JP7494200B2 - 照明装置、照明装置の制御方法、および、測距モジュール - Google Patents

照明装置、照明装置の制御方法、および、測距モジュール Download PDF

Info

Publication number
JP7494200B2
JP7494200B2 JP2021550606A JP2021550606A JP7494200B2 JP 7494200 B2 JP7494200 B2 JP 7494200B2 JP 2021550606 A JP2021550606 A JP 2021550606A JP 2021550606 A JP2021550606 A JP 2021550606A JP 7494200 B2 JP7494200 B2 JP 7494200B2
Authority
JP
Japan
Prior art keywords
light
light source
light emission
unit
timing signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021550606A
Other languages
English (en)
Other versions
JPWO2021065542A1 (ja
Inventor
ジャエシュ ハナーカル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of JPWO2021065542A1 publication Critical patent/JPWO2021065542A1/ja
Application granted granted Critical
Publication of JP7494200B2 publication Critical patent/JP7494200B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/155Coordinated control of two or more light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • G01S17/26Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves wherein the transmitted pulses use a frequency-modulated or phase-modulated carrier wave, e.g. for pulse compression of received signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • G01S7/4815Constructional features, e.g. arrangements of optical elements of transmitters alone using multiple transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/16Controlling the light source by timing means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0428Electrical excitation ; Circuits therefor for applying pulses to the laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Description

本技術は、照明装置、照明装置の制御方法、および、測距モジュールに関し、特に、サイクリックエラーを低減することができるようにした照明装置、照明装置の制御方法、および、測距モジュールに関する。
近年、半導体技術の進歩により、物体までの距離を測定する測距モジュールの小型化が進んでいる。これにより、例えば、スマートフォンなどのモバイル端末に測距モジュールを搭載することが実現されている。
測距モジュールにおける測距方法としては、例えば、ToF(Time of Flight)方式と呼ばれる方式がある。ToF方式では、光を物体に向かって照射して物体の表面で反射されてくる光を検出し、その光の飛行時間を測定した測定値に基づいて物体までの距離が算出される。光を照射する発光源には、例えば特許文献1,2に開示されているような、面発光を行うレーザダイオードアレイなどが用いられる。
特開2016-132235号公報 特開2015-18981号公報
距離の計測においては、発光源から出力される変調光をサイン波形として信号処理するが、発光源から実際に出力される光は矩形波形であるため、矩形波をサイン波として処理することにより、測定値に周期的な誤差(以下、サイクリックエラーと称する。)が発生する。
本技術は、このような状況に鑑みてなされたものであり、サイクリックエラーを低減することができるようにするものである。
本技術の第1の側面の照明装置は、第1の光源と第2の光源を含む複数の光源と、前記複数の光源を駆動する駆動部とを備え、前記駆動部は、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、擬似サイン波となるように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる。
本技術の第2の側面の照明装置の制御方法は、第1の光源と第2の光源を含む複数の光源と、前記複数の光源を駆動する駆動部とを備える照明装置の前記駆動部が、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、擬似サイン波となるように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる。
本技術の第3の側面の測距モジュールは、照明装置と、測距センサとを備え、前記照明装置は、第1の光源と第2の光源を含む複数の光源と、前記複数の光源を駆動する駆動部とを備え、前記駆動部は、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、擬似サイン波となるように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる。
本技術の第1ないし第3の側面においては、第1の光源と第2の光源を含む複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、擬似サイン波となるように、前記第1の光源と第2の光源が、異なるタイミングおよび発光期間で発光される。
照明装置及び測距モジュールは、独立した装置であっても良いし、他の装置に組み込まれるモジュールであっても良い。
本技術を適用した測距モジュールの第1実施の形態の構成例を示すブロック図である。 Indirect ToF方式の測距原理を説明する図である。 サイクリックエラーとその補正処理を説明する図である。 発光部の第1構成例の詳細構成例を示すブロック図である。 第1構成例に係る発光部の発光面の平面図である。 受光開始信号と発光タイミング信号を示す図である。 各タイミングにおける発光部全体の発光強度を示す図である。 発光部の第1構成例の変形例を示す図である。 発光部の第2構成例の詳細構成例を示すブロック図である。 第2構成例に係る発光部の発光面の平面図である。 受光開始信号と発光タイミング信号を示す図である。 遅延回路によって遅延された発光タイミング信号を示す図である。 遅延回路によって遅延された発光タイミング信号を示す図である。 各タイミングにおける発光部全体の発光強度を示す図である。 本技術を適用した測距モジュールの第2実施の形態の構成例を示すブロック図である。 第2実施の形態に係る発光部の詳細構成例を示すブロック図である。 レーザドライバと1個のレーザ光源の回路構成例を示す図である。 レーザドライバと3個のレーザ光源の回路構成例を示す図である。 発光強度調整処理を説明するフローチャートである。 測距モジュールのチップ構成例を示す斜視図である。 本技術を適用した電子機器の構成例を示すブロック図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。
以下、添付図面を参照しながら、本技術を実施するための形態(以下、実施の形態という)について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。説明は以下の順序で行う。
1.測距モジュールの第1実施の形態
2.Indirect ToF方式の測距原理
3.発光部の第1構成例
4.発光部の第1構成例の変形例
5.発光部の第2構成例
6.測距モジュールの第2実施の形態
7.発光部の構成例
8.発光強度調整処理
9.測距モジュールのチップ構成例
10.電子機器の構成例
11.移動体への応用例
<1.測距モジュールの第1実施の形態>
図1は、本技術を適用した測距モジュールの第1実施の形態の構成例を示すブロック図である。
第1実施の形態に係る測距モジュール11は、Indirect ToF方式による測距を行う測距モジュールであり、照明装置12、発光制御部13、および、測距センサ14を有する。
測距モジュール11は、被測定物としての所定の物体15に対して光を照射し、その光(照射光)が物体15で反射されてきた光(反射光)を受光する。そして、測距モジュール11は、受光結果に基づいて、物体15までの距離情報を表すデプスマップと信頼度マップとを、測定結果として出力する。
照明装置12は、例えば、VCSEL(Vertical Cavity Surface Emitting Laser:垂直共振器面発光レーザ)等の発光素子を含むレーザ光源41(図4)を平面方向に複数配列した発光部21を有している。
発光部21は、発光制御部13から供給される発光タイミング信号LTに応じたタイミングで変調しながら発光して、物体15に対して照射光を照射する。例えば、照射光が赤外光である場合、照射光の波長は、約850nmから940nmの範囲となる。
発光制御部13は、所定の周波数(例えば、20MHzなど)の発光タイミング信号LTを発光部21に供給することにより、発光を制御する。また、発光制御部13は、発光部21における発光のタイミングに合わせて測距センサ14を駆動させるために、受光開始信号STを測距センサ14に供給する。なお、発光制御部13は、照明装置12または測距センサ14の一部として組み込んで構成することができる。
測距センサ14は、受光部31と、信号処理部32とを有する。
受光部31は、複数の画素が行方向および列方向の行列状に2次元配置された画素アレイにより、物体15からの反射光を受光する。そして、受光部31は、受光した反射光の受光量に応じた検出信号を、画素アレイの画素単位で信号処理部32に供給する。
信号処理部32は、受光部31から画素アレイの画素ごとに供給される検出信号に基づいて、測距モジュール11から物体15までの距離であるデプス値を算出する。そして、信号処理部32は、各画素の画素値としてデプス値が格納されたデプスマップと、各画素の画素値として信頼値が格納された信頼度マップとを生成して、モジュール外へ出力する。
<2.Indirect ToF方式の測距原理>
本開示の具体的処理を説明する前に、図2を参照して、Indirect ToF方式の測距原理について簡単に説明する。
測距モジュール11から物体15までの距離に相当するデプス値d[mm]は、以下の式(1)で計算することができる。
Figure 0007494200000001
式(1)のΔtは、発光部21から出射された照射光が物体15に反射して受光部31に入射するまでの時間であり、cは、光速を表す。
発光部21から照射される照射光には、図2に示されるような、所定の周波数f(変調周波数)で高速にオンオフを繰り返す発光パターンのパルス光が採用される。発光パターンの1周期Tは1/fとなる。受光部31では、発光部21から受光部31に到達するまでの時間Δtに応じて、反射光(受光パターン)の位相がずれて検出される。この発光パターンと受光パターンとの位相のずれ量(位相差)をφとすると、時間Δtは、下記の式(2)で算出することができる。
Figure 0007494200000002
したがって、測距モジュール11から物体15までのデプス値dは、式(1)と式(2)とから、下記の式(3)で算出することができる。
Figure 0007494200000003
次に、上述の位相差φの算出手法について説明する。
受光部31に形成された画素アレイの各画素は、高速にON/OFFを繰り返し、ON期間のみの電荷を蓄積する。
受光部31は、画素アレイの各画素のON/OFFの実行タイミングを順次切り替えて、各実行タイミングにおける電荷を蓄積し、蓄積電荷に応じた検出信号を出力する。
ON/OFFの実行タイミングには、たとえば、位相0度、位相90度、位相180度、および、位相270度の4種類がある。
位相0度の実行タイミングは、画素アレイの各画素のONタイミング(受光タイミング)を、発光部21の光源が出射するパルス光の位相、すなわち発光パターンと同じ位相とするタイミングである。
位相90度の実行タイミングは、画素アレイの各画素のONタイミング(受光タイミング)を、発光部21の光源が出射するパルス光(発光パターン)から90度遅れた位相とするタイミングである。
位相180度の実行タイミングは、画素アレイの各画素のONタイミング(受光タイミング)を、発光部21の光源が出射するパルス光(発光パターン)から180度遅れた位相とするタイミングである。
位相270度の実行タイミングは、画素アレイの各画素のONタイミング(受光タイミング)を、発光部21の光源が出射するパルス光(発光パターン)から270度遅れた位相とするタイミングである。
受光部31は、例えば、位相0度、位相90度、位相180度、位相270度の順番で受光タイミングを順次切り替え、各受光タイミングにおける反射光の受光量(蓄積電荷)を取得する。図2では、各位相の受光タイミング(ONタイミング)において、反射光が入射されるタイミングに斜線が付されている。
図2に示されるように、受光タイミングを、位相0度、位相90度、位相180度、および、位相270度としたときに蓄積された電荷を、それぞれ、Q、Q90、Q180、および、Q270とすると、位相差φは、Q、Q90、Q180、および、Q270を用いて、下記の式(4)で算出することができる。
Figure 0007494200000004
式(4)で算出された位相差φを上記の式(3)に入力することにより、測距モジュール11から物体15までのデプス値dを算出することができる。
また、信頼度confは、各画素で受光した光の強度を表す値であり、例えば、以下の式(5)で計算することができる。
Figure 0007494200000005
受光部31は、画素アレイの各画素において、以上のように受光タイミングを、位相0度、位相90度、位相180度、および、位相270度と順番に切り替え、各位相における蓄積電荷(電荷Q、電荷Q90、電荷Q180、および、電荷Q270)に応じた検出信号を、順次、信号処理部32に供給する。なお、画素アレイの各画素に電荷蓄積部を2つ設け、2つの電荷蓄積部に交互に電荷を蓄積させることにより、例えば、位相0度と位相180度のように、位相が反転した2つの受光タイミングの検出信号を1フレームで取得することができる。
信号処理部32は、受光部31から画素アレイの画素ごとに供給される検出信号に基づいて、測距モジュール11から物体15までの距離であるデプス値dを算出する。そして、各画素の画素値としてデプス値dが格納されたデプスマップと、各画素の画素値として信頼度confが格納された信頼度マップとが生成されて、信号処理部32からモジュール外へ出力される。
上述した式(4)は、発光部21から出射される照射光の輝度変化をsin波と仮定して計算されている。しかしながら、実際には、発光部21から出射される光は、図2で示したように矩形波であるため、矩形波をsin波として処理することにより、距離(デプス値)dに周期的な誤差(以下、サイクリックエラーと称する。)が発生する。
図3のAは、サイクリックエラーを含んだ状態の位相差φobsと距離dの関係を示すグラフである。
サイクリックエラーを含んだ状態では、図3のAにおいて破線で示される理想的な関係に対して、実線で示されるように、位相差φobsと距離dとが非線形な関係となる。
サイクリックエラーに対しては、一般的には、距離情報が既知の被測定物を用いて、図3のBに示されるように、位相差φobsを真値の位相差φlinearに変換する補正係数を予め(出荷前に)算出し、測定時に補正係数を用いて補正処理が行われる。
これに対して、図1の測距モジュール11は、照明装置12の発光部21が出射する照射光が擬似的なサイン波(擬似サイン波)となるように、発光部21の発光を制御する。これにより、サイクリックエラーが低減されるので、位相差φと距離dとの関係が線形となり、補正処理を不要とすることができる。
以下、擬似サイン波を照射する照明装置12の詳細について説明する。
<3.発光部の第1構成例>
図4は、照明装置12の発光部21の第1構成例の詳細を示すブロック図である。なお、図4には、発光制御部13と受光部31も併せて示している。
図4の発光部21は、8個のレーザ光源41と、それらを駆動する4個のレーザドライバ42を有する。図4において、8個のレーザ光源41それぞれを区別する場合、レーザ光源41Aないし41Hと称し、4個のレーザドライバ42それぞれを区別する場合、レーザドライバ42Aないし42Dと称する。
図5は、第1構成例に係る発光部21の発光面の平面図である。
図5に示されるように、8個のレーザ光源41Aないし41Hは、例えば、一定の間隔で平面方向に配列されている。
図4に戻り、レーザドライバ42Aは、発光制御部13からの発光タイミング信号LT1に基づいて、1個のレーザ光源41Aを駆動する。レーザドライバ42Bは、発光制御部13からの発光タイミング信号LT2に基づいて、3個のレーザ光源41Bないし41Dを駆動する。また、レーザドライバ42Cは、発光制御部13からの発光タイミング信号LT3に基づいて、3個のレーザ光源41Eないし41Gを駆動し、レーザドライバ42Dは、発光制御部13からの発光タイミング信号LT4に基づいて、1個のレーザ光源41Hを駆動する。
発光制御部13は、発光タイミング信号LT1ないしLT4を、発光部21へ供給するとともに、受光開始信号STを、測距センサ14の受光部31へ供給する。
図6は、発光制御部13が出力する、受光開始信号STと、発光タイミング信号LT1ないしLT4とを示している。
図6のAは、受光開始信号STの例を示している。図6のBは、発光タイミング信号LT1の例を示している。図6のCは、発光タイミング信号LT2の例を示している。図6のDは、発光タイミング信号LT3の例を示している。図6のEは、発光タイミング信号LT4の例を示している。
受光開始信号STは、HighまたはLowのパルス信号で構成され、LowからHighの立上がりで、受光部31の各画素で、反射光の受光(露光)が開始される。
発光タイミング信号LT1ないしLT4は、HighまたはLowのパルス信号で構成され、Highの期間に対応してレーザ光源41が発光する。
図6のAないしEにおいて横軸は、位相換算で表した時間を表す。
図6のAの受光開始信号STは、図2に示した、位相0度、位相90度、位相180度、および、位相270度の各位相の受光タイミングのうち、位相0度の受光タイミングに相当する信号である。すなわち、図6のAの受光開始信号STにより、受光部31の各画素は、位相0度で、受光を開始する。
1個のレーザ光源41Aは、図6のBに示されるように、発光タイミング信号LT1にしたがい、位相(-π/4)から位相(6π/4)までの期間、発光する。
3個のレーザ光源41Bないし41Dは、図6のCに示されるように、発光タイミング信号LT2にしたがい、位相0から位相(5π/4)までの期間、発光する。
3個のレーザ光源41Eないし41Gは、図6のDに示されるように、発光タイミング信号LT3にしたがい、位相(π/4)から位相(4π/4)までの期間、発光する。
1個のレーザ光源41Hは、図6のEに示されるように、発光タイミング信号LT4にしたがい、位相(2π/4)から位相(3π/4)までの期間、発光する。
図7は、8個のレーザ光源41Aないし41Hが図6に示したように発光した場合に、位相換算の各タイミングにおける発光部21全体の発光強度(発光輝度)を示している。
発光部21全体としての位相換算の各タイミングにおける発光強度は、各タイミングで発光しているレーザ光源41の個数に比例する。1個のレーザ光源41が発光している場合の発光強度を1とすると、3個のレーザ光源41が同時に発光している期間での発光強度は3となり、7個のレーザ光源41が同時に発光している期間での発光強度は7となり、全て(即ち、8個)のレーザ光源41が同時に発光している期間での発光強度は8となる。
即ち、発光部21全体としての各タイミングにおける発光強度は、図7に示されるように、発光強度のピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、破線で示されるサイン波に近似した発光強度となる。
したがって、発光部21が出射する照射光を、擬似的なサイン波(擬似サイン波)とすることができるので、サイクリックエラーを低減し、補正処理を不要とすることができる。
<4.発光部の第1構成例の変形例>
図8は、発光部21の第1構成例の変形例を示している。
図8の変形例に係る発光部21は、図5に示した第1構成例の3個のレーザ光源41Bないし41Dが、1個のレーザ光源43Xに置き換えられ、3個のレーザ光源41Eないし41Gが、1個のレーザ光源43Yに置き換えられた構成とされている。図8の発光部21のその他の構成は、図5の発光部21と同様である。
上述した第1構成例では、レーザドライバ42Bは、発光タイミング信号LT2にしたがい、3個のレーザ光源41Bないし41Dを同時に発光させたが、図8の変形例では、1個のレーザ光源43Xを発光させる。ただし、1個のレーザ光源43Xの発光強度は、1個のレーザ光源41の発光強度の3倍である。すなわち、1個のレーザ光源43Xを発光させたとき、3個のレーザ光源41Bないし41Dを同時に発光させたときと同じ発光強度となる。
同様に、上述した第1構成例では、レーザドライバ42Cは、発光タイミング信号LT3にしたがい、3個のレーザ光源41Eないし41Gを同時に発光させたが、図8の変形例では、1個のレーザ光源43Yを発光させる。ただし、1個のレーザ光源43Yの発光強度は、1個のレーザ光源41の発光強度の3倍である。すなわち、1個のレーザ光源43Yを発光させたとき、3個のレーザ光源41Eないし41Gを同時に発光させたときと同じ発光強度となる。
このような構成においても、レーザ光源41および43を、図6に示した発光タイミングで発光させることにより、発光部21全体としての各タイミングにおける発光強度は、図7に示したようなサイン波に近似した発光強度となる。
したがって、サイクリックエラーを低減し、補正処理を不要とすることができる。
<5.発光部の第2構成例>
図9は、発光部21の第2構成例の詳細と、発光制御部13および受光部31とを示すブロック図である。
図9の発光部21は、12個のレーザ光源41と、それらを駆動する8個のレーザドライバ42と、6個のπ/4遅延回路61(以下、単に遅延回路61と称する。)を有する。図9において、12個のレーザ光源41それぞれを区別する場合、レーザ光源41Aないし41Lと称し、8個のレーザドライバ42それぞれを区別する場合、レーザドライバ42Aないし42Hと称し、遅延回路61それぞれを区別する場合、遅延回路61Aないし61Fと称する。
遅延回路61は、供給される発光タイミング信号LT(LT11またはLT12)を、位相換算でπ/4の時間だけ遅延させ、遅延後の発光タイミング信号LTを後段へ出力する。3個の遅延回路61Aないし61Cは、遅延回路61A、61B、61Cの順で直列に接続されている。また、3個の遅延回路61Dないし61Fは、遅延回路61D、61E、61Fの順で直列に接続されている。6個の遅延回路61が遅延させる遅延量は同じである。
発光制御部13は、発光タイミング信号LT11およびLT12を、発光部21へ供給するとともに、受光開始信号STを、測距センサ14の受光部31へ供給する。
発光制御部13から発光部21へ供給される発光タイミング信号LT11は、レーザドライバ42Aと遅延回路61Aへ供給される。遅延回路61Aは、供給される発光タイミング信号LT11を、位相換算でπ/4の時間だけ遅延させる。遅延回路61Aにおいてπ/4だけ位相が遅延された信号を、発光タイミング信号LT11Xと称することとすると、遅延回路61Aは、遅延後の発光タイミング信号LT11Xを、レーザドライバ42Bと遅延回路61Bへ供給する。
遅延回路61Bは、供給される発光タイミング信号LT11Xを、位相換算でπ/4の時間だけ遅延させる。遅延回路61Bにおいてπ/4だけ位相が遅延された信号を、発光タイミング信号LT11Yと称することとすると、遅延回路61Bは、遅延後の発光タイミング信号LT11Yを、レーザドライバ42Cと遅延回路61Cへ供給する。
遅延回路61Cは、供給される発光タイミング信号LT11Yを、位相換算でπ/4の時間だけ遅延させる。遅延回路61Cにおいてπ/4だけ位相が遅延された信号を、発光タイミング信号LT11Zと称することとすると、遅延回路61Cは、遅延後の発光タイミング信号LT11Zを、レーザドライバ42Dへ供給する。
レーザドライバ42Aは、発光制御部13からの発光タイミング信号LT11に基づいて、1個のレーザ光源41Aを駆動する。
レーザドライバ42Bは、遅延回路61Aからの発光タイミング信号LT11Xに基づいて、1個のレーザ光源41Bを駆動する。
レーザドライバ42Cは、遅延回路61Bからの発光タイミング信号LT11Yに基づいて、1個のレーザ光源41Cを駆動する。
レーザドライバ42Dは、遅延回路61Cからの発光タイミング信号LT11Zに基づいて、1個のレーザ光源41Dを駆動する。
一方、発光制御部13から発光部21へ供給された発光タイミング信号LT12は、レーザドライバ42Eと遅延回路61Dへ供給される。遅延回路61Dは、供給される発光タイミング信号LT12を、位相換算でπ/4の時間だけ遅延させる。遅延回路61Dにおいてπ/4だけ位相が遅延された信号を、発光タイミング信号LT12Xと称することとすると、遅延回路61Dは、遅延後の発光タイミング信号LT12Xを、レーザドライバ42Fと遅延回路61Eへ供給する。
遅延回路61Eは、供給される発光タイミング信号LT12Xを、位相換算でπ/4の時間だけ遅延させる。遅延回路61Eにおいてπ/4だけ位相が遅延された信号を、発光タイミング信号LT12Yと称することとすると、遅延回路61Eは、遅延後の発光タイミング信号LT12Yを、レーザドライバ42Gと遅延回路61Fへ供給する。
遅延回路61Fは、供給される発光タイミング信号LT12Yを、位相換算でπ/4の時間だけ遅延させる。遅延回路61Fにおいてπ/4だけ位相が遅延された信号を、発光タイミング信号LT12Zと称することとすると、遅延回路61Fは、遅延後の発光タイミング信号LT12Zを、レーザドライバ42Hへ供給する。
レーザドライバ42Eは、発光制御部13からの発光タイミング信号LT12に基づいて、2個のレーザ光源41Eおよび41Fを駆動する。
レーザドライバ42Fは、遅延回路61Dからの発光タイミング信号LT12Xに基づいて、2個のレーザ光源41Gおよび41Hを駆動する。
レーザドライバ42Gは、遅延回路61Eからの発光タイミング信号LT12Yに基づいて、2個のレーザ光源41Iおよび41Jを駆動する。
レーザドライバ42Hは、遅延回路61Fからの発光タイミング信号LT12Zに基づいて、2個のレーザ光源41Kおよび41Lを駆動する。
図10は、第2構成例に係る発光部21の発光面の平面図である。
12個のレーザ光源41Aないし41Hは、例えば、図10に示されるように、4x3の配列で平面方向に配列されている。
図11は、発光制御部13が出力する、受光開始信号STと、発光タイミング信号LT11およびLT12とを示している。
図11のAは、受光開始信号STの例を示している。図11のBは、発光タイミング信号LT11の例を示している。図11のCは、発光タイミング信号LT12の例を示している。
図11のAないしCにおいて、横軸は位相で表現した時間を表す点、並びに、発光タイミング信号LT11およびLT12がHighの期間に発光する点は、第1構成例と同様である。
発光制御部13から発光部21へ供給される発光タイミング信号LT11は、図11のBに示されるように、位相(-π/4)から位相(3π/4)までの期間、Highとされる信号である。
一方、発光制御部13から発光部21へ供給される発光タイミング信号LT12は、図11のCに示されるように、位相0から位相(2π/4)までの期間、Highとされる信号である。
図12のAないしDは、発光タイミング信号LT11と、その発光タイミング信号LT11が遅延回路61Aないし61Cによって遅延された発光タイミング信号LT11XないしLT11Zの例を示している。
図12のAは、図11のBと同じ発光タイミング信号LT11を示している。1個のレーザ光源41Aは、発光タイミング信号LT11にしたがい、位相(-π/4)から位相(3π/4)までの期間、発光する。
図12のBは、発光タイミング信号LT11Xを示している。発光タイミング信号LT11Xは、遅延回路61Aによって発光タイミング信号LT11がπ/4の位相だけ遅延された信号であり、位相0から位相(4π/4)までの期間、Highとされる信号である。1個のレーザ光源41Bは、発光タイミング信号LT11Xにしたがい、位相0から位相(4π/4)までの期間、発光する。
図12のCは、発光タイミング信号LT11Yを示している。発光タイミング信号LT11Yは、遅延回路61Bによって発光タイミング信号LT11Xがπ/4の位相だけ遅延された信号であり、位相(π/4)から位相(5π/4)までの期間、Highとされる信号である。1個のレーザ光源41Cは、発光タイミング信号LT11Yにしたがい、位相(π/4)から位相(5π/4)までの期間、発光する。
図12のDは、発光タイミング信号LT11Zを示している。発光タイミング信号LT11Zは、遅延回路61Cによって発光タイミング信号LT11Yがπ/4の位相だけ遅延された信号であり、位相(2π/4)から位相(6π/4)までの期間、Highとされる信号である。1個のレーザ光源41Dは、発光タイミング信号LT11Zにしたがい、位相(2π/4)から位相(6π/4)までの期間、発光する。
図13のAないしDは、発光タイミング信号LT12と、その発光タイミング信号LT12が遅延回路61Dないし61Fによって遅延された発光タイミング信号LT12AないしLT12Zの例を示している。
図13のAは、図11のCと同じ発光タイミング信号LT12を示している。2個のレーザ光源41Eおよび41Fは、発光タイミング信号LT12にしたがい、位相0から位相(2π/4)までの期間、発光する。
図13のBは、発光タイミング信号LT12Xを示している。発光タイミング信号LT12Xは、遅延回路61Dによって発光タイミング信号LT12がπ/4の位相だけ遅延された信号であり、位相π/4から位相(3π/4)までの期間、Highとされる信号である。2個のレーザ光源41Gおよび41Hは、発光タイミング信号LT12Xにしたがい、位相π/4から位相(3π/4)までの期間、発光する。
図13のCは、発光タイミング信号LT12Yを示している。発光タイミング信号LT12Yは、遅延回路61Eによって発光タイミング信号LT12Xがπ/4の位相だけ遅延された信号であり、位相(2π/4)から位相(4π/4)までの期間、Highとされる信号である。2個のレーザ光源41Iおよび41Jは、発光タイミング信号LT12Yにしたがい、位相(2π/4)から位相(4π/4)までの期間、発光する。
図13のDは、発光タイミング信号LT12Zを示している。発光タイミング信号LT12Zは、遅延回路61Cによって発光タイミング信号LT12Yがπ/4の位相だけ遅延された信号であり、位相(3π/4)から位相(5π/4)までの期間、Highとされる信号である。2個のレーザ光源41Kおよび41Lは、発光タイミング信号LT12Zにしたがい、位相(3π/4)から位相(5π/4)までの期間、発光する。
図14は、12個のレーザ光源41Aないし41Lが図12および図13で説明したように発光した場合に、位相換算の各タイミングにおける発光部21全体の発光強度を示している。
1個のレーザ光源41が発光している場合の発光強度を1とし、各タイミングで発光しているレーザ光源41の個数を合計すると、図7に示した第1構成例の場合と同様に、発光強度のピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、破線で示されるサイン波に近似した発光強度となる。
したがって、発光部21が出射する照射光を、擬似的なサイン波(擬似サイン波)とすることができるので、サイクリックエラーを低減し、補正処理を不要とすることができる。
<6.測距モジュールの第2実施の形態>
図15は、本技術を適用した測距モジュールの第2実施の形態の構成例を示すブロック図である。
第2実施の形態に係る測距モジュール11は、照明装置12A、発光制御部13A、および、測距センサ14を有する。
図15の測距モジュール11を、図1の測距モジュール11と比較すると、図1の照明装置12が照明装置12Aに置き換えられ、図1の発光制御部13が発光制御部13Aに置き換えられており、その他は、同様に構成されている。
照明装置12Aは、発光部81、反射板82、および、発光強度検出部83を備える。
発光部81は、駆動電流を制御するための輝度調整信号CTが発光制御部13Aからさらに供給される点を除いて、発光部21と同様に構成されている。
発光部81は、発光制御部13から供給される発光タイミング信号LTに応じたタイミングで変調しながら発光して、物体15に対して照射光を照射する。発光部81が発光する際の発光強度は、発光制御部13から供給される輝度調整信号CTによって調整される。
なお、発光部81は、例えば、図5に示した第1構成例と同様に、8個のレーザ光源41を所定の配列で配置した構成であるとする。
反射板82は、発光部81の各レーザ光源41から出射された光を反射させ、発光強度検出部83へ入射させる。なお、反射板82の代わりに、導光板やビームスプリッタ等を用いて、発光部81の各レーザ光源41から出射された光を発光強度検出部83へ入射させるようにしてもよい。
発光強度検出部83は、反射板82で反射されて入射される、発光部81の各レーザ光源41の発光強度(発光輝度)を検出し、検出結果を、発光制御部13Aへ供給する。
発光制御部13Aは、発光強度検出部83から供給される、発光部81の各レーザ光源41の発光強度(発光輝度)に基づいて、輝度調整信号CTを、発光部81へ供給する。発光制御部13Aが、発光タイミング信号LTを発光部21に供給することにより、発光のオンオフを制御する点、受光開始信号STを測距センサ14に供給することにより、受光部31の受光タイミングを制御する点は、第1実施の形態と同様である。
<7.発光部の構成例>
図16は、第2実施の形態に係る発光部81の詳細と、発光制御部13Aおよび受光部31とを示すブロック図である。
発光部81は、輝度調整信号CTが新たに供給されている点を除いて、図4に示した発光部21と同様に構成されている。発光制御部13Aは、輝度調整信号CT1をレーザドライバ42Aへ供給し、輝度調整信号CT2をレーザドライバ42Bへ供給し、輝度調整信号CT3をレーザドライバ42Cへ供給し、輝度調整信号CT4をレーザドライバ42Dへ供給する。
各レーザドライバ42は、供給される輝度調整信号CTに基づいて、駆動制御対象のレーザ光源41の発光強度を調整する。
図17は、レーザドライバ42Aと、そのレーザドライバ42Aによって駆動制御されるレーザ光源41Aの回路構成例を示している。
レーザドライバ42Aは、DC/DCコンバータ141と、スイッチ制御部142とを備える。
レーザ光源41Aは、定電流源101、トランジスタ102および103、スイッチ104、および、発光素子105により構成されている。発光素子105は、例えばVCSELである。
トランジスタ102および103は、Pチャンネル型のMOSFET(MOS:metal-oxide-semiconductor、FET:field-effect transistor)で構成される。
トランジスタ102のソースは、DC/DCコンバータ141の出力ラインに接続され、ドレインは、定電流源101を介してグランド(GND)に接続され、ドレインとゲートが接続されている。また、トランジスタ102のゲートは、スイッチ104を介して、トランジスタ103のゲートに接続されている。
トランジスタ103のソースは、DC/DCコンバータ141の出力ラインに接続され、ドレインは、発光素子105のアノードと接続され、ゲートは、スイッチ104を介して、トランジスタ102のゲートおよびドレインと接続されている。
レーザドライバ42AのDC/DCコンバータ141は、直流の入力電圧Vinを、出力電圧Vdに変換し、トランジスタ102および103のソースに供給する。DC/DCコンバータ141は、供給される輝度調整信号CT1に基づいて、出力電圧Vdを調整する。具体的には、DC/DCコンバータ141は、輝度調整信号CT1として、電流を増やす命令が供給された場合には、出力電圧Vdを上昇させ、電流を減らす命令が供給された場合には、出力電圧Vdを減少させる。
スイッチ制御部142は、発光タイミング信号LT1に基づいて、スイッチ104のオンオフを制御する。具体的には、スイッチ制御部142は、Highの発光タイミング信号LT1が供給されている期間では、スイッチ104をオンさせ、Lowの発光タイミング信号LT1が供給されている期間では、スイッチ104をオフさせる。
スイッチ104がオンに制御された場合、定電流源101、トランジスタ102および103は、カレントミラー回路を構成し、トランジスタ102を流れる電流Idと同じ電流Idがトランジスタ103を流れ、さらに駆動電流Idとして発光素子105にも供給されるので、発光素子105が発光する。
スイッチ104がオフに制御された場合、発光素子105には駆動電流Idが流れないので、発光素子105は発光しない。
DC/DCコンバータ141は、輝度調整信号CT1に基づいて、出力電圧Vdを調整することで、発光素子105に供給する駆動電流Idを制御することができる。
図示は省略するが、レーザドライバ42Dと、そのレーザドライバ42Dによって駆動制御されるレーザ光源41Hの回路構成も、図17のレーザドライバ42Aおよびレーザ光源41Aと同様に構成されている。
図18は、レーザドライバ42Bと、そのレーザドライバ42Bによって駆動制御される3個のレーザ光源41Bないし41Dの回路構成例を示している。
レーザドライバ42Bは、DC/DCコンバータ141と、スイッチ制御部142とを備える。
レーザ光源41Bは、定電流源101、トランジスタ102および103、スイッチ104、および、発光素子105により構成されている。レーザ光源41Bの構成は、図17のレーザ光源41Aと同様であるので、その説明は省略する。
レーザ光源41Cは、トランジスタ111、スイッチ112、および、発光素子113により構成されている。トランジスタ111のソースは、DC/DCコンバータ141の出力ラインに接続され、ドレインは、発光素子113のアノードと接続され、ゲートは、スイッチ112を介して、トランジスタ102のゲートおよびドレインと接続されている。
レーザ光源41Dは、トランジスタ121、スイッチ122、および、発光素子123により構成されている。トランジスタ121のソースは、DC/DCコンバータ141の出力ラインに接続され、ドレインは、発光素子123のアノードと接続され、ゲートは、スイッチ122を介して、トランジスタ102のゲートおよびドレインと接続されている。
スイッチ104、112、および、122は、スイッチ制御部142の制御によって、オンオフされる。
スイッチ104、112、および、122がオンに制御された場合、定電流源101、トランジスタ102、103、111、および、121は、カレントミラー回路を構成し、トランジスタ102を流れる電流Idと同じ電流Idがトランジスタ103、111、および、121を流れ、さらに駆動電流Idとして発光素子105、113、および、123にも供給されるので、発光素子105、113、および、123が発光する。
DC/DCコンバータ141は、輝度調整信号CT2に基づいて、出力電圧Vdを調整することで、発光素子105、113、および、123に供給する駆動電流Idを制御することができる。
図示は省略するが、レーザドライバ42Cと、そのレーザドライバ42Cによって駆動制御される3個のレーザ光源41Eないし41Gの回路構成も、図18のレーザドライバ42Bおよびレーザ光源41Bないし41Dと同様に構成されている。
<8.発光強度調整処理>
次に、図19のフローチャートを参照して、第2実施の形態に係る測距モジュール11による発光強度調整処理について説明する。この処理は、例えば、測距モジュール11に対して測定開始の指示が供給されたとき、開始される。
初めに、ステップS1において、発光制御部13Aは、8個のレーザ光源41Aないし41Hのうち、レーザ光源41A(以下、第1のレーザ光源41Aとも称する。)のみを発光させる。
より具体的には、発光制御部13Aは、レーザドライバ42Aには、所定の周期および期間でHighとなる発光タイミング信号LT1を供給し、レーザドライバ42Bないし42Dには、常時Lowの発光タイミング信号LT2ないしLT4を供給する。これにより、レーザドライバ42Aが駆動制御する第1のレーザ光源41Aのみが所定の発光タイミングで発光する。
ステップS2において、発光強度検出部83は、反射板82で反射されて入射される、第1のレーザ光源41Aの発光強度を検出し、検出結果を発光制御部13Aへ供給する。ここで、検出された発光強度を第1の発光強度と称する。
ステップS3において、発光制御部13Aは、8個のレーザ光源41Aないし41Hのうち、レーザ光源41Bないし41D(以下、第2のレーザ光源41Bないし41Dとも称する。)のみを発光させる。
より具体的には、発光制御部13Aは、レーザドライバ42Bには、所定の周期および期間でHighとなる発光タイミング信号LT2を供給し、レーザドライバ42A、42C、および42Dには、常時Lowの発光タイミング信号LT1、LT3、およびLT4を供給する。これにより、レーザドライバ42Bが駆動制御する第2のレーザ光源41Bないし41Dのみが所定の発光タイミングで発光する。
ステップS4において、発光強度検出部83は、反射板82で反射されて入射される、第2のレーザ光源41Bないし41Dの発光強度を検出し、検出結果を発光制御部13Aへ供給する。ここで、検出された発光強度を第2の発光強度と称する。
ステップS5において、発光制御部13Aは、8個のレーザ光源41Aないし41Hのうち、レーザ光源41Eないし41G(以下、第3のレーザ光源41Eないし41Gとも称する。)のみを発光させる。
より具体的には、発光制御部13Aは、レーザドライバ42Cには、所定の周期および期間でHighとなる発光タイミング信号LT3を供給し、レーザドライバ42A、42B、および42Dには、常時Lowの発光タイミング信号LT1、LT2、およびLT4を供給する。これにより、レーザドライバ42Cが駆動制御する第3のレーザ光源41Eないし41Gのみが所定の発光タイミングで発光する。
ステップS6において、発光強度検出部83は、反射板82で反射されて入射される、第3のレーザ光源41Eないし41Gの発光強度を検出し、検出結果を発光制御部13Aへ供給する。ここで、検出された発光強度を第3の発光強度と称する。
ステップS7において、発光制御部13Aは、8個のレーザ光源41Aないし41Hのうち、レーザ光源41H(以下、第4のレーザ光源41Hとも称する。)のみを発光させる。
より具体的には、発光制御部13Aは、レーザドライバ42Dには、所定の周期および期間でHighとなる発光タイミング信号LT4を供給し、レーザドライバ42Aないし42Cには、常時Lowの発光タイミング信号LT1ないしLT3を供給する。これにより、レーザドライバ42Dが駆動制御する第4のレーザ光源41Hのみが所定の発光タイミングで発光する。
ステップS8において、発光強度検出部83は、反射板82で反射されて入射される、第4のレーザ光源41Hの発光強度を検出し、検出結果を発光制御部13Aへ供給する。ここで、検出された発光強度を第4の発光強度と称する。
上述したステップS1ないしS8において所定のレーザ光源41を発光させる場合の発光タイミング信号LTの発光ON(High)の周期および期間は同一である。すなわち、各レーザ光源41が発光する際の発光条件は同一である。また、1回目の輝度調整信号CT1ないしCT4は、予め決定された初期値(デフォルト値)とされている。
ステップS9において、発光制御部13Aは、上述の処理で得られた第1の発光強度ないし第4の発光強度の比が1:3:3:1となっているか、すなわち、第1の発光強度:第2の発光強度:第3の発光強度:第4の発光強度=1:3:3:1となっているかを判定する。発光制御部13Aは、第1の発光強度ないし第4の発光強度の比が、予め決定された所定の誤差範囲内で1:3:3:1となっている場合、第1の発光強度ないし第4の発光強度の比が1:3:3:1となっていると判定する。
ステップS9で、第1の発光強度ないし第4の発光強度の比が1:3:3:1とはなっていないと判定された場合、処理はステップS10へ進み、発光制御部13Aは、第1の発光強度ないし第4の発光強度の比が1:3:3:1となるように、輝度調整信号CT1ないしCT4を制御する。
ステップS10の後、処理はステップS1へ戻り、上述したステップS1ないしS9の処理が実行される。すなわち、輝度調整信号CT1ないしCT4が変更され、駆動電流Idが調整された後、再度、第1の発光強度ないし第4の発光強度の比が1:3:3:1とはなっているかが判定される。
一方、ステップS9で、第1の発光強度ないし第4の発光強度の比が1:3:3:1とはなっていると判定された場合、発光強度調整処理は終了する。
発光強度調整処理の後は、図6を参照して説明した発光制御により、8個のレーザ光源41Aないし41Hが発光され、被測定物としての物体15で反射された反射光が受光部31が受光される。そして、信号処理部32は、受光部31の受光結果に基づいて、物体15までの距離情報を表すデプスマップと信頼度マップとを、測定結果として出力する。
以上のように、第2実施の形態に係る測距モジュール11によれば、発光部81の各レーザ光源41が発光する際の発光強度をモニタリングする機能を備え、各レーザ光源41の発光強度の比が所定の比率となるように制御することができるので、発光部21が出射する照射光を、より精密に、擬似的なサイン波(擬似サイン波)とすることができる。
なお、上述した第2実施の形態では、発光部81が図5に示した第1構成例である場合を例に説明したが、発光部81が図8に示した第1構成例の変形例の構成を有する場合にも同様にモニタリング機能を付加することができる。また、発光部81が図9に示した第2構成例の構成を有する場合にも同様に、モニタリング機能を付加することができる。
<9.測距モジュールのチップ構成例>
図20は、測距モジュール11のチップ構成例を示す斜視図である。
測距モジュール11は、例えば、図20のAに示されるように、照明装置12または12Aとしての第1のチップ12Cと、測距センサ14としての第2のチップ14Cとを、中継基板(インターポーザ基板)151上に形成して構成することができる。発光制御部13は、第1のチップ12Cまたは第2のチップ14Cのいずれかに含んで構成されている。
測距センサ14としての第2のチップ14Cは、図20のBに示されるように、第1のダイ(基板)161と、第2のダイ(基板)162とが積層された1つのチップで構成することができる。
第1のダイ161には、画素アレイ、検出信号をAD変換するAD変換部などを含む受光部31(としての回路)が構成され、第2のダイ162には、信号処理部32を含むロジック回路が構成されている。
なお、照明装置12または12Aと、測距センサ14とは、図20のように、中継基板151を用いて一体とせずに、別々に分離されてもよい。また、測距センサ14は、第1のダイ161と第2のダイ162とに加えて、もう1つのロジックダイを積層した3層で構成してもよい。あるいはまた、4層以上のダイ(基板)の積層で構成してもよい。
<10.電子機器の構成例>
上述した測距モジュール11は、例えば、スマートフォン、タブレット型端末、携帯電話機、パーソナルコンピュータ、ゲーム機、テレビ受像機、ウェアラブル端末、デジタルスチルカメラ、デジタルビデオカメラなどの電子機器に搭載することができる。
図21は、測距モジュールを搭載した電子機器としてのスマートフォンの構成例を示すブロック図である。
図21に示すように、スマートフォン201は、測距モジュール202、撮像装置203、ディスプレイ204、スピーカ205、マイクロフォン206、通信モジュール207、センサユニット208、タッチパネル209、および制御ユニット210が、バス211を介して接続されて構成される。また、制御ユニット210では、CPUがプログラムを実行することによって、アプリケーション処理部221およびオペレーションシステム処理部222としての機能を備える。
測距モジュール202には、図1の測距モジュール11が適用される。例えば、測距モジュール202は、スマートフォン201の前面に配置され、スマートフォン201のユーザを対象とした測距を行うことにより、そのユーザの顔や手、指などの表面形状のデプス値を測距結果として出力することができる。
撮像装置203は、スマートフォン201の前面に配置され、スマートフォン201のユーザを被写体とした撮像を行うことにより、そのユーザが写された画像を取得する。なお、図示しないが、スマートフォン201の背面にも撮像装置203が配置された構成としてもよい。
ディスプレイ204は、アプリケーション処理部221およびオペレーションシステム処理部222による処理を行うための操作画面や、撮像装置203が撮像した画像などを表示する。スピーカ205およびマイクロフォン206は、例えば、スマートフォン201により通話を行う際に、相手側の音声の出力、および、ユーザの音声の収音を行う。
通信モジュール207は、通信ネットワークを介した通信を行う。センサユニット208は、速度や加速度、近接などをセンシングし、タッチパネル209は、ディスプレイ204に表示されている操作画面に対するユーザによるタッチ操作を取得する。
アプリケーション処理部221は、スマートフォン201によって様々なサービスを提供するための処理を行う。例えば、アプリケーション処理部221は、測距モジュール202から供給されるデプスに基づいて、ユーザの表情をバーチャルに再現したコンピュータグラフィックスによる顔を作成し、ディスプレイ204に表示する処理を行うことができる。また、アプリケーション処理部221は、測距モジュール202から供給されるデプスに基づいて、例えば、任意の立体的な物体の三次元形状データを作成する処理を行うことができる。
オペレーションシステム処理部222は、スマートフォン201の基本的な機能および動作を実現するための処理を行う。例えば、オペレーションシステム処理部222は、測距モジュール202から供給されるデプス値に基づいて、ユーザの顔を認証し、スマートフォン201のロックを解除する処理を行うことができる。また、オペレーションシステム処理部222は、測距モジュール202から供給されるデプス値に基づいて、例えば、ユーザのジェスチャを認識する処理を行い、そのジェスチャに従った各種の操作を入力する処理を行うことができる。
このように構成されているスマートフォン201では、上述した測距モジュール11を適用することで、例えば、高精度かつ高速にデプスマップを生成することができる。これにより、スマートフォン201は、測距情報をより正確に検出することができる。
<11.移動体への応用例>
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図22は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図22に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図22の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図23は、撮像部12031の設置位置の例を示す図である。
図23では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図23には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
以上、本開示に係る技術が適用され得る車両制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、車外情報検出ユニット12030や車内情報検出ユニット12040に適用され得る。具体的には、車外情報検出ユニット12030や車内情報検出ユニット12040として測距モジュール11による測距を利用することで、運転者のジェスチャを認識する処理を行い、そのジェスチャに従った各種(例えば、オーディオシステム、ナビゲーションシステム、エアーコンディショニングシステム)の操作を実行したり、より正確に運転者の状態を検出することができる。また、測距モジュール11による測距を利用して、路面の凹凸を認識して、サスペンションの制御に反映させたりすることができる。
なお、本技術は、Indirect ToF方式の中でもContinuous-Wave方式と称する、物体へ投射する光を振幅変調する方式に適用することができる。また、受光部31のフォトダイオードの構造としては、CAPD(Current Assisted Photonic Demodulator)構造の測距センサや、フォトダイオードの電荷を2つのゲートに交互にパルスを加えるゲート方式の測距センサなど、2つの電荷蓄積部に電荷を振り分ける構造の測距センサに適用することができる。
本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
本明細書において複数説明した本技術は、矛盾が生じない限り、それぞれ独立に単体で実施することができる。もちろん、任意の複数の本技術を併用して実施することもできる。例えば、いずれかの実施の形態において説明した本技術の一部または全部を、他の実施の形態において説明した本技術の一部または全部と組み合わせて実施することもできる。また、上述した任意の本技術の一部または全部を、上述していない他の技術と併用して実施することもできる。
また、例えば、1つの装置(または処理部)として説明した構成を分割し、複数の装置(または処理部)として構成するようにしてもよい。逆に、以上において複数の装置(または処理部)として説明した構成をまとめて1つの装置(または処理部)として構成されるようにしてもよい。また、各装置(または各処理部)の構成に上述した以外の構成を付加するようにしてももちろんよい。さらに、システム全体としての構成や動作が実質的に同じであれば、ある装置(または処理部)の構成の一部を他の装置(または他の処理部)の構成に含めるようにしてもよい。
さらに、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、本明細書に記載されたもの以外の効果があってもよい。
なお、本技術は、以下の構成を取ることができる。
(1)
第1の光源と第2の光源を含む複数の光源と、
前記複数の光源を駆動する駆動部と
を備え、
前記駆動部は、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持つように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる
照明装置。
(2)
前記駆動部は、前記複数の光源による発光強度が擬似サイン波となるように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる
前記(1)に記載の照明装置。
(3)
前記複数の光源は、前記第1の光源および前記第2の光源と、第3の光源および第4の光源とを含み、
前記駆動部は、前記第1の光源ないし前記第4の光源の発光強度の比が1:3:3:1となるように発光させる
前記(1)または(2)に記載の照明装置。
(4)
前記第2の光源の発光強度は、前記第1の光源の発光強度の3倍である
前記(3)に記載の照明装置。
(5)
前記第2の光源は、3個の前記第1の光源で構成される
前記(3)に記載の照明装置。
(6)
前記複数の光源は、前記第1の光源および前記第2の光源と、第3の光源および第4の光源とを含み、
前記駆動部は、
第1の発光タイミング信号に基づいて、前記第1の光源を駆動し、
第2の発光タイミング信号に基づいて、前記第2の光源を駆動し、
前記第1の発光タイミング信号を第1の遅延回路により所定時間だけ遅延させた信号に基づいて、前記第3の光源を駆動し、
前記第2の発光タイミング信号を第2の遅延回路により所定時間だけ遅延させた信号に基づいて、前記第4の光源を駆動する
前記(1)または(2)に記載の照明装置。
(7)
前記第1の遅延回路と前記第2の遅延回路の遅延量は同じである
前記(6)に記載の照明装置。
(8)
前記複数の光源の発光強度を検出する発光強度検出部をさらに備え、
前記複数の光源の発光強度が、前記発光強度検出部の検出値に応じて調整される
前記(1)ないし(7)のいずれかに記載の照明装置。
(9)
第1の光源と第2の光源を含む複数の光源と、
前記複数の光源を駆動する駆動部と
を備える照明装置の
前記駆動部が、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持つように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる
照明装置の制御方法。
(10)
照明装置と、
測距センサと
を備え、
前記照明装置は、
第1の光源と第2の光源を含む複数の光源と、
前記複数の光源を駆動する駆動部と
を備え、
前記駆動部は、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持つように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる
測距モジュール。
11 測距モジュール, 12,12A 照明装置, 12C 第1のチップ, 13,13A 発光制御部, 14 測距センサ, 14C 第2のチップ, 15 物体, 21 発光部, 31 受光部, 32 信号処理部, 41(41Aないし41L) レーザ光源, 42(42Aないし42H) レーザドライバ, 43(43X,43Y) レーザ光源, 61(61Aないし61F) 遅延回路, 81 発光部, 82 反射板, 83 発光強度検出部, 201 スマートフォン, 202 測距モジュール

Claims (9)

  1. 第1の光源と第2の光源を含む複数の光源と、
    前記複数の光源を駆動する駆動部と
    を備え、
    前記駆動部は、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、擬似サイン波となるように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる
    照明装置。
  2. 前記複数の光源は、前記第1の光源および前記第2の光源と、第3の光源および第4の光源とを含み、
    前記駆動部は、前記第1の光源ないし前記第4の光源の発光強度の比が1:3:3:1となるように発光させる
    請求項1に記載の照明装置。
  3. 前記第2の光源の発光強度は、前記第1の光源の発光強度の3倍である
    請求項に記載の照明装置。
  4. 前記第2の光源は、3個の前記第1の光源で構成される
    請求項に記載の照明装置。
  5. 前記複数の光源は、前記第1の光源および前記第2の光源と、第3の光源および第4の光源とを含み、
    前記駆動部は、
    第1の発光タイミング信号に基づいて、前記第1の光源を駆動し、
    第2の発光タイミング信号に基づいて、前記第2の光源を駆動し、
    前記第1の発光タイミング信号を第1の遅延回路により所定時間だけ遅延させた信号に基づいて、前記第3の光源を駆動し、
    前記第2の発光タイミング信号を第2の遅延回路により所定時間だけ遅延させた信号に基づいて、前記第4の光源を駆動する
    請求項1に記載の照明装置。
  6. 前記第1の遅延回路と前記第2の遅延回路の遅延量は同じである
    請求項に記載の照明装置。
  7. 前記複数の光源の発光強度を検出する発光強度検出部をさらに備え、
    前記複数の光源の発光強度が、前記発光強度検出部の検出値に応じて調整される
    請求項1に記載の照明装置。
  8. 第1の光源と第2の光源を含む複数の光源と、
    前記複数の光源を駆動する駆動部と
    を備える照明装置の
    前記駆動部が、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、擬似サイン波となるように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる
    照明装置の制御方法。
  9. 照明装置と、
    測距センサと
    を備え、
    前記照明装置は、
    第1の光源と第2の光源を含む複数の光源と、
    前記複数の光源を駆動する駆動部と
    を備え、
    前記駆動部は、前記複数の光源による発光強度がピーク値または最小値を中心として1周期の時間幅において時間方向に対称性を持ち、擬似サイン波となるように、前記第1の光源と第2の光源を、異なるタイミングおよび発光期間で発光させる
    測距モジュール。
JP2021550606A 2019-09-30 2020-09-17 照明装置、照明装置の制御方法、および、測距モジュール Active JP7494200B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019179330 2019-09-30
JP2019179330 2019-09-30
PCT/JP2020/035275 WO2021065542A1 (ja) 2019-09-30 2020-09-17 照明装置、照明装置の制御方法、および、測距モジュール

Publications (2)

Publication Number Publication Date
JPWO2021065542A1 JPWO2021065542A1 (ja) 2021-04-08
JP7494200B2 true JP7494200B2 (ja) 2024-06-03

Family

ID=75338046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021550606A Active JP7494200B2 (ja) 2019-09-30 2020-09-17 照明装置、照明装置の制御方法、および、測距モジュール

Country Status (7)

Country Link
US (1) US20220381917A1 (ja)
EP (1) EP4040186A4 (ja)
JP (1) JP7494200B2 (ja)
KR (1) KR20220069002A (ja)
CN (1) CN114424084A (ja)
TW (1) TW202115426A (ja)
WO (1) WO2021065542A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048346A1 (ja) * 2022-08-30 2024-03-07 ソニーセミコンダクタソリューションズ株式会社 物体認識システム、物体認識装置及び物体認識方法
CN118068687B (zh) * 2024-04-22 2024-06-18 山东欧菲特能源科技有限公司 一种基于改进pid的制冷机变频器控制优化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021720A (ja) 2004-07-09 2006-01-26 Nissan Motor Co Ltd 距離計測機能付きランプ装置
JP2010190675A (ja) 2009-02-17 2010-09-02 Toyota Motor Corp 距離画像センサシステムおよび距離画像生成方法
JP2013076645A (ja) 2011-09-30 2013-04-25 Stanley Electric Co Ltd 距離画像生成装置および距離画像生成方法
US20150304534A1 (en) 2014-04-19 2015-10-22 Massachusetts Institute Of Technology Methods and Apparatus for Demultiplexing Illumination
JP2018124216A (ja) 2017-02-03 2018-08-09 パルステック工業株式会社 レーザ光強度制御装置及びレーザ光強度制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3134158B2 (ja) * 1989-12-28 2001-02-13 セイコープレシジョン株式会社 マルチ測距装置及びカメラのレンズ位置制御装置
JP2015018981A (ja) 2013-07-12 2015-01-29 株式会社リコー 2次元面発光レーザアレイ発光装置
JP2016132235A (ja) 2015-01-22 2016-07-25 株式会社リコー 画像書込装置、画像書込方法及び画像形成装置
FR3060878A1 (fr) * 2016-12-16 2018-06-22 STMicroelectronics (Alps) SAS Procede d'emission optique sinusoidale, et circuit correspondant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006021720A (ja) 2004-07-09 2006-01-26 Nissan Motor Co Ltd 距離計測機能付きランプ装置
JP2010190675A (ja) 2009-02-17 2010-09-02 Toyota Motor Corp 距離画像センサシステムおよび距離画像生成方法
JP2013076645A (ja) 2011-09-30 2013-04-25 Stanley Electric Co Ltd 距離画像生成装置および距離画像生成方法
US20150304534A1 (en) 2014-04-19 2015-10-22 Massachusetts Institute Of Technology Methods and Apparatus for Demultiplexing Illumination
JP2018124216A (ja) 2017-02-03 2018-08-09 パルステック工業株式会社 レーザ光強度制御装置及びレーザ光強度制御方法

Also Published As

Publication number Publication date
TW202115426A (zh) 2021-04-16
EP4040186A4 (en) 2022-11-16
EP4040186A1 (en) 2022-08-10
JPWO2021065542A1 (ja) 2021-04-08
KR20220069002A (ko) 2022-05-26
CN114424084A (zh) 2022-04-29
WO2021065542A1 (ja) 2021-04-08
US20220381917A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
US11703573B2 (en) Distance measurement device and distance measurement method
US10996320B2 (en) Electronic device and control method of electronic device
WO2021085128A1 (ja) 測距装置、測定方法、および、測距システム
US20220317298A1 (en) Distance measurement sensor
CN109729723B (zh) 测距装置和测距方法
JP7494200B2 (ja) 照明装置、照明装置の制御方法、および、測距モジュール
CN113302448A (zh) 光接收装置和距离测量装置
WO2021065494A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
US20220276379A1 (en) Device, measuring device, distance measuring system, and method
US20220075029A1 (en) Measuring device, distance measuring device and measuring method
WO2021065495A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
WO2021065500A1 (ja) 測距センサ、信号処理方法、および、測距モジュール
WO2021106624A1 (ja) 測距センサ、測距システム、および、電子機器
US20220260691A1 (en) Distance measurement device and distance measurement method
WO2021145212A1 (ja) 測距センサ、測距システム、および、電子機器
WO2021131684A1 (ja) 測距装置およびその制御方法、並びに、電子機器
WO2021106623A1 (ja) 測距センサ、測距システム、および、電子機器
WO2023079830A1 (ja) 測距装置、および、光検出素子
WO2021251057A1 (ja) 光検出回路および測距装置
US20220268890A1 (en) Measuring device and distance measuring device
US20220018944A1 (en) Ranging apparatus and measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240522

R150 Certificate of patent or registration of utility model

Ref document number: 7494200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150