JP7496724B2 - Semiconductor Device - Google Patents

Semiconductor Device Download PDF

Info

Publication number
JP7496724B2
JP7496724B2 JP2020109350A JP2020109350A JP7496724B2 JP 7496724 B2 JP7496724 B2 JP 7496724B2 JP 2020109350 A JP2020109350 A JP 2020109350A JP 2020109350 A JP2020109350 A JP 2020109350A JP 7496724 B2 JP7496724 B2 JP 7496724B2
Authority
JP
Japan
Prior art keywords
surface electrode
resin layer
semiconductor device
electrode
semiconductor chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020109350A
Other languages
Japanese (ja)
Other versions
JP2022006839A (en
Inventor
哲豊 紺野
悠香 杉政
大助 川瀬
智康 古川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Semiconductor Device Ltd
Original Assignee
Hitachi Power Semiconductor Device Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Semiconductor Device Ltd filed Critical Hitachi Power Semiconductor Device Ltd
Priority to JP2020109350A priority Critical patent/JP7496724B2/en
Publication of JP2022006839A publication Critical patent/JP2022006839A/en
Application granted granted Critical
Publication of JP7496724B2 publication Critical patent/JP7496724B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48111Disposition the wire connector extending above another semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/4813Connecting within a semiconductor or solid-state body, i.e. fly wire, bridge wire
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • H01L2224/48139Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate with an intermediate bond, e.g. continuous wire daisy chain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Wire Bonding (AREA)

Description

本発明は半導体装置に関する。 The present invention relates to a semiconductor device.

半導体装置(半導体モジュール)は、一般的な構成として、放熱ベースの上に、配線パターンを形成した絶縁基板をはんだ等で接合し、その絶縁基板の配線パターンの上に、パワー半導体チップをはんだ等で搭載する。パワー半導体チップは、スイッチング素子としてMOSFET(metal-oxide-semiconductor field-effect transistor)やIGBT(Insulated Gate Bipolar Transistor)が搭載される。このようなスイッチング機能を有するパワー半導体チップを備える半導体装置は、電力変換装置の部品として使用される。電力変換装置は、直流電源から供給された直流電力をモータなどの誘導性負荷に供給するための交流電力に変換する機能や、モータにより発電された交流電力を直流電源に供給するための直流電力に変換する機能を発揮する。 A semiconductor device (semiconductor module) is generally configured by bonding an insulating substrate with a wiring pattern formed on a heat dissipation base with solder or the like, and then mounting a power semiconductor chip on the wiring pattern of the insulating substrate with solder or the like. The power semiconductor chip is equipped with a metal-oxide-semiconductor field-effect transistor (MOSFET) or an insulated gate bipolar transistor (IGBT) as a switching element. A semiconductor device equipped with a power semiconductor chip with such a switching function is used as a component of a power conversion device. A power conversion device performs the function of converting DC power supplied from a DC power source into AC power for supplying to an inductive load such as a motor, and the function of converting AC power generated by a motor into DC power for supplying to a DC power source.

パワー半導体チップは、裏面には主電流が流れる裏面電極としてドレイン電極(ユニポーラ型トランジスタの場合)、コレクタ電極(バイポーラトランジスタの場合)またはカソード電極(還流ダイオードの場合)を備え、表面には制御電流が流れるゲート電極、主電流が流れる表面電極としてソース電極(ユニポーラ型トランジスタの場合)、エミッタ電極(バイポーラ型トランジスタの場合)またはアノード電極(還流ダイオードの場合)を備える。 A power semiconductor chip has a drain electrode (in the case of a unipolar transistor), collector electrode (in the case of a bipolar transistor) or cathode electrode (in the case of a freewheeling diode) on the back side as the back side electrode through which the main current flows, and a gate electrode on the front side through which a control current flows, and a source electrode (in the case of a unipolar transistor), emitter electrode (in the case of a bipolar transistor) or anode electrode (in the case of a freewheeling diode) as the front side electrode through which the main current flows.

裏面電極は絶縁基板上の配線パターンと接続され、表面電極はワイヤ等を介して絶縁基板上の配線パターンに接続される。鉄道用などの大電力用の半導体装置では、絶縁基板上に複数のパワー半導体チップが搭載され、さらにその絶縁基板を複数搭載することで、大電流に対応できるようにしている。 The back electrode is connected to the wiring pattern on the insulating substrate, and the front electrode is connected to the wiring pattern on the insulating substrate via a wire or the like. In semiconductor devices for high power applications such as railways, multiple power semiconductor chips are mounted on an insulating substrate, and multiple insulating substrates are further mounted to enable the device to handle large currents.

例えば、電気自動車のモータ駆動に用いる半導体装置は、耐圧600V以上、電流容量300A以上となる。電気鉄道の場合は耐圧3.3kV以上、電流容量1200A以上となる。これらの大電流を扱うため、パワー半導体チップあたり数百アンペアの電流を流す必要があり、このため通常、直径300μmから550μm程度の太線ワイヤを1チップあたり複数本接合することが必要になっている。 For example, semiconductor devices used to drive the motors of electric vehicles have a voltage resistance of 600V or more and a current capacity of 300A or more. In the case of electric railways, the voltage resistance is 3.3kV or more and the current capacity is 1200A or more. In order to handle these large currents, it is necessary to pass several hundred amperes of current per power semiconductor chip, which usually requires the joining of multiple thick wires with diameters of about 300μm to 550μm per chip.

従来の半導体装置の例として、特許文献1には、ワイヤが接続される表面電極を形成した半導体チップと、ワイヤと表面電極との接合部を被覆する第1の樹脂膜と、表面電極の形成面の周縁部を被覆し、第1の樹脂膜に接するとともに第1の樹脂膜よりも膜厚の厚い第2の樹脂膜と、半導体チップ、第1の樹脂膜および第2の樹脂膜を覆うゲル状封止材と、を有することを特徴とする半導体装置が記載されている。表面電極とワイヤとの接合部を被覆する第1の樹脂膜(ワイヤ補強樹脂)にはポリアミドイミドが用いられている。図8には、1つの表面電極に2本のワイヤがボンディングされ、ワイヤ補強樹脂によって被覆されている構成が記載されている。 As an example of a conventional semiconductor device, Patent Document 1 describes a semiconductor device having a semiconductor chip on which a surface electrode to which a wire is connected is formed, a first resin film covering the joint between the wire and the surface electrode, a second resin film covering the peripheral portion of the surface on which the surface electrode is formed, contacting the first resin film and having a thickness greater than that of the first resin film, and a gel-like sealing material covering the semiconductor chip, the first resin film, and the second resin film. Polyamideimide is used for the first resin film (wire reinforcing resin) that covers the joint between the surface electrode and the wire. Figure 8 describes a configuration in which two wires are bonded to one surface electrode and covered with wire reinforcing resin.

国際公開第2016/016970号International Publication No. 2016/016970

近年、半導体装置の電流容量向上の要求が高まり、1チップあたりに流れる電流が増加しているため、発熱が増加し、チップ周辺の接合部がより大きな温度変動に晒されるようになっている。このため、熱応力の繰り返しによる破壊寿命をより長寿命化することが課題となっている。また、大電流を扱うため、1つの電極に対してワイヤを複数本接合する必要が生じている。 In recent years, there has been an increasing demand for improved current capacity in semiconductor devices, and the current flowing per chip has increased, which has resulted in increased heat generation and exposed the joints around the chip to greater temperature fluctuations. This has led to the challenge of extending the breakdown life caused by repeated thermal stress. Also, in order to handle large currents, it has become necessary to join multiple wires to one electrode.

従来の半導体装置における表面電極とワイヤとの接合の補強は、アルミニウム系の材料の表面電極に、アルミニウム系のワイヤをポリアミドイミド(PAI)等の樹脂を接着剤として塗布して乾燥し、固化することによって行っていた。この際、樹脂を均一に塗布していない場合、樹脂の塗りむらによってワイヤと表面電極との接合強度が低下し、近年要求されている高いレベルの熱応力に対する寿命を実現できないという課題があった。特に、例えば特許文献1のように、広い1つの電極に対してワイヤを複数本接合する場合には、表面電極とワイヤとの接合を補強する樹脂の塗りむらが生じやすい。 In conventional semiconductor devices, the bond between the surface electrode and the wire is reinforced by applying an aluminum-based wire to the surface electrode made of an aluminum-based material with a resin such as polyamideimide (PAI) as an adhesive, then drying and solidifying. If the resin is not applied evenly, the strength of the bond between the wire and the surface electrode decreases due to unevenness in the resin application, and there is a problem that the life against the high level of thermal stress required in recent years cannot be realized. In particular, when multiple wires are bonded to a single wide electrode, as in Patent Document 1, for example, unevenness in the resin that reinforces the bond between the surface electrode and the wire is likely to occur.

本発明は、上記事情に鑑み、表面電極とワイヤとの接合を補強する樹脂の塗りむらを無くし、耐熱化及び長寿命化を実現可能な半導体装置を提供することを目的とする。 In view of the above circumstances, the present invention aims to provide a semiconductor device that can eliminate unevenness in the application of resin that reinforces the bond between the surface electrode and the wire, and achieves improved heat resistance and a longer life.

上記課題を解決するための本発明の半導体装置は、半導体チップと、前記半導体チップに接続された複数のワイヤとを備えた半導体装置において、アルミニウムを主成分とするとともに前記半導体チップの主電流が流れる第1の表面電極の表面に第1の樹脂層によって形成された隔壁が設けられ、前記隔壁によって前記第1の表面電極の表面が2以上に細分化された領域に分割され、前記細分化された領域毎に1つの前記ワイヤが接続され、かつ、前記細分化された領域に第2の樹脂層が充填されており、前記第1の表面電極の上に前記細分化された領域毎に分割して形成され前記隔壁よりも低い膜厚の第2の表面電極が形成され、前記第2の表面電極に前記ワイヤが接続されており、前記第2の表面電極は、前記第1の表面電極が前記第1の樹脂層により覆われていない部分のみに形成されたニッケルめっき膜であることを特徴とする。 In order to solve the above problem, the semiconductor device of the present invention is a semiconductor device including a semiconductor chip and a plurality of wires connected to the semiconductor chip, wherein a partition formed by a first resin layer is provided on a surface of a first surface electrode which is mainly composed of aluminum and through which a main current of the semiconductor chip flows, the partition divides the surface of the first surface electrode into two or more subdivided regions, one of the wires is connected to each of the subdivided regions, and a second resin layer is filled in the subdivided regions, a second surface electrode which is formed on the first surface electrode and divided into each of the subdivided regions and has a thickness smaller than that of the partition, the wires are connected to the second surface electrode, and the second surface electrode is a nickel plating film formed only on a portion of the first surface electrode which is not covered by the first resin layer .

本発明によれば、表面電極とワイヤとの接合を補強する樹脂の塗りむらを無くし、高耐熱化及び長寿命化を実現可能な半導体装置を提供できる。 The present invention provides a semiconductor device that can eliminate unevenness in the resin that reinforces the bond between the surface electrode and the wire, and achieves high heat resistance and a long life.

実施例1の半導体装置の構成を示す上面図FIG. 1 is a top view showing a configuration of a semiconductor device according to a first embodiment; 図1AのA-A´断面図1A sectional view taken along the line A-A′ of FIG. 図1Bの半導体層1より上部を拡大する図FIG. 1B is an enlarged view of the upper portion of the semiconductor layer 1. 実施例2の半導体装置の構成を示す図FIG. 1 is a diagram showing a configuration of a semiconductor device according to a second embodiment; 図2AのA-A´断面図2A sectional view taken along the line A-A′ of FIG. 半導体装置の上面図に主電流用ワイヤ9のボンディング部の端部から第1の樹脂層までの最低距離Lを示す図FIG. 2 is a top view of a semiconductor device showing the minimum distance L from the end of the bonding portion of the main current wire 9 to the first resin layer. 第1の表面電極2の熱応力に対する寿命とLとの関係を示すグラフGraph showing the relationship between the lifespan of the first surface electrode 2 and L in response to thermal stress 実施例3の半導体装置の構成を示す図FIG. 13 is a diagram showing a configuration of a semiconductor device according to a third embodiment; 図5AのA-A´断面図5A sectional view taken along the line A-A′ of FIG.

以下、図面等を用いて、本発明の実施形態について詳細に説明する。図1Aは実施例1の半導体装置の構成を示す上面図であり、図1BはA-A´断面図であり、図1Cは図1Bの半導体層1より上部を拡大する図である。図1A~図1Cに示すように、本実施例の半導体装置100aは、放熱ベース17と、絶縁基板15と、第1の半導体チップ(スイッチング素子)6および第2の半導体チップ(ダイオード素子)7とがこの順で積層された構造を備える。放熱ベース17と絶縁基板15との間には基板接合層16が設けられ、絶縁基板15と第1の半導体チップ6および第2の半導体チップ7との間には、チップ接合層8が設けられている。放熱ベース17の表面と放熱ベース17以外の構成は、封止樹脂18によって封止されている。 The following describes the embodiments of the present invention in detail with reference to the drawings. FIG. 1A is a top view showing the configuration of the semiconductor device of Example 1, FIG. 1B is an A-A' cross-sectional view, and FIG. 1C is an enlarged view of the upper part of the semiconductor layer 1 in FIG. 1B. As shown in FIGS. 1A to 1C, the semiconductor device 100a of this example has a structure in which a heat dissipation base 17, an insulating substrate 15, a first semiconductor chip (switching element) 6, and a second semiconductor chip (diode element) 7 are stacked in this order. A substrate bonding layer 16 is provided between the heat dissipation base 17 and the insulating substrate 15, and a chip bonding layer 8 is provided between the insulating substrate 15 and the first semiconductor chip 6 and the second semiconductor chip 7. The surface of the heat dissipation base 17 and the configuration other than the heat dissipation base 17 are sealed with sealing resin 18.

なお、半導体装置100aは、上記構成の他に、上記構成を覆う樹脂ケース等を必要とするが、本実施例で開示する技術内容と直接関係しないため省略した。また、図1A(上面図)上の主電流用ワイヤ9及びゲートワイヤ10は、第1の表面電極2またはゲート電極3または配線層13との接合部のみを表示し、それ以外は省略した。また、封止樹脂18も省略した。以下、各構成について詳述する。 In addition to the above components, the semiconductor device 100a requires a resin case to cover the above components, but this is omitted since it is not directly related to the technical content disclosed in this embodiment. Also, in FIG. 1A (top view), the main current wire 9 and gate wire 10 are shown only at their junctions with the first surface electrode 2, gate electrode 3, or wiring layer 13, and the rest are omitted. The sealing resin 18 is also omitted. Each component will be described in detail below.

半導体チップ(スイッチング素子)6は、半導体層1と、半導体層1の表面側(半導体チップの表面)に形成され、主電流が流れる第1の表面電極2と、半導体層1の表面に設けられ、ゲート電流が流れるゲート電極3と、半導体層1の裏面に形成され、主電流が流れる裏面電極4と、第1の樹脂層(隔壁)5を有する。ユニポーラ型のトランジスタの場合、第1の表面電極2をソース電極、裏面電極4をドレイン電極と称し、また、バイポーラ型のトランジスタの場合、第1の表面電極2をエミッタ電極、裏面電極4をコレクタ電極と称することがあるが、それぞれ同じ機能を有するものである。 The semiconductor chip (switching element) 6 has a semiconductor layer 1, a first surface electrode 2 formed on the surface side of the semiconductor layer 1 (surface of the semiconductor chip) and through which a main current flows, a gate electrode 3 provided on the surface of the semiconductor layer 1 and through which a gate current flows, a back electrode 4 formed on the back surface of the semiconductor layer 1 and through which a main current flows, and a first resin layer (partition) 5. In the case of a unipolar transistor, the first surface electrode 2 is sometimes called a source electrode and the back electrode 4 is sometimes called a drain electrode, and in the case of a bipolar transistor, the first surface electrode 2 is sometimes called an emitter electrode and the back electrode 4 is sometimes called a collector electrode, but they each have the same function.

半導体チップ(ダイオード素子)7は、半導体層1と、半導体層1の表面側(半導体チップの表面)に形成され、主電流が流れる第1の表面電極2と、半導体チップの裏面に形成され、主電流が流れる裏面電極4と、第1の樹脂層5を有する。第1の表面電極2をアノード電極と称し、裏面電極4をカソード電極と称することがある。絶縁基板15は、絶縁層12の半導体チップ側に配線層13を、半導体チップと反対側に裏面金属層14を備える。 The semiconductor chip (diode element) 7 has a semiconductor layer 1, a first surface electrode 2 formed on the surface side of the semiconductor layer 1 (surface of the semiconductor chip) and through which the main current flows, a back electrode 4 formed on the back surface of the semiconductor chip and through which the main current flows, and a first resin layer 5. The first surface electrode 2 is sometimes called the anode electrode, and the back electrode 4 is sometimes called the cathode electrode. The insulating substrate 15 has a wiring layer 13 on the semiconductor chip side of the insulating layer 12, and a back metal layer 14 on the side opposite the semiconductor chip.

半導体チップ(スイッチング素子)6と、半導体チップ(ダイオード素子)7の裏面電極4は、チップ接合層8によって、絶縁基板15の配線層13に接合されている。絶縁基板15の裏面金属層14は、基板接合層16によって、放熱ベース17に接合されている。 The semiconductor chip (switching element) 6 and the back electrode 4 of the semiconductor chip (diode element) 7 are joined to the wiring layer 13 of the insulating substrate 15 by the chip joining layer 8. The back metal layer 14 of the insulating substrate 15 is joined to the heat dissipation base 17 by the substrate joining layer 16.

半導体チップ(スイッチング素子)6と、半導体チップ(ダイオード素子)7の第1の表面電極2の表面には、主電流用ワイヤ(配線)9が接合(ボンディング)され、外部機器と電気的に接続されている。また半導体チップ(スイッチング素子)6のゲート電極3の表面には、ゲートワイヤ10が接合されている。 A main current wire (wiring) 9 is bonded to the surfaces of the semiconductor chip (switching element) 6 and the first surface electrode 2 of the semiconductor chip (diode element) 7, and is electrically connected to an external device. A gate wire 10 is bonded to the surface of the gate electrode 3 of the semiconductor chip (switching element) 6.

第1の表面電極2と主電流用ワイヤ9との接合部およびゲート電極3とゲートワイヤ10の接合部には、接合を補強する第2の樹脂層11が設けられている。 A second resin layer 11 is provided at the joint between the first surface electrode 2 and the main current wire 9 and at the joint between the gate electrode 3 and the gate wire 10 to reinforce the joint.

放熱ベース17に積層された半導体チップ(スイッチング素子)6と、半導体チップ(ダイオード素子)7、チップ接合層8、主電流用ワイヤ9、ゲートワイヤ10、第2の樹脂層11、絶縁基板15、基板接合層16は、封止樹脂18によって封止されている。 The semiconductor chip (switching element) 6, semiconductor chip (diode element) 7, chip bonding layer 8, main current wire 9, gate wire 10, second resin layer 11, insulating substrate 15, and substrate bonding layer 16 stacked on the heat dissipation base 17 are sealed with sealing resin 18.

本実施例の特徴は、主電流が流れる第1の表面電極2の表面に設けられた第1の樹脂層5によって形成された隔壁により、第1の表面電極2の表面が複数の領域に分割され、細分化された領域毎に主電流用ワイヤ9が1本接続され、かつ、細分化された領域に第2の樹脂層が充填されていることである。尚、図1Bに示すように、1本のワイヤの端部だけでなく途中部分でも接合するようにしてもよく、この場合も細分化された領域毎に主電流用ワイヤ9を接合しているのは1か所であり、細分化された領域毎に主電流用ワイヤ9が1本接続されている状態に含まれる。 The feature of this embodiment is that the surface of the first surface electrode 2 through which the main current flows is divided into a plurality of regions by partitions formed by the first resin layer 5 provided on the surface of the first surface electrode 2, one main current wire 9 is connected to each divided region, and the divided regions are filled with the second resin layer. As shown in FIG. 1B, the wire may be joined not only at its end but also at its middle, and in this case, the main current wire 9 is joined at one point for each divided region, which includes the state in which one main current wire 9 is connected to each divided region.

上述した構成とすることにより、半導体チップ(スイッチング素子)6と、半導体チップ(ダイオード素子)7の主電流が流れる第1の表面電極2を底面とし、第1の樹脂層5を側壁とした箱型部が形成され、この箱型部が第2の樹脂層11が充填される際の受け皿となって、第1の表面電極2と主電流用ワイヤ9の接合部に第2の樹脂層11をむらなく、隙間なく充填できる。この結果、半導体装置の熱応力に対する寿命が向上するといった効果を奏する。 The above-mentioned configuration forms a box-shaped section with the first surface electrode 2, through which the main current of the semiconductor chip (switching element) 6 and the semiconductor chip (diode element) 7 flows, as the bottom surface and the first resin layer 5 as the side wall, and this box-shaped section serves as a receptacle when the second resin layer 11 is filled, allowing the second resin layer 11 to be filled evenly and without gaps at the joint between the first surface electrode 2 and the main current wire 9. As a result, the effect of improving the life of the semiconductor device against thermal stress is achieved.

従来の半導体装置は、第1の樹脂層が半導体チップの外周部のみであり、細分化されていない第1の表面電極の表面に複数の主電流用ワイヤ9の接続部があった。第2の樹脂層は主電流用ワイヤを接続した後に、半導体チップ上に液状の状態で塗布されるが、第2の樹脂層の粘度が高いと半導体チップ上にまんべんなく広がらず塗布斑ができたり、細かな隙間に浸透せず第1の表面電極と主電流用ワイヤの接合部に空隙ができてしまい、熱応力に対する寿命が低下するといった問題があった。一方、第2の樹脂層の粘度が低いと半導体チップからはみ出しこぼれてしまうことがあった。 In conventional semiconductor devices, the first resin layer is only on the outer periphery of the semiconductor chip, and there are multiple connection parts for the main current wires 9 on the surface of the first surface electrode, which is not subdivided. The second resin layer is applied in liquid form onto the semiconductor chip after the main current wires are connected, but if the viscosity of the second resin layer is high, it will not spread evenly over the semiconductor chip, resulting in uneven application, or it will not penetrate into small gaps, resulting in gaps at the junctions between the first surface electrodes and the main current wires, resulting in reduced lifespan against thermal stress. On the other hand, if the viscosity of the second resin layer is low, it may overflow and spill out from the semiconductor chip.

本発明の特徴によれば、上述したように、主電流用ワイヤ9の接合部毎に、第2の樹脂層を充填する箱型部があるので、第1の表面電極2と主電流用ワイヤ9の接合部に第2の樹脂層11を安定して供給できるため、寿命のばらつきも少なくすることができる。 According to the features of the present invention, as described above, each joint of the main current wire 9 has a box-shaped section in which the second resin layer is filled, so that the second resin layer 11 can be stably supplied to the joint between the first surface electrode 2 and the main current wire 9, thereby reducing variation in life span.

第1の表面電極2の第1の樹脂層5の側壁による分割の態様は、図1Aおよび図1Bに示した態様に限られるものではない。本実施例では、上面から見た時に、第1の表面電極2の表面を縦3つ横4つに分割した領域としているが、領域の数や配列はこれに限定されるものではない。 The manner in which the first surface electrode 2 is divided by the side walls of the first resin layer 5 is not limited to the manner shown in Figures 1A and 1B. In this embodiment, when viewed from above, the surface of the first surface electrode 2 is divided into three vertical and four horizontal regions, but the number and arrangement of the regions are not limited to this.

第1の樹脂層5の材料および第2の樹脂層11に特に限定は無いが、第1の樹脂層5にはPAI(ポリアミドイミド)が好適であり、第2の樹脂層11にはPI(ポリイミド)が好適である。 There are no particular limitations on the materials of the first resin layer 5 and the second resin layer 11, but PAI (polyamideimide) is preferred for the first resin layer 5, and PI (polyimide) is preferred for the second resin layer 11.

半導体層1には、Si(シリコン)や高温で動作させることが可能なSiC(シリコンカーバイド)を用いることができる。表面電極や裏面電極には、アルミニウム(Al)を主成分とした金属または合金が用いられることが好ましい。 The semiconductor layer 1 can be made of Si (silicon) or SiC (silicon carbide), which can operate at high temperatures. The front and back electrodes are preferably made of a metal or alloy mainly composed of aluminum (Al).

チップ接合層8は焼結金属を使用することが好ましい。焼結金属としては、Cuの微粒子を焼結させた焼結銅を用いることが好ましい。焼結銅は、従来のはんだに比べ耐熱性が高く、高温で動作しても長寿命な半導体装置を提供できる。チップ接合層8には、焼結銅に代えて焼結銀を用いることも可能である。 It is preferable to use sintered metal for the chip bonding layer 8. As the sintered metal, it is preferable to use sintered copper made by sintering fine particles of Cu. Sintered copper has higher heat resistance than conventional solder, and can provide a semiconductor device with a long life even when operated at high temperatures. It is also possible to use sintered silver instead of sintered copper for the chip bonding layer 8.

絶縁基板15は、絶縁層12として厚さ0.63mm程度の窒化アルミニウム(AlN)を用いることが好ましい。その他、耐圧や用途によっては窒化珪素(Si)、酸化アルミニウム(Al)等のセラミック材料を用いてもよい。裏面金属層14は厚さ0.2mm程度のCuの層で構成することが好ましい。配線層13は、厚さ0.3mm程度のCuの層で構成されていることが好ましい。 The insulating substrate 15 preferably uses aluminum nitride (AlN) having a thickness of about 0.63 mm as the insulating layer 12. Alternatively, ceramic materials such as silicon nitride ( Si3N4 ) and aluminum oxide ( Al2O3 ) may be used depending on the withstand voltage and application. The back metal layer 14 is preferably made of a Cu layer having a thickness of about 0.2 mm. The wiring layer 13 is preferably made of a Cu layer having a thickness of about 0.3 mm.

放熱ベース17は、半導体チップ(スイッチング素子)6及び半導体チップ(ダイオード素子)7から発せられた熱を外部の冷却器に伝える役目と、半導体装置100a全体の剛性を担う役割を有している。放熱ベース17には、例えばAl-SiCが好適である。ただし、これに限らず、必要な熱伝導性および剛性を有していれば、CuやAlを用いることも可能である。 The heat dissipation base 17 has the role of transferring heat generated from the semiconductor chip (switching element) 6 and the semiconductor chip (diode element) 7 to an external cooler, and also of providing the rigidity of the entire semiconductor device 100a. For example, Al-SiC is suitable for the heat dissipation base 17. However, this is not a limitation, and Cu or Al can also be used as long as it has the necessary thermal conductivity and rigidity.

封止樹脂18は、例えばシリコーンゲルを用いることが好ましい。シリコーンゲルで封止することにより、半導体装置100a内部の放電を防止することができる。ただしこれに限らず、エポキシ樹脂で封止してもよい。封止樹脂18として比較的硬いエポキシ樹脂を用いる場合には、上述したチップ接合層8をはんだに代えてもよい。ただし、封止樹脂18が比較的柔らかいシリコーンゲルである場合は、はんだでは歪を抑制できないため、接合層に焼結金属を用いることが好ましい。 It is preferable to use, for example, silicone gel as the sealing resin 18. By sealing with silicone gel, discharge inside the semiconductor device 100a can be prevented. However, this is not the only option, and sealing with epoxy resin may also be used. When a relatively hard epoxy resin is used as the sealing resin 18, the chip bonding layer 8 described above may be replaced with solder. However, when the sealing resin 18 is a relatively soft silicone gel, it is preferable to use sintered metal for the bonding layer, since solder cannot suppress distortion.

各層の形成方法は、従来の方法を適用できる。第1の樹脂層5は、フォトリソグラフィーによるパターニングによって形成することができる。 Conventional methods can be used to form each layer. The first resin layer 5 can be formed by patterning using photolithography.

図2Aは実施例2の半導体装置の構成を示す上面図であり、図2Bは図2AのA-A´断面図である。図2に示すように、本実施例の半導体装置100bは、実施例1の半導体装置100aの構成に第2の表面電極19を追加したものである。第2の表面電極19は、第1の表面電極2またはゲート電極3の表面に形成され、第1の表面電極2の細分化された領域毎に分割して形成され、第1の樹脂層5により形成される隔壁よりも小さい膜厚となっている。主電流用ワイヤ9は、第2の表面電極19上に接続されている。 Figure 2A is a top view showing the configuration of the semiconductor device of Example 2, and Figure 2B is a cross-sectional view taken along the line A-A' of Figure 2A. As shown in Figure 2, the semiconductor device 100b of this example is obtained by adding a second surface electrode 19 to the configuration of the semiconductor device 100a of Example 1. The second surface electrode 19 is formed on the surface of the first surface electrode 2 or the gate electrode 3, is formed by dividing each of the subdivided regions of the first surface electrode 2, and has a thickness smaller than that of the partition formed by the first resin layer 5. The main current wire 9 is connected onto the second surface electrode 19.

第2の表面電極19が第1の樹脂層5により形成される隔壁よりも低い膜厚となっているため、第2の表面電極19を底面、第1の樹脂層を側壁とした箱型部が受け皿となって第2の表面電極19と主電流用ワイヤ9の接合部に第2の樹脂層11をむらなく隙間なく充填できるので、熱応力に対する寿命が向上する効果を奏する。また、第2の表面電極19で第1の表面電極2にかかる熱応力を緩和できるので、熱応力に対する寿命が向上する。さらに、第2の表面電極19が細分化されているので、ワイヤ接続時の圧力による割れがなくなる。 Since the second surface electrode 19 has a thickness less than that of the partition formed by the first resin layer 5, the box-shaped portion with the second surface electrode 19 as the bottom and the first resin layer as the sidewall acts as a tray, allowing the second resin layer 11 to be filled evenly and without gaps at the joint between the second surface electrode 19 and the main current wire 9, thereby improving the lifespan against thermal stress. In addition, the second surface electrode 19 can relieve the thermal stress applied to the first surface electrode 2, improving the lifespan against thermal stress. Furthermore, since the second surface electrode 19 is subdivided, cracks due to pressure when connecting the wires are eliminated.

第2の表面電極19は第1の樹脂層5を形成した後に、ニッケル(Ni)をめっきすることによって形成できる。このため、第2の表面電極19は、第1の表面電極2が第1の樹脂層5により覆われていない部分のみに形成されるため細分化されている。従来の半導体装置は第2の表面電極は、主電流用ワイヤの接合部毎に細分化されておらず、広い面に複数の主電流ワイヤの接合部を設けていた。広い面に主電流ワイヤをワイヤボンディングすると、硬いNiに圧力がかかるとともに、Niの下のアルミニウムを主成分とする柔らかい第1の表面電極がその圧力でへこむためNiに割れが生じることがあった。Niの割れる箇所が主電流用ワイヤの接合部に近いと熱応力に対する寿命が低下するという課題があった。本実施例では、第2の表面電極19が形成される領域が細分化されているため、熱応力を緩和できる。 The second surface electrode 19 can be formed by plating nickel (Ni) after forming the first resin layer 5. Therefore, the second surface electrode 19 is segmented because it is formed only in the part of the first surface electrode 2 that is not covered by the first resin layer 5. In the conventional semiconductor device, the second surface electrode is not segmented for each joint of the main current wire, and multiple joints of the main current wire are provided on a wide surface. When the main current wire is wire-bonded to a wide surface, pressure is applied to the hard Ni, and the soft first surface electrode, which is mainly composed of aluminum under the Ni, is dented by the pressure, which may cause cracks in the Ni. If the part where the Ni cracks is close to the joint of the main current wire, there is a problem that the life against thermal stress is reduced. In this embodiment, the area where the second surface electrode 19 is formed is segmented, so that thermal stress can be alleviated.

図3は半導体装置の上面図に主電流用ワイヤ9のボンディング部の端部から第1の樹脂層までの最低距離Lを示す図である。図3に示すように、1つの領域において、主電流用ワイヤ9の接合部(ボンディング部)の端部から第2の表面電極19の端部(第1の樹脂層5の隔壁)までの最短距離をLとする。上述した本実施例の半導体装置において、Lを変えて熱応力に対する寿命を評価した。図4は第1の表面電極2の熱応力に対する寿命とLとの関係を示すグラフである。図4に示すように、Lが200μm未満の場合はLの減少とともに寿命が低下することがわかる。一方、Lが200μm以上の場合は寿命は最大値のまま変化していない。つまり、主電流用ワイヤ9の接合部の端部から第2の表面電極19の端部までの距離を200μm以上にすることによって最大の寿命向上効果を得ることができる。 Figure 3 is a diagram showing the minimum distance L from the end of the bonding portion of the main current wire 9 to the first resin layer in a top view of the semiconductor device. As shown in Figure 3, in one area, the shortest distance from the end of the bonding portion (bonding portion) of the main current wire 9 to the end of the second surface electrode 19 (partition wall of the first resin layer 5) is L. In the semiconductor device of the above-mentioned embodiment, L was changed to evaluate the life against thermal stress. Figure 4 is a graph showing the relationship between the life against thermal stress of the first surface electrode 2 and L. As shown in Figure 4, it can be seen that when L is less than 200 μm, the life decreases with the decrease in L. On the other hand, when L is 200 μm or more, the life remains at the maximum value. In other words, the maximum life improvement effect can be obtained by making the distance from the end of the bonding portion of the main current wire 9 to the end of the second surface electrode 19 200 μm or more.

また、第2の表面電極19の割れを防ぐためには、分割後の1つの領域が広すぎない方がよいので、主電流用ワイヤ9の接合部の端部から第2の表面電極19の端部までの距離を400μm以下とすることが好ましい。尚、図3、図4で説明したLの範囲については後述する実施例3でも同様である。 In addition, to prevent cracking of the second surface electrode 19, it is better that one area after division is not too wide, so it is preferable that the distance from the end of the joint of the main current wire 9 to the end of the second surface electrode 19 is 400 μm or less. The range of L described in Figures 3 and 4 is the same in Example 3 described later.

図5Aは実施例3の半導体装置の構成を示す図であり、図5Bは図5AのA-A´断面図である。図5Aに示すように、本実施例の半導体装置100cは、実施例2の構成に第3の表面電極20を追加したものである。第3の表面電極20は、第2の表面電極19の上に細分化された領域毎に分割して形成され、第2の表面電極19と第3の表面電極20の厚さの和は第1の樹脂層5により形成される隔壁よりも低い膜厚となっている。主電流用ワイヤ9は第3の表面電極20上の表面に接続されている。 Figure 5A shows the configuration of a semiconductor device of Example 3, and Figure 5B is a cross-sectional view of Figure 5A taken along the line A-A'. As shown in Figure 5A, the semiconductor device 100c of this example is obtained by adding a third surface electrode 20 to the configuration of Example 2. The third surface electrode 20 is formed by dividing the second surface electrode 19 into smaller regions, and the sum of the thicknesses of the second surface electrode 19 and the third surface electrode 20 is thinner than the partition formed by the first resin layer 5. The main current wire 9 is connected to the surface above the third surface electrode 20.

本実施例によれば、第2の表面電極19と第3の表面電極20で第1の表面電極2にかかる熱応力を緩和できるので、熱応力に対する寿命が向上する。また、第2の表面電極19と第3の表面電極20が細分化されているので、ワイヤ接続時の圧力による割れがなくなる。 According to this embodiment, the second surface electrode 19 and the third surface electrode 20 can relieve the thermal stress on the first surface electrode 2, improving the life against thermal stress. In addition, since the second surface electrode 19 and the third surface electrode 20 are subdivided, cracks due to pressure during wire connection are eliminated.

また、第2の表面電極19と第3の表面電極20の厚さの和は第1の樹脂層5により形成される隔壁よりも低い膜厚となっているため、第3の表面電極20を底面、第1の樹脂層を側壁とした箱型部が受け皿となって第3の表面電極20と主電流用ワイヤ9の接合部に第2の樹脂層11をむらなく隙間なく充填できるので、熱応力に対する寿命が向上するという効果を奏する。 In addition, the sum of the thicknesses of the second surface electrode 19 and the third surface electrode 20 is less than the thickness of the partition wall formed by the first resin layer 5, so that the box-shaped portion with the third surface electrode 20 as the bottom and the first resin layer as the side wall acts as a tray, allowing the second resin layer 11 to be filled evenly and without gaps at the joint between the third surface electrode 20 and the main current wire 9, thereby improving the life against thermal stress.

第3の表面電極20は第1の樹脂層5を形成した後に、第2の表面電極19としてNiをめっきし、この表面に第3の表面電極20としてCuをめっきすることで形成できる。このため、第2の表面電極19と第3の表面電極20は、第1の表面電極2が第1の樹脂層5により覆われていない部分のみに形成されるため細分化されている。このため実施例2と同様電極の割れを防ぐことができた。 The third surface electrode 20 can be formed by forming the first resin layer 5, plating Ni as the second surface electrode 19, and then plating Cu on this surface as the third surface electrode 20. Therefore, the second surface electrode 19 and the third surface electrode 20 are segmented because they are formed only in the parts of the first surface electrode 2 that are not covered by the first resin layer 5. As a result, cracking of the electrodes can be prevented, as in Example 2.

これまで説明してきた実施例1から3において、主電流用ワイヤ9は、アルミニウムワイヤ、銅ワイヤなどを用いることができるが、銅ワイヤを適用することによりさらに長寿命にすることができる。但し、銅ワイヤは硬く、アルミニウム電極はやわらかいので、銅ワイヤを用いる場合は、実施例2、3のようにNiの電極を用いることが望ましい。 In the above-described embodiments 1 to 3, the main current wire 9 can be made of aluminum wire, copper wire, etc., but the use of copper wire can extend the life even further. However, since copper wire is hard and aluminum electrodes are soft, when using copper wire, it is preferable to use Ni electrodes as in embodiments 2 and 3.

以上、説明したように、本発明によれば、表面電極とワイヤとの接合部を補強する樹脂の塗りむらを無くし、耐熱化及び長寿命化を実現可能な半導体装置を提供できることが示された。 As explained above, the present invention has been shown to provide a semiconductor device that can eliminate unevenness in the resin that reinforces the joint between the surface electrode and the wire, and achieves improved heat resistance and a longer life.

なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記した実施例は本発明を分かりやすく説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることも可能である。 The present invention is not limited to the above-mentioned embodiments, but includes various modified examples. The above-mentioned embodiments are provided to explain the present invention in an easy-to-understand manner, and are not necessarily limited to those having all of the configurations described. It is also possible to replace part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. It is also possible to add, delete, or replace part of the configuration of each embodiment with other configurations.

100a,100b,100c…半導体装置、1…半導体層、2…第1の表面電極、3…ゲート電極、4…裏面電極、5…第1の樹脂層、6…半導体チップ(スイッチング素子)、7…半導体チップ(ダイオード素子)、8…チップ接合層、9…主電流用ワイヤ、10…ゲートワイヤ、11…第2の樹脂層、12…絶縁層、13…配線層、14…裏面金属層、15…絶縁基板、16…基板接合層、17…放熱ベース、18…封止樹脂、19…第2の表面電極、20…第3の表面電極。 100a, 100b, 100c...semiconductor device, 1...semiconductor layer, 2...first surface electrode, 3...gate electrode, 4...back surface electrode, 5...first resin layer, 6...semiconductor chip (switching element), 7...semiconductor chip (diode element), 8...chip bonding layer, 9...main current wire, 10...gate wire, 11...second resin layer, 12...insulating layer, 13...wiring layer, 14...back surface metal layer, 15...insulating substrate, 16...substrate bonding layer, 17...heat dissipation base, 18...encapsulating resin, 19...second surface electrode, 20...third surface electrode.

Claims (6)

半導体チップと、前記半導体チップに接続された複数のワイヤとを備えた半導体装置において、
アルミニウムを主成分とするとともに前記半導体チップの主電流が流れる第1の表面電極の表面に第1の樹脂層によって形成された隔壁が設けられ、前記隔壁によって前記第1の表面電極の表面が2以上に細分化された領域に分割され、
前記細分化された領域毎に1つの前記ワイヤが接続され、かつ、
前記細分化された領域に第2の樹脂層が充填されており、
前記第1の表面電極の上に前記細分化された領域毎に分割して形成され前記隔壁よりも低い膜厚の第2の表面電極が形成され、
前記第2の表面電極に前記ワイヤが接続されており、
前記第2の表面電極は、前記第1の表面電極が前記第1の樹脂層により覆われていない部分のみに形成されたニッケルめっき膜であることを特徴とする半導体装置。
A semiconductor device including a semiconductor chip and a plurality of wires connected to the semiconductor chip,
a partition formed of a first resin layer is provided on a surface of a first surface electrode , the first surface electrode being mainly composed of aluminum and through which a main current of the semiconductor chip flows, the partition dividing the surface of the first surface electrode into two or more subdivided regions;
One of the wires is connected to each of the subdivided regions; and
A second resin layer is filled in the divided region ,
A second surface electrode is formed on the first surface electrode, the second surface electrode being divided into each of the divided regions and having a thickness smaller than that of the partition wall;
the wire is connected to the second surface electrode;
The semiconductor device according to claim 1, wherein the second surface electrode is a nickel plating film formed only on a portion of the first surface electrode that is not covered with the first resin layer .
半導体チップと、前記半導体チップに接続された複数のワイヤとを備えた半導体装置において、
アルミニウムを主成分とするとともに前記半導体チップの主電流が流れる第1の表面電極の表面に、第1の樹脂層によって形成された隔壁が設けられ、前記隔壁によって前記第1の表面電極の表面が2以上に細分化された領域に分割され、
前記細分化された領域毎に1つの前記ワイヤが接続され、かつ、
前記細分化された領域に第2の樹脂層が充填されており、
前記第1の表面電極の上に、前記細分化された領域毎に分割して形成された第2の表面電極と、前記第2の表面電極の上に形成された第3の表面電極とが形成され、
前記第3の表面電極に前記ワイヤが接続され、前記第2の表面電極と前記第3の表面電極の厚さの和は前記隔壁よりも低く、
前記第2の表面電極は、前記第1の表面電極が前記第1の樹脂層により覆われていない部分のみに形成されたニッケルめっき膜であることを特徴とする半導体装置。
A semiconductor device including a semiconductor chip and a plurality of wires connected to the semiconductor chip,
a partition formed of a first resin layer is provided on a surface of a first surface electrode, the first surface electrode being mainly composed of aluminum and through which a main current of the semiconductor chip flows, the partition dividing the surface of the first surface electrode into two or more subdivided regions;
One of the wires is connected to each of the subdivided regions; and
A second resin layer is filled in the divided region,
a second surface electrode formed by dividing the first surface electrode into the divided regions, and a third surface electrode formed on the second surface electrode;
the wire is connected to the third surface electrode, and a sum of the thicknesses of the second surface electrode and the third surface electrode is smaller than the thickness of the partition wall;
The semiconductor device according to claim 1, wherein the second surface electrode is a nickel plating film formed only on a portion of the first surface electrode that is not covered with the first resin layer.
前記半導体チップと前記ワイヤとの接合部の端部から前記第2の表面電極の端部までの距離が200μm以上400μm以下であることを特徴とする請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1 , wherein a distance from an end of a joint between the semiconductor chip and the wire to an end of the second surface electrode is 200 [mu]m or more and 400 [mu]m or less. 前記第1の樹脂層はポリイミドであることを特徴とする請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the first resin layer is made of polyimide. 前記第2の樹脂層はポリアミドイミドであることを特徴とする請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein the second resin layer is made of polyamide-imide. 前記第3の表面電極は銅めっき膜であることを特徴とする請求項に記載の半導体装置。 3. The semiconductor device according to claim 2 , wherein the third surface electrode is a copper plating film.
JP2020109350A 2020-06-25 2020-06-25 Semiconductor Device Active JP7496724B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109350A JP7496724B2 (en) 2020-06-25 2020-06-25 Semiconductor Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109350A JP7496724B2 (en) 2020-06-25 2020-06-25 Semiconductor Device

Publications (2)

Publication Number Publication Date
JP2022006839A JP2022006839A (en) 2022-01-13
JP7496724B2 true JP7496724B2 (en) 2024-06-07

Family

ID=80110861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109350A Active JP7496724B2 (en) 2020-06-25 2020-06-25 Semiconductor Device

Country Status (1)

Country Link
JP (1) JP7496724B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144168A (en) 2014-01-31 2015-08-06 三菱電機株式会社 semiconductor device
WO2016016970A1 (en) 2014-07-30 2016-02-04 株式会社日立製作所 Semiconductor device, method for manufacturing semiconductor device, and power conversion device
WO2016143557A1 (en) 2015-03-10 2016-09-15 三菱電機株式会社 Power semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015144168A (en) 2014-01-31 2015-08-06 三菱電機株式会社 semiconductor device
WO2016016970A1 (en) 2014-07-30 2016-02-04 株式会社日立製作所 Semiconductor device, method for manufacturing semiconductor device, and power conversion device
WO2016143557A1 (en) 2015-03-10 2016-09-15 三菱電機株式会社 Power semiconductor device

Also Published As

Publication number Publication date
JP2022006839A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
US6914321B2 (en) Semiconductor device
JP6300386B2 (en) Semiconductor device
US10262953B2 (en) Semiconductor device
JP6988345B2 (en) Semiconductor device
JP2013069782A (en) Semiconductor device
US20200365564A1 (en) Semiconductor module
WO2020241238A1 (en) Semiconductor device
JP6192561B2 (en) Power semiconductor device
WO2016203743A1 (en) Semiconductor device
JP6927437B1 (en) Power module and power converter
JP6895307B2 (en) Semiconductor device
JP7496724B2 (en) Semiconductor Device
CN112054022A (en) Semiconductor device and semiconductor apparatus including the same
JP2021141221A (en) Semiconductor module
JP4594831B2 (en) Power semiconductor device
JP7495225B2 (en) Semiconductor Device
JP4751380B2 (en) Semiconductor device
JP7419781B2 (en) semiconductor module
JP2021077777A (en) Semiconductor device
JP7267963B2 (en) semiconductor equipment
JP7334369B1 (en) Power module and power converter
US20230028808A1 (en) Semiconductor device
WO2023238385A1 (en) Semiconductor device
JP6680414B1 (en) Semiconductor device and power converter
WO2023112662A1 (en) Semiconductor module and semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240528

R150 Certificate of patent or registration of utility model

Ref document number: 7496724

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150