JP7496182B2 - Ultrasonic cleaning method for AlN ceramics, ultrasonic cleaning method for semiconductor manufacturing equipment components, and manufacturing method for semiconductor manufacturing equipment components - Google Patents

Ultrasonic cleaning method for AlN ceramics, ultrasonic cleaning method for semiconductor manufacturing equipment components, and manufacturing method for semiconductor manufacturing equipment components Download PDF

Info

Publication number
JP7496182B2
JP7496182B2 JP2020056937A JP2020056937A JP7496182B2 JP 7496182 B2 JP7496182 B2 JP 7496182B2 JP 2020056937 A JP2020056937 A JP 2020056937A JP 2020056937 A JP2020056937 A JP 2020056937A JP 7496182 B2 JP7496182 B2 JP 7496182B2
Authority
JP
Japan
Prior art keywords
ultrasonic cleaning
cleaning method
semiconductor manufacturing
manufacturing equipment
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020056937A
Other languages
Japanese (ja)
Other versions
JP2021158217A (en
Inventor
晶 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2020056937A priority Critical patent/JP7496182B2/en
Publication of JP2021158217A publication Critical patent/JP2021158217A/en
Application granted granted Critical
Publication of JP7496182B2 publication Critical patent/JP7496182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cleaning By Liquid Or Steam (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

本発明は、AlNセラミックスの超音波洗浄方法、半導体製造装置用部材の超音波洗浄方法および半導体製造装置用部材の製造方法に関する。 The present invention relates to an ultrasonic cleaning method for AlN ceramics, an ultrasonic cleaning method for semiconductor manufacturing equipment components, and a manufacturing method for semiconductor manufacturing equipment components.

特許文献1には、半導体素子製造工程においては、洗浄水で満たされた洗浄槽内に被洗浄物(半導体ウェハ)を配置し、洗浄水を介して超音波を当該被洗浄物に照射することにより被洗浄物の洗浄を行う超音波洗浄方法が開示されている。その超音波洗浄方法は、洗浄を行うにあたり、被洗浄物を配置した洗浄水内の気体の溶解度を低下させ、これにより、パーティクルの除去効率を上げ、半導体素子製造工程の歩留まりを向上させることを目的としている。 Patent Document 1 discloses an ultrasonic cleaning method for semiconductor device manufacturing processes, in which an object to be cleaned (semiconductor wafer) is placed in a cleaning tank filled with cleaning water, and ultrasonic waves are applied to the object to be cleaned through the cleaning water, thereby cleaning the object. The ultrasonic cleaning method aims to reduce the solubility of gas in the cleaning water in which the object to be cleaned is placed during cleaning, thereby increasing the efficiency of particle removal and improving the yield of the semiconductor device manufacturing process.

特開2000-077376号公報JP 2000-077376 A

ところで、AlNセラミックスがプラズマ耐性や高熱伝導性の観点から半導体ウェハの加熱用ヒータやプラズマ装置用部材に使用されている。AlNセラミックスは半導体製造用途向けで一般に使用される部材であるが、これらの部材は、製品形状に外形を機械加工した 後に、製品表面の汚れ除去や加工によって発塵して付着しているパーティクル除去の目的 のために、湿式洗浄が行われる。湿式洗浄時にAlN と水と反応して表面が腐食(エロージョン)することが知られている。AlNセラミックスは、腐食すると、2AlN+3H2O→Al2O3+2NH3の反応式により、酸化アルミニウムの粒子(パーティクル)を発生させる。このため、特許文献1に記載の超音波洗浄方法でAlNセラミックスを洗浄した場合、腐食により粒子が離脱してパーティクル発塵の原因となるという課題があった。 By the way, AlN ceramics are used for heaters for heating semiconductor wafers and plasma device components from the viewpoint of plasma resistance and high thermal conductivity. AlN ceramics are components generally used for semiconductor manufacturing applications, and these components are wet cleaned after machining the outer shape to the product shape in order to remove dirt from the product surface and particles that are generated and attached by processing. It is known that the surface corrodes (erodes) when AlN reacts with water during wet cleaning. When AlN ceramics corrode, they generate aluminum oxide particles (particles) according to the reaction formula 2AlN+3H 2 O→Al 2 O 3 +2NH 3. For this reason, when AlN ceramics are cleaned by the ultrasonic cleaning method described in Patent Document 1, there is a problem that particles are detached due to corrosion, causing particle generation.

本発明は、このような課題に着目してなされたもので、AlNセラミックスの洗浄工程での腐食によるパーティクル発塵を抑制することができるAlNセラミックスの超音波洗浄方法、半導体製造装置用部材の超音波洗浄方法および半導体製造装置用部材の製造方法を提供することを目的とする。 The present invention was made with a focus on these problems, and aims to provide an ultrasonic cleaning method for AlN ceramics that can suppress particle generation due to corrosion during the cleaning process of AlN ceramics, an ultrasonic cleaning method for semiconductor manufacturing equipment components, and a manufacturing method for semiconductor manufacturing equipment components.

上記目的を達成するために、本発明に係るAlNセラミックスの超音波洗浄方法は、超純水を用いたAlNセラミックスの超音波洗浄方法であって、前記超純水は、液相および気相が共存する系の平衡状態における前記気相のゲージ圧をP(kPa)、前記液相中の溶存酸素濃度をDO(mg/L)としたとき、P<0、かつ、-9≦DO/P≦0の関係式を満たすことを特徴とする。 In order to achieve the above object, the ultrasonic cleaning method for AlN ceramics according to the present invention is an ultrasonic cleaning method for AlN ceramics using ultrapure water, characterized in that the ultrapure water satisfies the relationship P<0 and -9≦DO/P≦0, where P (kPa) is the gauge pressure of the gas phase in an equilibrium state in which the liquid and gas phases coexist, and DO (mg/L) is the dissolved oxygen concentration in the liquid phase.

また、本発明に係る半導体製造装置用部材の超音波洗浄方法は、超純水を用いたAlNセラミックスを含む半導体製造装置用部材の超音波洗浄方法であって、前記超純水は、液相および気相が共存する系の平衡状態における気相のゲージ圧をP(kPa)、前記液相中の溶存酸素濃度をDO(mg/L)としたとき、P<0、かつ、-9≦DO/P≦0の関係式を満たすことを特徴とする。 The ultrasonic cleaning method for semiconductor manufacturing equipment components according to the present invention is an ultrasonic cleaning method for semiconductor manufacturing equipment components including AlN ceramics using ultrapure water, and the ultrapure water is characterized in that, when the gauge pressure of the gas phase in an equilibrium state in a system in which the liquid and gas phases coexist is P (kPa) and the dissolved oxygen concentration in the liquid phase is DO (mg/L), P < 0 and -9 ≦ DO/P ≦ 0 are satisfied.

本発明に係る半導体製造装置用部材の製造方法は、AlNセラミックスを含む半導体製造装置用部材の製造方法であって、前述の半導体製造装置用部材の超音波洗浄方法により前記半導体製造装置用部材を洗浄する工程を有することを特徴とする。 The method for manufacturing a semiconductor manufacturing equipment component according to the present invention is a method for manufacturing a semiconductor manufacturing equipment component that contains AlN ceramics, and is characterized by having a step of cleaning the semiconductor manufacturing equipment component by the ultrasonic cleaning method for the semiconductor manufacturing equipment component described above.

本発明に係る超音波洗浄方法および本発明に係る製造方法では、超純水を用いるため、他の水に比べて溶存ガスの濃度が高く、超音波によってキャビテーションを発生し、洗浄効果を高めることができる。用いる超純水は、気相のゲージ圧P(kPa)と液相中の溶存酸素濃度DO(mg/L)とが上記の所定の関係式(P<0、かつ、-9≦DO/P≦0)を満たすとき、AlNセラミックスの腐食を抑制することができる。このため、AlNセラミックスの腐食によるパーティクル発塵を抑制することができる。 The ultrasonic cleaning method and manufacturing method of the present invention use ultrapure water, which has a higher concentration of dissolved gases than other waters, and generates cavitation through ultrasonic waves, improving the cleaning effect. The ultrapure water used can suppress corrosion of AlN ceramics when the gauge pressure P (kPa) of the gas phase and the dissolved oxygen concentration DO (mg/L) in the liquid phase satisfy the above-mentioned specified relationship (P<0 and -9≦DO/P≦0). This makes it possible to suppress particle generation due to corrosion of AlN ceramics.

本発明に係るAlNセラミックスの超音波洗浄方法および本発明に係る半導体製造装置用部材の超音波洗浄方法では、P<0、かつ、-4≦DO/P≦0の関係式を満たすことが好ましい。
本発明に係る半導体製造装置用部材の超音波洗浄方法において、前記半導体製造装置用部材は、基板を加熱するヒータ、基板を保持する静電チャックまたは基板を支持するサセプタであることが好ましい。
In the ultrasonic cleaning method for AlN ceramics according to the present invention and the ultrasonic cleaning method for semiconductor manufacturing equipment members according to the present invention, it is preferable to satisfy the relational expressions P<0 and -4≦DO/P≦0.
In the ultrasonic cleaning method for semiconductor manufacturing equipment members according to the present invention, the semiconductor manufacturing equipment member is preferably a heater for heating a substrate, an electrostatic chuck for holding a substrate, or a susceptor for supporting a substrate.

本発明によれば、AlNセラミックスの洗浄工程での腐食によるパーティクル発塵を抑制することができるAlNセラミックスの超音波洗浄方法、半導体製造装置用部材の超音波洗浄方法および半導体製造装置用部材の製造方法を提供することができる。 The present invention provides an ultrasonic cleaning method for AlN ceramics that can suppress particle generation due to corrosion during the cleaning process of AlN ceramics, an ultrasonic cleaning method for semiconductor manufacturing equipment components, and a manufacturing method for semiconductor manufacturing equipment components.

本発明の実施の形態の半導体製造装置用部材の超音波洗浄方法において洗浄されるヒータを示す(A)正面上方からの斜視図、(B)正面下方からの斜視図である。1A and 1B are front and bottom perspective views showing a heater to be cleaned in an ultrasonic cleaning method for semiconductor manufacturing equipment components according to an embodiment of the present invention; 本発明の実施の形態の半導体製造装置用部材の超音波洗浄方法において洗浄される静電チャックを示す(A)正面上方からの斜視図、(B)正面下方からの斜視図である。1A and 1B are front and bottom perspective views showing an electrostatic chuck to be cleaned in an ultrasonic cleaning method for a semiconductor manufacturing equipment member according to an embodiment of the present invention; 本発明の実施の形態の半導体製造装置用部材の超音波洗浄方法において洗浄されるサセプタを示す斜視図である。1 is a perspective view showing a susceptor to be cleaned in an ultrasonic cleaning method for a semiconductor manufacturing equipment member according to an embodiment of the present invention; 本発明の実施例で用いた溶存ガス濃度測定方法を示す説明図である。FIG. 2 is an explanatory diagram showing a method for measuring a dissolved gas concentration used in an embodiment of the present invention. 本発明の実施例のパーティクル数の測定方法を示す説明図である。FIG. 2 is an explanatory diagram showing a method for measuring the number of particles according to an embodiment of the present invention.

本発明の実施の形態のAlNセラミックスの超音波洗浄方法は、超純水を用いたAlNセラミックスの超音波洗浄方法である。用いる超純水は、液相および気相が共存する系の平衡状態における前記気相のゲージ圧をP(kPa)、液相中の溶存酸素濃度をDO(mg/L)としたとき、P<0、かつ、-9≦DO/P≦0の関係式を満たす。 The ultrasonic cleaning method for AlN ceramics according to the embodiment of the present invention is an ultrasonic cleaning method for AlN ceramics that uses ultrapure water. The ultrapure water used satisfies the relationship P<0 and -9≦DO/P≦0, where P (kPa) is the gauge pressure of the gas phase in an equilibrium state in which the liquid and gas phases coexist, and DO (mg/L) is the dissolved oxygen concentration in the liquid phase.

本発明の実施の形態の半導体製造装置用部材の超音波洗浄方法は、超純水を用いたAlNセラミックスを含む半導体製造装置用部材の超音波洗浄方法である。用いる超純水は、液相および気相が共存する系の平衡状態における気相のゲージ圧をP(kPa)、液相中の溶存酸素濃度をDO(mg/L)としたとき、P<0、かつ、-9≦DO/P≦0の関係式を満たす。 The ultrasonic cleaning method for semiconductor manufacturing equipment components according to an embodiment of the present invention is an ultrasonic cleaning method for semiconductor manufacturing equipment components including AlN ceramics using ultrapure water. The ultrapure water used satisfies the relationship P<0 and -9≦DO/P≦0, where P (kPa) is the gauge pressure of the gas phase in an equilibrium state in which the liquid and gas phases coexist, and DO (mg/L) is the dissolved oxygen concentration in the liquid phase.

本発明の実施の形態のAlNセラミックスの超音波洗浄方法および本発明の実施の形態の半導体製造装置用部材の超音波洗浄方法では、まず超音波洗浄による洗浄効果を高めるため、溶存ガスの濃度が高い超純水を用いる。超純水は、電気抵抗率(比抵抗、MΩ・cm)によって定義される(JIS K0552:1994)。超純水の25℃における理論値は18.24MΩ・cm であり、17MΩ・cm以上の水、好ましくは18MΩ・cm以上の水が用いられる。溶存ガスは、水に溶存する窒素、酸素、二酸化炭素など大気成分の総体であり、その一部が溶存酸素である。溶存ガスの濃度が高いと、超音波によって発生するキャビテーションによる洗浄効果が高くなる。 In the ultrasonic cleaning method for AlN ceramics according to the embodiment of the present invention and the ultrasonic cleaning method for semiconductor manufacturing equipment components according to the embodiment of the present invention, ultrapure water with a high concentration of dissolved gas is used to enhance the cleaning effect of ultrasonic cleaning. Ultrapure water is defined by its electrical resistivity (specific resistance, MΩ·cm) (JIS K0552:1994). The theoretical value of ultrapure water at 25°C is 18.24 MΩ·cm, so water with a resistivity of 17 MΩ·cm or more, preferably 18 MΩ·cm or more, is used. Dissolved gas is the total of atmospheric components such as nitrogen, oxygen, and carbon dioxide dissolved in water, and dissolved oxygen is a part of it. If the concentration of dissolved gas is high, the cleaning effect due to cavitation generated by ultrasonic waves is enhanced.

更に、溶存酸素の濃度が低い超純水を用いる。溶存酸素の濃度が高いと、2AlN+3H2O→Al2O3+2NH3の反応式に加えて2AlN+3/2O2→Al2O3+Nの反応式により溶存酸素がAlNと反応し、AlNの腐食が進行する。このAlNの腐食の進行を抑制するため、溶存酸素の濃度が低い超純水を用いる。
このように、溶存ガスの濃度が高いことと溶存酸素の濃度が低いこととのバランスによりAlNセラミックスの腐食を抑制し、洗浄工程での腐食によるパーティクル発塵を抑制することができる。
Furthermore, ultrapure water with a low concentration of dissolved oxygen is used. If the concentration of dissolved oxygen is high, in addition to the reaction 2AlN + 3H2OAl2O3 + 2NH3, the dissolved oxygen reacts with AlN according to the reaction 2AlN +3/ 2O2Al2O3 + N2 , and the corrosion of AlN progresses. In order to suppress the progression of this corrosion of AlN, ultrapure water with a low concentration of dissolved oxygen is used.
In this way, a balance between a high concentration of dissolved gas and a low concentration of dissolved oxygen makes it possible to suppress corrosion of the AlN ceramics and to suppress particle generation due to corrosion during the cleaning process.

液相と気相が共存する系では、液相と気相の気体が平衡状態となり、液相の溶存ガス濃 度は気相の気体量、すなわち気体の分圧に比例する。そのため、上記の所定の関係式(P <0、かつ、-9≦DO/P≦0)は、超純水における溶存ガスの濃度と溶存酸素の濃度との関係式であるといえる。なお、上記関係式P<0、かつ、-9≦DO/P≦0において、DOは超純水の溶存酸素濃度計による直読値(単位mg/L)である。
本発明の上記実施の形態の超音波洗浄方法は、P<0、かつ、-4≦DO/P≦0の関係式を満たすことが好ましい。
In a system where liquid and gas phases coexist, the liquid and gas phases are in equilibrium, and the concentration of dissolved gas in the liquid phase is proportional to the amount of gas in the gas phase, i.e., the partial pressure of the gas. Therefore, the above specified relational expression (P < 0 and -9 ≦ DO/P ≦ 0) can be said to be the relational expression between the concentration of dissolved gas and the concentration of dissolved oxygen in ultrapure water. Note that in the above relational expression P < 0 and -9 ≦ DO/P ≦ 0, DO is the direct reading (unit: mg/L) of the dissolved oxygen concentration meter for ultrapure water.
In the ultrasonic cleaning method according to the above embodiment of the present invention, it is preferable that the relational expressions P<0 and -4≦DO/P≦0 are satisfied.

本発明の実施の形態の半導体製造装置用部材の超音波洗浄方法において、半導体製造装置用部材は、一例で、基板を加熱するヒータ、基板を保持する静電チャックまたはサセプタである。
「基板」としては、半導体ウエハ、ガラス基板等が例示される。
In the ultrasonic cleaning method for semiconductor manufacturing equipment members according to the embodiment of the present invention, the semiconductor manufacturing equipment member is, for example, a heater for heating a substrate, or an electrostatic chuck or susceptor for holding a substrate.
Examples of the "substrate" include a semiconductor wafer and a glass substrate.

図1(A),(B)に示すように、ヒータは、円板状のヒータプレート1の一方の面1aの中心に、ヒータプレート1を支持する円筒状のAlNセラミックス製のシャフト2の一端2aが垂直に接合される。更に、ヒータは給電用の金属製の端子3が、電極と電気的接続させるためにシャフト2の他端2bより内部に挿入され、端子3の一端がロウ材(図示しない)を介して、ヒータプレート1の内部に埋設されている電極に電気的に接続される。ヒータプレート1およびシャフト2は、AlNセラミックスを含む材料で構成される。 As shown in Figures 1(A) and (B), the heater has one end 2a of a cylindrical shaft 2 made of AlN ceramics that supports the heater plate 1, which is joined vertically to the center of one surface 1a of the disc-shaped heater plate 1. Furthermore, a metal terminal 3 for power supply is inserted into the heater from the other end 2b of the shaft 2 to electrically connect it to the electrode, and one end of the terminal 3 is electrically connected to the electrode buried inside the heater plate 1 via a brazing material (not shown). The heater plate 1 and shaft 2 are made of a material that contains AlN ceramics.

図2(A),(B)に示すように、静電チャックは、基板が載置される円板状の板状部材4と、板状部材4を支持するベース部材5とを備え、板状部材4とベース部材5とは接合層(図示しない)を介して接合されている。更に、静電チャックは、上面と下面とを貫通する複数のリフトピン用貫通孔6を有し、下面に端子7を有する。板状部材4およびベース部材5はAlNセラミックスを含む材料で構成される。 As shown in Figures 2(A) and (B), the electrostatic chuck comprises a disk-shaped plate member 4 on which a substrate is placed, and a base member 5 that supports the plate member 4, with the plate member 4 and base member 5 being joined via a joining layer (not shown). Furthermore, the electrostatic chuck has a plurality of lift pin through holes 6 that penetrate the upper and lower surfaces, and has terminals 7 on the lower surface. The plate member 4 and base member 5 are made of a material that contains AlN ceramics.

図3に示すように、サセプタは、基板が支持される円板状のトレイ8を備える。トレイ8は、AlNセラミックスを含む材料で構成される。 As shown in FIG. 3, the susceptor includes a disk-shaped tray 8 on which the substrate is supported. The tray 8 is made of a material containing AlN ceramics.

上述のAlNセラミックスを含む材料は、AlNは、90~99.99wt%の純度の範囲で構成されていることが好ましい。AlN以外には焼結助剤成分としてYを含む化合物が含まれる。焼結助剤はY以外にはアルカリ土類金属やY以外の希土類の化合物を含んでもよい。更に遷移金属の化合物を含んでいてもよい。 The material containing the above-mentioned AlN ceramics is preferably composed of AlN with a purity range of 90 to 99.99 wt%. In addition to AlN, it contains a compound containing Y as a sintering aid component. In addition to Y, the sintering aid may contain compounds of alkaline earth metals and rare earths other than Y. It may also contain compounds of transition metals.

本発明の実施の形態の半導体製造装置用部材の製造方法は、AlNセラミックスを含む半導体製造装置用部材の製造方法であって、本発明の他の実施の形態の超音波洗浄方法により前記半導体製造装置用部材を洗浄する工程を有する。 The method for manufacturing a semiconductor manufacturing equipment component according to an embodiment of the present invention is a method for manufacturing a semiconductor manufacturing equipment component that includes AlN ceramics, and includes a step of cleaning the semiconductor manufacturing equipment component by an ultrasonic cleaning method according to another embodiment of the present invention.

以下、図面に基づき、本発明の実施例について説明する。
以下の洗浄物について、以下の洗浄方法により超音波洗浄を行った後、パーティクル評価を行った。
(洗浄物)
AlNセラミックス(AlN)およびAl2O3セラミックス(Al2O3
寸法: 直径 500mm、厚み25mm
(洗浄方法)
超純水性状・・・ 電気抵抗率18MΩ・cm以上
超音波洗浄器性状・・・ 40kHz、500W
洗浄条件・・・ 30分間
洗浄槽・・・塩ビ製水槽
超純水流量・・・ 1L/min以上の流水
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The following objects were ultrasonically cleaned by the cleaning method described below, and then evaluated for particles.
(Washing items)
AlN ceramics (AlN) and Al 2 O 3 ceramics (Al 2 O 3 )
Dimensions: diameter 500mm, thickness 25mm
(Cleaning method)
Ultrapure water condition: Electrical resistivity 18MΩ・cm or more Ultrasonic cleaner characteristics: 40kHz, 500W
Cleaning conditions: 30 minutes Cleaning tank: PVC tank Ultrapure water flow rate: 1L/min or more running water

(パーティクル評価方法)
液中パーティクルカウンタ(型番リオン社 KS42-A)を使用し、超音波洗浄の所定時間経過後に、液中の単位容積(mL)当たり0.2μm以上の粒径を有するパーティクルの数カウントした。
(Particle evaluation method)
Using a liquid-borne particle counter (model number Rion KS42-A), the number of particles having a particle size of 0.2 μm or more per unit volume (mL) in the liquid was counted after a specified time had elapsed after ultrasonic cleaning.

(溶存ガス濃度測定方法)
溶存ガス濃度は、図4に示す装置を用いて、特開2000-65710に記載される方法によって測定した。図4の装置は、密閉容器10内に気体透過膜11を設けて、一方の側を液相室12、他方の側を気相室13に区画し、液相室12に超純水を矢印14に示す方向から導入し、矢印15に示す方向に排出して、気相室13に気相の真空度を測定する圧力計16を設けて成っている。
(Method for measuring dissolved gas concentration)
The dissolved gas concentration was measured by the method described in JP-A-2000-65710 using the apparatus shown in Fig. 4. The apparatus shown in Fig. 4 is configured such that a gas-permeable membrane 11 is provided in a sealed container 10, one side of which is partitioned into a liquid phase chamber 12 and the other side into a gas phase chamber 13, ultrapure water is introduced into the liquid phase chamber 12 from the direction shown by arrow 14 and discharged in the direction shown by arrow 15, and a pressure gauge 16 is provided in the gas phase chamber 13 to measure the degree of vacuum in the gas phase.

予備脱気した超純水に大気または窒素ガスをバブリングしてガス濃度を調整した超純水 を図4の装置を用いて、気体透過膜に通水し、その気相を密閉して真空度を測定した。また、別に予備脱気水の溶存酸素ガス濃度を、隔膜式溶存酸素計を用いて測定した。
液相と気相が共存する系では、液相と気相の気体が平衡状態となり、液相の溶存ガス濃度は気相の気体量、すなわち気体の分圧に比例する。よって水中に溶解している気体の濃度を、圧力0.1MPa、温度25℃における気体の溶解度で除した値を、気体の飽和度と定義すると、水と平衡状態にある気相の真空度(ゲージ圧)を測定することにより、溶存ガス(溶存気体)濃度を一括して飽和度の単位で求めることができる。そこで溶存ガス濃度として真空度(kPa)で代用した。真空度の測定は-5kPa~5kPaの範囲で行なった。真空度は、マイナス値では未飽和、プラス値では過飽和を示す。気相は大気または溶存酸素濃度をより小さく調整するため大気と窒素ガスの混合ガスとした。
The gas concentration of pre-degassed ultrapure water was adjusted by bubbling air or nitrogen gas into the ultrapure water, which was passed through a gas permeable membrane using the apparatus shown in Figure 4, and the gas phase was sealed and the degree of vacuum was measured. Separately, the dissolved oxygen gas concentration of the pre-degassed water was measured using a diaphragm-type dissolved oxygen meter.
In a system where liquid and gas phases coexist, the gas in the liquid and gas phases are in equilibrium, and the concentration of dissolved gas in the liquid phase is proportional to the amount of gas in the gas phase, i.e., the partial pressure of the gas. If the concentration of gas dissolved in water divided by the solubility of the gas at a pressure of 0.1 MPa and a temperature of 25°C is defined as the degree of saturation of the gas, the concentration of dissolved gas can be calculated collectively in units of degree of saturation by measuring the degree of vacuum (gauge pressure) of the gas phase in equilibrium with water. Therefore, the degree of vacuum (kPa) was used as a substitute for the concentration of dissolved gas. The degree of vacuum was measured in the range of -5 kPa to 5 kPa. A negative value of the degree of vacuum indicates undersaturation, and a positive value indicates supersaturation. The gas phase was air or a mixture of air and nitrogen gas to adjust the dissolved oxygen concentration to a smaller value.

(溶存酸素濃度測定方法)
溶存酸素濃度は下記方式、測定器で濃度(mg/L)を直読した。
方式:隔膜式ガルバニ電地法
測定器:HORIBA製 ポータブル溶存酸素計 OM-71
(溶存酸素の濃度と前記溶存ガスの濃度との比率パラメータ)
溶存ガスの濃度は、溶存ガス濃度測定方法における気相の真空度P(単位kPa、ゲージ圧)として求めた。
溶存酸素の濃度は、超純水の溶存酸素濃度計による直読値をDO(単位mg/L)とする。
ここで、DO/P (kPa/(mg/L))により溶存酸素濃度と溶存ガス濃度の比率のパラメータとした。
(Method for measuring dissolved oxygen concentration)
The dissolved oxygen concentration was measured using the following method, and the concentration (mg/L) was read directly using a measuring device.
Method: Diaphragm-type galvanic method Measuring instrument: HORIBA portable dissolved oxygen meter OM-71
(Ratio parameter between the concentration of dissolved oxygen and the concentration of the dissolved gas)
The concentration of the dissolved gas was determined as the degree of vacuum P (unit: kPa, gauge pressure) of the gas phase in the dissolved gas concentration measurement method.
The concentration of dissolved oxygen is expressed as DO (unit: mg/L) as the direct reading from a dissolved oxygen concentration meter for ultrapure water.
Here, DO/P (kPa/(mg/L)) was used as a parameter for the ratio of dissolved oxygen concentration to dissolved gas concentration.

(溶存酸素と溶存ガス濃度の調整方法)
溶存酸素は、気体の種類(大気、窒素ガス等)および、液相の撹拌や気体のバブリングによって調整した。
溶存ガスは、気相の圧力を調整することによって行った。
なお、液相の温度を調節することによっても溶存酸素と溶存ガス濃度を調節することは可能である。
超純水について、気相のゲージ圧P(kPa)と溶存酸素濃度DO(mg/L)とが異なる条件で、図5に示す装置を用いてパーティクル数を測定した。図5に示すように、容器21を超音波振動子22の上に載せ、容器21の内部に支持台23を設けた。支持台23の上に洗浄物24を配置し、容器21を超純水25で満たしオーバーフローさせた。容器21中に設置した液中パーティクルカウンタ26によりパーティクル数を測定した。その結果を表1に示す。
(How to adjust dissolved oxygen and dissolved gas concentrations)
Dissolved oxygen was adjusted by the type of gas (air, nitrogen gas, etc.), liquid phase stirring, and gas bubbling.
The dissolved gas was controlled by adjusting the pressure of the gas phase.
The dissolved oxygen and dissolved gas concentrations can also be adjusted by adjusting the temperature of the liquid phase.
The number of particles in ultrapure water was measured under different conditions of the gas phase gauge pressure P (kPa) and the dissolved oxygen concentration DO (mg/L) using the device shown in Fig. 5. As shown in Fig. 5, a container 21 was placed on an ultrasonic transducer 22, and a support stand 23 was provided inside the container 21. An object to be washed 24 was placed on the support stand 23, and the container 21 was filled with ultrapure water 25 and allowed to overflow. The number of particles was measured using a liquid-borne particle counter 26 installed in the container 21. The results are shown in Table 1.

表1に示すように、実施例1~6は、Pが0(kPa)以下、かつDO/P (kPa/(mg/L))が-9以上0未満である条件であり、液中パーティクルの数が少なかった。これは超音波洗浄時に溶存ガス濃度が小さくキャビテーションによる粒子剥離の効果が小さかったことと、溶存酸素の濃度が低くAlNセラミックス表面の腐食が抑えられたためと推定される。 As shown in Table 1, in Examples 1 to 6, the conditions were that P was 0 (kPa) or less and DO/P (kPa/(mg/L)) was between -9 and less than 0, and the number of particles in the liquid was small. This is presumably because the dissolved gas concentration during ultrasonic cleaning was low, so the effect of particle detachment due to cavitation was small, and because the concentration of dissolved oxygen was low, so corrosion of the AlN ceramic surface was suppressed.

比較例1、2、4は、Pが0より大きく、DO/P(kPa/(mg/L))の値も0より大きくなっている。このとき液中パーティクルは800個以上と大きく増加した。これは液中のガスが過飽和の状態になっているため超音波洗浄時にAlNセラミックス表面でのキャビテーションの影響が強すぎて粒子を剥離する効果を引き起こしたためと推定される。 In Comparative Examples 1, 2, and 4, P was greater than 0, and the DO/P (kPa/(mg/L)) value was also greater than 0. At this time, the number of particles in the liquid increased significantly to over 800. This is presumably because the gas in the liquid was in a supersaturated state, and the effect of cavitation on the AlN ceramic surface during ultrasonic cleaning was so strong that it caused the particles to peel off.

比較例3は、Pが減圧側で比較的0に近くキャビテーションの効果は小さいが、溶存酸素濃度が高くAlNの表面を腐食する効果が大きかったためパーティクル数が800個と多くなったものと推定される。
比較例5は、Pが正圧側で比較的0に近くキャビテーションの効果は小さく、溶存酸素による腐食効果も小さかったが、超音波による洗浄効果が十分に発揮されずパーティクル数は800個以上で多かった。
In Comparative Example 3, P was relatively close to 0 on the reduced pressure side, so the cavitation effect was small, but it is estimated that the number of particles was high at 800 because the dissolved oxygen concentration was high and had a large effect of corroding the AlN surface.
In Comparative Example 5, P was relatively close to 0 on the positive pressure side, so the cavitation effect was small, and the corrosive effect due to dissolved oxygen was also small, but the ultrasonic cleaning effect was not sufficient and the particle count was high at over 800.

比較例6は、洗浄物をAl2O3とした以外、比較例1と同じである。パーティクル数は350個と少なかった。これは、Al2O3セラミックスの表面はもともと酸素が存在しているため、AlNセラミックスと異なり、2AlN+3/2O2→Al2O3+Nのような腐食する反応が生じず、表面の腐食が起きないためと推定される。 Comparative Example 6 is the same as Comparative Example 1, except that the object to be cleaned was Al2O3 . The number of particles was small at 350. This is presumably because oxygen is originally present on the surface of Al2O3 ceramics, and therefore, unlike AlN ceramics, a corrosive reaction such as 2AlN+3/ 2O2Al2O3 + N2 does not occur, and therefore no corrosion of the surface occurs.

比較例7は、洗浄物をAl2O3とした以外、実施例1と同じである。パーティクル数は320個と少なかった。 Comparative Example 7 was the same as Example 1, except that the washed object was Al 2 O 3. The number of particles was small, at 320 pieces.

このように、AlNセラミックスの超純水による超音波洗浄工程では、Pが0(kPa)未満、かつDO/Pが-9以上0以下の条件でパーティクル発塵の少ない効果的な洗浄が行えることが示された。
またさらに、Pが0(kPa)以下、かつDO/P(kPa/(mg/L))が-4以上0以下の条件で、さらにパーティクル発塵の少ない効果的な洗浄が行えることが確認された。
Thus, it was demonstrated that the ultrasonic cleaning process for AlN ceramics using ultrapure water can perform effective cleaning with minimal particle generation when P is less than 0 (kPa) and DO/P is between -9 and 0.
Furthermore, it was confirmed that effective cleaning with even less particle generation could be performed under the conditions of P being 0 (kPa) or less and DO/P (kPa/(mg/L)) being between -4 and 0.

本発明は前記実施例に限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施し得る。 The present invention is not limited to the above examples, and may be implemented in various forms without departing from the scope of the present invention.

1 ヒータプレート
2 シャフト
3 端子
4 板状部材
5 ベース部材
6 リフトピン用貫通孔
7 端子
8 トレイ
10 密閉容器
11 気体透過膜
12 液相室
13 気相室
16 圧力計
21 容器
22 超音波振動子
23 支持台
24 洗浄物
25 超純水
26 液中パーティクルカウンタ
REFERENCE SIGNS LIST 1 heater plate 2 shaft 3 terminal 4 plate-like member 5 base member 6 lift pin through hole 7 terminal 8 tray 10 airtight container 11 gas-permeable membrane 12 liquid phase chamber 13 gas phase chamber 16 pressure gauge 21 container 22 ultrasonic transducer 23 support 24 cleaning object 25 ultrapure water 26 liquid-borne particle counter

Claims (6)

超純水を用いたAlNセラミックスの超音波洗浄方法であって、
前記超純水は、液相および気相が共存する系の平衡状態における前記気相のゲージ圧をP(kPa)、前記液相中の溶存酸素濃度をDO(mg/L)としたとき、-5.0≦P≦-1.0、かつ、-7.3≦DO/P≦-0.10の関係式を満たすことを特徴とする超音波洗浄方法。
A method for ultrasonically cleaning AlN ceramics using ultrapure water, comprising the steps of:
The ultrasonic cleaning method is characterized in that the ultrapure water satisfies the following relational expressions: -5.0≦P≦-1.0 and -7.3≦DO/P≦-0.10, where P is a gauge pressure of the gas phase in an equilibrium state in a system in which the liquid and gas phases coexist, and DO is a dissolved oxygen concentration in the liquid phase (mg/L).
-5.0≦P≦-1.0、かつ、-4.0≦DO/P≦-0.10の関係式を満たすことを特徴とする請求項1記載の超音波洗浄方法。 2. The ultrasonic cleaning method according to claim 1, wherein the relational expressions of -5.0≦P≦-1.0 and -4.0≦DO/P≦-0.10 are satisfied. 超純水を用いたAlNセラミックスを含む半導体製造装置用部材の超音波洗浄方法であって、
前記超純水は、液相および気相が共存する系の平衡状態における気相のゲージ圧をP(kPa)、前記液相中の溶存酸素濃度をDO(mg/L)としたとき、-5.0≦P≦-1.0、かつ、-7.3≦DO/P≦-0.10の関係式を満たすことを特徴とする超音波洗浄方法。
A method for ultrasonically cleaning a semiconductor manufacturing equipment member including an AlN ceramic using ultrapure water, comprising the steps of:
The ultrasonic cleaning method is characterized in that the ultrapure water satisfies the following relationship expressions: -5.0≦P≦-1.0 and -7.3≦DO/P≦-0.10, where P is a gauge pressure of the gas phase in an equilibrium state of a system in which the liquid and gas phases coexist, and DO is a dissolved oxygen concentration in the liquid phase (mg/L).
-5.0≦P≦-1.0、かつ、-4.0≦DO/P≦-0.10の関係式を満たすことを特徴とする請求項3記載の超音波洗浄方法。 4. The ultrasonic cleaning method according to claim 3, wherein the relational expressions of -5.0≦P≦-1.0 and -4.0≦DO/P≦-0.10 are satisfied. 前記半導体製造装置用部材は、基板を加熱するヒータまたは基板を保持する静電チャックまたはサセプタであることを特徴とする請求項3または4に記載の超音波洗浄方法。 The ultrasonic cleaning method according to claim 3 or 4, characterized in that the semiconductor manufacturing equipment component is a heater for heating a substrate or an electrostatic chuck or susceptor for holding a substrate. AlNセラミックスを含む半導体製造装置用部材の製造方法であって、請求項3から5のいずれか1項に記載の超音波洗浄方法により前記半導体製造装置用部材を洗浄する工程を有することを特徴とする製造方法。 A method for manufacturing a semiconductor manufacturing equipment component containing AlN ceramics, comprising a step of cleaning the semiconductor manufacturing equipment component by the ultrasonic cleaning method according to any one of claims 3 to 5.
JP2020056937A 2020-03-27 2020-03-27 Ultrasonic cleaning method for AlN ceramics, ultrasonic cleaning method for semiconductor manufacturing equipment components, and manufacturing method for semiconductor manufacturing equipment components Active JP7496182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020056937A JP7496182B2 (en) 2020-03-27 2020-03-27 Ultrasonic cleaning method for AlN ceramics, ultrasonic cleaning method for semiconductor manufacturing equipment components, and manufacturing method for semiconductor manufacturing equipment components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056937A JP7496182B2 (en) 2020-03-27 2020-03-27 Ultrasonic cleaning method for AlN ceramics, ultrasonic cleaning method for semiconductor manufacturing equipment components, and manufacturing method for semiconductor manufacturing equipment components

Publications (2)

Publication Number Publication Date
JP2021158217A JP2021158217A (en) 2021-10-07
JP7496182B2 true JP7496182B2 (en) 2024-06-06

Family

ID=77919776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056937A Active JP7496182B2 (en) 2020-03-27 2020-03-27 Ultrasonic cleaning method for AlN ceramics, ultrasonic cleaning method for semiconductor manufacturing equipment components, and manufacturing method for semiconductor manufacturing equipment components

Country Status (1)

Country Link
JP (1) JP7496182B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234298A (en) 2009-03-31 2010-10-21 Kurita Water Ind Ltd Device for supplying water containing dissolved gas and method for producing water containing dissolved gas

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234298A (en) 2009-03-31 2010-10-21 Kurita Water Ind Ltd Device for supplying water containing dissolved gas and method for producing water containing dissolved gas

Also Published As

Publication number Publication date
JP2021158217A (en) 2021-10-07

Similar Documents

Publication Publication Date Title
TW478975B (en) Temperature controlled degassification of deionized water for megasonic cleaning of semiconductor wafers
US7578302B2 (en) Megasonic cleaning using supersaturated solution
TW593631B (en) Cleaning gas and method for cleaning vacuum treatment apparatus by flowing the cleaning gas
TW463219B (en) Treating method and apparatus utilizing chemical reaction
CN1792474B (en) Ceramic sprayed member-cleaning method
US8999069B2 (en) Method for producing cleaning water for an electronic material
WO1990001569A1 (en) Metal oxidation apparatus and method
JP5925685B2 (en) Method and apparatus for purifying alkaline processing liquid for semiconductor substrate
CN110186994A (en) The processing analysis method and processing unit of heavy metal in a kind of silicon wafer
JP7496182B2 (en) Ultrasonic cleaning method for AlN ceramics, ultrasonic cleaning method for semiconductor manufacturing equipment components, and manufacturing method for semiconductor manufacturing equipment components
TW405176B (en) Cleaning fluid for electronic materials
TW302496B (en)
JP4643582B2 (en) Megasonic cleaning using supersaturated cleaning solution
TW200536600A (en) Apparatus for manufacturing nitrogen-dissolved water
JP3017301B2 (en) Method of forming passivation film
JP5412135B2 (en) Ozone water supply device
JP2005277302A (en) Method for manufacturing semiconductor device
JP2008311568A (en) Manufacturing method for epitaxial silicon wafer and substrate cleaning device
JPS59104132A (en) Cleaning method
US20030034053A1 (en) Processing and cleaning method
TW466628B (en) Megasonic cleaner
JPS60200519A (en) Heating element
JP3431578B2 (en) Method for wet chemical etching of a semiconductor wafer in a container
JP4438077B2 (en) Method for preparing gas-dissolved water for cleaning electronic materials
TW480901B (en) Method for fabricating electrode of plasma chamber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231120

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240523

R150 Certificate of patent or registration of utility model

Ref document number: 7496182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150