data obtained by the shape measuring machine.

本発明に係る一実施形態における測定対象としての動翼の斜視図である。1 is a perspective view of a rotor blade as an object to be measured in one embodiment according to the present invention; FIG. 図1及び図4におけるII-II線断面図である。FIG. 5 is a sectional view taken along line II-II in FIGS. 1 and 4; 図1及び図4におけるIII-III線断面図である。FIG. 5 is a cross-sectional view taken along line III-III in FIGS. 1 and 4; 本発明に係る一実施形態におけるゲージの斜視図である。1 is a perspective view of a gauge in one embodiment according to the invention; FIG. 本発明に係る一実施形態におけるゲージの製造方法を示すフローチャートである。4 is a flow chart showing a method for manufacturing a gauge according to one embodiment of the present invention; 本発明に係る一実施形態における形状測定機の精度評価方法を示すフローチャートである。4 is a flow chart showing an accuracy evaluation method for a shape measuring machine according to one embodiment of the present invention. 本発明に係る一実施形態におけるゲージの証明データを示す説明図である。FIG. 4 is an explanatory diagram showing proof data of a gauge in one embodiment according to the present invention; 本発明に係る一実施形態における座標上に展開した証明データを示す説明図である。FIG. 4 is an explanatory diagram showing proof data developed on coordinates in one embodiment according to the present invention; 本発明に係る一実施形態における形状測定機の斜視図である。1 is a perspective view of a shape measuring machine in one embodiment according to the present invention; FIG. 本発明に係る一実施形態におけるゲージの測定データの一部を示す説明図である。FIG. 4 is an explanatory diagram showing part of measurement data of a gauge in one embodiment according to the present invention; 本発明に係る一実施形態におけるゲージの測定データと証明データとの比較結果を示す説明図である。FIG. 5 is an explanatory diagram showing a comparison result between gage measurement data and certification data in one embodiment of the present invention. 本発明に係る一実施形態における測定データの校正(補正)方法を示すフローチャートである。4 is a flow chart showing a method for calibrating (correcting) measurement data in one embodiment according to the present invention. 本発明に係る一実施形態における補正関数を示す説明図である。FIG. 4 is an explanatory diagram showing a correction function in one embodiment according to the present invention; 本発明に係る一実施形態の変形例における第一補正関数を示す説明図である。It is an explanatory view showing the first correction function in the modification of one embodiment concerning the present invention. 本発明に係る一実施形態の変形例における第二補正関数を示す説明図である。It is explanatory drawing which shows the 2nd correction function in the modification of one Embodiment which concerns on this invention. 本発明に係る一実施形態における第一変形例のゲージの斜視図である。FIG. 10 is a perspective view of a gauge of a first modified example in one embodiment of the present invention; 本発明に係る一実施形態における第二変形例のゲージの斜視図である。FIG. 10 is a perspective view of a gauge of a second modified example in one embodiment according to the present invention; 本発明に係る一実施形態における第三変形例のゲージの斜視図である。FIG. 11 is a perspective view of a gauge of a third modified example in one embodiment according to the present invention;

以下、本発明に係るゲージ、これを用いた測定データの校正(補正)方法等の一実施形態について、図面を用いて説明する。 An embodiment of a gauge, a method for calibrating (correcting) measurement data using the gauge, and the like according to the present invention will be described below with reference to the drawings.

「測定対象」
測定対象の実施形態について、図1~図3を用いて説明する。
"What to measure"
An embodiment of the object to be measured will be described with reference to FIGS. 1 to 3. FIG.

本実施形態の測定対象は、図1に示すように、タービンの動翼10である。動翼10は、回転軸線Arを中心に回転するロータ軸に取り付けられる。ここで、便宜上、回転軸線Arが延びている方向をY方向、回転軸線Arに対する径方向をZ方向、Y方向及びZ方向に垂直な方向をX方向とする。 An object to be measured in this embodiment is a rotor blade 10 of a turbine, as shown in FIG. The rotor blades 10 are attached to a rotor shaft that rotates about the rotation axis Ar. Here, for convenience, the direction in which the rotation axis Ar extends is the Y direction, the radial direction with respect to the rotation axis Ar is the Z direction, and the direction perpendicular to the Y direction and the Z direction is the X direction.

動翼10は、プラットフォーム11と、ロータ軸にはめ込まれる翼根12と、翼型を成す翼体13と、を有する。プラットフォーム11の(+)Z側を向く面は、作動流体であるガスに接するガスパス面11pを成す。翼体13は、プラットフォーム11のガスパス面11pから、(+)Z側に延びている。翼根12は、プラットフォーム11で(-)Z側を向く面から、(-)Z側に延びている。 The moving blade 10 has a platform 11, a blade root 12 fitted to the rotor shaft, and a blade body 13 forming an airfoil. The surface of the platform 11 facing the (+)Z side forms a gas path surface 11p in contact with the gas that is the working fluid. The wing body 13 extends from the gas path surface 11p of the platform 11 toward the (+)Z side. The blade root 12 extends from the surface of the platform 11 facing the (-) Z side to the (-) Z side.

翼体13は、前縁14と、後縁15と、負圧面16と、正圧面17と、チップ面18と、を有する。前縁14と後縁15とは、負圧面16及び正圧面17で接続されている。負圧面16は、前縁14と後縁15とを結ぶキャンバーラインを基準にして、(-)X側に配置され、(-)X側を向く面で、基本的に凸面である。正圧面17は、キャンバーラインを基準にして、(+)X側に配置され、(+)X側を向く面で、基本的に凹面である。チップ面18は、(+)Z側を向き、正圧面17の(+)Z側の縁と負圧面16の(+)Z側の縁とを接続する。 Airfoil 13 has a leading edge 14 , a trailing edge 15 , a suction side 16 , a pressure side 17 and a tip side 18 . The leading edge 14 and trailing edge 15 are connected by a suction surface 16 and a pressure surface 17 . The negative pressure surface 16 is located on the (-)X side with respect to the camber line connecting the front edge 14 and the rear edge 15, faces the (-)X side, and is basically a convex surface. The pressure surface 17 is arranged on the (+)X side with respect to the camber line, faces the (+)X side, and is basically a concave surface. The chip surface 18 faces the (+)Z side and connects the (+)Z side edge of the pressure surface 17 and the (+)Z side edge of the suction surface 16 .

図2は、図1中のII-II線断面図である。すなわち、図2は、Z方向に垂直な仮想平面Pz(図1参照)での翼体13の断面図である。翼体13は、この断面中に、第一曲面部C1、第一接続曲面部B1、第二曲面部C2、第二接続曲面部B2、第三曲面部C3、第三接続曲面部B3、第四曲面部C4、第四接続曲面部B4を有する。第一曲面部C1は、正圧面17中の前縁14側の部分から、前縁14を経て、負圧面16中の前縁14側の部分までの範囲内の部分である。この第一曲面部C1の曲率半径は、r1である。第三曲面部C3は、負圧面16中で後縁15側の部分から、後縁15を経て、正圧面17の後縁15側の部分までの範囲内の部分である。この第三曲面部C3の曲率半径は、r3である。 FIG. 2 is a sectional view taken along line II-II in FIG. That is, FIG. 2 is a cross-sectional view of the wing body 13 on a virtual plane Pz (see FIG. 1) perpendicular to the Z direction. In this cross section, the wing body 13 has a first curved surface portion C1, a first connecting curved surface portion B1, a second curved surface portion C2, a second curved connecting surface portion B2, a third curved surface portion C3, a third curved connecting surface portion B3, a third It has a four curved surface portion C4 and a fourth connecting curved surface portion B4. The first curved surface portion C1 is a portion within a range from a portion of the pressure surface 17 on the front edge 14 side to a portion of the suction surface 16 on the front edge 14 side via the front edge 14 . The curvature radius of this first curved surface portion C1 is r1. The third curved surface portion C3 is a portion within a range from a portion of the suction surface 16 on the trailing edge 15 side to a portion of the pressure surface 17 on the trailing edge 15 side via the trailing edge 15 . The curvature radius of this third curved surface portion C3 is r3.

負圧面16中で第一曲面部C1の後縁15側の縁には、第一接続曲面部B1が接続されている。負圧面16中で第一接続曲面部B1の後縁15側の縁には、第二曲面部C2が接続されている。第二曲面部C2の曲率半径は、r2である。負圧面16中で第二曲面部C2の後縁15側の縁には、第二接続曲面部B2が接続されている。負圧面16中で第二接続曲面部B2の後縁15側の縁には、第三曲面部C3が接続されている。この第三曲面部C3の曲率半径は、r3である。第一接続曲面部B1は、第一曲面部C1の縁に接続されている前縁側接続部(第一接続部)B1fと、第二曲面部C2の縁に接続されている後縁側接続部(第二接続部)B1bと、を有する。前縁側接続部B1fの曲率半径は、第一曲面部C1の曲率半径r1と同じである。後縁側接続部B1bの曲率半径は、第二曲面部C2の曲率半径r2と同じである。第一接続曲面部B1の曲率半径は、前縁側接続部B1fから後縁側接続部B1bにかけて、滑らかに連続的に変化する。第二接続曲面部B2は、第二曲面部C2の縁に接続されている前縁側接続部(第一接続部)B2fと、第三曲面部C3の縁に接続されている後縁側接続部(第二接続部)B2bと、を有する。前縁側接続部B2fの曲率半径は、第二曲面部C2の曲率半径r2と同じである。後縁側接続部B2bの曲率半径は、第三曲面部C3の曲率半径r3と同じである。第二接続曲面部B2の曲率半径は、前縁側接続部B2fから後縁側接続部B2bにかけて、滑らかに連続的に変化する。なお、以上において、二つの接続部が滑らかに接続されていれば、二つの接続部間は直線であってよい。このため、以上の各曲面部は、曲率半径が無限大である平面部であってもよい。また、曲率半径が滑らかに連続的に変化するとは、例えば、曲率半径の二次微分係数が連続的に変化するような場合である。 A first connection curved surface portion B1 is connected to the edge of the first curved surface portion C1 on the side of the rear edge 15 in the negative pressure surface 16 . A second curved surface portion C2 is connected to the edge of the negative pressure surface 16 on the rear edge 15 side of the first connection curved surface portion B1. The radius of curvature of the second curved surface portion C2 is r2. A second connecting curved surface portion B2 is connected to the edge of the negative pressure surface 16 on the rear edge 15 side of the second curved surface portion C2. A third curved surface portion C3 is connected to the edge of the negative pressure surface 16 on the rear edge 15 side of the second connection curved surface portion B2. The curvature radius of this third curved surface portion C3 is r3. The first connecting curved surface portion B1 includes a leading edge side connecting portion (first connecting portion) B1f connected to the edge of the first curved surface portion C1 and a trailing edge side connecting portion (first connecting portion) B1f connected to the edge of the second curved surface portion C2. second connecting portion) B1b. The curvature radius of the leading edge side connection portion B1f is the same as the curvature radius r1 of the first curved surface portion C1. The radius of curvature of the trailing edge side connection portion B1b is the same as the radius of curvature r2 of the second curved surface portion C2. The radius of curvature of the first connecting curved surface portion B1 smoothly and continuously changes from the leading edge side connecting portion B1f to the trailing edge side connecting portion B1b. The second connection curved surface portion B2 includes a front edge side connection portion (first connection portion) B2f connected to the edge of the second curved surface portion C2 and a rear edge side connection portion (first connection portion) B2f connected to the edge of the third curved surface portion C3. second connecting portion) B2b. The curvature radius of the leading edge side connection portion B2f is the same as the curvature radius r2 of the second curved surface portion C2. The radius of curvature of the trailing edge side connecting portion B2b is the same as the radius of curvature r3 of the third curved surface portion C3. The radius of curvature of the second connecting curved surface portion B2 smoothly and continuously changes from the leading edge side connecting portion B2f to the trailing edge side connecting portion B2b. In addition, in the above, if two connection parts are connected smoothly, between two connection parts may be a straight line. For this reason, each of the above curved surface portions may be a flat surface portion having an infinite radius of curvature. Further, the case where the radius of curvature smoothly and continuously changes is, for example, the case where the secondary differential coefficient of the radius of curvature changes continuously.

正圧面17中で第三曲面部C3の前縁14側の縁には、第三接続曲面部B3が接続されている。正圧面17中で第三接続曲面部B3の前縁14側の縁には、第四曲面部C4が接続されている。この第四曲面部C4の曲率半径は、r4である。正圧面17中で第四曲面部C4の前縁14側の縁には、第四接続曲面部B4が接続されている。正圧面17中で第四接続曲面部B4の前縁14側の縁には、第一曲面部C1が接続されている。第三接続曲面部B3は、第三曲面部C3の縁に接続されている後縁側接続部(第二接続部)B3bと、第四曲面部C4の縁に接続されている前縁側接続部(第一接続部)B3fと、を有する。後縁側接続部B3bの曲率半径は、第三曲面部C3の曲率半径r3と同じである。前縁側接続部B3fの曲率半径は、第四曲面部C4の曲率半径r4と同じである。第三接続曲面部B3の曲率半径は、後縁側接続部B3bから前縁側接続部B3fにかけて、滑らかに連続的に変化する。第四接続曲面部B4は、第四曲面部C4の縁に接続されている後縁側接続部(第二接続部)B4bと、第一曲面部C1の縁に接続されている前縁側接続部(第一接続部)B4fと、を有する。後縁側接続部B4bの曲率半径は、第四曲面部C4の曲率半径r4と同じである。前縁側接続部B4fの曲率半径は、第一曲面部C1の曲率半径r1と同じである。第四接続曲面部B4の曲率半径は、後縁側接続部B4bから前縁側接続部B4fにかけて、滑らかに連続的に変化する。なお、以上において、二つの接続部が滑らかに接続されていれば、二つの接続部間は直線であってよい。このため、以上の各曲面部は、曲率半径が無限大である平面部であってもよい。また、曲率半径が滑らかに連続的に変化するとは、例えば、曲率半径の二次微分係数が連続的に変化するような場合である。 A third connection curved surface portion B3 is connected to the front edge 14 side edge of the third curved surface portion C3 in the pressure surface 17 . A fourth curved surface portion C4 is connected to the front edge 14 side edge of the third connecting curved surface portion B3 in the pressure surface 17 . The curvature radius of this fourth curved surface portion C4 is r4. A fourth connection curved surface portion B4 is connected to the front edge 14 side edge of the fourth curved surface portion C4 in the pressure surface 17 . A first curved surface portion C1 is connected to the front edge 14 side edge of the fourth connecting curved surface portion B4 in the pressure surface 17 . The third connecting curved surface portion B3 includes a trailing edge side connecting portion (second connecting portion) B3b connected to the edge of the third curved surface portion C3 and a leading edge side connecting portion (second connecting portion) B3b connected to the edge of the fourth curved surface portion C4. and a first connection portion) B3f. The radius of curvature of the trailing edge side connecting portion B3b is the same as the radius of curvature r3 of the third curved surface portion C3. The curvature radius of the leading edge side connection portion B3f is the same as the curvature radius r4 of the fourth curved surface portion C4. The radius of curvature of the third connecting curved surface portion B3 smoothly and continuously changes from the trailing edge side connecting portion B3b to the leading edge side connecting portion B3f. The fourth connecting curved surface portion B4 includes a trailing edge side connecting portion (second connecting portion) B4b connected to the edge of the fourth curved surface portion C4, and a leading edge side connecting portion (second connecting portion) B4b connected to the edge of the first curved surface portion C1. and a first connection portion) B4f. The curvature radius of the trailing edge side connection portion B4b is the same as the curvature radius r4 of the fourth curved surface portion C4. The radius of curvature of the leading edge side connection portion B4f is the same as the radius of curvature r1 of the first curved surface portion C1. The radius of curvature of the fourth connecting curved surface portion B4 smoothly and continuously changes from the trailing edge side connecting portion B4b to the leading edge side connecting portion B4f. In addition, in the above, if two connection parts are connected smoothly, between two connection parts may be a straight line. For this reason, each of the above curved surface portions may be a flat surface portion having an infinite radius of curvature. Further, the case where the radius of curvature smoothly and continuously changes is, for example, the case where the secondary differential coefficient of the radius of curvature changes continuously.

ここで、各曲面部C1,C2,C3,C4の曲率半径の大小関係は、以下の通りである。
r2>r4>r1>r3、叉は、r2>r4>r3>r1
Here, the magnitude relationship of the radius of curvature of each of the curved surface portions C1, C2, C3, and C4 is as follows.
r2>r4>r1>r3, or r2>r4>r3>r1

また、第一曲面部C1の曲率半径r1、第二曲面部C2の曲率半径r2、及び第三曲面部C3の曲率半径r3は、いずれも、外側半径である。一方、第四曲面部C4の曲率半径r4は、内側半径である。よって、第一曲面部C1、第二曲面部C2、及び第三曲面部C3は、凸曲面であり、第四曲面部C4は、凹曲面である。 Further, the radius of curvature r1 of the first curved surface portion C1, the radius of curvature r2 of the second curved surface portion C2, and the radius of curvature r3 of the third curved surface portion C3 are all outer radii. On the other hand, the curvature radius r4 of the fourth curved surface portion C4 is the inner radius. Therefore, the first curved surface portion C1, the second curved surface portion C2, and the third curved surface portion C3 are convex curved surfaces, and the fourth curved surface portion C4 is a concave curved surface.

翼体13は、以上で説明した第一曲面部C1、第一接続曲面部B1、第二曲面部C2、第二接続曲面部B2、第三曲面部C3、第三接続曲面部B3、第四曲面部C4、第四接続曲面部B4で構成される翼形自由曲面Fbを有する。 The wing body 13 includes the first curved surface portion C1, the first curved surface portion B1, the second curved surface portion C2, the second curved surface portion B2, the third curved surface portion C3, the third curved surface portion B3, the fourth curved surface portion C3, and the fourth curved surface portion C3. It has an airfoil free curved surface Fb composed of a curved surface portion C4 and a fourth connecting curved surface portion B4.

この翼形自由曲面Fbは、一次微分係数が連続している。すなわち、この翼形自由曲面Fbの形状を示す関数は、一次微分可能な関数である。なお、この翼形自由曲面Fbは、二次微分係数も連続していることが好ましい。すなわち、この翼形自由曲面Fbの形状を示す関数は、二次微分可能な関数であることが好ましい。 The airfoil free-form surface Fb has continuous primary differential coefficients. That is, the function indicating the shape of the airfoil free-form surface Fb is a function that can be primarily differentiated. In addition, it is preferable that the airfoil free-form surface Fb has a continuous secondary differential coefficient. That is, it is preferable that the function indicating the shape of the airfoil free-form surface Fb is a second-order differentiable function.

図3は、図1中のIII-III線断面図である。すなわち、図3は、Y方向に垂直な仮想平面Py(図1参照)での翼体13の断面図である。翼体13は、この断面中に、負圧側自由曲面Fsと、正圧側自由曲面Fpとを有する。 FIG. 3 is a cross-sectional view taken along line III--III in FIG. That is, FIG. 3 is a cross-sectional view of the wing body 13 on a virtual plane Py (see FIG. 1) perpendicular to the Y direction. The blade body 13 has a negative pressure side free curved surface Fs and a pressure side free curved surface Fp in this cross section.

負圧側自由曲面Fsは、第五曲面部C5、第五接続曲面部B5、第六曲面部C6を有する。第五曲面部C5の(-)Z側の縁は、プラットフォーム11のガスパス面11pに接続されている。第五曲面部C5の(+)Z側の縁には、第五接続曲面部B5が接続されている。第五接続曲面部B5の(+)Z側の縁には、第六曲面部C6が接続されている。第六曲面部C6の(+)Z側の縁には、チップ面18が接続されている。第五曲面部C5の曲率半径は、r5である。なお、第五曲面部C5を形成する部分は、フィレットと呼ばれる場合がある。第六曲面部C6の曲率半径は、r6である。第五接続曲面部B5は、第五曲面部C5の縁に接続されている基部側接続部(第一接続部)B5bと、第六曲面部C6の縁に接続されているチップ側接続部(第二接続部)B5tと、を有する。基部側接続部B5bの曲率半径は、第五曲面部C5の曲率半径r5と同じである。チップ側接続部B5tの曲率半径は、第六曲面部C6の曲率半径r6と同じである。第五接続曲面部B5の曲率半径は、基部側接続部B5bからチップ側接続部B5tにかけて、滑らかに連続的に変化する。なお、以上において、二つの接続部が滑らかに接続されていれば、二つの接続部間は直線であってよい。このため、以上の各曲面部は、曲率半径が無限大である平面部であってもよい。また、曲率半径が滑らかに連続的に変化するとは、例えば、曲率半径の二次微分係数が連続的に変化するような場合である。 The negative pressure side free curved surface Fs has a fifth curved surface portion C5, a fifth connecting curved surface portion B5, and a sixth curved surface portion C6. The (-) Z side edge of the fifth curved surface portion C5 is connected to the gas path surface 11p of the platform 11. As shown in FIG. A fifth connection curved surface portion B5 is connected to the (+)Z side edge of the fifth curved surface portion C5. A sixth curved surface portion C6 is connected to the (+)Z side edge of the fifth connecting curved surface portion B5. The chip surface 18 is connected to the (+)Z side edge of the sixth curved surface portion C6. The radius of curvature of the fifth curved surface portion C5 is r5. The portion forming the fifth curved surface portion C5 may be called a fillet. The radius of curvature of the sixth curved surface portion C6 is r6. The fifth connecting curved surface portion B5 includes a base side connecting portion (first connecting portion) B5b connected to the edge of the fifth curved surface portion C5, and a chip side connecting portion (first connecting portion) B5b connected to the edge of the sixth curved surface portion C6. and a second connection portion) B5t. The radius of curvature of the base side connection portion B5b is the same as the radius of curvature r5 of the fifth curved surface portion C5. The radius of curvature of the chip-side connection portion B5t is the same as the radius of curvature r6 of the sixth curved surface portion C6. The radius of curvature of the fifth connecting curved surface portion B5 smoothly and continuously changes from the base side connecting portion B5b to the tip side connecting portion B5t. In addition, in the above, if two connection parts are connected smoothly, between two connection parts may be a straight line. For this reason, each of the above curved surface portions may be a flat surface portion having an infinite radius of curvature. Further, the case where the radius of curvature smoothly and continuously changes is, for example, the case where the secondary differential coefficient of the radius of curvature changes continuously.

第五曲面部C5の曲率半径r5は、内側半径あり、第六曲面部C6C6gの曲率半径r6は、外側半径である。よって、第五曲面部C5は、凹曲面であり、第六曲面部C6は凸曲面である。 The radius of curvature r5 of the fifth curved surface portion C5 is the inner radius, and the radius of curvature r6 of the sixth curved surface portion C6C6g is the outer radius. Therefore, the fifth curved surface portion C5 is a concave curved surface, and the sixth curved surface portion C6 is a convex curved surface.

正圧側自由曲面Fpは、第七曲面部C7、第七接続曲面部B7、第八曲面部C8を有する。第七曲面部C7の(-)Z側の縁は、プラットフォーム11のガスパス面11pに接続されている。第七曲面部C7の(+)Z側の縁には、第七接続曲面部B7が接続されている。第七接続曲面部B7の(+)Z側の縁には、第八曲面部C8が接続されている。第八曲面部C8の(+)Z側の縁には、チップ面18が接続されている。第七曲面部C7の曲率半径は、r7である。なお、第七曲面部C7を形成する部分は、フィレットと呼ばれる場合がある。第八曲面部C8の曲率半径は、r8である。第七接続曲面部B7は、第七曲面部C7の縁に接続されている基側接続部(第一接続部)B7bと、第八曲面部C8の縁に接続されているチップ側接続部(第二接続部)B7tと、を有する。基側接続部B7bの曲率半径は、第七曲面部C7の曲率半径r7と同じである。チップ側接続部B7tの曲率半径は、第八曲面部C8の曲率半径r8と同じである。第七接続曲面部B7の曲率半径は、基側接続部B7bからチップ側接続部B7tにかけて、滑らかに連続的に変化する。なお、以上において、二つの接続部が滑らかに接続されていれば、二つの接続部間は直線であってよい。このため、以上の各曲面部は、曲率半径が無限大である平面部であってもよい。また、曲率半径が滑らかに連続的に変化するとは、例えば、曲率半径の二次微分係数が連続的に変化するような場合である。 The pressure side free curved surface Fp has a seventh curved surface portion C7, a seventh connecting curved surface portion B7, and an eighth curved surface portion C8. The (-) Z side edge of the seventh curved surface portion C7 is connected to the gas path surface 11p of the platform 11. As shown in FIG. A seventh connecting curved surface portion B7 is connected to the (+)Z side edge of the seventh curved surface portion C7. An eighth curved surface portion C8 is connected to the (+)Z side edge of the seventh connecting curved surface portion B7. The chip surface 18 is connected to the (+)Z side edge of the eighth curved surface portion C8. The radius of curvature of the seventh curved surface portion C7 is r7. The portion forming the seventh curved surface portion C7 may be called a fillet. The radius of curvature of the eighth curved surface portion C8 is r8. The seventh connection curved surface portion B7 includes a base side connection portion (first connection portion) B7b connected to the edge of the seventh curved surface portion C7 and a chip side connection portion (first connection portion) B7b connected to the edge of the eighth curved surface portion C8. and a second connection portion) B7t. The radius of curvature of the proximal connection portion B7b is the same as the radius of curvature r7 of the seventh curved surface portion C7. The radius of curvature of the chip-side connection portion B7t is the same as the radius of curvature r8 of the eighth curved surface portion C8. The curvature radius of the seventh connection curved surface portion B7 smoothly and continuously changes from the base side connection portion B7b to the tip side connection portion B7t. In addition, in the above, if two connection parts are connected smoothly, between two connection parts may be a straight line. For this reason, each of the above curved surface portions may be a flat surface portion having an infinite radius of curvature. Further, the case where the radius of curvature smoothly and continuously changes is, for example, the case where the secondary differential coefficient of the radius of curvature changes continuously.

第七曲面部C7の曲率半径r7及び第八曲面部C8の曲率半径r8は、いずれも内側半径である。よって、第七曲面部C7及び第八曲面部C8は、いずれも凹曲面である。 Both the radius of curvature r7 of the seventh curved surface portion C7 and the radius of curvature r8 of the eighth curved surface portion C8 are inner radii. Therefore, both the seventh curved surface portion C7 and the eighth curved surface portion C8 are concave curved surfaces.

以上で説明した正圧側自由曲面Fp及び負圧側自由曲面Fsは、いずれも、一次微分的に連続している。すなわち、正圧側自由曲面Fp及び負圧側自由曲面Fsの形状を示す関数は、いずれも、一次微分可能な関数である。なお、正圧側自由曲面Fp及び負圧側自由曲面Fsは、いずれも、二次微分的にも連続していることが好ましい。すなわち、正圧側自由曲面Fp及び負圧側自由曲面Fsの形状を示す関数は、いずれも、二次微分可能な関数であることが好ましい。 Both the pressure side free curved surface Fp and the negative pressure side free curved surface Fs described above are continuous in a linear differential manner. That is, the functions indicating the shapes of the pressure-side free-form surface Fp and the suction-side free-form surface Fs are both primary differentiable functions. The pressure-side free-formed surface Fp and the negative pressure-side free-formed surface Fs are both preferably continuous in terms of secondary differential. That is, it is preferable that both the functions indicating the shapes of the pressure-side free-form surface Fp and the suction-side free-form surface Fs are quadratically differentiable functions.

「ゲージ」
ゲージの実施形態について、図2~図5を用いて説明する。
"gauge"
Embodiments of the gauge will be described with reference to FIGS. 2-5.

本実施形態のゲージは、自由曲面を有する測定対象の形状を測定する際に使用する形状測定機の精度評価を行うためのゲージである。さらに、このゲージは、形状測定機を用いて測定対象の形状を測定して得た測定データを校正するためのゲージでもある。このため、このゲージは、測定機の精度評価ゲージであり、測定データの校正ゲージでもある。 The gauge of this embodiment is a gauge for evaluating the accuracy of a shape measuring machine used when measuring the shape of a measurement object having a free-form surface. Furthermore, this gauge is also a gauge for calibrating measurement data obtained by measuring the shape of an object using a shape measuring machine. Therefore, this gauge is both an accuracy evaluation gauge for the measuring machine and a calibration gauge for the measurement data.

また、本実施形態のゲージは、測定対象である動翼10の形状及びサイズに合わせたゲージである。このため、図4に示すように、本実施形態のゲージ10gは、動翼10中で自由曲面を有する翼体13の形状を模したゲージ本体13gを有する。このゲージ10gは、さらに、ゲージ本体13gに接続されている基準体11gを有する。 Moreover, the gauge of this embodiment is a gauge adapted to the shape and size of the moving blade 10 to be measured. Therefore, as shown in FIG. 4, the gauge 10g of this embodiment has a gauge body 13g that imitates the shape of the blade 13 having a free curved surface in the moving blade 10. As shown in FIG. This gauge 10g further has a reference body 11g connected to the gauge body 13g.

翼体13の形状を模したゲージ本体13gは、翼体13と同様、前縁14gと、後縁15gと、正圧面17gと、負圧面16gと、チップ面18gと、を有する。 Like the wing body 13, the gauge body 13g, which imitates the shape of the wing body 13, has a leading edge 14g, a trailing edge 15g, a pressure surface 17g, a suction surface 16g, and a tip surface 18g.

基準体11gは、互いに位置が異なる複数の基準部20を有する。基準部20は、ゲージ本体13gの各部を測定する際の座標系を特定するための部分である。基準体11gは、基準部20として、第一基準平面21、第二基準平面22、及び第三基準平面23を有する。ここで、互いに垂直な三方向をそれぞれ、X方向、Y方向、Z方向とする。第一基準平面21は、X方向に垂直な平面である。第二基準平面22は、Y方向に垂直な平面である。第三基準平面23は、Z方向に垂直な平面である。第一基準平面21と第二基準平面22と第三基準平面23との交差点は、座標系の原点Oを成す。第一基準平面21と第二基準平面22とが交差する箇所に形成される辺は、座標系のZ軸を成す。第二基準平面22と第三基準平面23とが交差する箇所に形成される辺は、座標系のX軸を成す。第三基準平面23と第一基準平面21とが交差する箇所に形成される辺は、座標系のY軸を成す。 The reference body 11g has a plurality of reference portions 20 whose positions are different from each other. The reference part 20 is a part for specifying a coordinate system when measuring each part of the gauge body 13g. The reference body 11 g has a first reference plane 21 , a second reference plane 22 and a third reference plane 23 as the reference portion 20 . Here, the three mutually perpendicular directions are the X direction, the Y direction, and the Z direction, respectively. The first reference plane 21 is a plane perpendicular to the X direction. The second reference plane 22 is a plane perpendicular to the Y direction. The third reference plane 23 is a plane perpendicular to the Z direction. The intersection of the first reference plane 21, the second reference plane 22 and the third reference plane 23 forms the origin O of the coordinate system. A side formed at the intersection of the first reference plane 21 and the second reference plane 22 forms the Z-axis of the coordinate system. A side formed at the intersection of the second reference plane 22 and the third reference plane 23 forms the X axis of the coordinate system. A side formed at the intersection of the third reference plane 23 and the first reference plane 21 forms the Y-axis of the coordinate system.

第三基準平面23上には、ゲージ本体13gが設けられている。 A gauge body 13 g is provided on the third reference plane 23 .

ゲージ本体13gは、各基準部で定められる座標系内で、Z方向に垂直な仮想平面Pzgでのゲージ本体13gの断面中に、翼体13と同様、図2に示すように、第一曲面部C1g、第一接続曲面部B1g、第二曲面部C2g、第二接続曲面部B2g、第三曲面部C3g、第三接続曲面部B3g、第四曲面部C4g、第四接続曲面部B4gを有する。これら、第一曲面部C1g、第一接続曲面部B1g、第二曲面部C2g、第二接続曲面部B2g、第三曲面部C3g、第三接続曲面部B3g、第四曲面部C4g、第四接続曲面部B4gにより、ゲージ本体13gの翼形自由曲面Fbgが構成される。 As shown in FIG. 2, the gauge body 13g, like the wing body 13, has the first curved surface It has a portion C1g, a first curved connection portion B1g, a second curved surface portion C2g, a second curved surface portion B2g, a third curved surface portion C3g, a third curved surface portion B3g, a fourth curved surface portion C4g, and a fourth curved surface connection portion B4g. . These are the first curved surface portion C1g, the first connecting curved surface portion B1g, the second curved surface portion C2g, the second connecting curved surface portion B2g, the third curved surface portion C3g, the third connecting curved surface portion B3g, the fourth curved surface portion C4g, and the fourth connection. The curved surface portion B4g constitutes an airfoil free curved surface Fbg of the gauge body 13g.

ゲージ本体13gは、各基準部で定められる座標系内で、Y方向に垂直な仮想平面Pygでのゲージ本体13gの断面中に、翼体13と同様、図3に示すように、第五曲面部C5g、第五接続曲面部B5g、第六曲面部C6g、第七曲面部C7g、第七接続曲面部B7g、第八曲面部C8gを有する。ゲージ本体13gの第五曲面部C5g、第五接続曲面部B5g、第六曲面部C6gにより、ゲージ本体13gの負圧側自由曲面Fsgが構成される。また、ゲージ本体13gの第七曲面部C7g、第七接続曲面部B7g、第八曲面部C8gにより、ゲージ本体13gの正圧側自由曲面Fpgが構成される。 Within the coordinate system defined by each reference portion, the gauge body 13g has a fifth curved surface, as shown in FIG. It has a portion C5g, a fifth curved surface portion B5g, a sixth curved surface portion C6g, a seventh curved surface portion C7g, a seventh curved surface portion B7g, and an eighth curved surface portion C8g. The fifth curved surface portion C5g, the fifth connecting curved surface portion B5g, and the sixth curved surface portion C6g of the gauge main body 13g constitute the negative pressure side free curved surface Fsg of the gauge main body 13g. Further, the seventh curved surface portion C7g, the seventh connecting curved surface portion B7g, and the eighth curved surface portion C8g of the gauge main body 13g constitute the positive pressure side free curved surface Fpg of the gauge main body 13g.

ゲージ本体13gは、第三基準平面23上に設けられている。 The gauge body 13 g is provided on the third reference plane 23 .

次に、ゲージ10gの製造手順について、図5に示すフローチャートに従って説明する。 Next, the manufacturing procedure of the gauge 10g will be described according to the flow chart shown in FIG.

まず、測定対象である動翼10の1以上の評価領域を定める(S1:評価領域特定工程)。ここでは、図1に示すように、Z方向に垂直な複数の仮想平面での翼体13の断面の縁、及びY方向に垂直な複数の仮想平面での翼体13の断面の縁を、それぞれ、評価領域Az,Ayとする。Z方向に垂直な複数の仮想平面の一つは、図1中の仮想平面Pzである。この仮想平面Pzでの翼体13の断面の縁は、前述の評価領域Azの一つである。この仮想平面Pzでの翼体13の断面の縁線は、前述の翼形自由曲面Fb中で、仮想平面Pzと翼体13との交線である翼型自由曲線である。また、Y方向に垂直な複数の仮想平面の一つは、図1中の仮想平面Pyである。この仮想平面Pyでの翼体13の断面の縁は、前述の評価領域Ayの一つである。この仮想平面Pyでの翼体13の断面の縁線の一部は、前述の負圧側自由曲面Fs中で、仮想平面Pyと翼体13の交線である負圧側自由曲線である。さらに、この仮想平面Pyでの翼体13の断面の縁線の他の一部は、前述の正圧側自由曲面Fp中で、仮想平面Pyと翼体13との交線である正圧側自由曲線である。 First, one or more evaluation regions of the moving blade 10 to be measured are determined (S1: evaluation region specifying step). Here, as shown in FIG. 1, the cross-sectional edges of the wing body 13 on a plurality of virtual planes perpendicular to the Z direction and the cross-sectional edges of the wing body 13 on a plurality of virtual planes perpendicular to the Y direction are These are assumed to be evaluation areas Az and Ay, respectively. One of the multiple virtual planes perpendicular to the Z direction is the virtual plane Pz in FIG. The edge of the cross section of the wing body 13 on the virtual plane Pz is one of the aforementioned evaluation areas Az. The edge line of the cross section of the wing body 13 on the virtual plane Pz is the airfoil free curve that is the line of intersection between the virtual plane Pz and the wing body 13 in the airfoil free curved surface Fb. One of the virtual planes perpendicular to the Y direction is the virtual plane Py in FIG. The edge of the cross section of the wing body 13 on the virtual plane Py is one of the aforementioned evaluation areas Ay. A part of the edge line of the cross section of the blade body 13 on the virtual plane Py is the negative pressure side free curve that is the line of intersection between the virtual plane Py and the blade body 13 in the negative pressure side free curved surface Fs. Furthermore, another part of the edge line of the cross section of the blade body 13 on the virtual plane Py is a pressure side free curve line that is the line of intersection between the virtual plane Py and the blade body 13 in the pressure side free curved surface Fp. is.

次に、各評価領域Az,Ayにおける各自由曲線を構成する要素を抽出する(S2:要素抽出工程)。この要素抽出工程(S2)では、例えば、仮想平面Pzでの翼体13の断面の縁である評価領域Azから、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4を抽出する。また、この要素抽出工程(S2)では、例えば、仮想平面Pyでの翼体13の断面の縁である評価領域Ayから、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8を抽出する。なお、評価領域Azが曲率半径一定の曲面部を有していない場合、叉は、評価対象としたい部位が曲率半径一定の曲面部ではない場合、その部位を一つ又は複数の曲面部で近似するものとする。 Next, elements constituting each free curve in each evaluation area Az, Ay are extracted (S2: element extraction step). In this element extraction step (S2), for example, the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the A four-curved surface portion C4 is extracted. Further, in this element extraction step (S2), for example, from the evaluation area Ay, which is the edge of the cross section of the wing body 13 on the virtual plane Py, the fifth curved surface portion C5, the sixth curved surface portion C6, the seventh curved surface portion C7, and the eighth curved surface portion C8. If the evaluation area Az does not have a curved surface portion with a constant curvature radius, or if the portion to be evaluated does not have a curved surface portion with a constant curvature radius, the portion is approximated by one or more curved surface portions. It shall be.

次に、要素抽出工程(S2)で抽出した要素に関する動翼10の設計データを取得する(S3:設計データ取得工程)。この設計データ取得工程(S3)では、例えば、評価領域Az中の、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4に関するそれぞれの曲率半径及び曲率中心の座標を取得する。また、この設計データ取得工程(S3)では、例えば、評価領域Ay中の、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8に関するそれぞれの曲率半径及び曲率中心の座標を取得する。 Next, the design data of the rotor blade 10 related to the elements extracted in the element extraction step (S2) are acquired (S3: design data acquisition step). In this design data acquisition step (S3), for example, the radius of curvature and the center of curvature of each of the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the fourth curved surface portion C4 in the evaluation area Az Get the coordinates of Further, in this design data acquisition step (S3), for example, in the evaluation area Ay, the curvature radii and Get the coordinates of the center of curvature.

次に、各評価領域Az,Ayに含まれる複数の要素に対する許容製造誤差を定める(S4:製造誤差設定工程)。この許容製造誤差は、これから製造するゲージ10gに対する許容製造誤差である。この製造誤差設定工程(S4)では、例えば、設計データ取得工程(S3)で取得した、評価領域Az中の、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4に関するそれぞれの曲率半径及び曲率中心の座標に対する許容製造誤差を定める。また、この製造誤差設定工程(S4)では、例えば、設計データ取得工程(S3)で取得した、評価領域Ay中の、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8に関するそれぞれの曲率半径及び曲率中心座標に対する許容製造誤差を定める。これらの許容製造誤差は、設計資料などから性能や製造上の問題を考慮して定めてもよい。 Next, allowable manufacturing errors are determined for a plurality of elements included in each evaluation area Az, Ay (S4: manufacturing error setting step). This allowable manufacturing error is the allowable manufacturing error for the gauge 10g to be manufactured from now on. In this manufacturing error setting step (S4), for example, the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the fourth curved surface portion C3 in the evaluation region Az acquired in the design data acquisition step (S3) A permissible manufacturing error for each radius of curvature and the coordinates of the center of curvature for the curved surface portion C4 is determined. Further, in this manufacturing error setting step (S4), for example, the fifth curved surface portion C5, the sixth curved surface portion C6, the seventh curved surface portion C7, and the A permissible manufacturing error for each curvature radius and curvature center coordinate for the eighth curved surface portion C8 is determined. These permissible manufacturing errors may be determined from design data, etc., taking into account performance and manufacturing problems.

次に、ゲージ10gが有する基準部20を数学的に定義する(S5:基準部定義工程)。具体的に、この基準部定義工程(S5)では、基準部20としての、第一基準平面21、第二基準平面22、及び第三基準平面23を数学的に定義する。ここで、定義対象を数学的に定義するとは、定義対象の形状を数値データ化する、又は定義対象の形状等を数式で表すことである。 Next, the reference portion 20 of the gauge 10g is mathematically defined (S5: reference portion definition step). Specifically, in this reference portion defining step (S5), a first reference plane 21, a second reference plane 22, and a third reference plane 23 as the reference portion 20 are mathematically defined. Here, defining the object of definition mathematically means converting the shape of the object of definition into numerical data or expressing the shape of the object of definition by a mathematical formula.

次に、動翼10の評価領域Azに対応するゲージ10gの評価対応領域Azgが有する翼形自由曲面Fbgを数学的に定義すると共に、動翼10の評価領域Ayに対応するゲージ10gの評価対応領域Aygが有する、正圧側自由曲面Fpg及び負圧側自由曲面Fsgを数学的に定義する(S6:自由曲面定義工程)。 Next, the airfoil free curved surface Fbg of the evaluation corresponding area Azg of the gauge 10g corresponding to the evaluation area Az of the rotor blade 10 is mathematically defined, and the evaluation correspondence of the gauge 10g corresponding to the evaluation area Ay of the rotor blade 10 is defined. The pressure side free curved surface Fpg and the negative pressure side free curved surface Fsg of the region Ayg are mathematically defined (S6: free curved surface definition step).

図4に示すように、Z方向に垂直な複数の仮想平面Pzgでのゲージ本体13gの断面の縁は、前述した翼体13の評価領域Azに対応する評価対応領域Azgである。この仮想平面Pzgでのゲージ本体13gの断面の縁線は、前述の翼形自由曲面Fbg中で、仮想平面Pzgとゲージ本体13gとの交線である翼型自由曲線である。また、Y方向に垂直な仮想平面Pygでのゲージ本体13gの断面の縁は、前述した翼体13の評価領域Ayに対応する評価対応領域Aygである。この仮想平面Pygでのゲージ本体13gの断面の縁線の一部は、前述の負圧側自由曲面Fsg中で、仮想平面Pygとゲージ本体13gの交線である負圧側自由曲線である。さらに、この仮想平面Pygでのゲージ本体13gの断面の縁線の他の一部は、前述の正圧側自由曲面Fpg中で、仮想平面Pygとゲージ本体13gとの交線である正圧側自由曲線である。 As shown in FIG. 4, the edge of the cross section of the gauge body 13g on a plurality of virtual planes Pzg perpendicular to the Z direction is the evaluation corresponding area Azg corresponding to the evaluation area Az of the wing body 13 described above. The edge line of the cross section of the gauge main body 13g on the virtual plane Pzg is the airfoil free curve that is the line of intersection between the virtual plane Pzg and the gauge main body 13g in the airfoil free curved surface Fbg. Further, the edge of the cross section of the gauge body 13g on the virtual plane Pyg perpendicular to the Y direction is the evaluation corresponding area Ayg corresponding to the evaluation area Ay of the wing body 13 described above. A part of the edge line of the cross section of the gauge main body 13g on the virtual plane Pyg is a negative pressure side free curve, which is the line of intersection of the virtual plane Pyg and the gauge main body 13g, in the negative pressure side free curved surface Fsg. Furthermore, another part of the edge line of the cross section of the gauge body 13g on the virtual plane Pyg is a positive pressure side free curve line in the pressure side free curved surface Fpg, which is the line of intersection between the virtual plane Pyg and the gauge body 13g. is.

自由曲面定義工程(S6)では、例えば、動翼10の評価領域Az中の、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4に関するそれぞれの曲率半径の設定データを、そのまま、ゲージ10gの評価対応領域Azg中の、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率半径とする。また、動翼10の評価領域Az中の、第一曲面部C1、第二曲面部C2、第三曲面部C3、及び第四曲面部C4に関するそれぞれの曲率中心座標の設定データを、基準部20で定義される座標系に変換して、ゲージ10gの評価対応領域Azg中の、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率中心座標とする。さらに、評価対応領域Azg中の第一接続曲面部B1g、第二接続曲面部B2g、第三接続曲面部B3g、及び第四接続曲面部B4gに関するそれぞれの曲率半径も定義する。例えば、第一接続曲面部B1gに関しては、この第一接続曲面部B1g中の前縁側接続部B1fgの曲率半径を、第一曲面部C1gの曲率半径r1と同じにする。また、この第一接続曲面部B1g中の後縁側接続部B1bgの曲率半径を、第二曲面部C2gの曲率半径r2と同じにする。そして、この第一接続曲面部B1gの曲率半径を、前縁側接続部(第一接続部)B1fgから後縁側接続部(第二接続部)B1bgにかけて、滑らかに連続的に変化させる。以上で、ゲージ10gの評価対応領域Azgにおける翼形自由曲面Fbgが数学的に定義される。 In the free curved surface definition step (S6), for example, the curvature radii of the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the fourth curved surface portion C4 in the evaluation area Az of the rotor blade 10 are determined. directly as the curvature radii of the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g in the evaluation corresponding region Azg of the gauge 10g. Further, the setting data of the curvature center coordinates of each of the first curved surface portion C1, the second curved surface portion C2, the third curved surface portion C3, and the fourth curved surface portion C4 in the evaluation area Az of the rotor blade 10 is and the curvature center coordinates of the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g in the evaluation corresponding area Azg of the gauge 10g, and do. Furthermore, the curvature radii of the first curved surface portion B1g, the second curved surface portion B2g, the third curved surface portion B3g, and the fourth curved surface portion B4g in the evaluation corresponding area Azg are also defined. For example, regarding the first connecting curved surface portion B1g, the curvature radius of the leading edge side connecting portion B1fg in the first connecting curved surface portion B1g is made the same as the curvature radius r1 of the first curved surface portion C1g. Further, the radius of curvature of the trailing edge side connecting portion B1bg in the first curved connecting portion B1g is set to be the same as the radius of curvature r2 of the second curved surface portion C2g. The radius of curvature of the first connecting curved surface portion B1g is smoothly and continuously changed from the leading edge side connecting portion (first connecting portion) B1fg to the trailing edge side connecting portion (second connecting portion) B1bg. As described above, the airfoil free curved surface Fbg in the evaluation corresponding area Azg of the gauge 10g is mathematically defined.

さらに、この自由曲面定義工程(S6)では、例えば、動翼10の評価領域Ay中の、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8の曲率半径の設計データを、そのまま、ゲージ10gの評価対応領域Ayg中の、第五曲面部C5g、第六曲面部C6g、第七曲面部C7g、及び第八曲面部C8gの曲率半径とする。また、動翼10の評価領域Ay中の、第五曲面部C5、第六曲面部C6、第七曲面部C7、及び第八曲面部C8に関するそれぞれの曲率中心座標の設計データを、基準部20で定義される座標系に変換して、ゲージ10gの評価対応領域Ayg中の、第五曲面部C5g、第六曲面部C6g、第七曲面部C7g、及び第八曲面部C8gの曲率中心座標とする。さらに、評価対応領域Ayg中の第五接続曲面部B5g、及び第七接続曲面部B7gに関するそれぞれの曲率半径も定義する。例えば、第五接続曲面部B5gに関しては、この第五接続曲面部B5g中の基側接続部(第一接続部)B5bgの曲率半径を、第五曲面部C5gの曲率半径r5と同じにする。また、この第五接続曲面部B5g中のチップ側接続部(第二接続部)B5tgを第六曲面部C6gの曲率半径r6と同じにする。そして、この第五接続曲面部B5gの曲率半径を、基側接続部B5bgからチップ側接続部B5tgにかけて、滑らかに連続的に変化させる。以上で、ゲージ10gの評価対応領域Aygにおける正圧側自由曲面Fpg及び負圧側自由曲面Fsgが数学的に定義される。 Furthermore, in this free curved surface definition step (S6), for example, the curvatures of the fifth curved surface portion C5, the sixth curved surface portion C6, the seventh curved surface portion C7, and the eighth curved surface portion C8 in the evaluation area Ay of the moving blade 10 The design data of the radii are used as the curvature radii of the fifth curved surface portion C5g, the sixth curved surface portion C6g, the seventh curved surface portion C7g, and the eighth curved surface portion C8g in the evaluation corresponding area Ayg of the gauge 10g. Further, the design data of the curvature center coordinates of each of the fifth curved surface portion C5, the sixth curved surface portion C6, the seventh curved surface portion C7, and the eighth curved surface portion C8 in the evaluation area Ay of the rotor blade 10 is and the curvature center coordinates of the fifth curved surface portion C5g, the sixth curved surface portion C6g, the seventh curved surface portion C7g, and the eighth curved surface portion C8g in the evaluation corresponding area Ayg of the gauge 10g, and do. Further, the curvature radii of the fifth connecting curved surface portion B5g and the seventh connecting curved surface portion B7g in the evaluation corresponding area Ayg are also defined. For example, with respect to the fifth curved connecting surface portion B5g, the curvature radius of the base side connecting portion (first connecting portion) B5bg in the fifth curved connecting surface portion B5g is made the same as the curvature radius r5 of the fifth curved surface portion C5g. Also, the chip-side connection portion (second connection portion) B5tg in the fifth connection curved surface portion B5g is made the same as the curvature radius r6 of the sixth curved surface portion C6g. The radius of curvature of the fifth connection curved surface portion B5g is smoothly and continuously changed from the base side connection portion B5bg to the chip side connection portion B5tg. As described above, the positive pressure side free curved surface Fpg and the negative pressure side free curved surface Fsg in the evaluation corresponding region Ayg of the gauge 10g are mathematically defined.

次に、基準部20を有する基準体11gと、この基準体11gに接続されているゲージ本体13gとを製造する(S7:製造工程)。この製造工程(S7)では、製造するゲージ10g中の各要素が、製造誤差設定工程(S4)で定めた許容製造誤差内に収め得る三次元形状製造装置を用いて、製造する。三次元形状製造装置としては、例えば、マシニングセンタ、3Dプリンタ等がある。三次元形状製造装置は、装置本体と、装置本体の動作を制御する制御装置と、を有する。この製造工程(S7)では、数学的に定義された各自由曲面(自由曲線)のデータと、数学的に定義された各基準部20のデータとを、制御装置に入力する。そして、この制御装置からの指示で装置本体を動作させて、ゲージ10gを製造する。 Next, the reference body 11g having the reference portion 20 and the gauge main body 13g connected to the reference body 11g are manufactured (S7: manufacturing process). In this manufacturing step (S7), each element in the gauge 10g to be manufactured is manufactured using a three-dimensional shape manufacturing apparatus capable of being within the allowable manufacturing error determined in the manufacturing error setting step (S4). Three-dimensional shape manufacturing apparatuses include, for example, machining centers and 3D printers. A three-dimensional shape manufacturing apparatus has an apparatus main body and a control device that controls the operation of the apparatus main body. In this manufacturing step (S7), the data of each mathematically defined free curved surface (free curve) and the data of each mathematically defined reference portion 20 are input to the control device. Then, the apparatus body is operated according to instructions from the control device to manufacture the gauge 10g.

以上のように製造されたゲージ10gのゲージ本体13gは、図4に示すように、自由曲面を含む測定対象を模した形状及びサイズになる。特に、ゲージ本体13g中で、評価領域特定工程(S4)で定めた測定対象中の複数の評価領域Az,Ayに対応する評価対応領域Azg,Aygの形状及びサイズは、測定対象の設計データで定められた、測定対象中の複数の評価領域Az,Ayの形状及びサイズに実質的に同一、若しくは許容製造誤差の範囲内での形状及びサイズとなる。 As shown in FIG. 4, the gauge body 13g of the gauge 10g manufactured as described above has a shape and size that mimics the measurement object including the free-form surface. In particular, in the gauge body 13g, the shapes and sizes of the evaluation corresponding areas Azg and Ayg corresponding to the plurality of evaluation areas Az and Ay in the measurement object determined in the evaluation area specifying step (S4) are determined by the design data of the measurement object. The shapes and sizes are substantially the same as the shapes and sizes of the plurality of evaluation areas Az and Ay in the object to be measured, or the shapes and sizes are within the allowable manufacturing error range.

以上のように製造されたゲージ10gの翼形自由曲面Fbg、負圧側自由曲面Fsg及び正圧側自由曲面Fpgは、一次微分的に連続している。すなわち、ゲージ10gの翼形自由曲面Fbg、正圧側自由曲面Fpg及び負圧側自由曲面Fsgの形状を示す関数は、一次微分可能な関数である。なお、ゲージ10gの翼形自由曲面Fbg、正圧側自由曲面Fpg及び負圧側自由曲面Fsgは、二次微分的にも連続していることが好ましい。すなわち、ゲージ10gの翼形自由曲面Fbg、正圧側自由曲面Fpg及び負圧側自由曲面Fsgの形状を示す関数は、二次微分可能な関数であることが好ましい。 The airfoil free curved surface Fbg, the suction side free curved surface Fsg, and the pressure side free curved surface Fpg of the gage 10g manufactured as described above are linearly differentially continuous. That is, the function indicating the shape of the airfoil free-form surface Fbg, the pressure-side free-form surface Fpg, and the suction-side free-form surface Fsg of the gauge 10g is a primary differentiable function. The airfoil free-form surface Fbg, the pressure-side free-form surface Fpg, and the suction-side free-form surface Fsg of the gauge 10g are preferably continuous in quadratic differential. That is, it is preferable that the functions indicating the shapes of the airfoil free-form surface Fbg, the pressure-side free-form surface Fpg, and the suction-side free-form surface Fsg of the gauge 10g are quadratically differentiable functions.

以上で説明したゲージ10gの製造方法では、許容製造誤差設定工程(S4)の後で且つ自由曲面定義工程(S6)の前に、基準部定義工程(S5)を実行している。しかしながら、基準部定義工程(S5)は、自由曲面定義工程(S6)の前であれば、どの段階で行ってもよく、例えば、評価領域特定工程(S1)の前に実行してもよい。また、その形状と寸法も、JIS B 07443-3に記載された類似性の要求事項を満たすものであればよい。 In the method of manufacturing the gauge 10g described above, the reference portion defining step (S5) is executed after the allowable manufacturing error setting step (S4) and before the free curved surface defining step (S6). However, the reference portion definition step (S5) may be performed at any stage before the free curved surface definition step (S6), for example, it may be performed before the evaluation region identification step (S1). Moreover, the shape and dimensions may also satisfy the similarity requirements described in JIS B 07443-3.

ゲージ本体13gは、測定対象の翼体13を模した形状である。しかしながら、ゲージ本体13gは、翼体13の各部を完全に模した形状である必要はなく、少なくとも、ゲージ本体13g中で評価対応領域の形状が、測定対象の評価領域Az、Ayの形状を模した形状であればよい。 The gauge main body 13g has a shape that imitates the wing body 13 to be measured. However, the gauge body 13g does not have to have a shape that perfectly imitates each part of the wing body 13, and at least the shape of the evaluation corresponding regions in the gauge body 13g imitates the shapes of the evaluation regions Az and Ay to be measured. Any shape is acceptable.

「形状測定機の精度評価方法」
形状測定機の精度評価方法の実施形態について、図6~図11を用いて説明する。
"Accuracy evaluation method of shape measuring machine"
An embodiment of an accuracy evaluation method for a shape measuring machine will be described with reference to FIGS. 6 to 11. FIG.

本実施形態の精度評価方法では、図6のフローチャートに示すように、まず、図5のフローチャートに示すS1~S7を含むゲージ製造工程(S10)を実行する。 In the accuracy evaluation method of the present embodiment, as shown in the flow chart of FIG. 6, first, the gauge manufacturing process (S10) including S1 to S7 shown in the flow chart of FIG. 5 is executed.

次に、ゲージ製造工程(S10)で製造されたゲージ10gの形状証明を、校正事業者等に依頼して、この校正事業者等からゲージ10gの形状を証明する証明書を取得する(S11)。この証明書には、ゲージ10gの形状を証明する証明データの他、証明を行った際の各種条件が記載されている。各種条件としては、ゲージ10gの形状測定に用いた測定機の種類、この測定機の管理状況、測定機で形状が行われている際のゲージ10gの温度等がある。 Next, a calibration business is requested to certify the shape of the gauge 10g manufactured in the gauge manufacturing process (S10), and a certificate certifying the shape of the gauge 10g is obtained from the calibration business (S11). . This certificate contains certification data for certifying the shape of the gauge 10g and various conditions for certification. The various conditions include the type of measuring machine used to measure the shape of the gauge 10g, the management status of this measuring machine, the temperature of the gauge 10g when the shape is being measured by the measuring machine, and the like.

証明データには、ゲージ10gにおける複数の評価対応領域の形状等を示すためのデータが含まれる。具体的には、ゲージ10gの各基準平面21,22,23で定義される座標系で、Z方向に垂直な仮想平面でゲージ本体13gの断面の縁の形状等を示すためのデータ、つまり評価対応領域のデータが含まれる。例えば、図7に示すように、Z座標値が10mmの仮想平面でのゲージ本体13gの断面の縁の形状等を示すためのデータ、Z座標値が30mmの仮想平面でのゲージ本体13gの断面の縁の形状等を示すためのデータ、Z座標値が50mmの仮想平面でのゲージ本体13gの断面の縁の形状等を示すためのデータが含まれる。各仮想平面でのゲージ本体13gの断面の縁の形状等を示すためのデータには、図7及び図8に示すように、このゲージ本体13gの断面の縁に含まれる、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率中心座標(X,Y)のデータが含まれている。さらに、各仮想平面でゲージ本体13gの断面の縁の形状等を示すためのデータには、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率半径のデータが含まれる。 The certification data includes data for indicating the shapes of the plurality of evaluation corresponding regions in the gauge 10g. Specifically, in a coordinate system defined by reference planes 21, 22, and 23 of the gauge 10g, data for indicating the shape of the edge of the cross section of the gauge body 13g on a virtual plane perpendicular to the Z direction, that is, evaluation Contains data for corresponding regions. For example, as shown in FIG. 7, data for indicating the edge shape of the cross section of the gauge body 13g on a virtual plane with a Z coordinate value of 10 mm, and the cross section of the gauge body 13g on a virtual plane with a Z coordinate value of 30 mm. and data for indicating the shape of the edge of the cross section of the gauge body 13g on a virtual plane with a Z coordinate value of 50 mm. As shown in FIGS. 7 and 8, the data for indicating the shape of the edge of the cross section of the gauge body 13g on each virtual plane includes the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g. , the curvature center coordinates (X, Y) of the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g. Furthermore, the data for indicating the shape of the edge of the cross section of the gauge body 13g on each virtual plane includes the curvatures of the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g. Contains radius data.

なお、図7中で、Z座標値が10mmの仮想平面である第一仮想平面でのゲージ本体13gの断面の縁に含まれる第一曲面部C1gに関する証明データをC1gc1とし、Z座標値が30mmの仮想平面である第二仮想平面のゲージ本体13gの断面の縁に含まれる第一曲面部C1gに関する証明データをC1gc2とし、Z座標値が50mmの仮想平面である第三仮想平面でのゲージ本体13gの断面の縁に含まれる第一曲面部C1gに関する証明データをC1gc3としている。同様に、第一仮想平面でのゲージ本体13gの断面の縁に含まれる第二曲面部C2g、第三曲面部C3g、及び第四曲面C4gに関する証明データをC2gc1,C3gc1,C4gc1としている。また、第二仮想平面でのゲージ本体13gの断面の縁に含まれる第二曲面部C2g、第三曲面部C3g、及び第四曲面C4gに関する証明データをC2gc2,C3gc2,C4gc2としている。さらに、第三仮想平面でのゲージ本体13gの断面の縁に含まれる第二曲面部C2g、第三曲面部C3g、及び第四曲面C4gに関する証明データをC2gc3,C3gc3,C4gc3としている。 In FIG. 7, C1gc1 is the proof data regarding the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g on the first virtual plane, which is a virtual plane with a Z coordinate value of 10 mm, and the Z coordinate value is 30 mm. Let C1gc2 be the proof data regarding the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g on the second virtual plane that is the virtual plane of the gauge body on the third virtual plane that is the virtual plane with the Z coordinate value of 50 mm C1gc3 is the certification data relating to the first curved surface portion C1g included in the edge of the cross section 13g. Similarly, C2gc1, C3gc1, and C4gc1 are certification data for the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface C4g included in the edge of the cross section of the gauge body 13g on the first virtual plane. C2gc2, C3gc2, and C4gc2 are the certification data for the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface C4g included in the edge of the cross section of the gauge body 13g on the second virtual plane. Furthermore, C2gc3, C3gc3, and C4gc3 are proof data regarding the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface C4g included in the edge of the cross section of the gauge body 13g on the third virtual plane.

さらに、各仮想平面でゲージ本体13gの断面の縁の形状等を示すためのデータには、複数の仮想平面毎の第一曲面部C1gに関するデータの拡張不確かさ、複数の仮想平面毎の第二曲面部C2gに関するデータの拡張不確かさ、複数の仮想平面毎の第三曲面部C3gに関するデータの拡張不確かさ、複数の仮想平面毎の第四曲面部C4gに関するデータの拡張不確かさが含まれている。なお、拡張不確かさは、例えば、包含係数k=2を合成標準不確かさに乗じた値である。具体的に、第一曲面部C1gに関しては、複数の仮想平面毎の曲率中心座標のX座標値に関する拡張不確かさUx、複数の仮想平面毎の曲率中心座標のY座標値に関する拡張不確かさUy、複数の仮想平面毎の曲率半径に関する拡張不確かさUrが含まれる。 Furthermore, the data for indicating the shape of the edge of the cross section of the gauge body 13g on each virtual plane includes the expanded uncertainty of the data on the first curved surface portion C1g for each of the plurality of virtual planes, the second curved surface portion C1g for each of the plurality of virtual planes, Includes expanded uncertainty of data on the curved surface portion C2g, expanded uncertainty of data on the third curved surface portion C3g for each of the plurality of virtual planes, and expanded uncertainty of data on the fourth curved surface portion C4g for each of the plurality of virtual planes. . The expanded uncertainty is, for example, a value obtained by multiplying the combined standard uncertainty by the coverage factor k=2. Specifically, regarding the first curved surface portion C1g, the expanded uncertainty Ux regarding the X-coordinate value of the curvature center coordinates for each of the plurality of virtual planes, the expanded uncertainty Uy regarding the Y-coordinate value of the curvature center coordinates for each of the plurality of virtual planes, An expanded uncertainty Ur for the radius of curvature for each of a plurality of virtual planes is included.

次に、形状測定機を用いて、ゲージ10gにおける複数の評価対応領域の形状等を示す測定データを取得する(S12:ゲージ測定工程)。 Next, a shape measuring machine is used to acquire measurement data indicating the shapes of the plurality of evaluation corresponding regions in the gauge 10g (S12: gauge measurement step).

図9に示すように、このゲージ測定工程(S12)で用いる形状測定機50は、例えば、ベース51と、X方向移動機構52xと、Y方向移動機構52yと、Z方向移動機構52zと、プローブ56と、プローブ56を回転させるプローブ回転機構57と、を有する接触式の測定機である。プローブ回転機構57は、Z移動体55zの下端に設けられている。プローブ回転機構57には、プローブ56が取り付けられる。プローブ56の端部には、球体56aが設けられている。この形状測定機50は、球体56aを測定対象の表面に接触させつつ、プローブ56を移動させ、移動中の球体56aの軌跡データから測定対象の形状に関する測定データを得る。 As shown in FIG. 9, the shape measuring machine 50 used in this gauge measurement step (S12) includes, for example, a base 51, an X-direction movement mechanism 52x, a Y-direction movement mechanism 52y, a Z-direction movement mechanism 52z, and a probe. 56 and a probe rotation mechanism 57 that rotates the probe 56 . The probe rotation mechanism 57 is provided at the lower end of the Z moving body 55z. A probe 56 is attached to the probe rotation mechanism 57 . A sphere 56 a is provided at the end of the probe 56 . The shape measuring machine 50 moves the probe 56 while bringing the sphere 56a into contact with the surface of the object to be measured, and obtains measurement data on the shape of the object to be measured from the trajectory data of the sphere 56a during movement.

この形状測定機50を用いて、測定対象であるゲージ10gにおける複数の評価対応領域の形状を測定する際、形状測定機50の原点をゲージ10gの各基準平面で定まる座標系の原点Oにする。この結果、この形状測定機50で得られた測定データは、ゲージ10gの各基準平面で定まる座標系で示される。また、この測定の際、複数のスキャンスピードでプローブ56を移動させて、複数のスキャンスピード毎に測定データを得ることが好ましい。 When the shape measuring machine 50 is used to measure the shape of a plurality of evaluation corresponding regions on the gauge 10g, which is the object to be measured, the origin of the shape measuring machine 50 is the origin O of the coordinate system determined by each reference plane of the gauge 10g. . As a result, the measurement data obtained by this shape measuring machine 50 are shown in a coordinate system defined by each reference plane of the gauge 10g. Also, during this measurement, it is preferable to move the probe 56 at a plurality of scan speeds and obtain measurement data for each of the plurality of scan speeds.

例えば、Z座標値が50mmの第三仮想平面でゲージ本体13gの断面の縁の形状等を示すための測定データには、図10に示すように、ゲージ本体13gの第三仮想平面での断面の縁に含まれる、第一曲面部C1g、第二曲面部C2g、第三曲面部C3g、及び第四曲面部C4gの曲率中心座標及び曲率半径の測定データC1gm3,C2gm3,C3gm3,C4gm3が含まれる。 For example, as shown in FIG. 10, the measurement data for indicating the edge shape of the cross section of the gauge body 13g on the third virtual plane with the Z coordinate value of 50 mm includes the cross section of the gauge body 13g on the third virtual plane. measurement data C1gm3, C2gm3, C3gm3, C4gm3 of the curvature center coordinates and the curvature radii of the first curved surface portion C1g, the second curved surface portion C2g, the third curved surface portion C3g, and the fourth curved surface portion C4g included in the edge of the .

次に、ゲージ10gの証明データとゲージ10gの測定データとを比較し、この比較結果に応じて、形状測定機50の精度を評価する(S13:評価工程)。この評価工程(S13)では、測定データと証明データとの差を求め、これを比較結果とする。例えば、図11に示すように、Z座標値が50mmの第三仮想平面でのゲージ本体13gの断面の縁に含まれる第一曲面部C1gの測定データC1gm3と、この第一曲面部C1gの証明データC1gc3との差を求める。具体的に、このゲージ本体13gの第三仮想平面での断面の縁に含まれる第一曲面部C1gのX座標値に関する測定データと証明データの差、この第一曲面部C1gのY座標値に関する測定データと証明データの差、この第一曲面部C1gの曲率半径に関する測定データと証明データの差を求める。同様に、第三仮想平面でのゲージ本体13gの断面の縁に含まれる第二曲面部C2gの測定データC2gm3と、この第二曲面部C2gの証明データC2gc3との差を求める。第三仮想平面でのゲージ本体13gの断面の縁に含まれる第三曲面部C3gの測定データC3gm3と、この第三曲面部C3gの証明データC3gc3との差を求める。第三仮想平面でのゲージ本体13gの断面の縁に含まれる第四曲面部C4gの測定データC4gm3と、この第四曲面部C4gの証明データC4gc3との差を求める。 Next, the certification data of the gauge 10g and the measurement data of the gauge 10g are compared, and the accuracy of the shape measuring machine 50 is evaluated according to the comparison result (S13: evaluation step). In this evaluation step (S13), the difference between the measured data and the proof data is obtained and used as the comparison result. For example, as shown in FIG. 11, the measurement data C1gm3 of the first curved surface portion C1g included in the edge of the cross section of the gauge body 13g on the third virtual plane with the Z coordinate value of 50 mm, and the proof of this first curved surface portion C1g. Find the difference from the data C1gc3. Specifically, the difference between the measurement data and the certification data regarding the X coordinate value of the first curved surface portion C1g included in the edge of the cross section on the third virtual plane of the gauge body 13g, and the Y coordinate value of the first curved surface portion C1g A difference between the measurement data and the certification data, and a difference between the measurement data and the certification data regarding the curvature radius of the first curved surface portion C1g are obtained. Similarly, the difference between the measurement data C2gm3 of the second curved surface portion C2g included in the edge of the cross section of the gauge body 13g on the third virtual plane and the certification data C2gc3 of this second curved surface portion C2g is obtained. A difference is obtained between the measurement data C3gm3 of the third curved surface portion C3g included in the edge of the cross section of the gauge body 13g on the third virtual plane and the proof data C3gc3 of this third curved surface portion C3g. A difference is obtained between the measurement data C4gm3 of the fourth curved surface portion C4g included in the edge of the cross section of the gauge body 13g on the third virtual plane and the proof data C4gc3 of this fourth curved surface portion C4g.

なお、ゲージ測定工程(S12)で、複数のスキャンスピード毎に測定データを得た場合には、複数のスキャンスピード毎の測定データのうち、証明データとの差が最小になる測定データを採用し、この測定データと証明データとの差を比較結果とする。また、証明データとの差が最小になる測定データを得た際のスキャンスピードを、形状測定機50で測定対象である翼の形状を測定する際のプローブ56のスキャンスピードに設定する。 In the gauge measurement step (S12), when measurement data is obtained for each of a plurality of scan speeds, among the measurement data for each of the plurality of scan speeds, the measurement data that minimizes the difference from the proof data is adopted. , the difference between the measured data and the proof data is used as the comparison result. Also, the scan speed at which the measurement data that minimizes the difference from the certification data is obtained is set to the scan speed of the probe 56 when the shape measuring machine 50 measures the shape of the blade to be measured.

この評価工程(S13)では、次に、測定データと証明データとの差が予め定められた許容値を超えるか否か判断する。そして、測定データと証明データとの差が例えば許容値を超える場合には、この形状測定機50の測定精度が低いと判断し、測定データと証明データとの差が例えば許容値以下である場合には、この形状測定機50の測定精度が高いと判断する。形状測定機50の測定精度が低いと判断した場合には、例えば、この形状測定機50の製造メーカーに、この形状測定機50の校正又は修理等を依頼する。 In this evaluation step (S13), it is then determined whether or not the difference between the measured data and the proof data exceeds a predetermined allowable value. If the difference between the measured data and the certified data exceeds, for example, an allowable value, it is determined that the measurement accuracy of the shape measuring machine 50 is low. , it is judged that the measurement accuracy of this shape measuring machine 50 is high. When it is determined that the measurement accuracy of the shape measuring machine 50 is low, for example, the manufacturer of the shape measuring machine 50 is requested to calibrate or repair the shape measuring machine 50 .

許容値としては、例えば、曲率中心のX座標値及びY座標値の測定データと証明データと差に関する座標許容値がある。複数の曲面部毎の曲率中心のX座標値及びY座標値に関する測定データと証明データと差のうち、いずれかが許容値を超えていれば、ここでは形状測定機50の測定精度が低いと判断する。また、許容値としては、曲率半径の測定データと証明データとの差に関する半径許容値がある。この半径許容値は、曲率半径の証明データに応じて設定してもよい。複数の曲面部毎の曲率半径に関する測定データと証明データと差のうち、いずれかが、証明データの曲率半径に応じた許容値を超えていれば、ここでは形状測定機50の測定精度が低いと判断する。 The allowable values include, for example, the coordinate allowable values regarding the difference between the X-coordinate value and the Y-coordinate value of the center of curvature, between the measured data and the proof data. If any of the measurement data, certification data, and difference in relation to the X-coordinate value and Y-coordinate value of the center of curvature for each of the plurality of curved surface portions exceeds the allowable value, it means that the measurement accuracy of the shape measuring machine 50 is low. to decide. Also, the allowable value includes a radius allowable value regarding the difference between the measured data of the radius of curvature and the certification data. This radius tolerance may be set according to certification data of the radius of curvature. If any of the difference between the measurement data and the certification data regarding the radius of curvature for each of the plurality of curved surface portions exceeds the allowable value corresponding to the radius of curvature of the certification data, then the measurement accuracy of the shape measuring machine 50 is low. I judge.

本実施形態のゲージ10gは、互いに異なる曲率半径を有する複数の曲面部を有するので、複数の曲面部毎のゲージ証明データとゲージ測定データとを比較することで、形状測定機50の精度に関する評価精度を高めることができる。 Since the gauge 10g of the present embodiment has a plurality of curved surface portions having curvature radii different from each other, the accuracy of the shape measuring machine 50 can be evaluated by comparing the gauge proof data and the gauge measurement data for each of the plurality of curved surface portions. Accuracy can be improved.

また、このゲージ10gが有する複数の曲面部のそれぞれは、複数の曲面部のうちの他の曲面部に滑らかに連続してつながっている。このため、ゲージ10gの形状を示すゲージ測定データを取得する場合、形状測定機50で、このゲージ10gの表面をスキャンする際のスキャンスピードを一定にすることができる。よって、形状測定機50の制御が容易になる。さらに、前述したように、証明データとの差が最小になるゲージ測定データを得た際の一定のスキャンスピードを、この形状測定機50で測定対象の形状を測定する際のスキャンスピードにすることで、不連続な部位でスキャンスピードを低下させるなどの複雑な操作が不要になり、対象測定データの精度を高めることができる。 Further, each of the plurality of curved surface portions of the gauge 10g is smoothly connected to another curved surface portion of the plurality of curved surface portions. Therefore, when acquiring gauge measurement data indicating the shape of the gauge 10g, the shape measuring machine 50 can keep the scanning speed constant when scanning the surface of the gauge 10g. Therefore, control of the shape measuring machine 50 is facilitated. Furthermore, as described above, the constant scan speed at which the gauge measurement data that minimizes the difference from the certification data is obtained is set to the scan speed at which the shape of the object to be measured is measured by the shape measuring machine 50. This eliminates the need for complicated operations such as lowering the scan speed at discontinuous parts, and improves the accuracy of target measurement data.

「形状測定機による測定データの校正(補正)方法」
形状測定機による測定データの校正(補正)方法の実施形態について、図12~図15を用いて説明する。
"Method for calibrating (correcting) measurement data using a shape measuring machine"
An embodiment of a method for calibrating (correcting) measurement data by a shape measuring machine will be described with reference to FIGS. 12 to 15. FIG.

本実施形態の形状測定機による測定データの校正(補正)方法では、図12のフローチャートに示すように、図5のフローチャートを用いて説明した形状測定機50の精度評価方法における、ゲージ製造工程(S10)及び証明取得工程(S11)を実行する。 In the method for calibrating (correcting) measurement data by the shape measuring machine of the present embodiment, as shown in the flowchart of FIG. 12, the gauge manufacturing process ( S10) and the certificate acquisition step (S11) are executed.

この実施形態では、証明取得工程(S11)の後に、形状測定機を用いて、測定対象の評価領域の形状を測定して、評価領域の形状を示す対象測定データを取得する(S14:対象測定工程)。この対象測定工程(S14)で用いる形状測定機は、ゲージ測定工程(S12)で用いた形状測定機50と異なる測定機であってもよい。但し、前述した評価方法で、測定精度が高いと評価された形状測定機50を対象測定工程(S14)でも用いることが好ましい。 In this embodiment, after the certification acquisition step (S11), a shape measuring machine is used to measure the shape of the evaluation area to be measured, and object measurement data indicating the shape of the evaluation area is acquired (S14: object measurement process). The shape measuring machine used in the object measuring step (S14) may be a measuring machine different from the shape measuring machine 50 used in the gauge measuring step (S12). However, it is preferable to use the shape measuring machine 50 evaluated as having high measurement accuracy by the evaluation method described above also in the object measurement step (S14).

次に、ゲージ10gの証明データと対象測定データとを比較結果に応じて、対象測定データを補正する補正データを求める(S15:補正データ算出工程)。この補正データ算出工程(S15)では、まず、対象測定データを補正する補正データと曲率半径との関係を示す補正関数を定める(S15a:補正関数設定工程)。この補正関数設定工程(S15a)では、図13に示すように、対象測定データが示す曲率半径rmをx軸とし、この曲率半径rmとゲージ10gに関する証明データが示す曲率半径rcとの差(rm-rc)をy軸とする座標系を準備する。次に、この座標系中に、評価対象に含まれる複数の曲面部毎の、曲率半径rmと差(rm-rc)とで定まる点をプロットする。座標系中にプロットした複数の点毎のx座標値及びy座標値から、x座標値とy座標値との関係を近似する補正関数を定める。 Next, correction data for correcting the target measurement data is obtained according to the comparison result between the certification data of the gauge 10g and the target measurement data (S15: correction data calculation step). In this correction data calculation step (S15), first, a correction function indicating the relationship between the correction data for correcting the target measurement data and the radius of curvature is determined (S15a: correction function setting step). In this correction function setting step (S15a), as shown in FIG. 13, the curvature radius rm indicated by the target measurement data is defined as the x-axis, and the difference (rm −rc) is prepared as the y-axis. Next, in this coordinate system, points determined by the radius of curvature rm and the difference (rm-rc) are plotted for each of the plurality of curved surface portions included in the evaluation object. A correction function that approximates the relationship between the x-coordinate value and the y-coordinate value is determined from the x-coordinate value and y-coordinate value for each of a plurality of points plotted in the coordinate system.

ここでは、この補正関数は、図13に示すように、以下の一次関数である。
y=0.2869x-5.6142
Here, this correction function is the following linear function, as shown in FIG.
y = 0.2869x - 5.6142

また、以上の補正データ算出工程(S15)における補正関数設定工程(S15a)では、対象測定データを補正する補正データと曲率中心座標との関係を示す補正関数を定めてもよい。この補正関数設定工程(S15a)では、二つの座標系を準備する。二つの座標系のうち第一座標系として、図14に示すように、対象測定データが示す曲率中心x座標xmをx軸とし、この曲率中心x座標xmとゲージ10gに関する証明データが示す曲率中心x座標xcとの差(xm-xc)をy軸とする座標系を準備する。二つの座標系のうち第二座標系として、図15に示すように、対象測定データが示す曲率中心y座標ymをx軸とし、この曲率中心y座標ymとゲージ10gに関する証明データが示す曲率中心y座標ycとの差(ym-yc)をy軸とする座標系を準備する。次に、第一座標系中に、評価対象に含まれる複数の曲面部毎の、曲率中心x座標xmと差(xm-xc)とで定まる点をプロットする。第一座標系中にプロットした複数の点毎のx座標値及びy座標値から、x座標値とy座標値との関係を近似する第一補正関数を定める。さらに、第二座標系中に、評価対象に含まれる複数の曲面部毎の、曲率中心y座標ymと差(ym-yc)とで定まる点をプロットする。第二座標系中にプロットした複数の点毎のx座標値及びy座標値から、x座標値とy座標値との関係を近似する第二補正関数を定める。 Further, in the correction function setting step (S15a) in the correction data calculation step (S15), a correction function indicating the relationship between the correction data for correcting the target measurement data and the curvature center coordinates may be determined. In this correction function setting step (S15a), two coordinate systems are prepared. As the first coordinate system of the two coordinate systems, as shown in FIG. 14, the curvature center x-coordinate xm indicated by the target measurement data is set as the x-axis, and this curvature center x-coordinate xm and the curvature center indicated by the proof data related to the gauge 10g A coordinate system is prepared in which the y-axis is the difference (xm-xc) from the x-coordinate xc. As the second coordinate system of the two coordinate systems, as shown in FIG. 15, the curvature center y coordinate ym indicated by the target measurement data is set as the x axis, and the curvature center y coordinate ym and the curvature center indicated by the proof data related to the gauge 10g A coordinate system is prepared in which the y-axis is the difference (ym-yc) from the y-coordinate yc. Next, points determined by the curvature center x-coordinate xm and the difference (xm-xc) are plotted for each of the plurality of curved surface portions included in the evaluation target in the first coordinate system. A first correction function that approximates the relationship between the x-coordinate value and the y-coordinate value is determined from the x-coordinate value and y-coordinate value for each of the plurality of points plotted in the first coordinate system. Furthermore, points determined by the curvature center y-coordinate ym and the difference (ym−yc) are plotted for each of the plurality of curved surface portions included in the evaluation target in the second coordinate system. A second correction function that approximates the relationship between the x-coordinate values and the y-coordinate values is determined from the x-coordinate values and y-coordinate values for each of the plurality of points plotted in the second coordinate system.

ここでは、第一補正関数は、図14に示すように、以下の一次関数である。
y=0.0017x-0.8804
Here, the first correction function is the following linear function, as shown in FIG.
y = 0.0017x - 0.8804

また、第二補正関数も、図15に示すように、以下の一次関数である。
y=-0.0134x-0.0143
The second correction function is also the following linear function, as shown in FIG.
y=-0.0134x-0.0143

補正データ算出工程(S15)では、補正関数設定工程(S15a)後に、評価対象に含まれる複数の曲面部毎の、対象測定データが示す曲率半径を前述の補正関数のxに代入して、評価対象に含まれる複数の曲面部毎の補正データyを求める(S15b:補正データ演算工程)。以上で補正データ算出工程(S15)が終了する。なお、補正関数設定工程(S15a)において、補正データと曲率中心座標との関係を示す第一及び第二補正関数を定めた場合には、補正データ演算工程(S15b)で、評価対象に含まれる複数の曲面部毎の、対象測定データが示す曲率中心x座標を前述の第一補正関数のxに代入して、評価対象に含まれる複数の曲面部毎のx座標に関数する補正データyを求める。さらに、評価対象に含まれる複数の曲面部毎の、対象測定データが示す曲率中心y座標を前述の第二補正関数のxに代入して、評価対象に含まれる複数の曲面部毎のy座標に関数する補正データyを求める。 In the correction data calculation step (S15), after the correction function setting step (S15a), the curvature radius indicated by the target measurement data for each of the plurality of curved surface portions included in the evaluation target is substituted for x in the correction function, and the evaluation is performed. Correction data y is obtained for each of a plurality of curved surface portions included in the target (S15b: correction data calculation step). Thus, the correction data calculation step (S15) ends. In addition, in the correction function setting step (S15a), when the first and second correction functions indicating the relationship between the correction data and the curvature center coordinates are determined, in the correction data calculation step (S15b), they are included in the evaluation target By substituting the curvature center x coordinate indicated by the target measurement data for each of the plurality of curved surface portions into x of the first correction function, correction data y functioning on the x coordinate for each of the plurality of curved surface portions included in the evaluation target is obtained. demand. Furthermore, the y-coordinate of the center of curvature indicated by the target measurement data for each of the plurality of curved surface portions included in the evaluation target is substituted for x in the second correction function, and the y-coordinate of each of the plurality of curved surface portions included in the evaluation target is Correction data y is obtained as a function of .

補正データ算出工程(S15)が終了すると、この補正データ算出工程(S15)で求めた補正データを用いて、対象測定データが示す曲率半径、及び/又、対象測定データが示す曲率中心座標を補正する。具体的には、対象測定データが示す曲率半径から補正データを減算し、及び/又対象データが示す曲率中心座標から補正データを減算し、この減算結果を校正された対象測定データとする。 When the correction data calculation step (S15) ends, the correction data obtained in the correction data calculation step (S15) are used to correct the curvature radius indicated by the target measurement data and/or the curvature center coordinates indicated by the target measurement data. do. Specifically, the correction data is subtracted from the curvature radius indicated by the target measurement data and/or the correction data is subtracted from the curvature center coordinates indicated by the target data, and the result of this subtraction is used as the calibrated target measurement data.

以上で、対象測定データの校正(補正)が終了する。 This completes the calibration (correction) of the target measurement data.

本実施形態のゲージ10gは、互いに異なる曲率半径及び/又は曲率中心座標を有する複数の曲面部を有するので、複数の曲面部毎のゲージ証明データと対象測定データとを比較することで、対象測定データの補正に好ましい補正データを得ることができる。よって、このゲージ10gを用いることで、対象測定データを精度よく補正することができる。 Since the gauge 10g of the present embodiment has a plurality of curved surface portions having mutually different curvature radii and/or curvature center coordinates, the target measurement data can be obtained by comparing the gauge proof data and the target measurement data for each of the plurality of curved surface portions. Correction data suitable for data correction can be obtained. Therefore, by using this gauge 10g, it is possible to accurately correct the target measurement data.

以上の補正関数設定工程(S15a)で定める補正関数は、一次関数である。しかしながら、この補正関数は、多次元関数等、他の関数であってもよい。また、以上の補正関数設定工程(S15a)を、人が実行してもよいが、補正関数設定工程(S15a)を実行するためのプログラムが組み込まれているコンピュータが実行してもよい。 The correction function determined in the above correction function setting step (S15a) is a linear function. However, this correction function may be another function, such as a multi-dimensional function. Further, the above correction function setting step (S15a) may be executed by a person, but may be executed by a computer in which a program for executing the correction function setting step (S15a) is installed.

「ゲージの変形例」
以上の実施形態のゲージ10gは、ゲージ本体13gのチップ面18g側とは反対側の端に基準体11gが設けられている。しかしながら、図16に示すように、ゲージ本体13gのチップ面18に基準体11gaが設けられていてもよい。また、図17に示すように、ゲージ本体13gのZ方向における中間部に基準体11gbが設けられていてもよい。
"Gage variation"
In the gauge 10g of the above embodiment, a reference body 11g is provided at the end of the gauge main body 13g opposite to the tip surface 18g. However, as shown in FIG. 16, a reference body 11ga may be provided on the tip surface 18 of the gauge body 13g. In addition, as shown in FIG. 17, a reference body 11gb may be provided at an intermediate portion in the Z direction of the gauge body 13g.

以上の実施形態のゲージ10gの基準体11gは、基準部20として、互いに垂直な第一基準平面21、第二基準平面22及び第三基準平面23を有する。しかしながら、図18に示すように、基準体11gcは、ベース25と、基準部として、ベース25上に固定され、互いの中心が一の仮想平面Pcを規定する三以上の球面部26と、を有してもよい。この基準体11gcのベース25は、直方体形状を成している。このベース25上の一の平面25p上には、ゲージ本体13gが設けられている。この一の平面25p上には、さらに、四つの球面部26が設けられている。四つの球面部26の中心は、前述したように、一つの仮想平面Pcを規定する。さらに、この仮想平面Pc内に描かれる長方形の頂点に、各球面部26の中心が位置する。四つの球面部26の中心のうち、第一球面部26aの中心は、ゲージ本体13gの各部を測定する際の座標系の原点Oを成す。第一球面部26aの中心と第二球面部26bの中心とを結ぶ仮想線は、この座標系のX軸を成す。第一球面部26aの中心と第三球面部26cの中心とを結ぶ仮想線は、この座標系のY軸を成す。第一球面部26aの中心を通り、X軸及びY軸に垂直な仮想線は、この座標系のZ軸を成す。よって、四つの球面部26の中心が規定している仮想平面Pcは、この座標系のXY平面になる。 The reference body 11g of the gauge 10g of the above embodiment has, as the reference portion 20, a first reference plane 21, a second reference plane 22 and a third reference plane 23 which are perpendicular to each other. However, as shown in FIG. 18, the reference body 11gc includes a base 25 and three or more spherical portions 26 which are fixed on the base 25 as reference portions and define a virtual plane Pc having one center. may have. The base 25 of this reference body 11gc has a rectangular parallelepiped shape. A gauge body 13g is provided on one flat surface 25p on the base 25. As shown in FIG. Further, four spherical portions 26 are provided on the one plane 25p. The centers of the four spherical portions 26 define one virtual plane Pc as described above. Furthermore, the center of each spherical portion 26 is located at the vertex of the rectangle drawn within this virtual plane Pc. Among the centers of the four spherical portions 26, the center of the first spherical portion 26a forms the origin O of the coordinate system when measuring each portion of the gauge main body 13g. An imaginary line connecting the center of the first spherical portion 26a and the center of the second spherical portion 26b forms the X-axis of this coordinate system. An imaginary line connecting the center of the first spherical portion 26a and the center of the third spherical portion 26c forms the Y-axis of this coordinate system. An imaginary line passing through the center of the first spherical portion 26a and perpendicular to the X-axis and the Y-axis forms the Z-axis of this coordinate system. Therefore, the virtual plane Pc defined by the centers of the four spherical portions 26 is the XY plane of this coordinate system.

なお、この変形例の基準体11gcは、四つの球面部26を有するが、球面部26の数は三つでもよい。また、この変形例の基準体11gcにおける第一球面部26aと第二球面部26bとを結ぶ仮想線に対して、この基準体11gcにおける第一球面部26aと第三球面部26cとを結ぶ仮想線は、垂直である。しかしながら、第一球面部26aと第二球面部26bとを結ぶ仮想線に対して、第一球面部26aと第三球面部26cとを結ぶ仮想線は、垂直でなくてもよい。この場合、第一球面部26aと第二球面部26bとを結ぶ仮想線をX軸にし、仮想平面Pc中でこのX軸に垂直な仮想線をY軸にする。また、各球面部は、真球であることが望ましいが、座標系を規定することができる形状であれば、真球でなくてもよい。また、複数の基準部は、座標系を定めることができれば、以上で例示した形状等に限られない。 Although the reference body 11gc of this modified example has four spherical portions 26, the number of spherical portions 26 may be three. Further, with respect to the virtual line connecting the first spherical portion 26a and the second spherical portion 26b in the reference body 11gc of this modification, the virtual line connecting the first spherical portion 26a and the third spherical portion 26c in the reference body 11gc The lines are vertical. However, the virtual line connecting the first spherical portion 26a and the third spherical portion 26c may not be perpendicular to the virtual line connecting the first spherical portion 26a and the second spherical portion 26b. In this case, the virtual line connecting the first spherical portion 26a and the second spherical portion 26b is the X-axis, and the virtual line perpendicular to the X-axis in the virtual plane Pc is the Y-axis. Each spherical portion is preferably a true sphere, but may not be a true sphere as long as it has a shape that can define a coordinate system. Moreover, the plurality of reference portions are not limited to the shapes and the like illustrated above as long as a coordinate system can be defined.

「その他の変形例」
以上の実施形態の測定対象は、タービンの動翼10である。しかしながら、自由曲面を有する物体であれば、いかなる物体を測定対象にしてもよい。この場合、ゲージ本体は、この測定対象に対応した形状及びサイズになる。
"Other Modifications"
The object to be measured in the above embodiment is the rotor blade 10 of the turbine. However, any object that has a free-form surface may be used as the object to be measured. In this case, the gauge body has a shape and size corresponding to the object to be measured.

また、測定対象は、互いに平行な複数の仮想平面による各断面の形状及びサイズが同一の物体であってもよい。言い換えると、測定対象は、柱状を成し、この柱の底面及び天面の外縁形状が互いに同一の自由曲線であってもよい。このような測定対象としては、例えば、平板形カムがある。 Moreover, the object to be measured may be an object having the same cross-sectional shape and size on multiple virtual planes parallel to each other. In other words, the object to be measured may have a columnar shape, and the bottom and top surfaces of the column may have the same free-form curve. An example of such an object to be measured is a flat cam.

以上の実施形態の形状測定機50は、接触式の測定機である。しかしながら、形状測定機は、非接触式の測定機であってもよい。非接触式の測定機としては、例えば、レーザの光を測定対象に照射し、この測定対象からの反射光に応じて、測定対象の形状を測定するレーザ形状測定機等がある。 The shape measuring machine 50 of the above embodiment is a contact-type measuring machine. However, the shape measuring machine may be a non-contact measuring machine. Non-contact type measuring machines include, for example, a laser shape measuring machine that irradiates an object to be measured with laser light and measures the shape of the object according to the reflected light from the object to be measured.

10:動翼
Ar;回転軸線
11:プラットフォーム
11p;ガスパス面
12:翼根
13:翼体(測定対象)
14:前縁
15:後縁
16:負圧面
17:正圧面
18:チップ面
Fb:翼形自由曲面
C1:第一曲面部
B1:第一接続曲面部
B1f,B2f,B3f,B4f:前縁側接続部(第一接続部)
B1b,B2b,B3b,B4b:後縁側接続部(第二接続部)
C2:第二曲面部
B2:第二接続曲面部
C3:第三曲面部
B3:第三接続曲面部
C4:第四曲面部
B4:第四接続曲面部
Fs:負圧側自由曲面
C5:第五曲面部
B5:第五接続曲面部
B5b,B7b:基側接続部(第一接続部)
B5t,B7t:チップ側接続部(第二接続部)
C6:第六曲面部
Fp:正圧側自由曲面
C7:第七曲面部
B7:第七接続曲面部
C8:第八曲面部
Pz:Z方向に垂直な仮想平面
Py:Y方向に垂直な仮想平面
Az,Ay:評価領域
10g:ゲージ
11g,11ga,11gb,11gc:基準体
13g:ゲージ本体
14g:前縁
15g:後縁
16g:負圧面
17g:正圧面
18g:チップ面
Fbg:翼形自由曲面
C1g:第一曲面部
B1g:第一接続曲面部
B1fg:前縁側接続部(第一接続部)
B1bg:後縁側接続部(第二接続部)
C2g:第二曲面部
B2g:第二接続曲面部
C3g:第三曲面部
B3g:第三接続曲面部
C4g:第四曲面部
B4g:第四接続曲面部
Fsg:負圧側自由曲面
C5g:第五曲面部
B5g:第五接続曲面部
B5bg:基側接続部(第一接続部)
B5tg:チップ側接続部(第二接続部)
C6g:第六曲面部
Fpg:正圧側自由曲面
C7g:第七曲面部
B7g:第七接続曲面部
C8g:第八曲面部
Pzg:Z方向に垂直な仮想平面
Pyg:Y方向に垂直な仮想平面
Azg,Ayg:評価対応領域
20:基準部
21;第一基準平面(基準体)
22;第二基準平面(基準体)
23;第三基準平面(基準体)
25:ベース
26:球面部
26a:第一球面部
26b:第二球面部
26c:第三球面部
Pc:仮想平面
50:形状測定機
51:ベース
52x:X方向移動機構
52y:Y方向移動機構
52z:Z方向移動機構
56:プローブ
56a:球体
57:プローブ回転機構
10: rotor blade Ar; rotation axis 11: platform 11p; gas path surface 12: blade root 13: blade body (object to be measured)
14: Leading edge 15: Trailing edge 16: Suction surface 17: Pressure surface 18: Tip surface Fb: Airfoil free curved surface C1: First curved surface portion B1: First connection curved surface portion B1f, B2f, B3f, B4f: Leading edge side connection part (first connecting part)
B1b, B2b, B3b, B4b: trailing edge side connection portion (second connection portion)
C2: Second curved surface portion B2: Second connection curved surface portion C3: Third curved surface portion B3: Third connection curved surface portion C4: Fourth curved surface portion B4: Fourth connection curved surface portion Fs: Negative pressure side free curved surface C5: Fifth curved surface Part B5: Fifth connection curved surface part B5b, B7b: Base side connection part (first connection part)
B5t, B7t: chip-side connection portion (second connection portion)
C6: Sixth curved surface portion Fp: Pressure side free curved surface C7: Seventh curved surface portion B7: Seventh connecting curved surface portion C8: Eighth curved surface portion Pz: Virtual plane Py perpendicular to Z direction: Virtual plane Az perpendicular to Y direction , Ay: Evaluation area 10g: Gauges 11g, 11ga, 11gb, 11gc: Reference body 13g: Gauge body 14g: Leading edge 15g: Trailing edge 16g: Suction surface 17g: Pressure surface 18g: Tip surface Fbg: Airfoil free curved surface C1g: First curved surface portion B1g: First connection curved surface portion B1fg: Front edge side connection portion (first connection portion)
B1bg: trailing edge side connecting portion (second connecting portion)
C2g: Second curved surface portion B2g: Second connection curved surface portion C3g: Third curved surface portion B3g: Third connection curved surface portion C4g: Fourth curved surface portion B4g: Fourth connection curved surface portion Fsg: Negative pressure side free curved surface C5g: Fifth curved surface Part B5g: Fifth connection curved surface part B5bg: Base side connection part (first connection part)
B5tg: Chip side connection part (second connection part)
C6g: Sixth curved surface portion Fpg: Pressure side free curved surface C7g: Seventh curved surface portion B7g: Seventh connection curved surface portion C8g: Eighth curved surface portion Pzg: Virtual plane perpendicular to Z direction Pyg: Virtual plane Azg perpendicular to Y direction , Ayg: evaluation corresponding area 20: reference portion 21; first reference plane (reference body)
22; second reference plane (reference body)
23; third reference plane (reference body)
25: Base 26: Spherical portion 26a: First spherical portion 26b: Second spherical portion 26c: Third spherical portion Pc: Virtual plane 50: Shape measuring machine 51: Base 52x: X-direction movement mechanism 52y: Y-direction movement mechanism 52z : Z-direction moving mechanism 56: Probe 56a: Sphere 57: Probe rotating mechanism

Claims (8)

ゲージを製造するゲージ製造工程と、
前記ゲージ製造工程で製造された前記ゲージに関するゲージ証明データを取得する証明取得工程と、
形状測定機を用いて、互いに異なる曲率半径を有する複数の曲面部を含み、複数の前記曲面部のそれぞれが、複数の前記曲面部のうちの他の曲面部に連続してつながっている自由曲面を有する測定対象の形状を測定して、対象測定データを取得する対象測定工程と、
前記ゲージ証明データと前記対象測定データとの比較結果に応じて、前記対象測定データを補正する補正データを求める補正データ算出工程と、
前記補正データを用いて、前記対象測定データを補正する補正工程と、
を実行し、
前記ゲージ製造工程では、
前記測定対象から、前記自由曲面に含まれる少なくとも一部の自由曲線を含む評価領域を定める評価領域特定工程と、
前記評価領域から前記自由曲線に含まれる複数の曲線部を抽出する要素抽出工程と、
前記要素抽出工程で抽出した複数の前記曲線部に関する設計データを取得する設計データ取得工程と、
互いに位置が異なり、座標系を定めることができる複数の基準部を有する基準体を数学的に定義する基準部定義工程と、
前記設計データ取得工程で取得した複数の前記曲線部毎の前記設計データを用いて、複数の前記曲線部を含む前記自由曲線を、前記基準部で定まる前記座標系中に、数学的に定義する自由曲面定義工程と、
前記基準部を有する基準体と、前記自由曲線を含み、前記基準体に接続されているゲージ本体と、を製造する製造工程と、
を実行し、
前記自由曲面定義工程では、前記自由曲面の形状を示す関数を二次微分可能な関数にし、
前記製造工程では、数学的に定義された前記基準部のデータに従って、前記基準部を有する前記基準体を製造すると共に、数学的に定義された前記自由曲線のデータに従って、前記ゲージ本体を製造し、
前記証明取得工程で取得する前記ゲージ証明データは、前記ゲージ中で、前記測定対象の前記評価領域に対応する評価対応領域の形状を証明するデータであり、
前記対象測定工程で取得する前記対象測定データは、前記形状測定機を用いて、前記測定対象の前記評価領域の形状を測定して得られたデータである、
測定データの補正方法。
a gauge manufacturing process for manufacturing the gauge;
a certification acquisition step of acquiring gauge certification data relating to the gauge manufactured in the gauge manufacturing process;
A free-form surface that includes a plurality of curved surface portions having curvature radii different from each other, and each of the plurality of curved surface portions is continuously connected to another curved surface portion of the plurality of curved surface portions using a shape measuring machine. an object measuring step of obtaining object measurement data by measuring the shape of a measurement object having
a correction data calculation step of obtaining correction data for correcting the target measurement data according to a comparison result between the gauge certification data and the target measurement data;
a correction step of correcting the target measurement data using the correction data;
and run
In the gauge manufacturing process,
an evaluation area specifying step of determining an evaluation area including at least a part of the free curve included in the free curved surface from the measurement target;
an element extraction step of extracting a plurality of curve portions included in the free curve from the evaluation area;
a design data acquisition step of acquiring design data relating to the plurality of curved portions extracted in the element extraction step;
a datum definition step of mathematically defining a datum having a plurality of datums at different positions and capable of defining a coordinate system;
mathematically defining the free curve including the plurality of curved portions in the coordinate system defined by the reference portion using the design data for each of the plurality of curved portions obtained in the design data obtaining step; a free-form surface definition step;
a manufacturing process of manufacturing a reference body having the reference portion and a gauge body including the free curve and connected to the reference body;
and run
In the free-form surface defining step, the function indicating the shape of the free-form surface is a quadratically differentiable function,
In the manufacturing process, the reference body having the reference portion is manufactured according to the mathematically defined data of the reference portion, and the gauge body is manufactured according to the mathematically defined free curve data. ,
The gauge certification data acquired in the certification acquisition step is data that certifies the shape of the evaluation corresponding area corresponding to the evaluation area to be measured in the gauge,
The object measurement data acquired in the object measurement step is data obtained by measuring the shape of the evaluation region of the measurement object using the shape measuring machine.
A method of correcting measurement data.
請求項1に記載の測定データの補正方法において、
前記基準部定義工程で定義する前記基準部は、第一基準平面と、前記第一基準平面に対して垂直な第二基準平面と、前記第一基準平面及び前記第二基準平面に対して垂直な第三基準平面と、を有する、
測定データの補正方法。
In the measurement data correction method according to claim 1,
The reference portion defined in the reference portion defining step includes a first reference plane, a second reference plane perpendicular to the first reference plane, and a perpendicular to the first reference plane and the second reference plane. a third reference plane,
A method of correcting measurement data.
請求項1に記載の測定データの補正方法において、
前記基準部定義工程で定義する前記基準部は、互いの中心が一の仮想平面を規定する三以上の球面部を有する、
測定データの補正方法。
In the measurement data correction method according to claim 1,
The reference portion defined in the reference portion defining step has three or more spherical portions defining a virtual plane whose centers are one.
A method of correcting measurement data.
請求項1から3のいずれか一項に記載の測定データの補正方法において、
複数の前記曲面部は、曲率半径が一定で且つ該曲率半径が第一曲率半径の第一曲面部と、曲率半径が一定で且つ該曲率半径が前記第一曲率半径とは異なる第二曲率半径の第二曲面部と、を有し、
前記自由曲面は、前記第一曲面部と前記第二曲面部の間に存在する接続曲面部を含み、
前記接続曲面部は、前記第一曲面部の縁に接続されている第一接続部と、前記第二曲面部の縁に接続されている第二接続部と、を有し、
前記自由曲面定義工程では、前記第一接続部の曲率半径を前記第一曲率半径にし、前記第二接続部の曲率半径を前記第二曲率半径にし、前記接続曲面部の曲率半径を、前記第一接続部から前記第二接続部にかけて連続的に変化させる、若しくは無限大にする、
測定データの補正方法。
In the measurement data correction method according to any one of claims 1 to 3,
The plurality of curved surface portions include a first curved surface portion having a constant radius of curvature and having a first radius of curvature, and a second radius of curvature having a constant radius of curvature and having a different radius of curvature from the first radius of curvature. and a second curved surface portion of
the free curved surface includes a connecting curved surface portion existing between the first curved surface portion and the second curved surface portion;
The connection curved surface portion has a first connection portion connected to the edge of the first curved surface portion and a second connection portion connected to the edge of the second curved surface portion,
In the free curved surface defining step, the curvature radius of the first connection portion is set to the first curvature radius, the curvature radius of the second connection portion is set to the second curvature radius, and the curvature radius of the connection curved surface portion is set to the first curvature radius. change continuously from one connection to the second connection, or make it infinite;
A method of correcting measurement data.
請求項1から4のいずれか一項に記載の測定データの補正方法において、
前記評価領域に含まれる複数の前記曲線部のそれぞれに対する許容製造誤差を定める製造誤差設定工程をさらに実行し、
前記製造工程では、前記ゲージにおける複数の前記曲線部を、それぞれの前記曲線部に対する前記許容製造誤差範囲内に製造する、
測定データの補正方法。
In the measurement data correction method according to any one of claims 1 to 4,
further executing a manufacturing error setting step for determining an allowable manufacturing error for each of the plurality of curved portions included in the evaluation area;
In the manufacturing process, the plurality of curved portions of the gauge are manufactured within the allowable manufacturing error range for each of the curved portions.
A method of correcting measurement data.
請求項1から5のいずれか一項に記載の測定データの補正方法において、
前記製造工程では、数学的に定義された前記自由曲線のデータと、数学的に定義された前記基準部のデータとを、三次元形状物を形成する三次元形状製造装置に入力し、前記三次元形状製造装置を動作させて前記ゲージを製造する、
測定データの補正方法。
In the measurement data correction method according to any one of claims 1 to 5,
In the manufacturing process, the mathematically defined free curve data and the mathematically defined reference portion data are input to a three-dimensional shape manufacturing apparatus for forming a three-dimensional shape, operating the original shape manufacturing device to manufacture the gauge;
A method of correcting measurement data.
請求項1から6のいずれか一項に記載の測定データの補正方法において、
前記補正データ算出工程は、
前記対象測定データ中の複数の前記曲面部毎の曲率半径のうちで最大曲率半径及び最小曲率半径を含む範囲内における曲率半径と、前記対象測定データを補正する補正データとの関係を示す補正関数を定める補正関数設定工程と、
前記対象測定データ中の複数の前記曲面部毎の曲率半径を前記補正関数に代入して、前記対象測定データ中の複数の前記曲面部毎の前記補正データを求める補正データ演算工程と、
を含む、
測定データの補正方法。
In the measurement data correction method according to any one of claims 1 to 6,
The correction data calculation step includes:
A correction function indicating a relationship between a curvature radius within a range including a maximum curvature radius and a minimum curvature radius among the curvature radii for each of the plurality of curved surface portions in the target measurement data, and correction data for correcting the target measurement data. A correction function setting step for determining
a correction data calculation step of obtaining the correction data for each of the plurality of curved surface portions in the target measurement data by substituting the radius of curvature of each of the plurality of curved surface portions in the target measurement data into the correction function;
including,
A method of correcting measurement data.
請求項1から6のいずれか一項に記載の測定データの補正方法において、
前記補正データ算出工程は、
前記対象測定データ中の複数の前記曲面部毎の曲率中心座標のうちで最大座標値及び最小座標値を含む範囲内における曲率中心座標と、前記対象測定データを補正する補正データとの関係を示す補正関数を定める補正関数設定工程と、
前記対象測定データ中の複数の前記曲面部毎の曲率中心座標を前記補正関数に代入して、前記対象測定データ中の複数の前記曲面部毎の前記補正データを求める補正データ演算工程と、
を含む、
測定データの補正方法。
In the measurement data correction method according to any one of claims 1 to 6,
The correction data calculation step includes:
showing a relationship between curvature center coordinates within a range including a maximum coordinate value and a minimum coordinate value among curvature center coordinates for each of the plurality of curved surface portions in the target measurement data, and correction data for correcting the target measurement data; a correction function setting step of determining a correction function;
a correction data calculation step of obtaining the correction data for each of the plurality of curved surface portions in the target measurement data by substituting the curvature center coordinates of each of the plurality of curved surface portions in the target measurement data into the correction function;
including,
A method of correcting measurement data.
JP2023063676A 2023-04-10 How to correct measurement data Active JP7511858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023063676A JP7511858B2 (en) 2023-04-10 How to correct measurement data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019060510A JP2020159911A (en) 2019-03-27 2019-03-27 Gauge, method for measuring the same, method for evaluating accuracy of shape measurement machine, and method for correcting measurement data
JP2023063676A JP7511858B2 (en) 2023-04-10 How to correct measurement data

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019060510A Division JP2020159911A (en) 2019-03-27 2019-03-27 Gauge, method for measuring the same, method for evaluating accuracy of shape measurement machine, and method for correcting measurement data

Publications (2)

Publication Number Publication Date
JP2023082223A true JP2023082223A (en) 2023-06-13
JP7511858B2 JP7511858B2 (en) 2024-07-08

Family

ID=

Also Published As

Publication number Publication date
JP2020159911A (en) 2020-10-01
WO2020196030A1 (en) 2020-10-01

Similar Documents

Publication Publication Date Title
US4908782A (en) Airfoil inspection method
JP5908102B2 (en) Preparation for operation of contact scanning coordinate measuring instrument
US6985238B2 (en) Non-contact measurement system for large airfoils
US11976920B2 (en) Automated test plan validation for object measurement by a coordinate measuring machine
Rhinithaa et al. Comparative study of roundness evaluation algorithms for coordinate measurement and form data
CN110806571A (en) Multi-structure optical sensor spatial attitude calibration piece and calibration method thereof
Backhaus et al. A parametrization describing blisk airfoil variations referring to modal analysis
CN115046511A (en) Blade circumferential arc hammer foot-shaped tenon three-coordinate measurement coordinate system construction method
WO2020049911A1 (en) Method of creating wafer shape data
JP2012145551A (en) R-shape measuring device, r-shape measuring method, and r-shape measuring program
JP7511858B2 (en) How to correct measurement data
JP2023082223A (en) Correction method for measurement data
Lotze et al. 3D gear measurement by CMM
Van Gestel et al. Determining measurement uncertainties of feature measurements on CMMs
Abdullah et al. Twist springback measurement of autonomous underwater vehicle propeller blade based on profile deviation
JP3999063B2 (en) CMM, CMM calibration method, and computer-readable storage medium storing program for executing the method
CN115164809A (en) Six-axis measurement and error compensation method for blisk
Acko et al. Traceability of in-process measurement of workpiece geometry
US20190283207A1 (en) Screw rotor processing method and screw rotor lead correction calculation device
JP4634657B2 (en) Calibration method for surface texture measuring device
CN104006781A (en) Computing method of curved surface normal vector measurement accuracy
CN112525130B (en) Contact type local curvature characteristic measuring method and system
CN114782315B (en) Shaft hole assembly pose precision detection method, device, equipment and storage medium
JPH0777420A (en) Shape parameter measuring method and device for limited multi-dimensional shape
JPH10311719A (en) Method for displaying total accuracy index of gear

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230410

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240618