JPS6046384A - Preparation of alkali chlorate - Google Patents
Preparation of alkali chlorateInfo
- Publication number
- JPS6046384A JPS6046384A JP15468683A JP15468683A JPS6046384A JP S6046384 A JPS6046384 A JP S6046384A JP 15468683 A JP15468683 A JP 15468683A JP 15468683 A JP15468683 A JP 15468683A JP S6046384 A JPS6046384 A JP S6046384A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- hydrochloric acid
- alkali
- naclo3
- chlorate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は塩素酸アルカリの電解I!1造方決方法する。[Detailed description of the invention] The present invention is electrolysis of alkali chlorate I! 1 Decide how to make it.
更に詳しくは、塩素酸アル7]り電解装置の運転条件並
びに発生ガス中塩素の処理方法の姓を高めると同時に効
率良く塩素酸アルカリを製造する方法を提供するもので
ある。More specifically, the present invention provides a method for efficiently producing alkali chlorate while improving the operating conditions of an electrolytic device and the method for treating chlorine in generated gas.
塩化アルカリ水溶液を電気分解して、塩素酸アルカリを
製造するには二つの主要な過程を経る。ずなわら、先ず
電解反応によって、陽極では」n索イオンが放電して次
亜塩素酸が生成し、陰極では水素イオンが還元されて水
素ガスが発生する。次いで、次亜塩素酸の自己酸化反応
が起って塩素酸塩が生成する過程である。There are two main steps in producing alkali chlorate by electrolyzing an aqueous alkali chloride solution. First, due to an electrolytic reaction, n-type ions are discharged at the anode to generate hypochlorous acid, and at the cathode, hydrogen ions are reduced to generate hydrogen gas. Next, a self-oxidation reaction of hypochlorous acid occurs to produce chlorate.
これに対して電流効率を低下させる好ましくない副反応
としては、次亜塩素酸が陽極で再放電し、塩素酸塩を生
成づ′ると同時に酸素の発生を伴う反応及び次亜塩素酸
塩が陰極で元の塩素イオンに還元される反応がある。On the other hand, as an undesirable side reaction that reduces current efficiency, hypochlorous acid is re-discharged at the anode, producing chlorate, and at the same time, a reaction accompanied by the generation of oxygen and hypochlorite. There is a reaction in which chlorine ions are reduced to the original chlorine ions at the cathode.
このような好ましくない副反応を抑制するため従来から
種々の改良手段が錨じられて来た。In order to suppress such undesirable side reactions, various improvement measures have been developed in the past.
例えば、陽極材料の改良、クロム酸塩添加による陰極還
元の防止、あるいは次亜塩素酸の自己酸化反応を促進す
る運転条件の改善等である。Examples include improving the anode material, preventing cathode reduction by adding chromate, or improving operating conditions to promote the self-oxidation reaction of hypochlorous acid.
次亜塩素酸は次式により自己酸化反応を起し塩素酸塩に
転化する。Hypochlorous acid undergoes a self-oxidation reaction according to the following formula and is converted to chlorate.
2HCJ!O+Na CAO−
Na CJ2.03+2HCJ2 ・・・・・41)(
アルカリ金属をナトリウムとした場合)この反応は、本
発明者等の測定によれば、次亜塩素酸及び次亜塩素酸塩
のモル比が2:1のとき最も効果的であり、生成系の次
亜塩素M iR度を低くできる。上記のモル比を維持す
るpLlは温度によっても変化するが一般に6.2〜6
.8の範囲であり、従来から当該範囲に調整し運転する
努力が払われてきた。(1)式の反応を促進させて次亜
塩素酸の濃度を低減させるには、その外に温度及び反応
体積の要因がある。温度の影響は大きく、高温程次亜塩
素酸の温度を低くできるが、電極副反応の速度も大きく
なりかえって電流効率は低下する。又反応体積は大きい
稈次亜塩素酸濃度は低くできるが、設備が相対的に大き
くなり、設計上の制約がある。2HCJ! O+Na CAO- Na CJ2.03+2HCJ2 ・・・・・・41)(
According to measurements made by the present inventors, this reaction is most effective when the molar ratio of hypochlorous acid and hypochlorite is 2:1, and when the alkali metal is sodium. Hypochlorite M iR degree can be lowered. The pLl that maintains the above molar ratio varies depending on the temperature, but is generally 6.2 to 6.
.. 8, and efforts have been made to adjust and operate within this range. In order to promote the reaction of formula (1) and reduce the concentration of hypochlorous acid, there are other factors such as temperature and reaction volume. The influence of temperature is large, and the higher the temperature, the lower the temperature of hypochlorous acid, but the rate of electrode side reactions also increases, and the current efficiency decreases. Although the reaction volume is large and the hypochlorous acid concentration can be lowered, the equipment becomes relatively large and there are design constraints.
このように従来から種々の改善を行なってきたにも拘わ
らず電解液中の次亜塩素酸m度IJ1.5〜3.5 g
/ j2 、発生水素ガス中の酸素含有量は2〜4%が
容認されている状態である。Despite the various improvements that have been made in the past, hypochlorous acid m degree IJ in the electrolyte solution is 1.5 to 3.5 g.
/ j2 , the oxygen content in the generated hydrogen gas is accepted to be 2 to 4%.
本発明者等はこのような現状に鑑みて酸素の発生を抑制
して電流効率を向上させる方法につぎ種々検問を重ねた
結果、本発明を完成させるに至ったものである。In view of the current situation, the inventors of the present invention have repeatedly investigated various methods for suppressing the generation of oxygen and improving current efficiency, and as a result, they have completed the present invention.
づ゛なわち本発明による塩素酸アルカリの製造方法は、
塩化アルカリ水溶液からなる電解液を電気分解して塩素
酸アルカリを製造するに際し、電解液中に塩酸を注入し
て電解液をpl−1を4.8〜6.0に維持Jることに
よって電解により発生ずる水素ガス中の酸素含有量を低
減させ、一方、電解により発止づ−る塩素および/また
は二酸化塩素ガスを力性アルカリ溶液で捕集し、得られ
た捕集液を塩酸で中和して捕集液中に塩素酸アルカリを
生成せしめ、次いでこの捕集液中の未反応のM 1il
ll m索を還元剤により除去し、かくして得られた塩
素酸アルカリを含む捕集液を塩化アルカリ水溶液の調製
に際して再刊用することを特徴とするものである。That is, the method for producing alkali chlorate according to the present invention is as follows:
When producing alkali chlorate by electrolyzing an electrolytic solution consisting of an aqueous alkali chloride solution, electrolysis is carried out by injecting hydrochloric acid into the electrolytic solution and maintaining the pl-1 of the electrolytic solution at 4.8 to 6.0. The oxygen content in the hydrogen gas generated by electrolysis is reduced, while the chlorine and/or chlorine dioxide gas generated by electrolysis is collected with a strong alkaline solution, and the collected liquid is neutralized with hydrochloric acid. to generate alkali chlorate in the collection liquid, and then unreacted M 1il in the collection liquid.
The present invention is characterized in that the llm sulfate is removed by a reducing agent, and the collected liquid containing alkali chlorate thus obtained is used for reprinting when preparing an aqueous aqueous solution of chloride.
本発明においては、従来のpH条件よりも低いpH域す
なわちpH4,8〜6.0の範囲で電解装置を運転する
ことによって、発生水素ガス中の酸素含有量を効果的に
低減させることができる。pH4,8より低い条件で電
解した場合には発生ガス中の塩素ガス濃度が増加し、C
j22−1−1゜爆鳴気を生成する危険があるため避け
るべきであり、一方pH6,0より高い条件とした場合
には酸素発生の抑制効果はあまり期待できない。In the present invention, by operating the electrolyzer in a pH range lower than conventional pH conditions, that is, in the range of pH 4.8 to 6.0, the oxygen content in the generated hydrogen gas can be effectively reduced. . When electrolysis is carried out under conditions lower than pH 4.8, the chlorine gas concentration in the generated gas increases, and C
j22-1-1° should be avoided due to the risk of generating explosive gas, and on the other hand, if the pH is higher than 6.0, no significant effect of suppressing oxygen generation can be expected.
一方、上述のような低pHhfiで運転づるど発生ガス
中の酸素含有量を低減できるが、塩素c13よび/また
は二酸化塩素の発生は増加りる。従ってこれらの塩素や
二酸化塩素の発生を損失とみれば、見掛上の電流効率は
低下することになる。そこで本発明においては、発生ガ
ス中のこれら塩素や二酸化塩素を捕集し塩素酸アルカリ
に転化して系内に回収することによって、実質的な電流
効率の向上が図れるのである。On the other hand, although the oxygen content in the generated gas can be reduced during operation at low pHhfi as described above, the generation of chlorine C13 and/or chlorine dioxide increases. Therefore, if the generation of chlorine and chlorine dioxide is regarded as a loss, the apparent current efficiency will decrease. Therefore, in the present invention, the current efficiency can be substantially improved by collecting these chlorine and chlorine dioxide in the generated gas, converting them into alkali chlorate, and recovering them into the system.
電解液のpHを4.8〜6.0に維持するために本発明
においては電解液中へ塩酸を注入ブろのであるが、塩素
酸アルカリ水溶液に濃厚な塩酸を加えると注入口付近で
局部的に強酸性となり、二酸化地糸が発生し爆発を起す
危険がある。このような危険を避けるためには30〜7
0し一’Aの稀薄塩酸を注加すればよいが、この場合に
は電解液が稀釈されるので多量に使用することができず
、これによって調整できるl)HはせいぜいG、4〜6
.7である。そこで、濃厚な塩酸を安全に電解液中に注
入するために本発明においては、電解4a内において発
生する水素ガスの浮揚力によりもたらされる電解液のよ
R流の流路内に塩酸を注入することが望ましい。これに
よって、注入した塩酸は電解液上昇流に伴って電解槽内
電解液全体に効果的に混合拡散され、局部的に強酸性と
なるのを防止することができる。In order to maintain the pH of the electrolytic solution at 4.8 to 6.0, in the present invention, hydrochloric acid is injected into the electrolytic solution, but when concentrated hydrochloric acid is added to the aqueous alkaline chlorate solution, it causes localized damage near the injection port. It becomes strongly acidic and there is a risk of explosion due to the generation of carbon dioxide. To avoid such dangers, 30-7
It is possible to add dilute hydrochloric acid of 0 to 1'A, but in this case, the electrolyte is diluted and it is not possible to use a large amount.
.. It is 7. Therefore, in order to safely inject concentrated hydrochloric acid into the electrolytic solution, in the present invention, hydrochloric acid is injected into the flow path of the electrolytic solution brought about by the buoyant force of the hydrogen gas generated in the electrolytic solution 4a. This is desirable. As a result, the injected hydrochloric acid is effectively mixed and diffused throughout the electrolyte in the electrolytic cell as the electrolyte rises, and it is possible to prevent the electrolyte from becoming locally strong acidic.
また、従来の条件で運転される電解槽においても、発生
水素ガス中には0.1〜0,3vo1%の塩水ガスが含
有されるので、アルカリ液で塩素を捕集し、この捕集液
を工場の排水処理に利用するか又は還元剤で中和して排
出する方法が採られてぎた。しかしながら本発明のごと
き但1)H域で電解する場合には、塩素カスの発生が1
0〜20倍に増加し電流効率に少なl)+ +うり”影
響を及ばずので従前のにうな処理方法を適用しえない。In addition, even in an electrolytic cell operated under conventional conditions, the generated hydrogen gas contains 0.1 to 0.3 vol. The methods used have been to use the wastewater in factory wastewater treatment or to neutralize it with a reducing agent and then discharge it. However, as in the present invention, 1) When electrolyzing in the H range, the generation of chlorine scum is 1
Since the current efficiency increases by 0 to 20 times and has no significant effect on current efficiency, conventional treatment methods cannot be applied.
そこで本発明においては、j銘水カスをアルカリ液で捕
集した捕集液の過剰アルカリを塩酸で連続的に中和する
ことによって、捕集Wb中に生成した次亜塩素酸を塩素
酸塩に転化し、この塩素酸塩を電解系内に回収η−るの
でdうるか、この際捕集用アルノJり液中に炭酸アルノ
jりを10〜6C)o/βの範囲で含有させることか望
ましい。すなわち、次亜塩素酸の塩素酸塩への転化は前
記(1)式に従って進行するが、過剰アルjJりを中和
して除去すれは反応は右へ進んでHC兎が生成し、pl
−1が低くなって反応は進まなくなる。そのためアルカ
リを添加しr pl−1を戻してやることが必要になる
。このように、アルカリと塩酸の両者を用いる複雑な制
御を行なう必要がある。しかしながら捕集用アルカリ液
中に炭酸アルカリを含有させておくことによって、
N ” HC03+ HCj2 耐
Na CJ2+Hρ+C○2・・・・・・(2)の反応
により炭酸アルカリが緩衝剤となって、塩酸による過剰
アル)yりの中和のみによって塩素酸塩転化反応に最適
な]汁1G、0〜7.0に容易に調整することができる
。Therefore, in the present invention, the hypochlorous acid generated in the collected Wb is converted into chlorate by continuously neutralizing the excess alkali of the collected water scum with an alkaline solution using hydrochloric acid. This chlorate is recovered into the electrolytic system so that it can be collected.At this time, carbonic acid should be included in the collection liquid in the range of 10 to 6C)o/β. or desirable. That is, the conversion of hypochlorous acid to chlorate proceeds according to the above equation (1), but unless the excess alkaline is neutralized and removed, the reaction proceeds to the right, producing HC, and pl.
-1 becomes low and the reaction stops progressing. Therefore, it is necessary to add alkali to return r pl-1. As described above, it is necessary to perform complicated control using both alkali and hydrochloric acid. However, by containing alkali carbonate in the collection alkaline solution, the alkali carbonate acts as a buffering agent due to the reaction (2), and the reaction caused by hydrochloric acid Only by neutralizing the excess alkali, it can be easily adjusted to 1G, 0 to 7.0, which is optimal for the chlorate conversion reaction.
以下に図面に示づ一好J、しい実施態様を参照して本発
明をざらに説明する。The invention will be briefly described below with reference to preferred embodiments shown in the drawings.
第1図(J本発明方法を実施する際の好ましいフローシ
ー(−を示し、1は食塩溶解槽、2は塩水の精製工程、
3は精製塩水の貯槽である。溶解水又は塩素酸アルカリ
結晶工程の未飽和析出塩水を配?232から食塩溶解槽
1へ導入し食塩層中を通過させて、食塩の飽和溶液とし
て取出し、精製工程2において力性ソーダ、炭酸ソーダ
等を加えて不純物を除去した後精製塩水貯槽aへ貯え、
送液ポンプ4により電解槽6へ送られる。電解槽6は複
数個直列にかつカスケードに配列され、順次下流へ流れ
て塩素酸アルノJり濃度が高められ、最終電解槽のオー
バーフロー10から製品として取出される。5は整流器
であり、電解電流はブスバー33を介して各電イ?槽の
陽極7及び陰極8の夫々を直列に流れ21ffi解を行
なって、整流器5に戻る。FIG. 1 (J Preferred flowchart for carrying out the method of the present invention (- indicates, 1 is a salt dissolving tank, 2 is a salt water purification step,
3 is a storage tank for purified salt water. Dissolved water or unsaturated precipitated salt water for alkali chlorate crystallization process? 232 to the salt dissolving tank 1, passed through the salt layer, and taken out as a saturated solution of salt. In the purification step 2, sodium hydroxide, soda carbonate, etc. were added to remove impurities, and then stored in the purified salt water storage tank a.
The liquid is sent to the electrolytic cell 6 by the liquid sending pump 4. A plurality of electrolytic cells 6 are arranged in series and in a cascade, and the electrolytic cells 6 sequentially flow downstream to increase the concentration of alnochloric acid and are taken out as a product from the overflow 10 of the final electrolytic cell. 5 is a rectifier, and the electrolytic current is passed through the bus bar 33 to each electric current. The flow flows in series through each of the anode 7 and cathode 8 of the tank, performs a 21ffi solution, and returns to the rectifier 5.
電解槽6は、構内に注入される塩酸を効果的に混合拡散
できるように、電解液の上昇流の流路となるドラフトチ
ューブ9を内部に備えた塔式電解槽を図示の実施例にお
いては使用しているが、ガスリフトまたはポンプにより
外部循環式電解槽も好ましく使用できる。In the illustrated embodiment, the electrolytic cell 6 is a tower-type electrolytic cell equipped with a draft tube 9 inside which serves as a flow path for the upward flow of the electrolytic solution so that the hydrochloric acid injected into the premises can be effectively mixed and diffused. However, external circulation electrolyzers with gas lifts or pumps can also be preferably used.
第2図および第3図に示したように、ドラフトチューブ
9内には略半円形状の複数枚のバッフル板34がドラフ
トチューブの長手り向に互いに間隔をおいてかつ向6゛
を交互にして取イ」(]られており、最下段のバッフル
板上方のチコーブ中心部にノズル11より濃厚塩酸が注
入される。バッフル板34の先端位置はトラフトチ1−
79の直径の40〜70%まで伸長させることが好まし
く、取付は間隔(ピッチ〉はドラフトチューブの直径の
1〜3倍とすることが好ましい。As shown in FIGS. 2 and 3, a plurality of approximately semicircular baffle plates 34 are arranged in the draft tube 9 at intervals in the longitudinal direction of the draft tube and arranged alternately in the 6° direction. Concentrated hydrochloric acid is injected from the nozzle 11 into the center of the pipe above the bottom baffle plate.The tip of the baffle plate 34 is located at
It is preferable to elongate it to 40 to 70% of the diameter of the draft tube, and it is preferable that the mounting interval (pitch) is 1 to 3 times the diameter of the draft tube.
ノズル11から注入された塩酸の混合拡散効果をより一
層向上させるために、バッフル板34の先端稜線の中央
部に切欠35を設けることが望ましい。第3図の例では
半円状の切欠35としたが、切欠の形状は三角形でも四
角形でもよい。切欠35の中相、ドラフトチューブ9の
直径の20〜50%、深さは10〜30%とすることが
好ましい。In order to further improve the mixing and diffusion effect of the hydrochloric acid injected from the nozzle 11, it is desirable to provide a notch 35 in the center of the ridgeline at the tip of the baffle plate 34. In the example of FIG. 3, the notch 35 is semicircular, but the shape of the notch may be triangular or square. It is preferable that the middle phase of the notch 35 is 20 to 50% of the diameter of the draft tube 9 and the depth is 10 to 30%.
上述し1=ごとき塩酸混合拡散装置を電解槽6内にQi
! 設して塩酸を注入することによって、槽内電解液1
)Hな4.8〜G、0、好ましくは4.9〜6.0の範
囲に維持して運転することができ、局部的に強酸性どな
る危険もない。かくして電解iff 6からの発生ガス
の組成中の塩素および二酸化塩素の割合は増えるが酸素
の割合は減少する。The above-mentioned hydrochloric acid mixing and diffusion device such as 1 is placed in the electrolytic cell 6 with Qi
! By injecting hydrochloric acid into the tank, electrolyte 1
) It is possible to maintain the H value in the range of 4.8 to G, 0, preferably 4.9 to 6.0, and operate without the risk of localized strong acidity. Thus, the proportion of chlorine and chlorine dioxide in the composition of the gas generated from electrolysis if 6 increases, but the proportion of oxygen decreases.
すなわち、発生水素ガス中の酸素および塩素の)暴発範
囲はそれぞれ5〜6%以上および12〜14%以上、二
酸化塩素については自己分解)旧度が7〜8%以上とな
り、より安全な条件を確保できる。In other words, the explosive range of oxygen and chlorine in the generated hydrogen gas is 5-6% or more and 12-14% or more, respectively, and the self-decomposition rate of chlorine dioxide is 7-8% or more, making it safer. Can be secured.
各電解槽6からの発生ガスは第1図の発生ガス配管12
を通って塩素の捕集工程および除吉工程に導かれる。1
3は捕集塔、17(J除害jハ及び21は水洗塔である
。捕集塔は受槽14から循環ポンプ15により冷却器3
6を通って捕集塔13へ循環し、塩素及び二酸化塩素を
吸11ゾして受槽14へ戻る。捕集液の組成は、力性ア
ルカリ5〜40q/β、炭酸アルカリ10〜60 g/
j2及び次亜塩素酸アルカリ50〜100Q/flが適
当である。循環液のアルカリi農度を維持するために、
濃度の高い力性アルカリがノズル16から注入される、
捕集塔13を通ったガスは、塩素5 = 30ppm
、二酸化塩素100〜5001)+1111を含むので
除害塔17に導かれ除害される。ノズル18から例えば
亜硫酸ソーダ水溶液を補給し、受器19、循環ポンプ2
0を経て除害塔17へ循環し、ここで捕集塔13からの
ガスと接触させることによって塩素および二酸化塩素が
実質的に検出されなくなるまで除去される。除害塔17
を出るガスはミストを同伴するため、水洗塔21へ導き
ノズル22からの洗浄水によって水洗したのち、放出ノ
ズル23からブローするか、または他に有効利用される
。The generated gas from each electrolytic cell 6 is connected to the generated gas piping 12 in FIG.
This process leads to the chlorine collection process and removal process. 1
3 is a collection tower, 17 (J abatement j C) and 21 are water washing towers.
It circulates to the collection tower 13 through 6, absorbs chlorine and chlorine dioxide, and returns to the receiving tank 14. The composition of the collection liquid is 5 to 40 q/β of alkali and 10 to 60 g of alkali carbonate.
j2 and 50 to 100 Q/fl of alkali hypochlorite are suitable. To maintain the alkaline level of the circulating fluid,
A highly concentrated alkali is injected from the nozzle 16, and the gas that has passed through the collection tower 13 contains chlorine 5 = 30 ppm.
, chlorine dioxide (100 to 5001) + 1111, it is guided to the abatement tower 17 and detoxified. For example, a sodium sulfite aqueous solution is supplied from the nozzle 18, and the receiver 19 and circulation pump 2
0 to the abatement tower 17, where it is brought into contact with the gas from the collection tower 13 to remove chlorine and chlorine dioxide until they are substantially undetectable. Elimination tower 17
Since the gas leaving the air is accompanied by mist, it is led to the water washing tower 21 and washed with washing water from the nozzle 22, and then blown out from the discharge nozzle 23, or used for other purposes.
捕集液は受4u14で増量した分取用され中和槽24に
送られる。中和槽へはノズル25より塩酸を注加して
t)l−1[3,0〜7.0に維持し、又ノズル26よ
り蒸気を吹込んで温度を40〜80℃に管理する。中和
されだ捕集液は反応槽27を流下しながら前記(1)式
に従って塩素酸アルカリl\の転化反応を完結し次工程
へ流れる。この反応で生成り”る塩酸は捕集液中の重炭
酸アルカリの分解に消費されるので、溶液の13Hは一
定に保持され反応はスムーズに進行する。反応槽27を
出る捕集液中には未反応遊離塩素が1000〜2000
ppm存在するのでこれを遊離塩素消去槽28に送り、
注入ノズル29より例えば尿素、ギ酸、アンモニア、亜
硫酸ソーダなどの水溶液又は活性炭などの還元剤を注入
して完全に遊離塩素を消去する。30は上記還元反応(
スリ兼捕集液貯措であり、塩素酸アルカリを含む1rl
i集浩は送液ポンプ31により食塩溶解+11に送1う
れ、塩水精製工程2、貯槽3を経て再び電解槽に循環さ
れる。The collected liquid is collected in an increased amount by the receiver 4u14 and sent to the neutralization tank 24. Hydrochloric acid is poured into the neutralization tank from nozzle 25.
t) The temperature is maintained at l-1 [3.0 to 7.0°C, and the temperature is controlled at 40 to 80°C by blowing steam through the nozzle 26. The neutralized slag collection liquid flows down the reaction tank 27, completing the conversion reaction of the alkali chlorate l\ according to the above equation (1), and flows to the next step. Since the hydrochloric acid produced in this reaction is consumed to decompose the alkali bicarbonate in the collection liquid, 13H in the solution is kept constant and the reaction proceeds smoothly. has unreacted free chlorine of 1000 to 2000
Since ppm exists, this is sent to the free chlorine elimination tank 28,
For example, an aqueous solution such as urea, formic acid, ammonia, or sodium sulfite, or a reducing agent such as activated carbon is injected through the injection nozzle 29 to completely eliminate free chlorine. 30 is the above reduction reaction (
1rl which is a pickpocket and collection liquid storage device and contains alkali chlorate
The i-collection is sent to the salt solution +11 by the liquid sending pump 31, passed through the salt water purification step 2, storage tank 3, and then circulated back to the electrolytic cell.
次に本発明を実施例により説明りる。Next, the present invention will be explained by examples.
実施例1〜B
電解槽諸元:基或; 0.5+11φX 3,8+n高
ドラフトチューブ:
0、OB+++φx 2.2+n高
バッフル仮;長さ0.04m1 ドラフト上端より0.
3m位置から下
へピッチ0.12mで4枚
切欠き穴 45 m mφ半円形
電解条件: 温度−89〜94℃
注入塩酸温度;24%
電解液組成;
N a Cj2 159〜IC17g/ J。Examples 1 to B Electrolytic cell specifications: Basic; 0.5 + 11φ
4 notched holes at a pitch of 0.12 m downward from the 3 m position, 45 mm diameter semicircular electrolysis conditions: Temperature -89 to 94°C Injected hydrochloric acid temperature: 24% Electrolyte composition: Na Cj2 159 to IC 17 g/J.
N a CJ203404〜4220/ pN a C
r Q 6.5〜7 6(]/ f1捕集塔条件:注入
力性アルカリi11度;25%温度;50〜55℃
捕集液組成:
NaOH13〜21g/J2
1Na2C0,25〜34g/J2
Na cxo 73〜81 CJ/j2N a CJ’
l 03 5〜16 g/ ANaCβ 59〜65Q
/A
中和漕条件:注入塩酸濶度:12%
温度二65〜70℃
pH;6.3〜6.6
還元槽条イ′1:注加尿素温度;5%
温度:45〜52°C
入[1遊離塩素;1.4〜2.50/ぶ以上の各条件に
より、電解液TIHを4.8〜6.0の範囲で種々に変
えて、電解電流10KA(陽極15.5A / dm’
)および6KA (陽極9,3A/dm″1)で運転し
た結果をそれぞれ実施例1〜5および実施例6〜8とし
て次表に承り。N a CJ203404-4220/ pN a C
r Q 6.5-7 6(]/ f1 Collection tower conditions: Injectable alkali i 11 degrees; 25% temperature; 50-55 degrees Celsius Collection liquid composition: NaOH 13-21 g/J2 1Na2C0, 25-34 g/J2 Na cxo 73~81 CJ/j2N a CJ'
l 03 5-16 g/ ANaCβ 59-65Q
/A Neutralization tank conditions: Injected hydrochloric acid degree: 12% Temperature: 265-70°C pH: 6.3-6.6 Reduction tank column A'1: Added urea temperature: 5% Temperature: 45-52°C The electrolytic current was 10 KA (anode 15.5 A/dm) by varying the electrolytic solution TIH in the range of 4.8 to 6.0 depending on the conditions of 1 free chlorine; 1.4 to 2.50/dm or more. '
) and 6KA (anode 9.3 A/dm''1), the results are shown in the following table as Examples 1 to 5 and Examples 6 to 8, respectively.
また比較のために、電M電流10KAについては電解液
1)H6,6,電解電流6KAについては電解液pH6
,7で運転した結果をそれぞれ比較例1および比較例2
として次表に示づ。For comparison, for electrolytic current 10KA, electrolytic solution 1) H6,6, for electrolytic current 6KA, electrolytic solution pH 6.
, 7 are compared to Comparative Example 1 and Comparative Example 2, respectively.
As shown in the table below.
上表かられかるように、本発明による実施例はいずれも
比較例よりも実質電流効率で3〜7%向上し、発生水素
ガス中酸素温度も極めて低くできる。、塩素および二酸
化塩素の混入量も本発明のpH範囲では実質的に低く、
安全性は充分確保される。As can be seen from the above table, all of the examples according to the present invention improve the actual current efficiency by 3 to 7% over the comparative examples, and the oxygen temperature in the generated hydrogen gas can also be extremely lowered. , chlorine and chlorine dioxide contamination levels are also substantially low in the pH range of the present invention;
Safety will be fully ensured.
以上説明したように、本発明方法は、エネルギー効率を
高めるだけに留まらず、発生水素ガス中の酸素含有量を
下げて安全性を向上させると同時に水素カスの有効利用
を可能ならしめる工業的に極めて右利な方法である。As explained above, the method of the present invention not only improves energy efficiency, but also improves safety by lowering the oxygen content in the generated hydrogen gas, and at the same time enables the effective use of hydrogen residue. This is an extremely right-handed method.
第1図は本発明を実施づ−る際の好ましいフローシー1
へを示し、第2図は本発明の好ましい実施例において用
いる電解液への塩酸の注入混合装置の縦断面図であり、
第3図は第2図の■−■線に沿う横断面図である。
1・・・食塩溶解(a、2・・・塩水精製工程、3・・
・精製塩水貯槽、6・・・電解槽、9・・・ドラフトチ
ューブ、12・・・発生ガス配管、13・・・捕集塔、
17・・・除害塔、21・・・水洗塔、24・・・中和
1g、27・・・反応槽、28・・・′1iIllll
塩素消去槽、30・・・還元反応槽兼捕集液貯槽。
特許出願人 保土谷化学工業株式会社
代 理 人 尾 股 行 雄
同 茂 見 (a
同 荒 木 友之助
第2図
第3図
4Figure 1 shows a preferred flowchart 1 for carrying out the present invention.
FIG. 2 is a longitudinal sectional view of a device for injecting and mixing hydrochloric acid into an electrolytic solution used in a preferred embodiment of the present invention;
FIG. 3 is a cross-sectional view taken along the line ■--■ in FIG. 2. 1... Salt dissolution (a, 2... Salt water purification process, 3...
・Purified salt water storage tank, 6... Electrolytic tank, 9... Draft tube, 12... Generated gas piping, 13... Collection tower,
17...Abatement tower, 21...Water washing tower, 24...Neutralization 1g, 27...Reaction tank, 28...'1iIllll
Chlorine elimination tank, 30... Reduction reaction tank and collection liquid storage tank. Patent Applicant: Hodogaya Chemical Industry Co., Ltd. Representative: Yuki Omata Shigemi Yudo (a) Tominosuke Araki (Figure 2, Figure 3, Figure 4)
Claims (1)
塩素酸アルカリを製造するに際し、電解液中に塩酸を注
入して電解液のpHを4.8〜6.0に維持することに
よって電解により発生する水素ガス中の酸素含有旦を低
減させ、一方、電解により発生する塩素および/または
二酸化塩素ガスを力性アルカリ溶液で捕集し、得られた
捕集液を塩酸で中和して捕集液中に塩素酸アルカリを生
成せしめ、次いでこの捕集液中の未反応遊離塩素を還元
剤により除去し、かくして得られた塩素酸アルカリを合
む捕集液を塩化アルカリ水溶液の調13に際して再利用
することを特徴とする塩素酸アルカリの製造方法。 2、電解液中への塩酸の注入は、電解により発液の上昇
流の流路内に塩酸を注入して行なう特許請求の範囲第1
項記載の方法。 3、電解液の上昇流の流路となる。:ラフ1〜チューブ
を電解槽内に配設し、該ドラフトチュー゛ブ内には略半
円形状の複数のバッフル板が該チューブの長手方向に互
いに間隔をおいてかつ向きを交互にして取付けられてお
り、最下段のバッフル板上方にノズルから塩酸を注入す
る特許請求の範囲第2項記載の方法。 4、前記バッフル板として、先端稜線の中央部に切欠を
有するバッフル板を用いる特許請求の範囲第3項記載の
方法。 5、前記捕集液中に10〜600/J2の炭酸アルカリ
を含有させる特許請求の範囲第1項記載の方法。[Claims] 1. When producing alkali chlorate by electrolyzing an electrolyte consisting of an aqueous alkali chloride solution, hydrochloric acid is injected into the electrolyte to adjust the pH of the electrolyte to 4.8 to 6.0. On the other hand, chlorine and/or chlorine dioxide gas generated by electrolysis is collected with a strong alkaline solution, and the collected liquid is mixed with hydrochloric acid. to generate alkali chlorate in the collection liquid, then remove unreacted free chlorine in the collection liquid with a reducing agent, and chlorinate the collection liquid containing the alkali chlorate thus obtained. 1. A method for producing alkali chlorate, characterized in that it is reused in preparing an aqueous alkali solution. 2. The injection of hydrochloric acid into the electrolytic solution is carried out by injecting the hydrochloric acid into the flow path of the upward flow of the liquid generated by electrolysis.
The method described in section. 3. It becomes a flow path for the upward flow of electrolyte. : The rough 1 to tubes are arranged in an electrolytic cell, and a plurality of approximately semicircular baffle plates are installed in the draft tube at intervals and in alternating directions in the longitudinal direction of the tube. 3. The method according to claim 2, wherein hydrochloric acid is injected from a nozzle above the lowest baffle plate. 4. The method according to claim 3, wherein the baffle plate is a baffle plate having a notch in the center of the tip edge line. 5. The method according to claim 1, wherein the collection liquid contains 10 to 600/J2 of alkali carbonate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15468683A JPS6046384A (en) | 1983-08-24 | 1983-08-24 | Preparation of alkali chlorate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15468683A JPS6046384A (en) | 1983-08-24 | 1983-08-24 | Preparation of alkali chlorate |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6046384A true JPS6046384A (en) | 1985-03-13 |
JPH032238B2 JPH032238B2 (en) | 1991-01-14 |
Family
ID=15589701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15468683A Granted JPS6046384A (en) | 1983-08-24 | 1983-08-24 | Preparation of alkali chlorate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6046384A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05237478A (en) * | 1991-11-07 | 1993-09-17 | Omuko:Kk | Preparation of sterilized water |
JP2013536320A (en) * | 2010-08-02 | 2013-09-19 | ソルヴェイ(ソシエテ アノニム) | Electrolysis method |
CN109477229A (en) * | 2016-07-28 | 2019-03-15 | 西门子股份公司 | Generate the electrochemical method of ammonia |
-
1983
- 1983-08-24 JP JP15468683A patent/JPS6046384A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05237478A (en) * | 1991-11-07 | 1993-09-17 | Omuko:Kk | Preparation of sterilized water |
JP2013536320A (en) * | 2010-08-02 | 2013-09-19 | ソルヴェイ(ソシエテ アノニム) | Electrolysis method |
CN109477229A (en) * | 2016-07-28 | 2019-03-15 | 西门子股份公司 | Generate the electrochemical method of ammonia |
Also Published As
Publication number | Publication date |
---|---|
JPH032238B2 (en) | 1991-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2089487C1 (en) | Method of continuous synthesis of chlorine dioxide | |
US4169773A (en) | Removal of chlorate from electrolytic cell anolyte | |
EP0498484B1 (en) | Process for electrolytic production of alkali metal chlorate and auxiliary chemicals | |
US5324497A (en) | Integrated procedure for high yield production of chlorine dioxide and apparatus used therefor | |
CN114984735A (en) | Treatment method for chlorine absorption by sodium hydroxide solution | |
US4214957A (en) | System for electrolysis of sodium chloride by ion-exchange membrane process | |
JPH10121280A (en) | Hypochlorite producing device | |
US8216443B2 (en) | Process for producing alkali metal chlorate | |
US3929974A (en) | Production of chlorine dioxide | |
US9776163B1 (en) | Method and system for the integral chlorine dioxide production with relatively independent sodium chlorate electrolytic production and chlorine dioxide production | |
CN102491559A (en) | Treatment method for urea-method hydrazine hydrate recovered saline water | |
JPS6046384A (en) | Preparation of alkali chlorate | |
JPH07507535A (en) | Method for producing chlorine dioxide | |
US4176168A (en) | Process for producing chlorine dioxide | |
CN114293207A (en) | System and method for decomposing chlorate in caustic soda production by ion-exchange membrane method | |
JP2757537B2 (en) | How to remove chlorate in salt water | |
JPH0122356B2 (en) | ||
JP3097241B2 (en) | Method for removing chlorate from aqueous alkali chloride solution | |
JP3568294B2 (en) | How to prevent chlorate from increasing in salt water | |
CN111304683A (en) | Method for removing chlorate in electrolytic circulating light salt water | |
US20200071166A1 (en) | Method for preparing high-purity chlorine dioxide by using methanol and hydrogen peroxide as reducing agent | |
US3574095A (en) | Chlorate system | |
CN110079825A (en) | A kind of method of chlorate in removing light salt brine | |
JPH07165401A (en) | Method for continuous production of chlorine dioxide | |
CN109811366A (en) | A method of decomposing chlorate in electrolysis cycle light salt brine |