JP7489408B2 - 反応度を決定するためのシステム及び方法 - Google Patents

反応度を決定するためのシステム及び方法 Download PDF

Info

Publication number
JP7489408B2
JP7489408B2 JP2021570712A JP2021570712A JP7489408B2 JP 7489408 B2 JP7489408 B2 JP 7489408B2 JP 2021570712 A JP2021570712 A JP 2021570712A JP 2021570712 A JP2021570712 A JP 2021570712A JP 7489408 B2 JP7489408 B2 JP 7489408B2
Authority
JP
Japan
Prior art keywords
reactivity
response
neutron detector
computer
neutron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021570712A
Other languages
English (en)
Other versions
JP2022534959A (ja
Inventor
シー. プライブル マイケル
エム. ネッドワイデック フランク
エー. シェレッドニック クライグ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Westinghouse Electric Co LLC
Original Assignee
Westinghouse Electric Co LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Westinghouse Electric Co LLC filed Critical Westinghouse Electric Co LLC
Publication of JP2022534959A publication Critical patent/JP2022534959A/ja
Application granted granted Critical
Publication of JP7489408B2 publication Critical patent/JP7489408B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/104Measuring reactivity
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/25Design optimisation, verification or simulation using particle-based methods
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/001Computer implemented control
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • G21C17/108Measuring reactor flux
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)
  • Circuits Of Receivers In General (AREA)
  • Communication Control (AREA)

Description

(優先権の主張)
本出願は、令和1年5月30日に出願された「反応度を決定するためのシステム及び方法」と題する米国仮出願第62/854,453号の優先権及び利益を主張し、その開示は、その全体が、すべての目的のために、参照により本明細書に組み込まれる。
開示された概念は、概して、原子炉に関し、より詳細には、原子炉の低出力物理試験範囲における反応度を決定することに関する。
原子力発電所のサイクル起動毎に制御棒及び停止棒のバンク価値の測定が必要である。加圧水型原子炉(PWR)の場合、バンク価値測定は低出力物理試験(LPPT)プログラムの一部である。ほとんど全ての場合において、このプログラムは、電力への上昇中にクリティカルパス上にある。公益事業産業が、バンク価値のある制御棒を測定する迅速かつ信頼性のある方法を有することに強いインセンティブがある。
制御棒のバンク価値を測定する種々の方法が開発されている。一つの方法は、コア設計静的計算データを用いて検出器信号に空間効果補正を行う市販PWR上のロッド価値測定のための高速ロッド挿入法である。他の方法は動的ロッドワースメジャメント(DRWM(TM))法であり、これは厳密な3次元空間‐時間動力学コアモデリングを使用し、多くのPWRスタートアップにうまく適用された成熟したテクノロジーに発展した。
PWRのための2つの伝統的なバンク価値測定法は、ホウ素希釈法及びロッドスワップ法である。ホウ素希釈法では、制御棒のバンクがゆっくりと挿入される。各ロッドステップ移動の後、ホウ素を希釈して反応度損失を補償しながらロッド位置が保持される。各ロッド位置は、反応コンピュータで使用される点炉心モデルを検証するために、空間-時間効果を回避するのに十分な長さに保持されなければならない。従って、ホウ素希釈法は非常に遅いプロセスである。ロッドスワップ法は、ホウ素希釈法よりもかなり速い。ロッドスワップ法では、まず、最も重い(最高価値の)バンク(参照バンクと呼ばれる)をホウ素希釈法で測定する。次に、別のテストバンクが挿入されている間に、参照バンクが部分的に引き出される。テストバンクの価値を補償するために参照バンクの部分的な価値を使用することは、テストバンクの価値が効果的に決定される。ロッドスワップを使用する典型的なLPPTは、約24時間かかる。DRWM技術は、予測されたバンク価値を迅速に検証するためのはるかに高速な方法である。これは、各バンクを別々に独立して測定し、各バンクをその最大許容速度で駆動する。解析法は三次元空間-時間動力学理論に基づいており、測定データはアドバンストディジタルリアクティビティコンピュータ(ADRC)で処理される。
図1は、原子力プラントの簡略化された概略図であり、図2Aは、原子炉コア及び関連する検出器の概略上面図であり、図2Bは、原子炉コア及び関連する検出器の概略側面図である。DRWM手法では、非補償イオンチャンバの出力範囲検出器10、12を使用する。出力範囲検出器10、12は、1つのコア四分円の広い図を提供し、上方出力範囲検出器10及び下方出力範囲検出器12は、それぞれ、約5フィートの長さである。いくつかのプラント設計は、6つ以上のセグメントのような2つ以上のセグメント化された検出器を利用するが、有効検出器の全長は最大10~12フィートである。これにより、一般的な12~14インチの炉心に対する幅広い軸方向の炉心応答を与える。DRWMのために出力範囲検出器10、12を使用するには、通常、検出器チャネルの1つを使用から除去する必要があり、その結果、その安全機能を実行することができなくなる。電力範囲検出器10、12を使用には、ピコアンペアレベルの電流信号を正確に測定することも含まれる。これには、高価でかさばるいくつかの特殊化された実験室グレードの器具を必要とする。
ADRCは、1つの出力範囲検出器からの入力を必要とし、これにより、対応する原子力計装チャネルを使用不能にする。これは、ユニットが電力範囲チャネルを機能的にバイパスすることができない場合、物理的試験中にプラントがトリップ状態に近いので、ステーションの観点から好ましくない可能性がある(例えば、1つの出力範囲が使用範囲外であるときの1/3トリップ論理が、すべての出力範囲チャネルが動作可能であるときの2/4トリップ論理と比較した場合)。
別の方法では、中距離ディジタル反応度コンピュータ(IRDRC)は中距離検出器信号を利用する。IRDRCは、LPPTを実行するために電力範囲チャネルを休止することによるプラントの影響を軽減する。しかしながら、IRDRCは、歴史的には、ホウ素終点(BEP)測定、等温温度係数(ITC)測定、希釈/ホウ化によるバンク価値測定、及びロッドスワップなどの従来の反応度のコンピュータ測定を実行するためにのみ使用されてきた。
原子力計装システム(NIS)は、数十年にわたる原子炉出力の適切な監視を提供するために、通常、3つの検出器タイプ(図1に示すように、通常、ソース、中間及び出力範囲)を利用する安全関連システムである。各NISは、例えば、米国特許第4,877,575号(その全体が参照により本明細書に組み込まれる)で行われているように、様々な炉心設計パラメータを計算するために、反応度コンピュータへの入力として使用することができる。中間及び出力範囲検出器信号は、中性子束に正比例した値を表し、逆点動力学方程式又は他の反応度方程式を解くために使用される。反応度コンピュータは、検出器に直接接続することができるが、その場合、その安全関連機能を実行することができない。したがって、検出器が安全関連機能を保持できるように、可能な場合は絶縁出力を使用することが望ましい。絶縁出力は、通常、検出器電流又はパルスの範囲に基づいた0~5V又は0~10Vの出力である。例えば、例示的な補償イオンチャンバの中間レンジ検出器の出力は、10-11から10-3アンペアの範囲であり、その関連する処理キャビネットは、0~5V又は0~10Vの出力を生成する。
する信号を供給するために前置増幅器(プリアンプ)が使用される平均二乗電圧(MSV)モードを有することができる。
2つの動作モード間の遷移点を整列させることは困難である。2つの動作モードの間の遷移点において、検出器信号出力はステップ変化を受ける。1つの従来の方法は、過渡現象の影響を低減するために、変化率回路を使用する信号処理技術でこの問題を修正しようと試みた。この特定の検出器設計、及びその他は、古い検出器システムからの過渡現象を減少させるが、信号は、原子炉出力に比例しないジャンプ遷移を有するため、かかる遷移は、検出器出力を使用したときに計算された反応度に顕著な影響を及ぼすほど十分に大きい。従来の方法はまた、単に検出器及び信号処理電子機器に焦点を当てており、反応度を計算する能力又は不能に焦点を当てていなかった。この遷移の問題と、計算された反応度に対するその後の影響により、未修正のままでは低出力物理試験で使用できなくなる。
参照によりその全体が本明細書に組み込まれる米国特許第4,877,575号は、2つ以上の中性子検出器を使用し、それらの出力を統計的に比較して、計算された反応度の検証を実行する。しかしながら、この方法は、計算された反応度を検証するために、2つ以上の中性子検出器の使用を必要とする。
原子炉の低出力物理試験範囲における反応度の計算には改善の余地がある。
開示された概念の態様は、原子炉の低出力物理試験範囲を通じて改良された反応度計算を提供する。
開示された概念の1つの態様として、原子炉の反応度を決定する方法は、離散的な期間についての中性子検出器の応答を受信することと、中性子検出器の応答に関する統計的チェックを実行することと、統計的チェックに基づいて中性子検出器の応答が許容できるときを決定することと、中性子検出器の応答が許容できないときには以前の遅発中性子濃度を用い、中性子検出器の応答が許容できるときには新しく計算された遅発中性子濃度を用いて反応度を計算することとを含む。
開示された概念の別の態様として、炉心の反応度を計算するためのシステムは、炉心内で生成された中性子束を検出するように構成された中性子検出器と、中性子検出器の出力に基づいて中性子検出器の応答を受信するように構成された反応度コンピュータとを備え、反応度コンピュータは、プロセッサ及びメモリを含み、メモリは、反応度計算ルーチンを含み、プロセッサは、反応度計算ルーチンを実行するように構成される。反応度ルーチンは、離散的な期間について中性子検出器の応答を受信することと、中性子検出器の応答について統計的チェックを行うことと、統計的チェックに基づいて中性子検出器の応答が許容できるときを判定することと、中性子検出器の応答が許容できないときには以前の遅発中性子濃度を用い、中性子検出器の応答が許容できるときには新しく計算された遅発中性子濃度を用いて反応度を計算することとを含む。
本発明のさらなる理解は、添付の図面と併せて読めば、好ましい様態の以下の説明から得られる。
原子力プラントの簡略化された概略図である。
炉心及び関連する検出器の概略上面図である。
炉心及び関連する検出器の概略側面図である。
開示された概念の例示的な態様による反応性を決定する方法のフローチャートである。
開示された概念の一例としての態様による中性子検出器信号出力及び反応度計算のチャートである。
開示された概念の例示的な様態による、反応度を計算するためのシステムの簡略化された概略図である。
図3は、開示された概念の例示的な態様による反応度を決定する方法のフローチャートである。
この方法は、検出器が動作モード間を遷移し、出力信号が原子炉出力に比例しない場合に、検出器電流のステップ変化の影響を除去する。
この方法は、100で始まり、102に進む。102において、中性子検出器の応答が反応度コンピュータによって受信される。中性子検出器の応答は反応度コンピュータにより、1秒などの離散期間にわたって受信される。しかしながら、開示された概念の範囲から逸脱することなく、任意の適切な離散的な時間量が使用されてもよいことが理解されるであろう。開示された概念のいくつかの例示的な態様では、中性子検出器は、米国特許第4,495,144号に記載されているような核分裂チャンバ検出器であってもよい。開示された概念のいくつかの例示的な態様では、中性子検出器は、2つの動作モード、(1)中性子パルスが検出され、記録されるパルスモード、及び(2)パルス信号を増幅し、原子炉出力の平方根に比例する信号を供給するためにプレアンプが使用される平均二乗電圧モード、を有する。
この方法は、104に続き、反応度コンピュータによって中性子検出器の応答の統計的チェックが行われる。開示された概念のいくつかの例示的な態様では、統計的チェックは、中性子検出器の応答のジャンプを探す。例えば、統計的チェックは、中性子検出器の応答が受信された離散期間にわたって、中性子検出器の応答が所定の数の標準偏差(例えば、これに限定されないが、2つの標準偏差)だけ変更するかどうかを確認することができる。しかしながら、開示された概念の範囲から逸脱することなく、離散期間にわたって中性子検出器の応答が所定量を超えて変更するかどうかを決定するために、他の統計的方法が使用されてもよいことが理解されるであろう。
106において、反応度コンピュータは、中性子検出器の応答が許容可能であるか否かを判断することができる。例えば、104において反応度コンピュータによって実行された統計的チェックに基づいて、中性子検出器の応答が所定数の標準偏差だけ変化するか、又は所定量を超えて変化する場合、中性子検出器の応答は許容できないと判定される。このような変化は、中性子検出器のスイッチングモードを示し、その出力のステップを引き起こしていることを示す。中性子検出器の応答が所定数の標準偏差だけ変化しないか、さもなければ所定量を超えて変化しない場合、中性子検出器の応答は許容可能であると判定される。
中性子検出器の応答が反応度コンピュータによって許容できないと判定された場合、方法は108に進み、中性子検出器の応答が反応度コンピュータによって許容できると判定された場合、方法は110に進む。108において、直近の有効な遅発中性子濃度が反応度計算に使用される。最後の有効な遅発中性子濃度は、この方法の以前の反復から得ることができる。例えば、方法が1秒の各離散期間で実行される場合、その離散時間に対する中性子検出器の応答が許容範囲であれば、前の1秒期間からの遅発中性子濃度を使用してもよい。110で、反応度コンピュータにより新しい遅発中性子濃度が計算される。この遅発中性子濃度は有効であるとみなされ、この方法の後段で反復して使用することができる。
112において、反応度コンピュータによって反応度が計算される。反応度は、中性子検出器の応答が許容できない場合は最後の有効な遅発中性子濃度を用い、中性子検出器の応答が許容できる場合は新しく計算した遅発中性子濃度を用いて反応度コンピュータにより計算される。いくつかの例示的な態様では、反応度は、逆点動力学方程式を使用して反応度コンピュータによって計算される。開示された概念の例示的な態様による逆点動力学方程式が以下に提供される。
Figure 0007489408000001
逆点動態方程式では、Ci(t)は群iの遅延中性子濃度、πはプロンプト生成時間、πは反応性、定数βiとπは群iの遅延中性子プリカーソルの割合と減衰定数、DRは検出器レスポンス信号の大きさ、μはプロンプト中性子寿命である。
中性子検出器モードの変化は、逆点動力学方程式中の予想される中性子集団と遅発中性子濃度を人為的に歪め、中性子検出器の応答にステップ遷移を引き起こす。ステップ遷移中の最後の有効な遅延中性子濃度を使用することによって、反応度コンピュータは、反応度計算に対するステップ遷移の影響を排除することができる。このように、上述した方法を用いることにより、中性子検出器のモードの変化を通じて、反応度コンピュータによって反応度を正確に算出することができる。
112で反応性が計算されると、方法は100に戻る。この方法は、各離散期間で連続的に繰り返す。
例えば、図4は、開示された概念の一例の態様による中性子検出器信号出力及び反応度計算のチャートである。図4に示されるように、中性子検出器出力信号200は、一般に、正の反応度付加の間(すなわち、原子炉出力が増加しているとき)、一定の上昇勾配を有する。反対に、中性子検出器出力信号200は、一般に、原子炉出力が減少しているとき、一定の下降勾配を有するであろう。しかしながら、中性子検出器のモードの変化は、ステップ遷移206を引き起こす。このステップ遷移206は、従来の反応度計算202を使用して計算された反応度にスパイクを生じさせる。しかしながら、改善された計算204を使用して計算された反応度は、スパイクを排除し、中性子検出器のモードの変化を通じて反応度の正確な計算を可能にする。改善された計算は、図3に関連して説明した方法を使用したものである。中性子検出器のモードの変化は、典型的には、低出力物理試験範囲中に生じ、従って、伝統的な反応度計算は、低出力物理試験には使用できない。一方、改良された反応度計算は、原子炉の低出力物理試験中の反応度を正確に計算するために使用することができる。加えて、改良された反応度計算は、複数の中性子検出器ではなく、1つの中性子検出器からの出力信号のみを使用する。
図5は、開示された概念の例示的な様態による、反応度を計算するためのシステムの簡略化された概略図である。システムは、図3に関連して説明した方法を実施することができる。このシステムは、核分裂チャンバ検出器のような中性子検出器200、信号調整ユニット202、及び反応度コンピュータ204を含む。中性子検出器200は、原子炉の炉心内で生成される中性子束を検出し、検出された中性子束に比例した電流信号を生成する。信号調整ユニット202は、中性子検出器202の出力を処理して、反応度コンピュータ204による利用に適するように中性子検出器200の出力を処理する。
反応度コンピュータ204は、プロセッサ206及び関連するメモリ208を含む。メモリ208は、1又は複数のルーチンを記憶するように構成され、プロセッサ206は、1つ以上のルーチンを実行するように構成されている。開示される概念のいくつかの例示的な態様では、メモリ208は、改善された反応度計算ルーチンを記憶する。改善された反応度計算ルーチンは、プロセッサ206によって実行される、図3に関連して説明された方法であってもよい。したがって、反応度コンピュータ204は、図3に関連して説明した改善された反応度計算を実施することができる。
本明細書に記載されるように、開示される概念の例示的な態様は、中性子検出器の出力のみを使用しながら、中性子検出器のモードの変化を通じて反応度を正確に計算するシステム及び方法を提供する。開示された概念の例示的な態様は、原子炉の低出力物理試験範囲における反応度を計算するのに適している。
本発明の特定の態様を詳細に説明したが、当業者であれば、本開示の全教示に照らして、これらの詳細に対する様々な修正及び代替を開発することができ、例示的な態様のうちの1つ又は複数の選択された要素を、開示された概念の範囲から逸脱することなく、他の態様からの1つ又は複数の要素と組み合わせることができることを理解されよう。したがって、開示された特定の態様は、例示的なものにすぎず、添付の特許請求の範囲及びその任意の及びすべての均等物の全範囲が与えられる本発明の範囲を限定するものではないことが意図されている。
以下の項目は、国際出願時に含まれている。
[1]原子炉の反応度を決定する方法であって、
プロセッサおよびメモリを備える反応度コンピュータによって、離散期間の中性子検出器の応答を受信すること、
前記反応度コンピュータによって、前記中性子検出器の応答の統計的チェックを実行すること、
前記反応度コンピュータによって、前記統計的チェックに基づいて前記中性子検出器の応答が許容できるときであるかどうかを決定すること、及び
前記中性子検出器の応答が許容できないときには以前の遅発中性子濃度を用いて前記反応度コンピュータによって前記反応度を計算し、前記中性子検出器の応答が許容できるときには新しく計算された遅発中性子濃度を用いて前記反応度コンピュータによって前記反応度を計算すること、
を含む、方法。
[2]前記統計的チェックを実行することは、前記反応度コンピュータによって、前記中性子検出器の応答が前記離散期間中に所定数の標準偏差だけ変更するときを決定することを含み、
前記中性子検出器の応答が許容できるときを前記反応度コンピュータによって決定することは、前記反応度コンピュータによって、
前記離散期間中に前記中性子検出器の応答が前記所定数の標準偏差未満だけ変更するときに、前記中性子検出器の応答が許容できると決定することと、
前記離散期間中に前記中性子検出器の応答が前記所定数の標準偏差以上変更するときに、前記中性子検出器の応答が許容できないと決定することと、を含む、[1]に記載の方法。
[3]前記反応度コンピュータによって、前記統計的チェックを実行することは、前記反応度コンピュータによって、前記中性子検出器の応答が前記離散期間中に所定量だけ変更したときを決定することを含み、
前記中性子検出器の応答が許容できるときであることを前記反応度コンピュータによって決定することは、
前記離散期間中に前記中性子検出器の応答が前記所定量未満だけ変更したときに前記中性子検出器の応答が許容できると決定することと、
前記反応度コンピュータによって、前記中性子検出器の応答が前記離散期間中に前記所定量以上変更したときに前記中性子検出器の応答が許容できないと決定することと、を含む、[1]又は[2]に記載の方法。
[4]前記プロセッサおよび前記メモリを備える前記反応度コンピュータによって、前記中性子検出器の応答を受信することは、第1のモードで動作するか又は第2のモードで動作する前記中性子検出器からの応答を前記反応度コンピュータによって受信することを含む、[1]~[3]のいずれかに記載の方法。
[5]前記反応度コンピュータによって、前記第1のモードで動作する前記中性子検出器からの応答を受信することは、前記反応度コンピュータによって、複数の中性子パルスが検出されて記録されるパルスモードで動作する前記中性子検出器からの応答を受信することを含み、
前記反応度コンピュータによって、前記第2のモードで動作する前記中性子検出器からの応答を受信することは、前記反応度コンピュータによって、前置増幅器が複数のパルス信号を増幅して原子炉出力の平方根に比例する信号を供給するように構成される平均二乗電圧モードで動作する前記中性子検出器からの応答を受信することを含む、[4]に記載の方法。
[6]前記反応度コンピュータによって前記反応度を計算することは、前記反応度コンピュータによって、前記反応度を計算するための逆転動力学方程式を計算することを含む、[1]~[5]のいずれかに記載の方法。
[7]炉心の反応度を計算するためのシステムであって、
炉心で生成された中性子束を検出するように構成された中性子検出器と、
前記中性子検出器の出力に基づいて前記中性子検出器の応答を受信するように構成された反応度コンピュータであって、プロセッサとメモリとを備え、前記メモリは、反応度計算ルーチンを記憶するように構成され、前記プロセッサは、前記反応度計算ルーチンを実行するように構成される、前記反応度コンピュータと、
を備え、
前記反応度コンピュータによって、離散期間の前記中性子検出器の応答を受信すること、
前記反応度コンピュータによって、前記中性子検出器の応答の統計的チェックを実行すること、
前記反応度コンピュータによって、前記統計的チェックに基づいて前記中性子検出器の応答が許容できるときであるかどうかを決定すること、及び
前記中性子検出器の応答が許容できないときには以前の遅発中性子濃度を用いて前記反応度コンピュータによって前記反応度を計算すること、及び、前記中性子検出器の応答が許容できるときには新しく計算された遅発中性子濃度を用いて前記反応度コンピュータによって前記反応度を計算すること、
を含む、システム。

Claims (6)

  1. 原子炉の反応度を決定する方法であって、
    プロセッサおよびメモリを備える反応度コンピュータによって、離散期間において第1のモード又は第2のモードで動作する中性子検出器の応答を受信すること、
    前記反応度コンピュータによって、前記第1のモードにおける動作から前記第2のモードにおける動作への切替えに係る前記中性子検出器の応答の統計的チェックを実行すること、
    前記反応度コンピュータによって、前記統計的チェックに基づいて前記中性子検出器の応答が許容できるときであるかどうかを決定すること、及び
    前記中性子検出器の応答が許容できないときには以前の遅発中性子濃度を用いて前記反応度コンピュータによって前記反応度を計算し、前記中性子検出器の応答が許容できるときには新しく計算された遅発中性子濃度を用いて前記反応度コンピュータによって前記反応度を計算すること、
    を含む、方法。
  2. 前記統計的チェックを実行することは、前記反応度コンピュータによって、前記中性子検出器の応答が前記離散期間中に所定数の標準偏差だけ変更するときを決定することを含み、
    前記中性子検出器の応答が許容できるときを前記反応度コンピュータによって決定することは、前記反応度コンピュータによって、
    前記離散期間中に前記中性子検出器の応答が前記所定数の標準偏差未満だけ変更するときに、前記中性子検出器の応答が許容できると決定することと、
    前記離散期間中に前記中性子検出器の応答が前記所定数の標準偏差以上変更するときに、前記中性子検出器の応答が許容できないと決定することと、を含む、請求項1に記載の方法。
  3. 前記反応度コンピュータによって、前記統計的チェックを実行することは、前記反応度コンピュータによって、前記中性子検出器の応答が前記離散期間中に所定量だけ変更したときを決定することを含み、
    前記中性子検出器の応答が許容できるときであることを前記反応度コンピュータによって決定することは、
    前記離散期間中に前記中性子検出器の応答が前記所定量未満だけ変更したときに前記中性子検出器の応答が許容できると決定することと、
    前記反応度コンピュータによって、前記中性子検出器の応答が前記離散期間中に前記所定量以上変更したときに前記中性子検出器の応答が許容できないと決定することと、を含む、請求項1又は2に記載の方法。
  4. 前記反応度コンピュータによって、前記第1のモードで動作する前記中性子検出器からの応答を受信することは、前記反応度コンピュータによって、複数の中性子パルスが検出されて記録されるパルスモードで動作する前記中性子検出器からの応答を受信することを含み、
    前記反応度コンピュータによって、前記第2のモードで動作する前記中性子検出器からの応答を受信することは、前記反応度コンピュータによって、前置増幅器が複数のパルス信号を増幅して原子炉出力の平方根に比例する信号を供給するように構成される平均二乗電圧モードで動作する前記中性子検出器からの応答を受信することを含む、請求項1に記載の方法。
  5. 前記反応度コンピュータによって前記反応度を計算することは、前記反応度コンピュータによって、前記反応度を計算するための逆転動力学方程式を計算することを含む、請求項1~のいずれかに記載の方法。
  6. 炉心の反応度を計算するためのシステムであって、
    炉心で生成された中性子束を検出するように構成された中性子検出器と、
    前記中性子検出器の出力に基づいて前記中性子検出器の応答を受信するように構成された反応度コンピュータであって、プロセッサとメモリとを備え、前記メモリは、反応度計算ルーチンを記憶するように構成され、前記プロセッサは、前記反応度計算ルーチンを実行するように構成される、前記反応度コンピュータと、
    を備え、
    前記反応度コンピュータによって、離散期間において第1のモード又は第2のモードで動作する前記中性子検出器の応答を受信すること、
    前記反応度コンピュータによって、前記第1のモードにおける動作から前記第2のモードにおける動作への切替えに係る前記中性子検出器の応答の統計的チェックを実行すること、
    前記反応度コンピュータによって、前記統計的チェックに基づいて前記中性子検出器の応答が許容できるときであるかどうかを決定すること、及び
    前記中性子検出器の応答が許容できないときには以前の遅発中性子濃度を用いて前記反応度コンピュータによって前記反応度を計算すること、及び、前記中性子検出器の応答が許容できるときには新しく計算された遅発中性子濃度を用いて前記反応度コンピュータによって前記反応度を計算すること、
    を含む、システム。
JP2021570712A 2019-05-30 2020-05-29 反応度を決定するためのシステム及び方法 Active JP7489408B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962854453P 2019-05-30 2019-05-30
US62/854,453 2019-05-30
PCT/US2020/035090 WO2020243408A1 (en) 2019-05-30 2020-05-29 System and method to determine reactivity

Publications (2)

Publication Number Publication Date
JP2022534959A JP2022534959A (ja) 2022-08-04
JP7489408B2 true JP7489408B2 (ja) 2024-05-23

Family

ID=72088358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021570712A Active JP7489408B2 (ja) 2019-05-30 2020-05-29 反応度を決定するためのシステム及び方法

Country Status (8)

Country Link
US (1) US20220230769A1 (ja)
EP (1) EP3977487B1 (ja)
JP (1) JP7489408B2 (ja)
KR (1) KR20220016114A (ja)
CN (1) CN113892151A (ja)
ES (1) ES2950967T3 (ja)
TW (1) TWI734503B (ja)
WO (1) WO2020243408A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240096512A1 (en) * 2022-09-09 2024-03-21 Westinghouse Electric Company Llc Method for performing star/arwv reconciliation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207830A (ja) 2002-12-24 2004-07-22 Yokogawa Electric Corp フィルタ
JP2008122094A (ja) 2006-11-08 2008-05-29 Toshiba Corp 原子炉出力制御装置、原子炉システム、および、原子炉出力制御方法
JP2013539886A (ja) 2010-10-11 2013-10-28 ゼネラル・エレクトリック・カンパニイ センサ信号インパルス障害を検出及び除去するためのシステム、方法、及び装置
JP2015040720A (ja) 2013-08-20 2015-03-02 株式会社東芝 中性子計測装置及び中性子計測方法
WO2019035991A2 (en) 2017-08-18 2019-02-21 Westinghouse Electric Company Llc METHOD FOR SCALING ISOLATED NUCLEAR INSTRUMENTATION OUTPUT SIGNAL SCALE AND SYSTEM USING THE SAME

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4495144A (en) 1981-07-06 1985-01-22 Gamma-Metrics Fission chamber detector system for monitoring neutron flux in a nuclear reactor over an extra wide range, with high sensitivity in a hostile environment
US4877575A (en) 1988-01-19 1989-10-31 Westinghouse Electric Corp. Core reactivity validation computer and method
US4938917A (en) * 1988-11-17 1990-07-03 The United States Of America As Represented By The United States Department Of Energy Nuclear reactor with internal thimble-type delayed neutron detection system
CN102725800B (zh) * 2009-11-06 2016-06-01 泰拉能源有限责任公司 用于控制核反应堆中的反应性的系统和方法
KR101536675B1 (ko) * 2010-03-29 2015-07-14 제이콥스 이앤드씨 리미티드 유효 중성자 증배계수를 제어하는 가속기 구동 원자력 시스템
ES2415031B1 (es) * 2012-10-22 2014-01-27 Centro De Investigaciones Energéticas, Medioambientales Y Tecnológicas (Ciemat) Sistema de monitorización de la reactividad en un reactor nuclear subcrítico
US10466367B1 (en) * 2013-12-26 2019-11-05 Nuscale Power, Llc Neutron path enhancement
JP2015148524A (ja) * 2014-02-07 2015-08-20 株式会社グローバル・ニュークリア・フュエル・ジャパン 原子炉の制御棒価値を求める方法、プログラム、記録媒体、およびシステム
US10446281B2 (en) * 2017-08-15 2019-10-15 Westinghouse Electric Company Llc Detection apparatus and method of detecting the neutron absorption capability of a control element of a nuclear installation
CN109256226B (zh) * 2018-11-05 2020-07-03 三门核电有限公司 一种反应堆临界外推监督系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207830A (ja) 2002-12-24 2004-07-22 Yokogawa Electric Corp フィルタ
JP2008122094A (ja) 2006-11-08 2008-05-29 Toshiba Corp 原子炉出力制御装置、原子炉システム、および、原子炉出力制御方法
JP2013539886A (ja) 2010-10-11 2013-10-28 ゼネラル・エレクトリック・カンパニイ センサ信号インパルス障害を検出及び除去するためのシステム、方法、及び装置
JP2015040720A (ja) 2013-08-20 2015-03-02 株式会社東芝 中性子計測装置及び中性子計測方法
WO2019035991A2 (en) 2017-08-18 2019-02-21 Westinghouse Electric Company Llc METHOD FOR SCALING ISOLATED NUCLEAR INSTRUMENTATION OUTPUT SIGNAL SCALE AND SYSTEM USING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Shin-Yu Chen et al, A FPGA Based Data Acquisition System for Research Reactor Operation Monitoring,2013 IEEE,2013年

Also Published As

Publication number Publication date
EP3977487A1 (en) 2022-04-06
CN113892151A (zh) 2022-01-04
TWI734503B (zh) 2021-07-21
US20220230769A1 (en) 2022-07-21
JP2022534959A (ja) 2022-08-04
ES2950967T3 (es) 2023-10-17
TW202107489A (zh) 2021-02-16
WO2020243408A1 (en) 2020-12-03
EP3977487B1 (en) 2023-05-24
KR20220016114A (ko) 2022-02-08

Similar Documents

Publication Publication Date Title
KR101158459B1 (ko) 원자로 노심 모니터링 방법 및 장치
KR101488549B1 (ko) 도플러 반응도계수의 측정방법
US7894565B2 (en) Subcritical reactivity measurement method
JP2015148524A (ja) 原子炉の制御棒価値を求める方法、プログラム、記録媒体、およびシステム
US8804893B2 (en) Method of and an apparatus for monitoring the operation of a nuclear reactor
CN110689974B (zh) 一种基于瞬时伽马响应修正的改进堆芯功率分布的测量方法
KR970004354B1 (ko) 노심반응도 검증장치 및 방법
JP7489408B2 (ja) 反応度を決定するためのシステム及び方法
CN111149175B (zh) 核仪表隔离输出信号标度方法和采用相同方法的系统
KR102281234B1 (ko) 동적 제어봉 제어능 측정 방법
CN110749919A (zh) 一种标定核反应堆堆外探测器的方法及装置
JP5491879B2 (ja) 中性子増倍体系の未臨界度判定装置、及び未臨界度判定プログラム
CN114420328B (zh) 反应堆次临界度的监测方法及装置
KR101136830B1 (ko) 자체 진단기능을 가진 결함연료 위치탐지계통장치, 그 테스트방법 및 그 방법을 실행하기 위한 프로그램을 저장하는 컴퓨터 판독가능한 기록매체
JP3084486B2 (ja) 原子炉中性子検出器の監視装置
CN116844745A (zh) 一种反应堆内钒固定式探测器泄漏电流测量方法
JP3137569B2 (ja) 原子炉の中性子源強度及びガンマ線強度を評価する方法
Ammon et al. Monitoring the Integrity of Control Rods On-Line with a Helium Leak Detector
JP3785847B2 (ja) 原子炉出力測定装置
Giust et al. BWR Core Monitoring without LPRM Adaption
CN117038129A (zh) 基于拟合外推的探测器背景噪声确定方法及系统
Petényi et al. Further development of the dynamic control assemblies worth measurement method for advanced reactivity computers
JP2005172474A (ja) 原子炉炉心熱出力監視装置
JP2011169707A (ja) 原子炉出力測定装置
JPS61102594A (ja) 原子炉出力分布監視方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240513

R150 Certificate of patent or registration of utility model

Ref document number: 7489408

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150