JP7498991B2 - How to treat chlorine gas - Google Patents

How to treat chlorine gas Download PDF

Info

Publication number
JP7498991B2
JP7498991B2 JP2023523065A JP2023523065A JP7498991B2 JP 7498991 B2 JP7498991 B2 JP 7498991B2 JP 2023523065 A JP2023523065 A JP 2023523065A JP 2023523065 A JP2023523065 A JP 2023523065A JP 7498991 B2 JP7498991 B2 JP 7498991B2
Authority
JP
Japan
Prior art keywords
chlorine gas
hydrochloric acid
valuable metals
chloride
ferrous chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023523065A
Other languages
Japanese (ja)
Other versions
JPWO2023048196A1 (en
Inventor
慶太 山田
幸雄 佐久間
太郎 平岡
順 中澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asaka Riken Co Ltd
Original Assignee
Asaka Riken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asaka Riken Co Ltd filed Critical Asaka Riken Co Ltd
Publication of JPWO2023048196A1 publication Critical patent/JPWO2023048196A1/ja
Priority to JP2024029857A priority Critical patent/JP2024055948A/en
Application granted granted Critical
Publication of JP7498991B2 publication Critical patent/JP7498991B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/10Hydrochloric acid, other halogenated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Description

本発明は、塩素ガスの処理方法に関する。 The present invention relates to a method for treating chlorine gas.

近年、リチウムイオン電池の普及に伴い、廃リチウムイオン電池からリチウム、マンガン、ニッケル、コバルト等の有価金属を回収し、前記リチウムイオン電池の正極活物質として再利用する方法が検討されている。In recent years, with the widespread use of lithium-ion batteries, methods are being considered for recovering valuable metals such as lithium, manganese, nickel, and cobalt from used lithium-ion batteries and reusing them as positive electrode active materials for the lithium-ion batteries.

従来、前記廃リチウムイオン電池から前記有価金属を回収する際には、該廃リチウムイオン電池を加熱処理(焙焼)して、ないし加熱処理せずに粉砕、分級する等して得られた前記有価金属を含む粉末(以下、電池粉という)を塩酸に溶解し、該有価金属を塩酸により浸出して得られた浸出液を溶媒抽出に供することが行われている(例えば、特許文献1、2参照)。Conventionally, when recovering the valuable metals from the waste lithium-ion batteries, the waste lithium-ion batteries are heated (roasted), or crushed and classified without being heated to obtain a powder containing the valuable metals (hereinafter referred to as battery powder), which is dissolved in hydrochloric acid, and the valuable metals are leached with hydrochloric acid, and the leachate obtained is subjected to solvent extraction (see, for example, Patent Documents 1 and 2).

特許第4388091号公報Patent No. 4388091 特許第4865745号公報Patent No. 4865745

しかしながら、前記電池粉を塩酸に溶解し、前記有価金属を塩酸により浸出すると、浸出反応により発生する塩素ガスにより、装置が腐食されたり、作業環境が汚染されたりするという不都合がある。However, when the battery powder is dissolved in hydrochloric acid and the valuable metals are leached with hydrochloric acid, there is a disadvantage that the chlorine gas generated by the leaching reaction can corrode the equipment and pollute the working environment.

本発明は、かかる不都合を解消して、前記電池粉を塩酸に溶解し、前記有価金属を塩酸により浸出する際に発生する塩素ガスを無害化又は有効に活用できる塩素ガスの処理方法を提供することを目的とする。The present invention aims to eliminate such inconveniences and provide a method for treating chlorine gas that can render harmless or effectively utilize the chlorine gas generated when the battery powder is dissolved in hydrochloric acid and the valuable metals are leached with hydrochloric acid.

本発明者らは上記課題に鑑み検討を重ね、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスを還元剤、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つと反応させ、無害化又は有効に活用できることを見出した。本発明はこれらの知見に基づき完成されるに至ったものである。The inventors of the present invention have conducted extensive research in light of the above-mentioned problems and have discovered that powder containing valuable metals obtained from waste lithium-ion batteries can be dissolved in hydrochloric acid, and the chlorine gas generated when the valuable metals are leached with hydrochloric acid can be made harmless or effectively utilized by reacting it with at least one selected from the group consisting of a reducing agent, an alkali metal hydroxide, and an alkaline earth metal hydroxide. The present invention has been completed based on these findings.

かかる目的を達成するために、本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスを還元剤、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つと反応させ、無害化又は有効に活用できる。
In order to achieve this object , the method for treating chlorine gas of the present invention comprises dissolving a powder containing valuable metals obtained from waste lithium ion batteries in hydrochloric acid, and reacting the chlorine gas generated when the valuable metals are leached with hydrochloric acid with at least one selected from the group consisting of a reducing agent, an alkali metal hydroxide, and an alkaline earth metal hydroxide, thereby rendering the chlorine gas harmless or making effective use of it.

本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスを、第1の塩化第一鉄水溶液に吸収させて、該第1の塩化第一鉄水溶液に対して塩化第二鉄の濃度が増大した、塩化第二鉄を含有する第2の塩化第一鉄水溶液を生成させる工程を含む。
尚、前記塩化第一鉄水溶液における前記塩化第二鉄の濃度とは、前記塩化第一鉄水溶液が含有する塩化第一鉄と塩化第二鉄との合計モル数に対する塩化第二鉄の割合を意味する。また、前記第2の塩化第一鉄水溶液は、前記第1の塩化第一鉄水溶液に対して塩化第二鉄の濃度が増大しているので、以下、便宜的に塩化第二鉄水溶液と記載することがある。
前記工程により、前記塩素ガスが塩化第二鉄として固定化されるので、該塩素ガスを無害化できる。
The method for treating chlorine gas of the present invention comprises the steps of dissolving powder containing valuable metals obtained from waste lithium ion batteries in hydrochloric acid, and absorbing chlorine gas generated when the valuable metals are leached with hydrochloric acid into a first aqueous ferrous chloride solution, thereby producing a second aqueous ferrous chloride solution containing ferric chloride in which the ferric chloride concentration is increased relative to the first aqueous ferrous chloride solution.
The concentration of ferric chloride in the ferrous chloride aqueous solution means the ratio of ferric chloride to the total number of moles of ferrous chloride and ferric chloride contained in the ferrous chloride aqueous solution. Since the second ferrous chloride aqueous solution has an increased ferric chloride concentration compared to the first ferrous chloride aqueous solution, it may be referred to as an ferric chloride aqueous solution hereinafter for convenience.
By this process, the chlorine gas is immobilized as ferric chloride, and the chlorine gas can be rendered harmless.

本発明の塩素ガスの処理方法は、好ましくは、前記塩素ガスを、第1の塩化第一鉄水溶液に吸収させることにより生成した、前記塩化第二鉄を含有する第2の塩化第一鉄水溶液を、鉄と接触させて該第2の塩化第一鉄水溶液が含有する塩化第二鉄の少なくとも一部を還元し、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含有する第3の塩化第一鉄水溶液を生成させる工程を更に含む。
前記塩化第二鉄を含有する第2の塩化第一鉄水溶液は、鉄と接触させることにより、含有する塩化第二鉄の少なくとも一部が還元されて塩化第一鉄となり、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含む第3の塩化第一鉄水溶液とできる。
The method for treating chlorine gas of the present invention preferably further comprises a step of contacting a second aqueous ferrous chloride solution containing ferric chloride, produced by absorbing the chlorine gas into a first aqueous ferrous chloride solution, with iron to reduce at least a portion of the ferric chloride contained in the second aqueous ferrous chloride solution, thereby producing a third aqueous ferrous chloride solution containing ferric chloride in which the ferric chloride concentration is reduced relative to the second aqueous ferrous chloride solution.
The second aqueous ferrous chloride solution containing ferric chloride can be brought into contact with iron, whereby at least a portion of the ferric chloride contained therein is reduced to ferrous chloride, thereby producing a third aqueous ferrous chloride solution containing ferric chloride in which the ferric chloride concentration is reduced relative to the second aqueous ferrous chloride solution.

前記塩化第二鉄を含む第3の塩化第一鉄水溶液の少なくとも一部を前記第1の塩化第一鉄水溶液として、前記塩素ガスの吸収に用いることができるので、前記塩素ガスを有効に活用できる。At least a portion of the third ferrous chloride aqueous solution containing the ferric chloride can be used as the first ferrous chloride aqueous solution to absorb the chlorine gas, thereby making effective use of the chlorine gas.

本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスを、水素ガスと反応させて、塩化水素を生成させる工程と、該塩化水素を水に吸収させて、第2の塩酸を生成させる工程とを含む。この結果、前記塩素ガスを塩酸にすることで、有効に活用できる。The method for treating chlorine gas of the present invention includes the steps of dissolving powder containing valuable metals obtained from waste lithium-ion batteries in hydrochloric acid, reacting the chlorine gas generated when the valuable metals are leached with hydrochloric acid with hydrogen gas to generate hydrogen chloride, and absorbing the hydrogen chloride into water to generate a second hydrochloric acid. As a result, the chlorine gas can be effectively utilized by converting it into hydrochloric acid.

本発明の塩素ガスの処理方法は、好ましくは、前記塩素ガスを前記水素ガスと反応させて、前記塩化水素を生成させる工程の前に該塩素ガスを精製し、該塩素ガスに含まれる酸素を除去する工程を更に含む。前記塩化水素を生成させる工程の前に該塩素ガスに含まれる酸素を除去することにより、該塩素ガスを前記水素ガスと反応させる際に、酸素によって水素が消費されることを防ぐことができる。The method for treating chlorine gas of the present invention preferably further includes a step of purifying the chlorine gas and removing oxygen contained in the chlorine gas before the step of reacting the chlorine gas with the hydrogen gas to generate the hydrogen chloride. By removing oxygen contained in the chlorine gas before the step of generating hydrogen chloride, it is possible to prevent hydrogen from being consumed by oxygen when the chlorine gas is reacted with the hydrogen gas.

前記第2の塩酸の少なくとも一部を、好ましくは、前記第1の塩酸として、前記有価金属の浸出に用いる。 At least a portion of the second hydrochloric acid is used, preferably as the first hydrochloric acid, for leaching the valuable metals.

本発明の塩素ガスの処理方法は、塩素ガスを、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つを含むアルカリ性吸収液と接触させ、次亜塩素酸塩を生成させる次亜塩素酸塩生成工程と、次亜塩素酸塩と炭素を反応させる第1の次亜塩素酸塩の還元工程を含む。
本発明の塩素ガスの処理方法は、塩素ガスを、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つを含むアルカリ性吸収液と接触させ、次亜塩素酸塩を生成させる次亜塩素酸塩生成工程と、次亜塩素酸塩とアルミニウムを反応させる第2の次亜塩素酸塩の還元工程を含む。
The method for treating chlorine gas of the present invention includes a hypochlorite generation step of contacting chlorine gas with an alkaline absorption liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides to generate hypochlorite , and a first hypochlorite reduction step of reacting hypochlorite with carbon .
The method for treating chlorine gas of the present invention comprises a hypochlorite generation step of contacting chlorine gas with an alkaline absorbing liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides to generate hypochlorite, and a second hypochlorite reduction step of reacting hypochlorite with aluminum.

本発明の塩素ガスの処理方法は、塩素ガスを炭素及び水と反応させ、二酸化炭素を生成させる二酸化炭素生成工程を含む。The chlorine gas treatment method of the present invention includes a carbon dioxide production process in which chlorine gas is reacted with carbon and water to produce carbon dioxide.

本発明の塩素ガスの処理方法は、塩素ガスをアルミニウムと反応させ、塩化アルミニウムを生成させる塩化アルミニウム生成工程を含む。The chlorine gas treatment method of the present invention includes an aluminum chloride production step in which chlorine gas is reacted with aluminum to produce aluminum chloride.

本発明の1実施態様の塩素ガスの処理方法を示すフローチャート。1 is a flow chart showing a method for treating chlorine gas according to one embodiment of the present invention. 本発明の1実施態様の塩素ガスの処理方法に用いる装置構成の一例を示すシステム構成図。FIG. 1 is a system configuration diagram showing an example of an apparatus configuration used in a chlorine gas treatment method according to one embodiment of the present invention. 本発明の1実施態様の塩素ガスの処理方法を示すフローチャート。1 is a flow chart showing a method for treating chlorine gas according to one embodiment of the present invention. 本発明の1実施態様の塩素ガスの処理方法に用いる装置構成の一例を示すシステム構成図。FIG. 1 is a system configuration diagram showing an example of an apparatus configuration used in a chlorine gas treatment method according to one embodiment of the present invention.

添付の図面を参照しながら本発明について更に詳細に説明する。
本発明の塩素ガスの処理方法は、廃リチウムイオン電池から得られた有価金属を含む粉末(電池粉)を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理に用いることができる。
The invention will now be described in more detail with reference to the accompanying drawings.
The method for treating chlorine gas of the present invention can be used to treat chlorine gas generated when a powder containing valuable metals (battery powder) obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached with hydrochloric acid.

本発明の塩素ガスの処理方法において、前記廃リチウムイオン電池とは、電池製品としての寿命が消尽した使用済みのリチウムイオン電池、製造工程で不良品等として廃棄されたリチウムイオン電池、製造工程において製品化に用いられた残余の正極材料等を意味する。In the chlorine gas treatment method of the present invention, the waste lithium ion batteries refer to used lithium ion batteries that have reached the end of their life as battery products, lithium ion batteries that have been discarded as defective products during the manufacturing process, residual positive electrode materials used in the manufacture of products during the manufacturing process, etc.

前記有価金属を含む粉末は、例えば、次のようにして得ることができる。まず、リチウムイオン電池の製造工程において製品化に用いられた残余の正極材料である正極箔(集電体であるアルミニウム箔に正極活物質を含む正極合剤が塗布されたもの)を、電気炉中、例えば100~450℃の範囲の温度で加熱処理(焙焼)した後、又は加熱処理せずにハンマーミル、ジョークラッシャー等の粉砕機で粉砕し、該廃リチウムイオン電池を構成する筐体、集電体等を篩分けにより除去(分級)して、有価金属を含む粉末として、電池粉を得ることができる。The powder containing the valuable metals can be obtained, for example, as follows. First, the positive electrode foil (a positive electrode mixture containing a positive electrode active material is applied to an aluminum foil current collector) that is the residual positive electrode material used in the manufacturing process of lithium-ion batteries is heat-treated (roasted) in an electric furnace at a temperature in the range of, for example, 100 to 450°C, or is crushed with a crusher such as a hammer mill or jaw crusher without being heat-treated, and the casing, current collector, etc. that constitute the waste lithium-ion battery are removed (classified) by sieving to obtain a battery powder containing valuable metals.

あるいは、放電処理後又は加熱処理していない廃リチウムイオン電池を前記粉砕機で粉砕し、筐体、集電体等を篩分けにより除去した後、前記範囲の温度で加熱処理することにより、前記電池粉を得るようにしてもよい。Alternatively, used lithium ion batteries that have not been discharged or heated may be crushed in the crusher, the casing, current collectors, etc. may be removed by sieving, and then the battery powder may be obtained by heat treatment at a temperature within the above range.

本発明の塩素ガスの処理方法では、前記電池粉を塩酸により浸出する。この結果、前記各種有価金属の浸出液が得られる。In the chlorine gas treatment method of the present invention, the battery powder is leached with hydrochloric acid. As a result, a leachate containing the various valuable metals is obtained.

本発明の塩素ガスの処理方法は、該塩素ガスを、還元剤と反応させる工程を含む。以下、塩素ガスと前記還元剤の反応について更に詳しく説明する。The method for treating chlorine gas of the present invention includes a step of reacting the chlorine gas with a reducing agent. The reaction between chlorine gas and the reducing agent is described in more detail below.

本発明の塩素ガスの処理方法の第1の実施態様では、図1に示すように、前記廃リチウムイオン電池に対し、STEP1で前処理を行い、STEP2の電池粉を得ることができる。In a first embodiment of the chlorine gas treatment method of the present invention, as shown in FIG. 1, the waste lithium ion batteries are pretreated in STEP 1, and battery powder is obtained in STEP 2.

次に、STEP3で、前記電池粉を塩酸に溶解し、前記有価金属を塩酸により浸出する。この結果、STEP4で、前記有価金属の塩酸溶液である浸出液を得ることができる。
前記浸出液は、STEP5の溶媒抽出で、中和された後、前記有価金属のうち、マンガン、コバルト、ニッケルが順次溶媒抽出される。そして、STEP6で、抽出残液としてリチウム塩水溶液を得ることができる。前記リチウム塩水溶液は、炭酸ガス又は炭酸化合物と反応させることにより、炭酸リチウムを得ることができる。
Next, in STEP 3, the battery powder is dissolved in hydrochloric acid, and the valuable metals are leached with the hydrochloric acid. As a result, in STEP 4, a leachate that is a hydrochloric acid solution of the valuable metals can be obtained.
The leachate is neutralized in the solvent extraction in STEP 5, and then manganese, cobalt, and nickel are successively extracted from the valuable metals by solvent extraction in STEP 6. Then, an aqueous lithium salt solution can be obtained as an extraction residue in STEP 6. The aqueous lithium salt solution can be reacted with carbon dioxide gas or a carbonate compound to obtain lithium carbonate.

一方、STEP3で、前記電池粉を塩酸に溶解すると、前記有価金属が塩酸に浸出される際の浸出反応により、STEP7で塩素ガスが発生する。第1の実施態様の塩素ガスの処理方法は、STEP7で発生する塩素ガスの処理方法であり、例えば、図2に示す塩素ガス処理装置1により実施することができる。On the other hand, when the battery powder is dissolved in hydrochloric acid in STEP 3, a leaching reaction occurs when the valuable metal is leached into the hydrochloric acid, and chlorine gas is generated in STEP 7. The chlorine gas treatment method of the first embodiment is a method for treating the chlorine gas generated in STEP 7, and can be carried out, for example, by the chlorine gas treatment device 1 shown in FIG.

塩素ガス処理装置1は、廃リチウムイオン電池から得られた電池粉を塩酸に溶解し、該電池粉に含まれる有価金属を塩酸により浸出する塩酸浸出槽2と、塩酸浸出槽2で生成した塩素ガスを第1の塩化第一鉄水溶液(以下、便宜的に、塩化第一鉄水溶液と記載することがある)に吸収させ、塩化第二鉄を含有する第2の塩化第一鉄水溶液を生成させる反応塔3と、反応塔3で生成した塩化第二鉄を含有する第2の塩化第一鉄水溶液を鉄と接触させ、該第2の塩化第一鉄水溶液が含有する塩化第二鉄の少なくとも一部を還元して塩化第一鉄とする還元反応槽4とを備える。The chlorine gas treatment device 1 comprises a hydrochloric acid leaching tank 2 in which battery powder obtained from waste lithium ion batteries is dissolved in hydrochloric acid and valuable metals contained in the battery powder are leached with hydrochloric acid, a reaction tower 3 in which the chlorine gas produced in the hydrochloric acid leaching tank 2 is absorbed into a first aqueous ferrous chloride solution (hereinafter, for convenience, may be referred to as an aqueous ferrous chloride solution) to produce a second aqueous ferrous chloride solution containing ferric chloride, and a reduction reaction tank 4 in which the second aqueous ferrous chloride solution containing ferric chloride produced in the reaction tower 3 is brought into contact with iron to reduce at least a portion of the ferric chloride contained in the second aqueous ferrous chloride solution to ferrous chloride.

前記第2の塩化第一鉄水溶液は、前記第1の塩化第一鉄水溶液が反応塔3で塩素ガスを吸収して生成された結果、該第1の塩化第一鉄水溶液に対して塩化第二鉄の濃度が増大しているので、以下、便宜的に、塩化第二鉄水溶液と記載することがある。また、前記還元反応槽4では、前記第2の塩化第一鉄水溶液が含有する塩化第二鉄の少なくとも一部が還元されて塩化第一鉄となるので、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含む第3の塩化第一鉄水溶液(以下、便宜的に、塩化第一鉄水溶液と記載することがある)が生成される。The second ferrous chloride aqueous solution is produced by absorbing chlorine gas from the first ferrous chloride aqueous solution in the reaction tower 3, and as a result, the concentration of ferric chloride is increased relative to the first ferrous chloride aqueous solution, and therefore, for convenience, may be referred to as ferric chloride aqueous solution hereinafter. In addition, in the reduction reaction tank 4, at least a portion of the ferric chloride contained in the second ferrous chloride aqueous solution is reduced to ferrous chloride, and a third ferrous chloride aqueous solution (hereinafter, for convenience, may be referred to as ferrous chloride aqueous solution) containing ferric chloride is produced, in which the concentration of ferric chloride is reduced relative to the second ferrous chloride aqueous solution.

塩酸浸出槽2は、塩酸を供給する塩酸供給導管21と、電池粉を供給する電池粉供給手段22と、希釈空気を供給する希釈空気供給導管23とを上部に備える一方、電池粉に含まれる有価金属を塩酸により浸出して得られた浸出液24を取り出す浸出液取出導管25を底部に備える。また、塩酸浸出槽2は、前記有価金属を塩酸により浸出する際の浸出反応により生成する塩素ガスを取り出す塩素ガス取出導管26を上部に備え、塩素ガス取出導管26は反応塔3に接続されている。The hydrochloric acid leaching tank 2 is provided at its upper part with a hydrochloric acid supply pipe 21 for supplying hydrochloric acid, a battery powder supply means 22 for supplying battery powder, and a dilution air supply pipe 23 for supplying dilution air, while at its bottom part is provided with a leaching solution extraction pipe 25 for extracting leaching solution 24 obtained by leaching valuable metals contained in the battery powder with hydrochloric acid. The hydrochloric acid leaching tank 2 is also provided at its upper part with a chlorine gas extraction pipe 26 for extracting chlorine gas generated by the leaching reaction when the valuable metals are leached with hydrochloric acid, and the chlorine gas extraction pipe 26 is connected to the reaction tower 3.

反応塔3は、底部に塩化第一鉄水溶液31(第1の塩化第一鉄水溶液)が貯留される一方、塩化第一鉄水溶液31の上方に充填材が充填された充填材層32が形成されている。また、反応塔3は、底部に貯留されている塩化第一鉄水溶液31を取り出し、充填材層32の上方から供給する循環導管33を備える。循環導管33は、途中に第1ポンプ34を備える一方、第1ポンプ34の下流側に第1切換弁35を備える。第1切換弁35からは、反応塔3で生成した塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)を還元反応槽4に供給する塩化第二鉄水溶液供給導管36が分岐しており、塩化第二鉄水溶液供給導管36は還元反応槽4の上部に接続されている。さらに、反応塔3は、空気を大気に解放する空気解放導管37を充填材層32の上方の塔頂に備え、空気解放導管37は、途中に反応塔3内の空気を吸引するブロワー38を備えている。The reaction tower 3 has an aqueous ferrous chloride solution 31 (first aqueous ferrous chloride solution) stored at the bottom, and a filler layer 32 filled with filler formed above the aqueous ferrous chloride solution 31. The reaction tower 3 also has a circulation conduit 33 that takes out the aqueous ferrous chloride solution 31 stored at the bottom and supplies it from above the filler layer 32. The circulation conduit 33 has a first pump 34 in the middle, and a first switching valve 35 downstream of the first pump 34. A ferric chloride aqueous solution supply conduit 36 that supplies the aqueous ferric chloride solution (second aqueous ferrous chloride solution containing ferric chloride) generated in the reaction tower 3 to the reduction reaction tank 4 branches off from the first switching valve 35, and the ferric chloride aqueous solution supply conduit 36 is connected to the upper part of the reduction reaction tank 4. Furthermore, the reaction tower 3 is provided with an air release conduit 37 for releasing air to the atmosphere at the top of the tower above the packing layer 32, and the air release conduit 37 is provided with a blower 38 for sucking air from inside the reaction tower 3 in the middle.

還元反応槽4は、濃度調整水を供給する水供給導管41と、鉄片等の鉄を供給する鉄供給手段42とを上部に備える一方、塩化第二鉄水溶液供給導管36により供給される塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)が含有する塩化第二鉄の少なくとも一部が鉄との反応により還元されて生成する、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含む第3の塩化第一鉄水溶液43を取り出す塩化第一鉄水溶液取出導管44を底部に備える。塩化第一鉄水溶液取出導管44は途中に設けられた第2ポンプ45を介して反応塔3の底部に接続される一方、第2ポンプ45の下流側に第2切換弁46を備える。第2切換弁46からは、塩化第一鉄水溶液43の増加分を取り出す増加分取出導管47が分岐している。The reduction reaction tank 4 is provided with a water supply conduit 41 for supplying concentration-adjusted water and an iron supply means 42 for supplying iron such as iron chips at the top, and a ferrous chloride solution extraction conduit 44 at the bottom for extracting a third ferrous chloride solution 43 containing ferric chloride, which is generated by reducing at least a portion of the ferric chloride contained in the ferric chloride solution (second ferrous chloride solution containing ferric chloride) supplied by the ferric chloride solution supply conduit 36 by reaction with iron. The ferrous chloride solution extraction conduit 44 is connected to the bottom of the reaction tower 3 via a second pump 45 provided midway, and is provided with a second switching valve 46 downstream of the second pump 45. An increment extraction conduit 47 for extracting an increment of the ferrous chloride solution 43 branches off from the second switching valve 46.

次に、塩素ガス処理装置1による本実施形態の塩素ガスの処理方法について説明する。
塩素ガス処理装置1では、まず、電池粉供給手段22からSTEP2で得られた電池粉が塩酸浸出槽2に供給される一方、塩酸供給導管21から塩酸が塩酸浸出槽2に供給される。前記塩酸は、例えば、3~12モル/Lの濃度であり、前記電池粉1kgに対し、例えば3~15Lの量が供給される。この結果、塩酸浸出槽2内で前記電池粉が塩酸に溶解され、前記有価金属が塩酸により浸出されて(STEP3)、該有価金属の塩酸溶液である浸出液24を得ることができる(STEP4)。浸出液24は、浸出液取出導管25により取り出され、STEP5の溶媒抽出に供される。
Next, a method for treating chlorine gas using the chlorine gas treatment apparatus 1 according to this embodiment will be described.
In the chlorine gas treatment device 1, first, the battery powder obtained in STEP 2 is supplied to the hydrochloric acid leaching tank 2 from the battery powder supply means 22, while hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 from the hydrochloric acid supply conduit 21. The hydrochloric acid has a concentration of, for example, 3 to 12 mol/L, and is supplied in an amount of, for example, 3 to 15 L per kg of the battery powder. As a result, the battery powder is dissolved in the hydrochloric acid in the hydrochloric acid leaching tank 2, and the valuable metals are leached by the hydrochloric acid (STEP 3), and a leachate 24, which is a hydrochloric acid solution of the valuable metals, can be obtained (STEP 4). The leachate 24 is taken out through the leachate withdrawal conduit 25 and is used for solvent extraction in STEP 5.

また、塩酸浸出槽2では、前記有価金属が塩酸により浸出される際の浸出反応により、塩素ガスが発生する(STEP7)。前記塩素ガスは、反応塔3の空気解放導管37に設けられたブロワー38により、塩素ガス取出導管26を介して吸引されることにより塩酸浸出槽2から取り出され、反応塔3に導入される。In addition, in the hydrochloric acid leaching tank 2, chlorine gas is generated by the leaching reaction when the valuable metals are leached with hydrochloric acid (STEP 7). The chlorine gas is extracted from the hydrochloric acid leaching tank 2 by being sucked through the chlorine gas extraction conduit 26 by a blower 38 provided in the air release conduit 37 of the reaction tower 3, and is introduced into the reaction tower 3.

塩素ガス取出導管26を介して反応塔3に導入された前記塩素ガスは、ブロワー38に吸引されることにより、希釈空気供給導管23から流入する空気と共に、反応塔3内を下方から上方に向かって移動する。一方、反応塔3の底部に貯留される塩化第一鉄水溶液31は、循環導管33を介して第1ポンプ34に吸引されることにより反応塔3から取り出され、充填材層32の上方から反応塔3内に供給される。The chlorine gas introduced into the reaction tower 3 through the chlorine gas extraction conduit 26 is sucked into the blower 38 and moves from bottom to top within the reaction tower 3 together with the air flowing in from the dilution air supply conduit 23. Meanwhile, the aqueous ferrous chloride solution 31 stored at the bottom of the reaction tower 3 is sucked into the first pump 34 through the circulation conduit 33, and is taken out of the reaction tower 3 and supplied into the reaction tower 3 from above the packing layer 32.

塩化第一鉄水溶液31における塩化第二鉄の濃度、すなわち塩化第一鉄水溶液31が含有する塩化第一鉄と塩化第二鉄との合計モル数に対する塩化第二鉄の割合は、初期状態では、例えば、0.1~30モル%の範囲である。The concentration of ferric chloride in the ferrous chloride aqueous solution 31, i.e., the ratio of ferric chloride to the total number of moles of ferrous chloride and ferric chloride contained in the ferrous chloride aqueous solution 31, is, in the initial state, for example, in the range of 0.1 to 30 mol %.

そこで、前記塩素ガスは、反応塔3内を下方から上方に向かって移動する間に塩化第一鉄水溶液31に吸収され(STEP8)、塩化第一鉄水溶液31に含まれる塩化第一鉄の一部を塩化第二鉄に酸化し、塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)を生成する(STEP9)。前記塩素ガスが塩化第一鉄水溶液31に吸収される反応は気液反応であり、充填材層32を形成する充填材の表面で両者が接触することにより効率よく進行する。前記充填材としては、ガラス又は合成樹脂からなるメッシュ状リング(例えば、ラシヒ社製ラシヒスーパーリング(登録商標))等を用いることができる。 The chlorine gas is absorbed into the ferrous chloride aqueous solution 31 while moving from the bottom to the top in the reaction tower 3 (STEP 8), and a part of the ferrous chloride contained in the ferrous chloride aqueous solution 31 is oxidized to ferric chloride to generate an aqueous ferric chloride solution (a second aqueous ferrous chloride solution containing ferric chloride) (STEP 9). The reaction in which the chlorine gas is absorbed into the ferrous chloride aqueous solution 31 is a gas-liquid reaction, and proceeds efficiently when the two come into contact on the surface of the filler that forms the filler layer 32. As the filler, a mesh-shaped ring made of glass or synthetic resin (for example, Raschig Super Ring (registered trademark) manufactured by Raschig) or the like can be used.

また、前記塩素ガスと共に反応塔3に供給される空気は、塩化第一鉄水溶液31に吸収されることがないので、ブロワー38に吸引されて、空気解放導管37から大気中に解放される。 In addition, the air supplied to the reaction tower 3 together with the chlorine gas is not absorbed by the aqueous ferrous chloride solution 31, so it is sucked into the blower 38 and released into the atmosphere through the air release conduit 37.

前記塩化第一鉄が酸化されて前記塩化第二鉄が生成すると、反応塔3の底部に貯留される塩化第一鉄水溶液31が含有する塩化第二鉄の濃度が次第に大きくなり、これに伴って前記塩素ガスの吸収効率が次第に低下する。そこで、塩素ガス処理装置1では、前記塩素ガスの吸収効率が低下する程度に塩化第一鉄水溶液31が含有する塩化第二鉄の濃度が大きくならないように、循環導管33の途中に設けられた第1切換弁35を操作し、塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)の一部を、塩化第二鉄水溶液供給導管36を介して還元反応槽4に供給する。前記塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)の供給は、切換弁35により塩化第二鉄水溶液供給導管36の流量を調整することにより常時行ってもよく、切換弁35を間欠的に操作することにより行ってもよい。When the ferrous chloride is oxidized to generate the ferric chloride, the concentration of ferric chloride contained in the ferrous chloride aqueous solution 31 stored at the bottom of the reaction tower 3 gradually increases, and the absorption efficiency of the chlorine gas gradually decreases accordingly. Therefore, in the chlorine gas treatment device 1, in order to prevent the concentration of ferric chloride contained in the ferrous chloride aqueous solution 31 from increasing to such an extent that the absorption efficiency of the chlorine gas decreases, a first switching valve 35 provided in the middle of the circulation conduit 33 is operated to supply a part of the ferric chloride aqueous solution (a second ferrous chloride aqueous solution containing ferric chloride) to the reduction reaction tank 4 via a ferric chloride aqueous solution supply conduit 36. The supply of the ferric chloride aqueous solution (a second ferrous chloride aqueous solution containing ferric chloride) may be performed continuously by adjusting the flow rate of the ferric chloride aqueous solution supply conduit 36 with the switching valve 35, or may be performed by intermittently operating the switching valve 35.

還元反応槽4では、塩化第二鉄水溶液供給導管36から供給される前記塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)に対して、鉄供給手段42から鉄片等の鉄を供給し、該塩化第二鉄水溶液が含有する塩化第二鉄の少なくとも一部を鉄との反応により還元して塩化第一鉄とする(STEP10)ことにより、塩化第一鉄水溶液(塩化第二鉄を含む第3の塩化第一鉄水溶液)43を生成する(STEP11)。In the reduction reaction tank 4, iron such as iron pieces is supplied from the iron supply means 42 to the ferric chloride aqueous solution (second ferrous chloride aqueous solution containing ferric chloride) supplied from the ferric chloride aqueous solution supply conduit 36, and at least a portion of the ferric chloride contained in the ferric chloride aqueous solution is reduced by reaction with the iron to form ferrous chloride (STEP 10), thereby producing a ferrous chloride aqueous solution (third ferrous chloride aqueous solution containing ferric chloride) 43 (STEP 11).

このとき、還元反応槽4では、水供給導管41から供給される濃度調整水により、生成する塩化第一鉄水溶液43が含有する塩化第二鉄の濃度を反応塔3の底部に貯留される塩化第一鉄水溶液31の初期状態と同等の0.1~30モル%の範囲とすることができる。At this time, in the reduction reaction tank 4, the concentration of ferric chloride contained in the ferrous chloride aqueous solution 43 produced can be adjusted to the range of 0.1 to 30 mol %, which is equivalent to the initial state of the ferrous chloride aqueous solution 31 stored at the bottom of the reaction tower 3, by using concentration-adjusted water supplied from the water supply conduit 41.

第3の塩化第一鉄水溶液43は、塩化第一鉄水溶液取出導管44を介して第2ポンプ45に吸引されることにより、少なくともその一部が還元反応槽4から取り出されて反応塔3に還流され、第1の塩化第一鉄水溶液31として、STEP8で前記塩素ガスの吸収に用いられる。At least a portion of the third aqueous ferrous chloride solution 43 is removed from the reduction reaction tank 4 and returned to the reaction tower 3 by being sucked into the second pump 45 via the aqueous ferrous chloride solution extraction conduit 44, and is used as the first aqueous ferrous chloride solution 31 to absorb the chlorine gas in STEP 8.

また、還元反応槽4では、水供給導管41から供給される濃度調整水により、前記塩化第二鉄水溶液(塩化第二鉄を含む第2の塩化第一鉄水溶液)が吸収している前記塩素ガスの量に対応して、生成する塩化第一鉄水溶液43の量が供給される該塩化第二鉄水溶液の量よりも増加する。そこで、塩化第一鉄水溶液取出導管44に設けられた切換弁46を操作することにより、生成する塩化第一鉄水溶液43の増加分を増加分取出導管47から取り出してもよい。前記増加分取出導管47から取り出される増加分の塩化第一鉄水溶液43は、含有する塩化第一鉄を別途塩素により酸化して塩化第二鉄とすることにより、実質的に塩化第一鉄を含有しない塩化第二鉄水溶液とすることができ、該塩化第二鉄水溶液は、例えば、プリント基板における銅のエッチング液に使用することができる。In the reduction reaction tank 4, the amount of the ferrous chloride aqueous solution 43 produced is increased by the concentration-adjusted water supplied from the water supply conduit 41 in accordance with the amount of chlorine gas absorbed by the ferric chloride aqueous solution (the second ferrous chloride aqueous solution containing ferric chloride) compared to the amount of the ferric chloride aqueous solution supplied. Therefore, by operating the switching valve 46 provided in the ferrous chloride aqueous solution extraction conduit 44, the increase in the ferrous chloride aqueous solution 43 produced may be taken out from the increase extraction conduit 47. The increase in the ferrous chloride aqueous solution 43 taken out from the increase extraction conduit 47 can be made into an ferric chloride aqueous solution that does not substantially contain ferrous chloride by separately oxidizing the ferrous chloride contained therein with chlorine to form ferric chloride, and the ferric chloride aqueous solution can be used, for example, as an etching solution for copper in printed circuit boards.

尚、本実施形態では、切換弁46を操作することにより、塩化第一鉄水溶液43の増加分を増加分取出導管47から取り出すようにしているが、還元反応槽4をオーバーフロー型としておき、前記増加分をオーバーフローさせて図示しない貯留槽に貯留し、該貯留槽から取り出すようにしてもよい。In this embodiment, the increase in the ferrous chloride aqueous solution 43 is extracted from the increase extraction conduit 47 by operating the switching valve 46, but the reduction reaction tank 4 may be an overflow type, and the increase may be allowed to overflow and stored in a storage tank (not shown) and then extracted from the storage tank.

本発明の塩素ガスの処理方法の第2の実施態様では、図3に示すように、前記廃リチウムイオン電池に対し、STEP1で前処理を行い、STEP2の電池粉を得ることができる。In a second embodiment of the chlorine gas treatment method of the present invention, as shown in Figure 3, the waste lithium ion batteries are pretreated in STEP 1, and battery powder is obtained in STEP 2.

次に、STEP3で、前記電池粉を第1の塩酸に溶解し、前記有価金属を第1の塩酸により浸出する。この結果、STEP4で、前記有価金属の塩酸溶液である浸出液を得ることができる。Next, in STEP 3, the battery powder is dissolved in a first hydrochloric acid, and the valuable metal is leached by the first hydrochloric acid. As a result, in STEP 4, a leachate that is a hydrochloric acid solution of the valuable metal can be obtained.

前記浸出液は、STEP5の溶媒抽出で、中和された後、前記有価金属のうち、マンガン、コバルト、ニッケルが順次溶媒抽出される。そして、STEP6で、抽出残液としてリチウム塩水溶液を得ることができる。前記リチウム塩水溶液は、炭酸ガス又は炭酸化合物と反応させることにより、炭酸リチウムを得ることができる。The leachate is neutralized in the solvent extraction in STEP 5, and then manganese, cobalt, and nickel are successively extracted from the valuable metals with a solvent. Then, in STEP 6, an aqueous lithium salt solution can be obtained as the extraction residue. The aqueous lithium salt solution can be reacted with carbon dioxide gas or a carbonate compound to obtain lithium carbonate.

一方、STEP3で、前記電池粉を第1の塩酸に溶解すると、前記有価金属が第1の塩酸に浸出される際の浸出反応により、STEP7で塩素ガスが発生する。本実施形態の塩素ガスの処理方法は、STEP7で発生する塩素ガスの処理方法であり、例えば、図4に示す塩素ガス処理装置1aにより実施することができる。On the other hand, when the battery powder is dissolved in the first hydrochloric acid in STEP 3, a leaching reaction occurs when the valuable metal is leached into the first hydrochloric acid, and chlorine gas is generated in STEP 7. The method for treating chlorine gas in this embodiment is a method for treating chlorine gas generated in STEP 7, and can be carried out, for example, by a chlorine gas treatment device 1a shown in FIG.

塩素ガス処理装置1aは、廃リチウムイオン電池から得られた電池粉を第1の塩酸に溶解し、該電池粉に含まれる有価金属を第1の塩酸により浸出する塩酸浸出槽2と、塩酸浸出槽2で生成した塩素ガスから酸素を含む空気や粉塵などを分離・除去し、塩素ガスを精製する塩素精製塔3aと、水素ガスを精製する水素供給設備4aと、精製した塩素ガスと水素ガスとを高温下で反応させ、塩化水素を生成させる燃焼塔5と、燃焼塔5で生成した塩化水素を水に吸収させ、第2の塩酸を生成させる塩酸吸収塔6と、塩酸吸収塔6に吸収液を供給する吸収液供給槽7を備える。The chlorine gas treatment device 1a includes a hydrochloric acid leaching tank 2 in which battery powder obtained from waste lithium-ion batteries is dissolved in a first hydrochloric acid and valuable metals contained in the battery powder are leached with the first hydrochloric acid, a chlorine refining tower 3a in which oxygen-containing air and dust are separated and removed from the chlorine gas produced in the hydrochloric acid leaching tank 2 to produce chlorine gas, a hydrogen supply facility 4a in which hydrogen gas is refined, a combustion tower 5 in which the refined chlorine gas and hydrogen gas are reacted at high temperature to produce hydrogen chloride, a hydrochloric acid absorption tower 6 in which the hydrogen chloride produced in the combustion tower 5 is absorbed into water to produce a second hydrochloric acid, and an absorption liquid supply tank 7 in which an absorption liquid is supplied to the hydrochloric acid absorption tower 6.

塩酸浸出槽2は、第1の塩酸を供給する塩酸供給導管21と、電池粉を供給する電池粉供給手段22とを上部に備える一方、電池粉に含まれる有価金属を第1の塩酸により浸出して得られた浸出液23aを取り出す浸出液取出導管24aを底部に備える。また、塩酸浸出槽2は、前記有価金属を第1の塩酸により浸出する際の浸出反応により生成する塩素ガスを取り出す塩素ガス取出導管25aを上部に備え、塩素ガス取出導管25aは塩素精製塔3aに接続されている。The hydrochloric acid leaching tank 2 is provided at its top with a hydrochloric acid supply pipe 21 for supplying the first hydrochloric acid and a battery powder supply means 22 for supplying the battery powder, while at its bottom with a leaching solution extraction pipe 24a for extracting the leaching solution 23a obtained by leaching the valuable metals contained in the battery powder with the first hydrochloric acid. The hydrochloric acid leaching tank 2 is also provided at its top with a chlorine gas extraction pipe 25a for extracting the chlorine gas produced by the leaching reaction when the valuable metals are leached with the first hydrochloric acid, and the chlorine gas extraction pipe 25a is connected to the chlorine purification tower 3a.

塩素精製塔3aは、精製した塩素ガスを取り出す精製塩素ガス取出導管31aを上部に備え、精製塩素ガス取出導管31aは燃焼塔5の塩素バーナ51に接続されている。The chlorine purification tower 3a is equipped with a purified chlorine gas extraction conduit 31a at the top for extracting purified chlorine gas, and the purified chlorine gas extraction conduit 31a is connected to a chlorine burner 51 in the combustion tower 5.

水素供給設備4aは水素ガス取出導管41aを上部に備え、水素ガス取出導管41aは燃焼塔5の塩素バーナ51に接続されている。The hydrogen supply equipment 4a has a hydrogen gas extraction pipe 41a at the top, which is connected to a chlorine burner 51 in the combustion tower 5.

燃焼塔5は、精製塩素ガス取出導管31aから供給される塩素ガスと、水素ガス取出導管41aから供給される水素ガスとを燃焼させて塩化水素を生成させる塩素バーナ51を底部に備える一方、生成した塩化水素を冷却する燃焼塔冷却水ジャケット52を外周部に備える。また、燃焼塔5は、生成した塩化水素を塩酸吸収塔6に供給する塩化水素供給導管53を上部に備える。燃焼塔冷却水ジャケット52は、下部に冷却水を供給する燃焼塔冷却水供給導管54を備え、上部に冷却水を取り出す燃焼塔冷却水取出導管55を備える。The combustion tower 5 is equipped with a chlorine burner 51 at the bottom that burns chlorine gas supplied from the purified chlorine gas extraction conduit 31a and hydrogen gas supplied from the hydrogen gas extraction conduit 41a to generate hydrogen chloride, and a combustion tower cooling water jacket 52 at the outer periphery that cools the generated hydrogen chloride. The combustion tower 5 is also equipped with a hydrogen chloride supply conduit 53 at the top that supplies the generated hydrogen chloride to the hydrochloric acid absorption tower 6. The combustion tower cooling water jacket 52 is equipped with a combustion tower cooling water supply conduit 54 at the bottom that supplies cooling water, and a combustion tower cooling water extraction conduit 55 at the top that extracts cooling water.

塩化水素供給導管53の上方には、塩化水素を冷却する冷却水を散布する散水槽56が設けられ、下方には、散水槽56から散布された冷却水を収容する受水槽57が設けられている。散水槽56は冷却水を供給する散水槽冷却水供給導管58を備え、受水槽57は冷却水を取り出す受水槽冷却水取出導管59を備える。Above the hydrogen chloride supply conduit 53, there is provided a spray tank 56 that sprays cooling water to cool the hydrogen chloride, and below, there is provided a water receiving tank 57 that stores the cooling water sprayed from the spray tank 56. The spray tank 56 is provided with a spray tank cooling water supply conduit 58 that supplies the cooling water, and the water receiving tank 57 is provided with a water receiving tank cooling water extraction conduit 59 that extracts the cooling water.

塩酸吸収塔6は、生成した第2の塩酸を取り出す塩酸取出導管61を底部に備える一方、未反応の塩化水素を取り出す塩化水素取出導管62を下部に備える。また、塩酸吸収塔6は、内部の塔頂の直下に、吸収液供給槽7から吸収液が供給される第1の貯留槽63を備え、第1の貯留槽63の下方に内筒64を備える。内筒64は上端縁の外周側に第2の貯留槽65を備える。さらに、塩酸吸収塔6は塩化水素及び生成した第2の塩酸を冷却する塩酸吸収塔冷却水ジャケット66を外周部に備える。The hydrochloric acid absorption tower 6 is provided with a hydrochloric acid extraction conduit 61 at the bottom for extracting the generated second hydrochloric acid, and a hydrogen chloride extraction conduit 62 at the bottom for extracting unreacted hydrogen chloride. The hydrochloric acid absorption tower 6 is also provided with a first storage tank 63 directly below the top of the tower, to which the absorption liquid is supplied from the absorption liquid supply tank 7, and an inner cylinder 64 below the first storage tank 63. The inner cylinder 64 is provided with a second storage tank 65 on the outer periphery of the upper edge. The hydrochloric acid absorption tower 6 is also provided with a hydrochloric acid absorption tower cooling water jacket 66 on the outer periphery for cooling the hydrogen chloride and the generated second hydrochloric acid.

塩酸取出導管61は、途中に設けられた塩酸ポンプ61aを介して塩酸浸出槽2に接続されている。塩化水素取出導管62は途中で設けられたブロワー62aを介して吸収液供給槽7の底部に接続されている。塩酸吸収塔冷却水ジャケット66は、下部に冷却水を供給する塩酸吸収塔冷却水供給導管67を備え、上部に冷却水を取り出す塩酸吸収塔冷却水取出導管68を備える。The hydrochloric acid extraction conduit 61 is connected to the hydrochloric acid leaching tank 2 via a hydrochloric acid pump 61a installed midway. The hydrogen chloride extraction conduit 62 is connected to the bottom of the absorption liquid supply tank 7 via a blower 62a installed midway. The hydrochloric acid absorption tower cooling water jacket 66 is provided with a hydrochloric acid absorption tower cooling water supply conduit 67 that supplies cooling water to the lower part, and a hydrochloric acid absorption tower cooling water extraction conduit 68 that extracts cooling water from the upper part.

吸収液供給槽7は、水を供給する水供給導管71と、ガスを解放するガス解放導管72とを上部に備え、塩化水素を吸収して希塩酸となった吸収液を塩酸吸収塔6の上部へ供給する吸収液供給導管73を下部に備える。ガス解放導管72は、吸収液供給槽7の内圧が一定以上になると開く逆止弁74を備える。The absorption liquid supply tank 7 is provided with a water supply conduit 71 for supplying water and a gas release conduit 72 for releasing gas at its upper part, and an absorption liquid supply conduit 73 at its lower part for supplying the absorption liquid that has absorbed hydrogen chloride and become dilute hydrochloric acid to the upper part of the hydrochloric acid absorption tower 6. The gas release conduit 72 is provided with a check valve 74 that opens when the internal pressure of the absorption liquid supply tank 7 reaches or exceeds a certain level.

また、塩素ガス処理装置1aは、塩酸吸収塔冷却水取出導管68により塩酸吸収塔冷却水ジャケット66から取り出された冷却水が、散水槽56、受水槽57及び燃焼塔冷却水ジャケット52を介して塩酸吸収塔冷却水取出導管68に循環されるように構成されていてもよい。この場合、例えば、塩酸吸収塔冷却水取出導管68は、散水槽56に冷却水を供給する散水槽冷却水供給導管58に接続され、受水槽57から冷却水を取り出す受水槽冷却水取出導管59は、燃焼塔冷却水ジャケット52に冷却水を供給する燃焼塔冷却水供給導管54に接続され、燃焼塔冷却水ジャケット52から冷却水を取り出す燃焼塔冷却水取出導管55は、塩酸吸収塔冷却水ジャケット66に冷却水を供給する塩酸吸収塔冷却水供給導管67に接続される。また、燃焼塔冷却水取出導管55と塩酸吸収塔冷却水供給導管67との途中に熱交換器81と冷却水ポンプ82とを設けてもよい。 The chlorine gas treatment device 1a may also be configured so that the cooling water taken out from the hydrochloric acid absorption tower cooling water jacket 66 by the hydrochloric acid absorption tower cooling water take-out conduit 68 is circulated to the hydrochloric acid absorption tower cooling water take-out conduit 68 via the sprinkler tank 56, the water receiving tank 57 and the combustion tower cooling water jacket 52. In this case, for example, the hydrochloric acid absorption tower cooling water take-out conduit 68 is connected to the sprinkler tank cooling water supply conduit 58 that supplies cooling water to the sprinkler tank 56, the water receiving tank cooling water take-out conduit 59 that takes out cooling water from the water receiving tank 57 is connected to the combustion tower cooling water supply conduit 54 that supplies cooling water to the combustion tower cooling water jacket 52, and the combustion tower cooling water take-out conduit 55 that takes out cooling water from the combustion tower cooling water jacket 52 is connected to the hydrochloric acid absorption tower cooling water supply conduit 67 that supplies cooling water to the hydrochloric acid absorption tower cooling water jacket 66. Further, a heat exchanger 81 and a cooling water pump 82 may be provided midway between the combustion tower cooling water outlet pipe 55 and the hydrochloric acid absorption tower cooling water supply pipe 67 .

次に、塩素ガス処理装置1aによる本発明の第2の実施態様の塩素ガスの処理方法について説明する。
塩素ガス処理装置1aでは、まず、電池粉供給手段22からSTEP2で得られた電池粉が塩酸浸出槽2に供給される一方、塩酸供給導管21から第1の塩酸が塩酸浸出槽2に供給される。前記第1の塩酸は、例えば、3~12モル/Lの濃度であり、前記電池粉1kgに対し、例えば3~15Lの量が供給される。この結果、塩酸浸出槽2内で前記電池粉が第1の塩酸に溶解され、前記有価金属が第1の塩酸により浸出されて(STEP3)、該有価金属の塩酸溶液である浸出液23aを得ることができる(STEP4)。浸出液23aは、浸出液取出導管24aにより取り出され、STEP5の溶媒抽出に供される。
Next, a method for treating chlorine gas using the chlorine gas treatment apparatus 1a according to the second embodiment of the present invention will be described.
In the chlorine gas treatment device 1a, first, the battery powder obtained in STEP 2 is supplied to the hydrochloric acid leaching tank 2 from the battery powder supply means 22, while the first hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 from the hydrochloric acid supply pipe 21. The first hydrochloric acid has a concentration of, for example, 3 to 12 mol/L, and is supplied in an amount of, for example, 3 to 15 L per kg of the battery powder. As a result, the battery powder is dissolved in the first hydrochloric acid in the hydrochloric acid leaching tank 2, and the valuable metals are leached by the first hydrochloric acid (STEP 3), and a leachate 23a, which is a hydrochloric acid solution of the valuable metals, can be obtained (STEP 4). The leachate 23a is taken out through the leachate withdrawal pipe 24a and is used for solvent extraction in STEP 5.

また、塩酸浸出槽2では、前記有価金属が第1の塩酸により浸出される際の浸出反応により、塩素ガスが発生する(STEP7)。前記塩素ガスは、塩素精製塔3aに設けられた図示しない塩素ガス供給手段により塩素ガス取出導管25aを介して塩酸浸出槽2から取り出され、塩素精製塔3aに供給される。In addition, in the hydrochloric acid leaching tank 2, chlorine gas is generated by the leaching reaction when the valuable metals are leached by the first hydrochloric acid (STEP 7). The chlorine gas is extracted from the hydrochloric acid leaching tank 2 through the chlorine gas extraction conduit 25a by a chlorine gas supply means (not shown) provided in the chlorine purification tower 3a, and is supplied to the chlorine purification tower 3a.

塩素ガス取出導管25aを介して塩素精製塔3aに導入された前記塩素ガスは、水を充填した湿式スクラバ、膜分離法、加圧冷却による塩素の液化等により酸素を含む空気や粉塵などを分離・除去され、精製される(STEP8)。精製された塩素ガスは前記塩素ガス供給手段により塩素精製塔3aから取り出され、精製塩素ガス取出導管31aを介して燃焼塔5に供給される。The chlorine gas introduced into the chlorine purification tower 3a through the chlorine gas extraction conduit 25a is purified by separating and removing oxygen-containing air and dust by a wet scrubber filled with water, a membrane separation method, liquefying chlorine by pressurized cooling, etc. (STEP 8). The purified chlorine gas is extracted from the chlorine purification tower 3a by the chlorine gas supply means and supplied to the combustion tower 5 through the purified chlorine gas extraction conduit 31a.

燃焼塔5に供給された前記塩素ガスは、水素供給設備4aにより供給された水素ガスと共に塩素バーナ51により燃焼され(STEP9)、高温下で反応して塩化水素を生成する(STEP10)。生成した塩化水素は、燃焼塔冷却水ジャケット52により冷却され、塩化水素供給導管53に導入され、さらに散水槽56から受水槽57に散水される冷却水により冷却され、塩酸吸収塔6に導入される。The chlorine gas supplied to the combustion tower 5 is combusted by the chlorine burner 51 together with the hydrogen gas supplied by the hydrogen supply equipment 4a (STEP 9), and reacts at high temperature to produce hydrogen chloride (STEP 10). The produced hydrogen chloride is cooled by the combustion tower cooling water jacket 52, introduced into the hydrogen chloride supply conduit 53, and further cooled by cooling water sprayed from the water spray tank 56 into the water receiving tank 57, and introduced into the hydrochloric acid absorption tower 6.

塩酸吸収塔6に導入された前記塩化水素は、吸収液供給槽7から供給されて流下する吸収液に吸収されて(STEP11)、第2の塩酸を生成する(STEP12)。ここで、吸収液供給槽7から供給される吸収液は、一旦第1の貯留槽63に貯留され、第1の貯留槽63から溢流した吸収液は第2の貯留槽65に貯留され、第2の貯留槽65から溢流した吸収液は内筒64の外面及び内面に沿って流下する。内筒64の外面に沿って流下する吸収液は塩化水素を吸収して第2の塩酸を生成し、内筒64の内面に沿って流下する吸収液は塩酸吸収塔冷却水ジャケット66と協働して、生成した第2の塩酸を冷却する。生成された第2の塩酸の濃度は、例えば、1~37質量%の範囲であり、第2の塩酸は、塩酸ポンプ61aにより、塩酸取出導管61を介して塩酸浸出槽2に供給され、第1の塩酸として前記有価金属の浸出に再利用することができる。The hydrogen chloride introduced into the hydrochloric acid absorption tower 6 is absorbed by the absorbing liquid supplied from the absorbing liquid supply tank 7 and flowing down (STEP 11), producing a second hydrochloric acid (STEP 12). Here, the absorbing liquid supplied from the absorbing liquid supply tank 7 is temporarily stored in the first storage tank 63, the absorbing liquid overflowing from the first storage tank 63 is stored in the second storage tank 65, and the absorbing liquid overflowing from the second storage tank 65 flows down along the outer and inner surfaces of the inner cylinder 64. The absorbing liquid flowing down along the outer surface of the inner cylinder 64 absorbs hydrogen chloride to produce a second hydrochloric acid, and the absorbing liquid flowing down along the inner surface of the inner cylinder 64 works in cooperation with the hydrochloric acid absorption tower cooling water jacket 66 to cool the produced second hydrochloric acid. The concentration of the generated second hydrochloric acid is in the range of, for example, 1 to 37 mass %. The second hydrochloric acid is supplied to the hydrochloric acid leaching tank 2 via the hydrochloric acid extraction conduit 61 by the hydrochloric acid pump 61a and can be reused as the first hydrochloric acid for leaching of the valuable metals.

また、塩酸吸収塔6にて未反応の前記塩化水素は、ブロワー62aに吸引されることにより、塩化水素取出導管62を介して吸収液供給槽7に導入される。吸収液供給槽7に導入された前記塩化水素は、水供給導管71から供給された水に吸収され、希塩酸を生成する。生成した希塩酸は、吸収液供給導管73を介して、吸収液として塩酸吸収塔6に供給される。吸収液供給槽7において塩化水素が吸収された後の残余に気体は、ガス解放導管72を通じて塩素ガス処理装置1aの外部へ排出される。 The unreacted hydrogen chloride in the hydrochloric acid absorption tower 6 is sucked into the blower 62a and introduced into the absorption liquid supply tank 7 through the hydrogen chloride extraction conduit 62. The hydrogen chloride introduced into the absorption liquid supply tank 7 is absorbed into the water supplied from the water supply conduit 71 to produce dilute hydrochloric acid. The dilute hydrochloric acid produced is supplied to the hydrochloric acid absorption tower 6 as an absorption liquid through the absorption liquid supply conduit 73. The remaining gas after the hydrogen chloride is absorbed in the absorption liquid supply tank 7 is discharged to the outside of the chlorine gas treatment device 1a through the gas release conduit 72.

尚、本発明の第2の実施態様では、塩酸吸収塔6が底部に塩酸取出導管61を備え、塩酸取出導管61が塩酸浸出槽2に接続されていることにより、塩酸吸収塔6で生成された第2の塩酸を有価金属の浸出に用いる第1の塩酸として再利用するようにしているが、塩酸取出導管61を図示しない貯留槽に接続させることで第2の塩酸を該貯留槽に貯留し、取り出すようにしてもよい。In the second embodiment of the present invention, the hydrochloric acid absorption tower 6 is provided with a hydrochloric acid extraction conduit 61 at the bottom, and the hydrochloric acid extraction conduit 61 is connected to the hydrochloric acid leaching tank 2, so that the second hydrochloric acid produced in the hydrochloric acid absorption tower 6 is reused as the first hydrochloric acid used for leaching valuable metals. However, the hydrochloric acid extraction conduit 61 may be connected to a storage tank (not shown) so that the second hydrochloric acid is stored in the storage tank and then extracted.

本発明の塩素ガスの処理方法の第3の実施態様は、塩素ガスを、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つを含むアルカリ性吸収液と接触させ、次亜塩素酸塩を生成させる次亜塩素酸塩生成工程を含む。A third embodiment of the chlorine gas treatment method of the present invention includes a hypochlorite generation step in which chlorine gas is contacted with an alkaline absorption liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides to generate hypochlorite.

前記アルカリ金属水酸化物を構成するアルカリ金属は、好ましくはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、及びフランシウムからなる群から選ばれる少なくとも1つを含み、より好ましくはリチウム、ナトリウム、及びカリウムからなる群から選ばれる少なくとも1つを含み、更に好ましくはナトリウム、及びカリウムからなる群から選ばれる少なくとも1つを含む。前記アルカリ土類金属水酸化物を構成するアルカリ土類金属は、好ましくはベリリウム、マグネシウム、カルシウム、ストロンチウム、及びバリウムからなる群から選ばれる少なくとも1つを含み、より好ましくはマグネシウム、カルシウム、及びバリウムからなる群から選ばれる少なくとも1つを含み、更に好ましくはマグネシウム及びカルシウムからなる群から選ばれる少なくとも1つを含む。The alkali metal constituting the alkali metal hydroxide preferably includes at least one selected from the group consisting of lithium, sodium, potassium, rubidium, cesium, and francium, more preferably includes at least one selected from the group consisting of lithium, sodium, and potassium, and even more preferably includes at least one selected from the group consisting of sodium and potassium. The alkaline earth metal constituting the alkaline earth metal hydroxide preferably includes at least one selected from the group consisting of beryllium, magnesium, calcium, strontium, and barium, more preferably includes at least one selected from the group consisting of magnesium, calcium, and barium, and even more preferably includes at least one selected from the group consisting of magnesium and calcium.

前記アルカリ性吸収液は、好ましくは水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化マグネシウム、及び水酸化カルシウムからなる群から選ばれる少なくとも1つを含む水溶液または懸濁液である。The alkaline absorption liquid is preferably an aqueous solution or suspension containing at least one selected from the group consisting of lithium hydroxide, sodium hydroxide, potassium hydroxide, magnesium hydroxide, and calcium hydroxide.

例えば前記アルカリ性吸収液が水酸化ナトリウムを含む場合、前記次亜塩素酸塩生成工程では、下記式(1)で示される反応が起きる。
2NaOH+Cl→NaClO+NaCl+HO (1)
For example, when the alkaline absorbing liquid contains sodium hydroxide, a reaction represented by the following formula (1) occurs in the hypochlorite production step.
2NaOH+ Cl2 →NaClO+NaCl+ H2O (1)

本発明の塩素ガスの処理方法の第3の実施態様は、好ましくは、次亜塩素酸塩と炭素を反応させる第1の次亜塩素酸塩の還元工程を更に含む。次亜塩素酸塩を含有する前記アルカリ性吸収液と還元剤となる炭素を接触させ、塩化物塩と二酸化炭素を生成させる。例えば前記アルカリ性吸収液が水酸化ナトリウムを含む場合、前記第1の次亜塩素酸塩の還元工程では、下記式(2)で示される反応が起きる。
2NaClO+C→2NaCl+CO (2)
The third embodiment of the chlorine gas treatment method of the present invention preferably further comprises a first hypochlorite reduction step of reacting hypochlorite with carbon. The alkaline absorption solution containing hypochlorite is contacted with carbon as a reducing agent to generate chloride salt and carbon dioxide. For example, when the alkaline absorption solution contains sodium hydroxide, the reaction shown in the following formula (2) occurs in the first hypochlorite reduction step.
2NaClO+C→2NaCl+ CO2 (2)

本発明の塩素ガスの処理方法の第3の実施態様は、好ましくは、次亜塩素酸塩とアルミニウムを反応させる第2の次亜塩素酸塩の還元工程を更に含む。次亜塩素酸塩を含有する前記アルカリ性吸収液と還元剤となるアルミニウムを接触させ、酸化アルミニウムと塩化物塩を生成させる。例えば前記アルカリ性吸収液が水酸化ナトリウムを含む場合、前記第2の次亜塩素酸塩の還元工程では、下記式(3)で示される反応が起きる。
3NaClO+2Al→2Al+3NaCl (3)
The third embodiment of the chlorine gas treatment method of the present invention preferably further comprises a second hypochlorite reduction step of reacting hypochlorite with aluminum. The alkaline absorption solution containing hypochlorite is contacted with aluminum as a reducing agent to generate aluminum oxide and chloride salt. For example, when the alkaline absorption solution contains sodium hydroxide, the reaction shown in the following formula (3) occurs in the second hypochlorite reduction step.
3NaClO+2Al→ 2Al2O3 + 3NaCl (3)

本発明の塩素ガスの処理方法の第4の実施態様は、塩素ガスを炭素及び水と反応させ、二酸化炭素を生成させる二酸化炭素生成工程を含む。例えば塩素ガスを直接炭素充填塔に通気し、水のシャワーリングまたは水蒸気導入を実施する。前記二酸化炭素生成工程では、下記式(4)で示される反応が起きる。
2Cl+C+2HO→CO+4HCl (4)
The fourth embodiment of the method for treating chlorine gas of the present invention includes a carbon dioxide production step in which chlorine gas is reacted with carbon and water to produce carbon dioxide. For example, chlorine gas is directly passed through a carbon-packed column, and water showering or steam introduction is performed. In the carbon dioxide production step, the reaction shown in the following formula (4) occurs.
2Cl2 + C + 2H2OCO2 + 4HCl (4)

本発明の塩素ガスの処理方法の第5の実施態様は、塩素ガスをアルミニウムと反応させ、塩化アルミニウムを生成させる塩化アルミニウム生成工程を含む。塩素ガスを直接アルミニウム充填塔に通気して直接還元反応を起こせる。前記塩化アルミニウム生成工程では、下記式(5)で示される反応が起きる。生成した塩化アルミニウムを溶出させるためにアルミニウム充填塔に水のシャワーリングを実施してもよい。
2Al+3Cl→2AlCl (5)
A fifth embodiment of the method for treating chlorine gas of the present invention includes an aluminum chloride production step in which chlorine gas is reacted with aluminum to produce aluminum chloride. Chlorine gas can be directly passed through an aluminum packed tower to directly cause a reduction reaction. In the aluminum chloride production step, a reaction represented by the following formula (5) occurs. Water may be showered into the aluminum packed tower to elute the produced aluminum chloride.
2Al+ 3Cl22AlCl3 (5)

1…塩素ガス処理装置、 2…塩酸浸出槽、 3…反応塔、 4…還元反応槽、 21…塩酸供給導管、 22…電池粉供給手段、 23…希釈空気供給導管、 24…浸出液、 25…浸出液取出導管、 26…塩素ガス取出導管、 31…塩化第一鉄水溶液、 32…充填材層、 33…循環導管、 34…第1ポンプ、 35…第1切換弁、 36…塩化第二鉄水溶液供給導管、 37…空気解放導管、 38…ブロワー、 41…水供給導管、 42…鉄供給手段、 43…塩化第一鉄水溶液、 44…塩化第一鉄水溶液取出導管、 45…第2ポンプ、 46…第2切換弁、 47…増加分取出導管、 1a…塩素ガス処理装置、 3a…塩素精製塔、 4a…水素供給装置、 5…燃焼塔、 51…塩素バーナ、 6…塩酸吸収塔、 7…吸収液供給槽。1...Chlorine gas treatment device, 2...Hydrogen leaching tank, 3...Reaction tower, 4...Reduction reaction tank, 21...Hydrogen acid supply conduit, 22...Battery powder supply means, 23...Dilution air supply conduit, 24...Leachate, 25...Leachate extraction conduit, 26...Chlorine gas extraction conduit, 31...Aqueous ferrous chloride solution, 32...Packaging layer, 33...Circulation conduit, 34...First pump, 35...First switching valve, 36...Aqueous ferric chloride solution supply conduit, 37...Air release conduit, 38...Blower, 41...Water supply conduit, 42...Iron supply means, 43...Aqueous ferrous chloride solution, 44...Aqueous ferrous chloride solution extraction conduit, 45...Second pump, 46...Second switching valve, 47...Increased amount extraction conduit, 1a...Chlorine gas treatment device, 3a...Chlorine purification tower, 4a...hydrogen supply device, 5...combustion tower, 51...chlorine burner, 6...hydrochloric acid absorption tower, 7...absorption liquid supply tank.

Claims (10)

廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
該塩素ガスを、第1の塩化第一鉄水溶液に吸収させて、該第1の塩化第一鉄水溶液に対して塩化第二鉄の濃度が増大した、塩化第二鉄を含有する第2の塩化第一鉄水溶液を生成させる工程を含むことを特徴とする塩素ガスの処理方法。
A method for treating chlorine gas generated when a powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached with hydrochloric acid, comprising the steps of:
The method for treating chlorine gas comprises the step of: absorbing the chlorine gas into a first aqueous solution of ferrous chloride to produce a second aqueous solution of ferrous chloride containing ferric chloride, the second aqueous solution of ferrous chloride having an increased ferric chloride concentration relative to the first aqueous solution of ferrous chloride.
請求項記載の塩素ガスの処理方法において、前記塩化第二鉄を含有する第2の塩化第一鉄水溶液を、鉄と接触させて該第2の塩化第一鉄水溶液が含有する塩化第二鉄の少なくとも一部を還元し、該第2の塩化第一鉄水溶液に対して塩化第二鉄の濃度が低減した、塩化第二鉄を含有する第3の塩化第一鉄水溶液を生成させる工程を更に含むことを特徴とする塩素ガスの処理方法。 2. The method for treating chlorine gas according to claim 1 , further comprising the step of contacting the second aqueous ferrous chloride solution containing ferric chloride with iron to reduce at least a portion of the ferric chloride contained in the second aqueous ferrous chloride solution, thereby producing a third aqueous ferrous chloride solution containing ferric chloride in which the concentration of ferric chloride is reduced relative to that of the second aqueous ferrous chloride solution. 請求項記載の塩素ガスの処理方法において、前記第3の塩化第一鉄水溶液の少なくとも一部を前記第1の塩化第一鉄水溶液として、前記塩素ガスの吸収に用いることを特徴とする塩素ガスの処理方法。 3. The method for treating chlorine gas according to claim 2 , wherein at least a part of the third aqueous solution of ferrous chloride is used as the first aqueous solution of ferrous chloride for absorbing the chlorine gas. 廃リチウムイオン電池から得られた有価金属を含む粉末を第1の塩酸に溶解し、該有価金属を第1の塩酸により浸出する際に発生する塩素ガスの処理方法であって、
該塩素ガスを、水素ガスと反応させて、塩化水素を生成させる工程と、
該塩化水素を水に吸収させて、第2の塩酸を生成させる工程を含むことを特徴とする塩素ガスの処理方法。
A method for treating chlorine gas generated when a powder containing valuable metals obtained from waste lithium ion batteries is dissolved in a first hydrochloric acid and the valuable metals are leached with the first hydrochloric acid, comprising the steps of:
reacting the chlorine gas with hydrogen gas to produce hydrogen chloride;
A method for treating chlorine gas, comprising the step of absorbing the hydrogen chloride into water to produce a second hydrochloric acid.
請求項記載の塩素ガスの処理方法において、前記塩素ガスを前記水素ガスと反応させて、前記塩化水素を生成させる工程の前に該塩素ガスを精製し、該塩素ガスに含まれる酸素を除去する工程を更に含むことを特徴とする塩素ガスの処理方法。 5. The method for treating chlorine gas according to claim 4 , further comprising the step of purifying the chlorine gas and removing oxygen contained in the chlorine gas prior to the step of reacting the chlorine gas with the hydrogen gas to produce the hydrogen chloride. 請求項または記載の塩素ガスの処理方法において、前記第2の塩酸の少なくとも一部を前記第1の塩酸として、前記有価金属の浸出に用いることを特徴とする塩素ガスの処理方法。 6. The method for treating chlorine gas according to claim 4 or 5 , wherein at least a part of the second hydrochloric acid is used as the first hydrochloric acid for leaching the valuable metals. 廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
該塩素ガスを、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つを含むアルカリ性吸収液と接触させ、次亜塩素酸塩を生成させる次亜塩素酸塩生成工程と、
次亜塩素酸塩と炭素を反応させる第1の次亜塩素酸塩の還元工程を含むことを特徴とする塩素ガスの処理方法。
A method for treating chlorine gas generated when a powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached with hydrochloric acid, comprising the steps of:
A hypochlorite generation step of contacting the chlorine gas with an alkaline absorption liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides to generate hypochlorite ;
A method for treating chlorine gas, comprising a first hypochlorite reduction step of reacting hypochlorite with carbon .
廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
該塩素ガスを、アルカリ金属水酸化物、及びアルカリ土類金属水酸化物からなる群から選ばれる少なくとも1つを含むアルカリ性吸収液と接触させ、次亜塩素酸塩を生成させる次亜塩素酸塩生成工程と、
次亜塩素酸塩とアルミニウムを反応させる第2の次亜塩素酸塩の還元工程を含むことを特徴とする塩素ガスの処理方法。
A method for treating chlorine gas generated when a powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached with hydrochloric acid, comprising the steps of:
A hypochlorite generation step of contacting the chlorine gas with an alkaline absorption liquid containing at least one selected from the group consisting of alkali metal hydroxides and alkaline earth metal hydroxides to generate hypochlorite;
A method for treating chlorine gas, comprising a second hypochlorite reduction step of reacting hypochlorite with aluminum.
廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
該塩素ガスを炭素及び水と反応させ、二酸化炭素を生成させる二酸化炭素生成工程を含むことを特徴とする塩素ガスの処理方法。
A method for treating chlorine gas generated when a powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached with hydrochloric acid, comprising the steps of:
The method for treating chlorine gas comprises a carbon dioxide production step of reacting the chlorine gas with carbon and water to produce carbon dioxide.
廃リチウムイオン電池から得られた有価金属を含む粉末を塩酸に溶解し、該有価金属を塩酸により浸出する際に発生する塩素ガスの処理方法であって、
該塩素ガスをアルミニウムと反応させ、塩化アルミニウムを生成させる塩化アルミニウム生成工程を含むことを特徴とする塩素ガスの処理方法。
A method for treating chlorine gas generated when a powder containing valuable metals obtained from waste lithium ion batteries is dissolved in hydrochloric acid and the valuable metals are leached with hydrochloric acid, comprising the steps of:
The method for treating chlorine gas comprises a step of reacting the chlorine gas with aluminum to produce aluminum chloride.
JP2023523065A 2021-09-22 2022-09-21 How to treat chlorine gas Active JP7498991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024029857A JP2024055948A (en) 2021-09-22 2024-02-29 How to treat chlorine gas

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2021154003 2021-09-22
JP2021154003 2021-09-22
JP2021159036 2021-09-29
JP2021159036 2021-09-29
PCT/JP2022/035235 WO2023048196A1 (en) 2021-09-22 2022-09-21 Treatment method for chlorine gas

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024029857A Division JP2024055948A (en) 2021-09-22 2024-02-29 How to treat chlorine gas

Publications (2)

Publication Number Publication Date
JPWO2023048196A1 JPWO2023048196A1 (en) 2023-03-30
JP7498991B2 true JP7498991B2 (en) 2024-06-13

Family

ID=85720761

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2023523065A Active JP7498991B2 (en) 2021-09-22 2022-09-21 How to treat chlorine gas
JP2024029857A Pending JP2024055948A (en) 2021-09-22 2024-02-29 How to treat chlorine gas

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024029857A Pending JP2024055948A (en) 2021-09-22 2024-02-29 How to treat chlorine gas

Country Status (2)

Country Link
JP (2) JP7498991B2 (en)
WO (1) WO2023048196A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264641A (en) 1999-03-19 2000-09-26 Hiroyuki Nakazawa Production of cobalt oxide from anode material of lithium ion secondary battery
JP2008110339A (en) 2006-10-03 2008-05-15 Sumitomo Chemical Co Ltd Method for removal of chlorine gas
JP5193552B2 (en) 2007-10-09 2013-05-08 テイ・エス テック株式会社 Vehicle storage seat

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5193552A (en) * 1975-02-14 1976-08-17 HAIGASUOYOBI HAISUINOSHORIHO
JPH11293356A (en) * 1998-04-14 1999-10-26 Hiroyuki Nakazawa Dissolution of cobaltic acid lithium
JP2000303084A (en) * 1999-04-21 2000-10-31 Shinsei Dental Laboratory:Kk Method for treating chlorine-containing plastic waste
JP2005052724A (en) * 2003-08-04 2005-03-03 Hideki Yamamoto Method and apparatus for detoxifying fluorine-based gas
JP2010077399A (en) * 2008-08-25 2010-04-08 Kobe Steel Ltd Method of producing carbonized fuel and equipment therefor
JP5568414B2 (en) * 2010-08-27 2014-08-06 株式会社日立製作所 Metal recovery method and metal recovery apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000264641A (en) 1999-03-19 2000-09-26 Hiroyuki Nakazawa Production of cobalt oxide from anode material of lithium ion secondary battery
JP2008110339A (en) 2006-10-03 2008-05-15 Sumitomo Chemical Co Ltd Method for removal of chlorine gas
JP5193552B2 (en) 2007-10-09 2013-05-08 テイ・エス テック株式会社 Vehicle storage seat

Also Published As

Publication number Publication date
JPWO2023048196A1 (en) 2023-03-30
JP2024055948A (en) 2024-04-19
WO2023048196A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
US8540954B2 (en) CO2—capture in molten salts
US8932529B2 (en) Method and an apparatus for performing an energy efficient desulphurization and decarbonisation of a flue gas
JP2009248036A (en) Method for desulfurizing exhaust gas
AU2018227888B2 (en) Method for producing lithium hydroxide from lithium-containing ore by means of chlorination and chloroalkali process
JP7498991B2 (en) How to treat chlorine gas
US2726930A (en) Carbon dioxide recovery process
CN106395750A (en) Chlorine treating process and device of system for recycling copper from acidic waste etching solution
WO2009056888A1 (en) Fuel synthesis method
KR101778411B1 (en) Facility and method for the simultaneous production of sodium bicarbonate and chlorine dioxide
JP2017217606A (en) Manufacturing method of coagulant using aluminum-including waste as raw material
CN101792862B (en) Method for recovering metal through purified flue gas of scrap nickel-hydrogen battery
CN209161488U (en) A kind of system of sulfur gas reduction Waste Sulfuric Acid sulfur dioxide liquid and sulfuric acid
TWI448435B (en) Drainage treatment method
JP2004010446A (en) Method for producing alkali metal boron hydride
US10858269B2 (en) Process for the treatment of water
JP2009184837A (en) Method for producing iodine
JP4915095B2 (en) Carbon monoxide production method and phosgene production method
KR101225236B1 (en) Method and apparatus for treating cmalodorous substance of granulated slag equipment
US5628974A (en) Process for treating by-products of lithium/sulfur hexafluoride
JP3565419B2 (en) Method for removing hydrogen chloride from reducing gas
CN114288841A (en) Mannheim method potassium sulfate tail gas processing system
CN113840803A (en) Method for recovering carbon dioxide gas and other gases
WO2024055071A1 (en) A recycling method for recovery of valuable metal elements from waste battery materials
JPS6046384A (en) Preparation of alkali chlorate
KR20230036725A (en) Method of Manufacturing Metal Carbonate using Electrolysis and Separation of Metal ions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230414

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240527

R150 Certificate of patent or registration of utility model

Ref document number: 7498991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150