JP7494971B2 - Power Control Device - Google Patents

Power Control Device Download PDF

Info

Publication number
JP7494971B2
JP7494971B2 JP2023049402A JP2023049402A JP7494971B2 JP 7494971 B2 JP7494971 B2 JP 7494971B2 JP 2023049402 A JP2023049402 A JP 2023049402A JP 2023049402 A JP2023049402 A JP 2023049402A JP 7494971 B2 JP7494971 B2 JP 7494971B2
Authority
JP
Japan
Prior art keywords
power
control device
power control
charging
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023049402A
Other languages
Japanese (ja)
Other versions
JP2023076555A (en
Inventor
直樹 綾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2023049402A priority Critical patent/JP7494971B2/en
Publication of JP2023076555A publication Critical patent/JP2023076555A/en
Priority to JP2024082726A priority patent/JP2024100899A/en
Application granted granted Critical
Publication of JP7494971B2 publication Critical patent/JP7494971B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、電力制御装置に関する。 The present invention relates to a power control device.

近年、プラグインハイブリッド車(PHEV)や、電気自動車(EV)が増え始めている。特に、電気自動車は電力のみで走行するため、充電電力が大きい。充電は、多くの場合、電気自動車を使用する人の自宅の駐車場で、屋内配線に接続された充電ケーブルの先端のコネクタを電気自動車に装着することで行われる(例えば、特許文献1参照。)。
また、電気自動車の充電に関しては、種々の条件を考慮して、一定の充電電力を設定し、充電することも考えられている(例えば、特許文献2参照。)。
In recent years, plug-in hybrid vehicles (PHEVs) and electric vehicles (EVs) have begun to increase. In particular, electric vehicles require a large amount of charging power because they run only on electricity. In many cases, charging is performed in the parking lot of the user's home by attaching a connector at the end of a charging cable connected to indoor wiring to the electric vehicle (see, for example, Patent Document 1).
Regarding charging of electric vehicles, it has been considered to set a certain charging power in consideration of various conditions and charge the vehicle (for example, see Patent Document 2).

特開2014-128180号公報JP 2014-128180 A 特開2008-136291号公報JP 2008-136291 A

一般家庭等の電力の需要家は、電力会社と、単相3線式で、例えば6kVA程度の受電契約になっていることが多い。分電盤の主幹ブレーカは、契約電力に合わせた電流定格となっている。需要家の消費電力が増大して電流定格を超えると、主幹ブレーカが、所定の限時特性に従ってトリップする。需要家において、例えばエアコン等、消費電力の比較的大きい家電機器を多数稼働させているとき、一定電力を消費する電気自動車の充電が行われると、主幹ブレーカがトリップする可能性がある。 Electricity consumers, such as ordinary households, often have contracts with electric power companies for a single-phase, three-wire system, for example, around 6 kVA. The main breaker in the distribution board has a current rating that matches the contracted power. If the consumer's power consumption increases and exceeds the current rating, the main breaker trips according to a specified time-limit characteristic. When a consumer is operating a large number of relatively high-power household appliances, such as air conditioners, and an electric vehicle, which consumes a certain amount of power, is being charged, the main breaker may trip.

また、電気自動車の普及が進むと、近隣地域内で多数の電気自動車の充電が同時に行われる可能性がある。この場合、線路インピーダンスによる電圧降下のため、配電系統の電圧が低下する。一方、電気自動車の充電電力を低い一定値に抑えると、本来利用できた電力が利用されず、電気自動車の充電不足になる可能性もある。 In addition, as electric vehicles become more widespread, there is a possibility that many electric vehicles will be charged simultaneously in a nearby area. In this case, the voltage in the power distribution system will drop due to voltage drops caused by line impedance. On the other hand, if the charging power for electric vehicles is limited to a low, fixed value, electricity that could have been used will not be used, and electric vehicles may not be fully charged.

かかる課題に鑑み、本発明は、主幹ブレーカをトリップさせることなく、しかも、利用できる電力は有効に活用して電動車両の充電を行うことを目的とする。 In view of these issues, the present invention aims to charge electric vehicles without tripping the main breaker and by effectively utilizing available power.

本開示は、以下の発明を含む。但し、本発明は、特許請求の範囲によって定められるものである。 This disclosure includes the following inventions, however, the invention is defined by the claims.

本発明の一表現に係る蓄電システムは、蓄電池を搭載した電動車両を、充電ケーブルを介して需要家と電気的に接続する蓄電システムであって、前記需要家の受電点に流れる電流及び前記受電点に印加されている電圧に基づく電力を計測して電力計測値を取得し、当該電力計測値及び所定の受電電力目標値の情報を発信する電力計測部と、前記電力計測部から前記情報を受信し、受信した前記電力計測値及び前記受電電力目標値に基づいて、前記蓄電池の充電電力目標値を逐次更新する電力制御部と、前記電力制御部の制御に応じて前記蓄電池を充電するAC/DC変換回路と、を備えている。 The energy storage system according to one embodiment of the present invention is an energy storage system that electrically connects an electric vehicle equipped with a storage battery to a consumer via a charging cable, and includes a power measurement unit that measures the current flowing at the consumer's power receiving point and the power based on the voltage applied to the power receiving point to obtain a power measurement value, and transmits information on the power measurement value and a predetermined receiving power target value, a power control unit that receives the information from the power measurement unit and sequentially updates the charging power target value of the storage battery based on the received power measurement value and the receiving power target value, and an AC/DC conversion circuit that charges the storage battery in accordance with the control of the power control unit.

また、本発明の一表現に係る蓄電池の充電方法は、蓄電池を搭載した電動車両と需要家とによって構成される蓄電システムが存在する場合における、前記蓄電池の充電方法であって、前記需要家と前記電動車両とを充電ケーブルを用いて互いに電気的に接続し、前記需要家の受電点に流れる電流及び前記受電点に印加されている電圧に基づく電力を計測して電力計測値を取得し、かつ、当該電力計測値及び所定の受電電力目標値の情報を発信し、受信した前記電力計測値及び前記受電電力目標値に基づいて、前記蓄電池の充電電力目標値を逐次更新し、前記充電電力目標値に応じて前記蓄電池を充電する、蓄電池の充電方法である。 In addition, a method for charging a storage battery according to one embodiment of the present invention is a method for charging a storage battery when a power storage system is present, the power storage system being made up of an electric vehicle equipped with a storage battery and a consumer, the consumer and the electric vehicle are electrically connected to each other using a charging cable, a current flowing at a power receiving point of the consumer and a power based on a voltage applied to the power receiving point are measured to obtain a power measurement value, information on the power measurement value and a predetermined target value for received power is transmitted, a charging power target value for the storage battery is successively updated based on the received power measurement value and the target value for received power, and the storage battery is charged according to the target value for charging power.

本発明によれば、受電電力が過大になり主幹ブレーカのトリップに至ることを抑制し、かつ、使用可能な電力を有効利用して適切な充電電力で蓄電池を充電することができる。 This invention makes it possible to prevent excessive incoming power from tripping the main breaker, and to effectively use available power to charge the storage battery with appropriate charging power.

図1は、蓄電システムのうち、需要家側(住宅側)の設備の概要の一例を示す図である。FIG. 1 is a diagram showing an example of an outline of equipment on the consumer side (residential side) of a power storage system. 図2は、蓄電システムのうち、電気自動車側の設備の概要の一例を示す図である。FIG. 2 is a diagram showing an example of an outline of equipment on the electric vehicle side of the power storage system. 図3は、参考例として、一般的に多く使われているAC/DC変換回路を示す回路図である。FIG. 3 is a circuit diagram showing a commonly used AC/DC conversion circuit as a reference example. 図4は、図3のAC/DC変換回路に進相無効電力を注入する場合の、交流の電圧(点線)、電流(実線)の一例を示す図である。FIG. 4 is a diagram showing an example of an AC voltage (dotted line) and a current (solid line) when leading-phase reactive power is injected into the AC/DC conversion circuit of FIG. 図5は、本実施形態のAC/DC変換回路を示す回路図である。FIG. 5 is a circuit diagram showing the AC/DC conversion circuit of this embodiment. 図6は、図5のAC/DC変換回路に進相無効電力を注入する場合の、交流の電圧(点線)、電流(実線)の一例を示す図である。FIG. 6 is a diagram showing an example of an AC voltage (dotted line) and a current (solid line) when leading-phase reactive power is injected into the AC/DC conversion circuit of FIG.

[実施形態の要旨]
本発明の実施形態の要旨としては、少なくとも以下のものが含まれる。
[Summary of the embodiment]
The gist of the embodiments of the present invention includes at least the following.

(1)本開示は、蓄電池を搭載した電動車両を、充電ケーブルを介して需要家と電気的に接続する蓄電システムであって、前記需要家の受電点に流れる電流及び前記受電点に印加されている電圧に基づく電力を計測して電力計測値を取得し、当該電力計測値及び所定の受電電力目標値の情報を発信する電力計測部と、前記電力計測部から前記情報を受信し、受信した前記電力計測値及び前記受電電力目標値に基づいて、前記蓄電池の充電電力目標値を逐次更新する電力制御部と、前記電力制御部の制御に応じて前記蓄電池を充電するAC/DC変換回路と、を備えている。 (1) The present disclosure relates to an energy storage system that electrically connects an electric vehicle equipped with a storage battery to a consumer via a charging cable, and includes a power measurement unit that measures the current flowing to the consumer's power receiving point and the power based on the voltage applied to the power receiving point to obtain a power measurement value, and transmits information on the power measurement value and a predetermined receiving power target value, a power control unit that receives the information from the power measurement unit, and successively updates the charging power target value of the storage battery based on the received power measurement value and the receiving power target value, and an AC/DC conversion circuit that charges the storage battery in accordance with the control of the power control unit.

上記のように構成された蓄電システムにおいて電力制御部は、受信した電力計測値及び受電電力目標値に基づいて、蓄電池の充電電力目標値を逐次更新する。従って、充電電力目標値は、常に一定とは限らず、現在の電力計測値及び受電電力目標値に基づいて変化し得る。このようにして、受電電力が過大になり主幹ブレーカのトリップに至ることを抑制し、かつ、使用可能な電力を有効利用して適切な充電電力で蓄電池を充電することができる。 In the energy storage system configured as described above, the power control unit sequentially updates the charging power target value of the storage battery based on the received power measurement value and the received power target value. Therefore, the charging power target value is not always constant, but may change based on the current power measurement value and the received power target value. In this way, it is possible to prevent the received power from becoming excessive and causing the main breaker to trip, and to charge the storage battery with appropriate charging power by effectively using available power.

(2)また、(1)の蓄電システムにおいて、前記受電電力目標値は、固定値又は、時期に応じて値が変わる変動値であってもよい。
変動値とすれば、例えば、電力会社との契約により時間帯によって電気料金が異なる場合、それに応じて受電電力目標値を変えることで、電気料金を節約することができる。
(2) In the power storage system of (1), the received power target value may be a fixed value or a variable value that changes depending on the time.
If the target value is a variable value, for example, when the electricity rate varies depending on the time of day due to a contract with the power company, the electricity rate can be reduced by changing the target received power value accordingly.

(3)上記(1)又は(2)の蓄電システムにおいて、前記電力制御部は、前記充電電力目標値を、0から充電電力上限値までの範囲内に定めることもできる。
この場合、蓄電池に対して、放電と、過剰な充電とを防止することができる。
(3) In the power storage system according to (1) or (2) above, the power control unit may set the charging power target value within a range from 0 to a charging power upper limit value.
In this case, it is possible to prevent the storage battery from being discharged and overcharged.

(4)上記(1)~(3)のいずれかの蓄電システムにおいて、前記電力計測値の取得、前記情報の発信、及び、前記充電電力目標値の更新は、前記受電点における交流基本波の周期以下の時間ごとに実行されることが好ましい。
この場合、主幹ブレーカが過電流に反応してトリップするよりも早く、充電電力を絞ることができ、トリップを抑制することができる。
(4) In any of the energy storage systems (1) to (3) above, it is preferable that the acquisition of the power measurement value, the transmission of the information, and the update of the charging power target value are performed at intervals equal to or less than the period of the AC fundamental wave at the power receiving point.
In this case, the charging power can be reduced before the main breaker trips in response to an overcurrent, thereby preventing tripping.

(5)上記(1)~(4)のいずれかの蓄電システムにおいて、例えば、前記電力計測部は前記需要家に設置され、前記電力制御部及び前記AC/DC変換回路は、前記電動車両に搭載されている。
この場合、必要な情報は需要家側から提供され、電力制御部は提供された情報に応じて充電を行うことができる。従って、電動車両の充電を、需要家と同様なシステムに対応した他の設備によって行うことができ、また、電動車両を取り替えても同じ需要家にて充電を行うことができる。
(5) In any one of the energy storage systems (1) to (4) above, for example, the power measurement unit is installed at the consumer, and the power control unit and the AC/DC conversion circuit are mounted on the electric vehicle.
In this case, the necessary information is provided by the consumer side, and the power control unit can charge the vehicle according to the provided information. Therefore, the electric vehicle can be charged by other equipment that is compatible with the same system as the consumer side, and even if the electric vehicle is replaced, it can be charged at the same consumer side.

(6)上記(1)~(5)のいずれかの蓄電システムにおいて、前記電力計測部は、現在の前記電力計測値を表示する表示部を有するものであってもよい。
この場合、例えば、表示部に電力計測値及び受電電力目標値を表示することで、需要家の住人に対して注意喚起をすることができる。例えば、住人が表示部の表示を見て重要でない負荷の節電をすることにより、より多くの充電電力を得ることも可能となる。
(6) In any one of the power storage systems (1) to (5) above, the power measurement unit may have a display unit that displays the current power measurement value.
In this case, for example, the power measurement value and the target value of received power can be displayed on the display unit to alert the resident of the consumer's house. For example, if the resident sees the display unit and saves power on unimportant loads, it becomes possible to obtain more charging power.

(7)上記(1)~(6)のいずれかの蓄電システムにおいて、前記AC/DC変換回路は、スイッチング素子によって構成されたフルブリッジ回路であり、前記電力制御部は、前記需要家から前記AC/DC変換回路に進相無効電流が流れるよう前記AC/DC変換回路を制御するようにしてもよい。
この場合、需要家の交流電圧が蓄電池の充電によって低下している場合に、交流電圧の低下を抑制することができる。
(7) In any of the energy storage systems (1) to (6) above, the AC/DC conversion circuit may be a full bridge circuit configured with switching elements, and the power control unit may control the AC/DC conversion circuit so that a leading-phase reactive current flows from the consumer to the AC/DC conversion circuit.
In this case, when the AC voltage of the consumer is reduced due to charging of the storage battery, the reduction in the AC voltage can be suppressed.

(8)上記(1)~(7)のいずれかの蓄電システムにおいて、例えば、前記電力計測部と前記電力制御部との通信は、前記充電ケーブルを介して行われる。
この場合、充電ケーブルを電動車両に装着することにより、充電用の電力線と、通信線とを、同時に接続することができる。
(8) In any one of the power storage systems (1) to (7) above, for example, communication between the power measurement unit and the power control unit is performed via the charging cable.
In this case, by attaching the charging cable to the electric vehicle, it is possible to connect a power line for charging and a communication line at the same time.

(9)上記(1)~(8)のいずれかの蓄電システムにおいて、前記電力制御部は、前記蓄電池を放電させるように前記AC/DC変換回路を動作させ得るようにしてもよい。
この場合、電動車両の蓄電池に需要家から充電電力を与えるのみならず、逆に、蓄電池から需要家に給電を行うことができる。例えば、需要家以外の場所において低価格で蓄電池を充電し、需要家に戻って放電すれば、電気料金の節約になり、ダックカーブ(Duck curve)現象の緩和も実現することができる。
(9) In any one of the power storage systems (1) to (8) above, the power control unit may be configured to operate the AC/DC conversion circuit so as to discharge the storage battery.
In this case, not only can the consumer provide charging power to the battery of the electric vehicle, but the battery can also supply power to the consumer. For example, if the battery is charged at a low cost in a location other than the consumer's house and discharged when it returns to the consumer's house, it can save electricity bills and mitigate the duck curve phenomenon.

(10)一方、これは、蓄電池を搭載した電動車両と需要家とによって構成される蓄電システムが存在する場合における、前記蓄電池の充電方法であって、前記需要家と前記電動車両とを充電ケーブルを用いて互いに電気的に接続し、前記需要家の受電点に流れる電流及び前記受電点に印加されている電圧に基づく電力を計測して電力計測値を取得し、かつ、当該電力計測値及び所定の受電電力目標値の情報を発信し、受信した前記電力計測値及び前記受電電力目標値に基づいて、前記蓄電池の充電電力目標値を逐次更新し、前記充電電力目標値に応じて前記蓄電池を充電する、蓄電池の充電方法である。 (10) On the other hand, this is a method for charging a storage battery when there is a power storage system consisting of an electric vehicle equipped with a storage battery and a consumer, in which the consumer and the electric vehicle are electrically connected to each other using a charging cable, the current flowing at the consumer's power receiving point and the power based on the voltage applied to the power receiving point are measured to obtain a power measurement value, and information on the power measurement value and a predetermined receiving power target value is transmitted, the charging power target value of the storage battery is successively updated based on the received power measurement value and the receiving power target value, and the storage battery is charged according to the charging power target value.

上記のような蓄電池の充電方法によれば、受信した電力計測値及び受電電力目標値に基づいて、蓄電池の充電電力目標値が逐次更新される。従って、充電電力目標値は、常に一定とは限らず、現在の電力計測値及び受電電力目標値に基づいて変化し得る。このようにして、受電電力が過大になり主幹ブレーカのトリップに至ることを抑制し、かつ、使用可能な電力を有効利用して適切な充電電力で蓄電池を充電することができる。 According to the above-described method for charging a storage battery, the target charging power value of the storage battery is successively updated based on the received power measurement value and the target receiving power value. Therefore, the target charging power value is not always constant, but may change based on the current measured power value and the target receiving power value. In this way, it is possible to prevent the received power from becoming excessive and causing the main breaker to trip, and to charge the storage battery with appropriate charging power by effectively utilizing available power.

[実施形態の詳細]
以下、本発明の一実施形態に係る蓄電システム及び蓄電池の充電方法について、図面を参照して説明する。
[Details of the embodiment]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a power storage system and a method for charging a storage battery according to an embodiment of the present invention will be described with reference to the drawings.

《蓄電システムの構成例》
図1は、蓄電システム100のうち、需要家側(住宅側)の設備の概要の一例を示す図である。なお、商用電力系統1から分電盤6までは、説明の必要上、複線図で示すが、その他は単線図で示している。
Example of a power storage system configuration
1 is a diagram showing an example of an overview of equipment on the consumer side (residential side) of a power storage system 100. For ease of explanation, a commercial power system 1 to a distribution board 6 are shown as double-line diagrams, but the rest are shown as single-line diagrams.

図1において、商用電力系統1からの単相3線式の引込線2には、電力メータ3が接続されている。商用電力系統1から電力メータ3までは、電力会社の所有に係る設備である。電力メータ3から需要家4側の始端を受電点5とすると、受電点5から需要家4側の電気配線は、需要家4の所有に係る設備である。電力メータ3は、買電・売電の双方向の計量機能を有している。 In FIG. 1, a power meter 3 is connected to a single-phase three-wire service line 2 from a commercial power system 1. The equipment from the commercial power system 1 to the power meter 3 is owned by the power company. If the starting point from the power meter 3 on the consumer 4 side is called the power receiving point 5, the electrical wiring from the power receiving point 5 to the consumer 4 side is equipment owned by the consumer 4. The power meter 3 has a bidirectional metering function for buying and selling electricity.

受電点5と、需要家4内の分電盤6とは、電圧線である2本の電路7u,7wと、中性線の電路7oとによって互いに接続されている。電路7u,7o,7wには、電流検出部8が設けられている。電流検出部8は、例えば電路7u及び電路7wにそれぞれ設けられた電流センサ(CT)8u及び電流センサ8wにより構成されている。分電盤6内に引き込まれた電路7u,7o,7wは、主幹ブレーカの1次側から分岐して電圧計測線9u,9o,9wとして引き出される。電圧計測線9u,9o,9wは、電力計測部12に入力される。電流検出部8は、受電点5に流れる電流を検出することができる。電流検出部8の検出出力は電力計測部12に送られる。電力計測部12は、電流検出部8の検出出力及び、電圧計測線9u,9o,9wを介して直接取り込まれた電圧に基づいて、受電点5の電力を計測する。電力計測部12は、計測データ等の表示部12dを備えている。なお、表示部12dは、電力計測部12の本体と通信可能な別体のモニタであってもよい。 The receiving point 5 and the distribution board 6 in the consumer 4 are connected to each other by two electric circuits 7u and 7w, which are voltage lines, and a neutral electric circuit 7o. The electric circuits 7u, 7o, and 7w are provided with a current detection unit 8. The current detection unit 8 is composed of a current sensor (CT) 8u and a current sensor 8w, which are provided on the electric circuits 7u and 7w, respectively. The electric circuits 7u, 7o, and 7w drawn into the distribution board 6 are branched from the primary side of the main breaker and drawn out as voltage measurement lines 9u, 9o, and 9w. The voltage measurement lines 9u, 9o, and 9w are input to the power measurement unit 12. The current detection unit 8 can detect the current flowing through the receiving point 5. The detection output of the current detection unit 8 is sent to the power measurement unit 12. The power measurement unit 12 measures the power of the receiving point 5 based on the detection output of the current detection unit 8 and the voltage directly taken in through the voltage measurement lines 9u, 9o, and 9w. The power measurement unit 12 includes a display unit 12d for displaying measurement data, etc. The display unit 12d may be a separate monitor capable of communicating with the main body of the power measurement unit 12.

需要家4には、例えば、太陽光発電パネル10が設けられている。太陽光発電パネル10の発電出力はパワーコンディショナ11により交流電力に変換される。パワーコンディショナ11の出力する交流電力は、分電盤6に送られる。なお、太陽光発電パネル10を設けるのは分散型電源の典型例であるが、燃料電池等、その他の分散型電源であってもよい。 The consumer 4 is provided with, for example, a solar power generation panel 10. The power output of the solar power generation panel 10 is converted into AC power by a power conditioner 11. The AC power output from the power conditioner 11 is sent to a distribution board 6. Note that the solar power generation panel 10 is a typical example of a distributed power source, but other distributed power sources such as fuel cells may also be used.

また、図示は省略するが、分電盤6内には主幹ブレーカ及びその傘下の多数のブレーカが設けられており、各ブレーカを介して、需要家4内に屋内配線・屋外配線が展開されている。 Although not shown in the figure, the distribution board 6 is provided with a main breaker and a number of breakers under it, and indoor and outdoor wiring is laid out within the customer premises 4 via each breaker.

そして、この需要家4の駐車場には、電気自動車に充電を行うための充電スタンド13が設けられている。充電スタンド13は、分電盤6から引き出された電力線14pにより、例えば200Vの電圧供給を受ける。充電スタンド13には充電ケーブル15が設けられている。充電ケーブル15の先端には、電気自動車に着脱可能なコネクタ15cが設けられている。 The parking lot of this consumer 4 is provided with a charging stand 13 for charging electric vehicles. The charging stand 13 receives a voltage supply of, for example, 200 V from a power line 14p drawn from the distribution board 6. The charging stand 13 is provided with a charging cable 15. The tip of the charging cable 15 is provided with a connector 15c that can be attached to and detached from the electric vehicle.

電力計測部12は、受電点5に流れる電流及び受電点5に印加されている電圧に基づく電力を計測して電力計測値を取得する。また、電力計測部12には、所定の受電電力目標値が設定され、記憶されている。電力計測部12は通信線14cを介して充電スタンド13と接続されている。充電ケーブル15は、電力線14p及び通信線14cの延長線を1本のケーブルに収めたものである。電力計測部12は、計測して得た電力計測値及び受電電力目標値の情報を、通信線14cを介して電気自動車20(図2)に送ることができる。 The power measurement unit 12 measures the current flowing through the power receiving point 5 and the power based on the voltage applied to the power receiving point 5 to obtain a power measurement value. A predetermined receiving power target value is set and stored in the power measurement unit 12. The power measurement unit 12 is connected to the charging stand 13 via the communication line 14c. The charging cable 15 is a single cable that contains the extensions of the power line 14p and the communication line 14c. The power measurement unit 12 can send information on the measured power measurement value and the receiving power target value to the electric vehicle 20 (Figure 2) via the communication line 14c.

なお、電力計測12はハードウェアのみによって構成することもできるが、コンピュータを含むものであってもよい。コンピュータを含む場合は、コンピュータがソフトウェア(コンピュータプログラム)を実行することで、必要な制御機能を実現する。ソフトウェアは、電力計測部12の記憶装置(図示せず。)に格納される。 The power measurement unit 12 can be configured with only hardware, but may also include a computer. When it includes a computer, the computer executes software (computer programs) to realize the necessary control functions. The software is stored in a storage device (not shown) of the power measurement unit 12.

図2は、蓄電システム100のうち、電気自動車側の設備の概要の一例を示す図である。図において、電気自動車20は、大容量な走行用の蓄電池21を搭載している。蓄電池21には、交流から直流への変換又はその逆の変換も可能なAC/DC変換回路22が接続されている。AC/DC変換回路22は、電力制御部23により制御される。電力制御部23は、例えばコンピュータを含み、コンピュータがソフトウェア(コンピュータプログラム)を実行することで、必要な制御機能を実現する。ソフトウェアは、電力制御部23の記憶装置(図示せず。)に格納される。 Figure 2 is a diagram showing an example of an overview of the equipment on the electric vehicle side of the energy storage system 100. In the figure, an electric vehicle 20 is equipped with a large-capacity storage battery 21 for driving. An AC/DC conversion circuit 22 capable of converting AC to DC and vice versa is connected to the storage battery 21. The AC/DC conversion circuit 22 is controlled by a power control unit 23. The power control unit 23 includes, for example, a computer, and the computer executes software (computer programs) to realize the necessary control functions. The software is stored in a storage device (not shown) of the power control unit 23.

充電ケーブル15のコネクタ15cが電気自動車20に装着されると、AC/DC変換回路22と繋がる電力線24pは、需要家4側の電力線14pと接続される。また、電力制御部23に繋がる通信線24cは、需要家4側の通信線14cと接続される。 When the connector 15c of the charging cable 15 is attached to the electric vehicle 20, the power line 24p connected to the AC/DC conversion circuit 22 is connected to the power line 14p on the consumer 4 side. In addition, the communication line 24c connected to the power control unit 23 is connected to the communication line 14c on the consumer 4 side.

《充電の電力制御》
上記のような蓄電システム100において、電流検出部8は、太陽光発電パネル10の出力が分電盤6に入る電路上の位置より系統側に配置されている。そのため、電気自動車20の充電電力を含む需要家4で消費可能な電力は、商用電力系統1からの受電電力の上限値に太陽光発電パネル10の発電電力を加えた合計値にまで高めることができる。
<Charging power control>
In the above-described energy storage system 100, the current detection unit 8 is disposed closer to the grid than the position on the electric path where the output of the photovoltaic power generation panel 10 enters the distribution board 6. Therefore, the power that can be consumed by the consumer 4, including the charging power for the electric vehicle 20, can be increased to the total value obtained by adding the power generated by the photovoltaic power generation panel 10 to the upper limit of the power received from the commercial power grid 1.

電力計測部12は、受電点5における電力(有効電力)pを計算する。以下、電力pの符号は、商用電力系統1からの受電方向を正、逆潮流方向を負として説明する。電力計測部12は、商用電力系統1の基本波周期(50又は60Hz)で電力計測値を求め、更新する。電力計測部12は、計測して得た電力計測値を電力制御部23に送信する。 The power measurement unit 12 calculates the power (active power) p r at the power receiving point 5. In the following description, the sign of the power p r is assumed to be positive in the direction of power reception from the commercial power system 1 and negative in the direction of reverse power flow. The power measurement unit 12 obtains and updates the power measurement value at the fundamental wave period (50 or 60 Hz) of the commercial power system 1. The power measurement unit 12 transmits the power measurement value obtained by measurement to the power control unit 23.

電力制御部23は、電力計測値pと、受電電力の上限値以下に設定した受電電力目標値p を比較して、下記の式(1)又は式(2)に基づいてAC/DC変換回路22の充電電力目標値p を更新する。ここで、Kは比例ゲイン、Kは積分ゲインである。また、式(1)を用いる場合には右辺第3項(積分項)を省略してもよい。なお、下記の式(1),(2)の他、後述の式(3),(4)における文字フォントの違いに意味はない。文字フォントに関わらず、同じ文字は同じ物理量を表している。 The power control unit 23 compares the measured power value p r with a receiving power target value p * r set to be equal to or lower than the upper limit of the receiving power, and updates the charging power target value p * c of the AC/DC conversion circuit 22 based on the following formula (1) or formula (2). Here, K p is a proportional gain, and K i is an integral gain. When formula (1) is used, the third term on the right side (integral term) may be omitted. Note that differences in character fonts in the following formulas (1) and (2), as well as in formulas (3) and (4) described below, are meaningless. The same characters represent the same physical quantity regardless of the character font.


・・・(1)

... (1)


・・・(2)

... (2)

受電電力目標値p は固定値としてもよい。但し、時間帯別契約で商用電力系統1から電力の供給を受けている場合には、時刻情報と組み合わせて、電気料金が高い時間帯ではp を小さく設定し、電気料金が低い時間帯ではp を大きく設定することによって、電気自動車20の充電による電気料金を節約することができる。 The received power target value p * r may be a fixed value. However, when power is supplied from the commercial power system 1 under a time-of-day contract, it is possible to save on the electricity bill for charging the electric vehicle 20 by combining with time information and setting p * r small during time periods when the electricity rate is high and setting p * r large during time periods when the electricity rate is low.

電力制御部23は、式(1)又は式(2)によって一旦更新した充電電力目標値p をさらに、充電電力上限値pc-maxと比較して、式(3)によってp [n+1]を書き換える。電力制御部23は、p [n+1]が負の場合には0として扱い、充電を停止する。また、電力制御部23は、p [n+1]がpc-max以上であった場合にはp [n+1]を、pc-maxに書き換える。充電電力上限値pc-maxは、AC/DC変換回路22の最大許容電力値であってもよいし、蓄電池21の充電状態と、目標とする充電状態と、充電にかける時間とから求めた最適値としてもよい。 The power control unit 23 further compares the charging power target value p * c once updated by the formula (1) or (2) with the charging power upper limit value pc -max , and rewrites p * c [n+1] by the formula (3). If p * c [n+1] is negative, the power control unit 23 treats it as 0 and stops charging. Furthermore, if p * c [n+1] is equal to or greater than pc -max , the power control unit 23 rewrites p * c [n+1] to pc-max . The charging power upper limit value pc -max may be the maximum allowable power value of the AC/DC conversion circuit 22, or may be an optimal value calculated from the charging state of the storage battery 21, the target charging state, and the time required for charging.


・・・(3)

...(3)

電力計測値pが受電電力の上限値を超えた場合には、分電盤6の主幹ブレーカが反応して例えば数秒でトリップし電流が遮断される。そこで、遮断されるよりも早く、電力制御部23は、充電電力を絞って、受電電力を許容範囲内に制御することが望ましい。そのためには、電力計測部12から電力制御部23に送信する電力計測値pは、交流基本波周期と同じか、それよりも短い周期で更新することが望ましい。 When the power measurement value p r exceeds the upper limit of the received power, the main breaker of the distribution board 6 reacts and trips, for example, in a few seconds, cutting off the current. Therefore, it is desirable for the power control unit 23 to throttle the charging power and control the received power within an allowable range before the current is cut off. To this end, it is desirable for the power measurement value p r transmitted from the power measurement unit 12 to the power control unit 23 to be updated at a period equal to or shorter than the AC fundamental wave period.

電力制御部23とAC/DC変換回路22は、図2に示すように、電気自動車20に搭載されている構成の他、例えば充電スタンド13に組み込まれた構成であってもよい。前者の場合には、必要な情報は需要家4側から提供され、電力制御部23は提供された情報に応じて充電を行うことができる。従って、電気自動車20の充電を、需要家4と同様なシステムに対応した他の設備によって行うことができ、また、電気自動車20を取り替えても同じ需要家4にて充電を行うことができる。 As shown in FIG. 2, the power control unit 23 and the AC/DC conversion circuit 22 may be mounted on the electric vehicle 20, or may be incorporated in the charging station 13, for example. In the former case, the necessary information is provided by the consumer 4, and the power control unit 23 can charge the vehicle according to the provided information. Therefore, the electric vehicle 20 can be charged by other equipment that is compatible with the same system as the consumer 4, and even if the electric vehicle 20 is replaced, it can be charged at the same consumer 4.

また、例えば、電力計測部12の表示部12dに電力計測値pの現在値及び受電電力目標値p を表示すれば、需要家4の住人に対して注意喚起をすることができる。例えば、住人が表示部12dの表示を見て重要でない負荷の節電をすることにより、より多くの充電電力を得て、迅速な充電を行うことも可能となる。 Furthermore, for example, if the current value of the power measurement value p r and the target received power value p * r are displayed on the display unit 12d of the power measurement unit 12, it is possible to alert the residents of the consumer premises 4. For example, if the residents look at the display on the display unit 12d and save power on unimportant loads, it becomes possible to obtain more charging power and perform rapid charging.

《ここまでのまとめ》
開示したのは、蓄電池21を搭載した電気自動車20を、充電ケーブル15を介して需要家4と電気的に接続する蓄電システム100であって、需要家4の受電点5に流れる電流及び受電点に印加されている電圧に基づく電力を計測して電力計測値pを取得し、当該電力計測値及び所定の受電電力目標値p の情報を発信する電力計測部12と、電力計測部12から情報を受信し、受信した電力計測値及び受電電力目標値に基づいて、蓄電池21の充電電力目標値p を逐次更新する電力制御部23と、電力制御部23の制御に応じて蓄電池21を充電するAC/DC変換回路22と、を備えている。
Summary so far:
What is disclosed is a power storage system 100 that electrically connects an electric vehicle 20 equipped with a storage battery 21 to a consumer 4 via a charging cable 15, and is equipped with a power measurement unit 12 that measures the current flowing to the consumer 4's power receiving point 5 and the power based on the voltage applied to the power receiving point to obtain a power measurement value p r and transmits information on the power measurement value and a predetermined received power target value p * r , a power control unit 23 that receives information from the power measurement unit 12 and sequentially updates the charging power target value p * c of the storage battery 21 based on the received power measurement value and received power target value, and an AC/DC conversion circuit 22 that charges the storage battery 21 in accordance with the control of the power control unit 23.

上記のように構成された蓄電システム100において電力制御部23は、受信した電力計測値p及び受電電力目標値p に基づいて、蓄電池21の充電電力目標値p を逐次更新する。従って、充電電力目標値p は、常に一定とは限らず、現在の電力計測値p及び受電電力目標値p に基づいて変化し得る。このようにして、受電電力が過大になり主幹ブレーカのトリップに至ることを抑制し、かつ、使用可能な電力を有効利用して適切な充電電力で蓄電池21を充電することができる。 In the energy storage system 100 configured as described above, the power control unit 23 sequentially updates the charging power target value p * c of the storage battery 21 based on the received power measurement value p r and the received power target value p * r . Therefore, the charging power target value p * c is not always constant, but may change based on the current power measurement value p r and the received power target value p * r . In this way, it is possible to prevent the received power from becoming excessive and causing the main breaker to trip, and to charge the storage battery 21 with appropriate charging power by effectively using available power.

また、開示したのは、蓄電池21を搭載した電気自動車と需要家4とによって構成される蓄電システム100が存在する場合における、蓄電池の充電方法であって、
(a)需要家4と電気自動車20とを充電ケーブル15を用いて互いに電気的に接続し、
(b)需要家4の受電点5に流れる電流及び受電点5に印加されている電圧に基づく電力を計測して電力計測値pを取得し、かつ、当該電力計測値p及び所定の受電電力目標値p の情報を発信し、
(c)受信した電力計測値p及び受電電力目標値p に基づいて、蓄電池21の充電電力目標値p を逐次更新し、
(d)充電電力目標値p に応じて蓄電池21を充電する、という蓄電池の充電方法である。
Also disclosed is a method for charging a storage battery in a case where a power storage system 100 is configured by an electric vehicle equipped with a storage battery 21 and a consumer 4, comprising:
(a) A consumer 4 and an electric vehicle 20 are electrically connected to each other using a charging cable 15;
(b) measuring the current flowing through the power receiving point 5 of the consumer 4 and the power based on the voltage applied to the power receiving point 5 to obtain a power measurement value p r , and transmitting information on the power measurement value p r and a predetermined receiving power target value p * r ;
(c) sequentially updating the charging power target value p * c of the storage battery 21 based on the received power measurement value p r and the receiving power target value p * r ;
(d) This is a method of charging the storage battery, in which the storage battery 21 is charged in accordance with a charging power target value p * c .

上記のような蓄電池の充電方法によれば、受信した電力計測値及び受電電力目標値に基づいて、蓄電池の充電電力目標値が逐次更新される。従って、充電電力目標値は、常に一定とは限らず、現在の電力計測値及び受電電力目標値に基づいて変化し得る。このようにして、受電電力が過大になり主幹ブレーカのトリップに至ることを抑制し、かつ、使用可能な電力を有効利用して適切な充電電力で蓄電池を充電することができる。 According to the above-described method for charging a storage battery, the target charging power value of the storage battery is successively updated based on the received power measurement value and the target receiving power value. Therefore, the target charging power value is not always constant, but may change based on the current measured power value and the target receiving power value. In this way, it is possible to prevent the received power from becoming excessive and causing the main breaker to trip, and to charge the storage battery with appropriate charging power by effectively utilizing available power.

《負荷消費集中による系統電圧低下の緩和》
近隣地域内で、各住宅内の負荷消費、電気自動車の充電が集中すると配電系統の電圧が低下する。この場合には、電力制御部23はpc-maxの設定値を小さくして充電電力を抑制すれば電圧低下を緩和することができる。充電電力を維持しながら電圧低下を抑制するためには、充電電流(商用電力系統1から需要家4側に流れる方向を正)を系統電圧に対して進めて、進相無効電力を注入すればよい。進相無効電力によって系統電圧は上昇するので、電圧低下を緩和することができる。
<Mitigating system voltage drops caused by concentrated load consumption>
When load consumption in each house and charging of electric vehicles are concentrated in a neighborhood, the voltage of the power distribution system drops. In this case, the power control unit 23 can reduce the set value of p c-max to suppress the charging power and mitigate the voltage drop. In order to suppress the voltage drop while maintaining the charging power, the charging current (the direction flowing from the commercial power system 1 to the consumer 4 is positive) can be advanced relative to the system voltage and leading-phase reactive power can be injected. The leading-phase reactive power increases the system voltage, and therefore the voltage drop can be mitigated.

この場合の、AC/DC変換回路の好適な例について説明する。
図3は、参考例として、一般的に多く使われているAC/DC変換回路220を示す回路図である。図において、AC/DC変換回路220は、商用電力系統1と、蓄電池21との間にある。AC/DC変換回路220は、ダイオードブリッジ227と、力率改善回路(PFC)228と、DC/DCコンバータ229とを備えている。
A suitable example of the AC/DC conversion circuit in this case will be described.
3 is a circuit diagram showing, as a reference example, a commonly used AC/DC conversion circuit 220. In the figure, the AC/DC conversion circuit 220 is located between a commercial power system 1 and a storage battery 21. The AC/DC conversion circuit 220 includes a diode bridge 227, a power factor correction circuit (PFC) 228, and a DC/DC converter 229.

図4は、図3のAC/DC変換回路220に進相無効電力を注入する場合の、交流の電圧(点線)、電流(実線)の一例を示す図である。図3に示すAC/DC変換回路220で無効電力を注入すると、図4に示すように電流のゼロクロス近傍で歪が発生する。 Figure 4 is a diagram showing an example of AC voltage (dotted line) and current (solid line) when leading-phase reactive power is injected into the AC/DC conversion circuit 220 in Figure 3. When reactive power is injected into the AC/DC conversion circuit 220 shown in Figure 3, distortion occurs near the zero crossing of the current, as shown in Figure 4.

これに対して、図5は、本実施形態のAC/DC変換回路22を示す回路図である。図において、AC/DC変換回路22は、商用電力系統1と、蓄電池21との間にある。AC/DC変換回路22は、フィルタ回路221と、ゲートコントロールが可能なスイッチング素子によって構成されたフルブリッジ回路222と、平滑コンデンサCdと、DC/DCコンバータ223とを備えている。フィルタ回路221は、コンデンサCaと、交流リアクトルLとを含む。フルブリッジ回路222は、例えばIGBT(Insulated Gate Bipolar Transistor)であるスイッチング素子S1,S2,S3,S4を備えている。スイッチング素子S1~S4及びDC/DCコンバータ223は、電力制御部23により制御される。 In contrast, FIG. 5 is a circuit diagram showing the AC/DC conversion circuit 22 of this embodiment. In the figure, the AC/DC conversion circuit 22 is located between the commercial power system 1 and the storage battery 21. The AC/DC conversion circuit 22 includes a filter circuit 221, a full bridge circuit 222 configured with switching elements capable of gate control, a smoothing capacitor Cd, and a DC/DC converter 223. The filter circuit 221 includes a capacitor Ca and an AC reactor L. The full bridge circuit 222 includes switching elements S1, S2, S3, and S4, which are, for example, IGBTs (Insulated Gate Bipolar Transistors). The switching elements S1 to S4 and the DC/DC converter 223 are controlled by the power control unit 23.

図6は、図5のAC/DC変換回路220に進相無効電力を注入する場合の、交流の電圧(点線)、電流(実線)の一例を示す図である。図5に示すAC/DC変換回路22で無効電力を注入すると、図6に示すように、無効電力を注入しても歪のない正弦波電流を維持することができる。 Figure 6 is a diagram showing an example of AC voltage (dotted line) and current (solid line) when leading-phase reactive power is injected into the AC/DC conversion circuit 220 of Figure 5. When reactive power is injected into the AC/DC conversion circuit 22 shown in Figure 5, as shown in Figure 6, a distortion-free sine wave current can be maintained even when reactive power is injected.

《電気自動車からの放電による電力ピークシフト、電圧低下の緩和》
図2のAC/DC変換回路22として、図5のAC/DC変換回路22を用いることによって、電気自動車20に搭載された蓄電池21に充電されたエネルギーを需要家4側の負荷消費に利用することができる。このとき、前述の式(1)又は式(2)で求めた充電電力目標値p [n+1]を、式(3)の代わりに以下の式(4)で再設定する。これにより、充電電流目標値p [n+1]は負の値をとる場合に放電電力下限値pc-min(負の値、最大放電電力)以内の放電を行うことができる。受電電力目標値p を0以上で、より小さな値に設定すれば、需要家から系統への逆潮流を防止しながら、電気自動車からの放電量をより大きくすることができる。
<<Peak power shift and voltage drop mitigation through discharge from electric vehicles>>
By using the AC/DC conversion circuit 22 of FIG. 5 instead of the AC/DC conversion circuit 22 of FIG. 2, the energy stored in the storage battery 21 mounted on the electric vehicle 20 can be used for load consumption on the consumer 4 side. At this time, the charging power target value p * c [n+1] obtained by the above-mentioned formula (1) or formula (2) is reset by the following formula (4) instead of formula (3). As a result, when the charging current target value p * c [n+1] is a negative value, it is possible to perform discharging within the discharge power lower limit value pc-min (negative value, maximum discharge power). If the receiving power target value p * r is set to a smaller value equal to or greater than 0, it is possible to increase the amount of discharge from the electric vehicle while preventing reverse power flow from the consumer to the grid.


・・・(4)

...(4)

電力計測部12で計測した系統電圧が低いときに、電気自動車からの放電を行えば、系統電圧の低下を緩和することができる。
この回路及び制御によれば、需要家4内に設置した分散型電源等によって余剰電力が発生する時間帯の電力を電気自動車20に充電し、電力が不足する時間帯に放電して負荷消費に使用することができる。また、前述のように、電力制御部23とAC/DC変換回路22とを電気自動車20に搭載する場合、電気自動車20は、充電とは異なる場所で放電することができる。例えば、電気自動車20を通勤に用いて、昼間は勤務先に設置された太陽光発電の余剰電力を吸収して、これを帰宅後の電力ピークに合わせて使用することにより、電力系統全体の安定化に寄与することができる。
If the electric vehicle discharges electricity when the grid voltage measured by the power measurement unit 12 is low, the drop in grid voltage can be mitigated.
According to this circuit and control, the electric vehicle 20 is charged with power during a time period when surplus power is generated by a distributed power source or the like installed in the consumer 4, and the power is discharged during a time period when there is a power shortage, and can be used for load consumption. Furthermore, as described above, when the power control unit 23 and the AC/DC conversion circuit 22 are mounted on the electric vehicle 20, the electric vehicle 20 can discharge the power at a location different from where it is charged. For example, by using the electric vehicle 20 for commuting to work, and absorbing surplus power from a solar power generation system installed at the workplace during the day, and using this power in accordance with the power peak after returning home, it is possible to contribute to stabilizing the entire power system.

《その他》
上記実施形態では、電気自動車20を含む蓄電システム100として説明したが、電動バイク、電動産業車両等、その他の電動車両であっても同様に蓄電システムを構成することができる。
また、上記実施形態では、電力計測部12から電力制御部23への通信は有線通信としたが、無線通信に置き換えてもよい。
"others"
In the above embodiment, the power storage system 100 is described as including the electric vehicle 20. However, the power storage system can be configured similarly for other electric vehicles such as electric motorcycles and electric industrial vehicles.
In the above embodiment, the communication from the power measurement unit 12 to the power control unit 23 is wired communication, but may be wireless communication instead.

《補記》
なお、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
《Addendum》
The embodiments disclosed herein should be considered to be illustrative and not restrictive in all respects. The scope of the present invention is defined by the claims, and it is intended to include all modifications within the scope and meaning equivalent to the claims.

1 商用電力系統
2 引込線
3 電力メータ
4 需要家
5 受電点
6 分電盤
7u,7o,7w 電路
8 電流検出部
8u 電流センサ
8w 電流センサ
9u 電圧計側線
9o 電圧計測線
9w 電圧計測線
10 太陽光発電パネル
11 パワーコンディショナ
12 電力計測部
12d 表示部
13 充電スタンド
14p 電力線
14c 通信線
15 充電ケーブル
15c コネクタ
20 電気自動車
21 蓄電池
22 AC/DC変換回路
23 電力制御部
24p 電力線
24c 通信線
100 蓄電システム
220 AC/DC変換回路
221 フィルタ回路
222 フルブリッジ回路
223 DC/DCコンバータ
227 ダイオードブリッジ
228 力率改善回路
229 DC/DCコンバータ
Ca コンデンサ
Cd 平滑コンデンサ
L 交流リアクトル
S1,S2,S3,S4 スイッチング素子
REFERENCE SIGNS LIST 1 Commercial power system 2 Inlet line 3 Power meter 4 Consumer 5 Receiving point 6 Distribution board 7u, 7o, 7w Circuit 8 Current detection unit 8u Current sensor 8w Current sensor 9u Voltmeter side line 9o Voltage measurement line 9w Voltage measurement line 10 Photovoltaic power generation panel 11 Power conditioner 12 Power measurement unit 12d Display unit 13 Charging stand 14p Power line 14c Communication line 15 Charging cable 15c Connector 20 Electric vehicle 21 Storage battery 22 AC/DC conversion circuit 23 Power control unit 24p Power line 24c Communication line 100 Storage system 220 AC/DC conversion circuit 221 Filter circuit 222 Full bridge circuit 223 DC/DC converter 227 Diode bridge 228 Power factor correction circuit 229 DC/DC converter Ca Capacitor Cd Smoothing capacitor L AC reactor S1, S2, S3, S4 Switching element

Claims (7)

蓄電池を搭載した電動車両を、充電ケーブルを介して需要家と電気的に接続する蓄電システムに用いられる電力制御装置であって、
前記需要家の受電点に流れる電流および前記受電点に印加されている電圧に基づく電力を計測して得られた電力計測値および所定の受電電力目標値の情報を発信する電力計測部から前記情報を受信する受信部と、
受信した前記電力計測値および前記受電電力目標値に基づいて、前記蓄電池の充電電力目標値を逐次更新する更新部と、
を備える、
電力制御装置。
A power control device used in a power storage system that electrically connects an electric vehicle equipped with a storage battery to a consumer via a charging cable,
a receiving unit that receives information from a power measuring unit that transmits information on a power measurement value obtained by measuring a current flowing at a power receiving point of the consumer and power based on a voltage applied to the power receiving point and a predetermined receiving power target value;
an update unit that sequentially updates a charging power target value of the storage battery based on the received power measurement value and the received power target value;
Equipped with
Power control device.
前記受電電力目標値は、固定値、または、時期に応じて値が変わる変動値である、
請求項1に記載の電力制御装置。
The receiving power target value is a fixed value or a variable value whose value changes depending on the time.
The power control device according to claim 1 .
前記充電電力目標値を、0から充電電力上限値までの範囲内に定める、
請求項1または請求項2に記載の電力制御装置。
The charging power target value is set within a range from 0 to a charging power upper limit value.
The power control device according to claim 1 or 2.
前記電力計測部は前記需要家に設置され、
前記電力制御装置は、前記電動車両に搭載される、
請求項1から請求項3のいずれか1項に記載の電力制御装置。
The power measurement unit is installed in the consumer facility,
The power control device is mounted on the electric vehicle.
The power control device according to any one of claims 1 to 3.
前記電力計測部および前記電力制御装置のそれぞれは、前記需要家に設置される、
請求項1から請求項3のいずれか1項に記載の電力制御装置。
The power measurement unit and the power control device are each installed in the consumer.
The power control device according to any one of claims 1 to 3.
前記電力制御装置は、前記蓄電池を充電するAC/DC変換回路を制御し、
前記AC/DC変換回路は、スイッチング素子によって構成されたフルブリッジ回路であり、
前記電力制御装置は、前記需要家から前記AC/DC変換回路に進相無効電流が流れるよう前記AC/DC変換回路を制御する、
請求項1から請求項5のいずれか1項に記載の電力制御装置。
The power control device controls an AC/DC conversion circuit that charges the storage battery,
the AC/DC conversion circuit is a full bridge circuit configured with switching elements,
The power control device controls the AC/DC conversion circuit so that a leading-phase reactive current flows from the consumer to the AC/DC conversion circuit.
The power control device according to any one of claims 1 to 5.
前記電力制御装置は、前記蓄電池を充電するAC/DC変換回路を制御し、
前記電力制御装置は、前記蓄電池を放電させるように前記AC/DC変換回路を動作させ得る、
請求項1から請求項6のいずれか1項に記載の電力制御装置。
The power control device controls an AC/DC conversion circuit that charges the storage battery,
The power control device may operate the AC/DC conversion circuit to discharge the storage battery.
The power control device according to any one of claims 1 to 6.
JP2023049402A 2018-09-13 2023-03-27 Power Control Device Active JP7494971B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023049402A JP7494971B2 (en) 2018-09-13 2023-03-27 Power Control Device
JP2024082726A JP2024100899A (en) 2018-09-13 2024-05-21 Charging System

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018171639A JP7412877B2 (en) 2018-09-13 2018-09-13 Electricity storage system and storage battery charging method
JP2023049402A JP7494971B2 (en) 2018-09-13 2023-03-27 Power Control Device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018171639A Division JP7412877B2 (en) 2018-09-13 2018-09-13 Electricity storage system and storage battery charging method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024082726A Division JP2024100899A (en) 2018-09-13 2024-05-21 Charging System

Publications (2)

Publication Number Publication Date
JP2023076555A JP2023076555A (en) 2023-06-01
JP7494971B2 true JP7494971B2 (en) 2024-06-04

Family

ID=69799012

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2018171639A Active JP7412877B2 (en) 2018-09-13 2018-09-13 Electricity storage system and storage battery charging method
JP2023049402A Active JP7494971B2 (en) 2018-09-13 2023-03-27 Power Control Device
JP2024082726A Pending JP2024100899A (en) 2018-09-13 2024-05-21 Charging System

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018171639A Active JP7412877B2 (en) 2018-09-13 2018-09-13 Electricity storage system and storage battery charging method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024082726A Pending JP2024100899A (en) 2018-09-13 2024-05-21 Charging System

Country Status (1)

Country Link
JP (3) JP7412877B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7483534B2 (en) * 2020-07-08 2024-05-15 ダイヤゼブラ電機株式会社 Power conditioner and battery charging control system equipped with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044807A (en) 2010-08-20 2012-03-01 Denso Corp Charging system, charging control device, and charging device
JP2018103972A (en) 2016-12-22 2018-07-05 パナソニックIpマネジメント株式会社 On-vehicle control device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5168891B2 (en) 2006-11-28 2013-03-27 日産自動車株式会社 Electric vehicle charging power management system
EP2728700A4 (en) 2011-06-30 2015-07-08 Panasonic Corp Control device designing method, and control device
WO2014010025A1 (en) 2012-07-10 2014-01-16 富士電機機器制御株式会社 Charging system and charging method
JP2018113829A (en) 2017-01-13 2018-07-19 三菱電機株式会社 Power storage control apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044807A (en) 2010-08-20 2012-03-01 Denso Corp Charging system, charging control device, and charging device
JP2018103972A (en) 2016-12-22 2018-07-05 パナソニックIpマネジメント株式会社 On-vehicle control device

Also Published As

Publication number Publication date
JP2024100899A (en) 2024-07-26
JP7412877B2 (en) 2024-01-15
JP2020043736A (en) 2020-03-19
JP2023076555A (en) 2023-06-01

Similar Documents

Publication Publication Date Title
US10559046B2 (en) Power supply management system
US8901772B2 (en) Energy interface system
US20130234654A1 (en) Apparatus for controlling electricity accumulation apparatus, electricity accumulation apparatus and method of charging and discharging electricity accumulation apparatus
JP2024100899A (en) Charging System
US10913370B2 (en) Power supply system and method of operating power supply between power distribution branch for household appliances and charging branch for electric vehicle
KR101220773B1 (en) Intelligent Cabinet-Panel Having Energy Managing Function in the Smart Grid Environment
US9356444B2 (en) Power control device
AU2012216501A1 (en) Controller and method of controlling a power system
JP5498193B2 (en) Vehicle charging power management system
JP5380413B2 (en) Electric energy calculation device, electric energy calculation server, electric energy calculation system, and electric energy calculation method
US11139681B2 (en) Smart switching panel for secondary power supply
US20220263311A1 (en) System and Method for Managing Power
Mitra et al. The impact of distributed photovoltaic generation on residential distribution systems
WO2015001775A1 (en) Power management system, notification device, control device, monitor device
JP6386064B2 (en) Power management apparatus, power management method, and power management system
US20150025702A1 (en) Energy management system
WO2015001767A1 (en) Control device and power management system
JP6526305B1 (en) In-house power generation control system, switchboard
JP2019022288A (en) Power distribution system, installation method, branching device
JP2018161007A (en) Wiring system
JP2017221082A (en) Power storage system
JP6781007B2 (en) Power system
WO2023171100A1 (en) Power conversion system and metering method
JP2013236517A (en) Power monitoring device
JP6936071B2 (en) Power generation equipment control method and power generation equipment control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240506

R150 Certificate of patent or registration of utility model

Ref document number: 7494971

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150