JP7480594B2 - Electronic component cleaning water manufacturing equipment - Google Patents

Electronic component cleaning water manufacturing equipment Download PDF

Info

Publication number
JP7480594B2
JP7480594B2 JP2020097521A JP2020097521A JP7480594B2 JP 7480594 B2 JP7480594 B2 JP 7480594B2 JP 2020097521 A JP2020097521 A JP 2020097521A JP 2020097521 A JP2020097521 A JP 2020097521A JP 7480594 B2 JP7480594 B2 JP 7480594B2
Authority
JP
Japan
Prior art keywords
water
oxidation
cleaning water
cleaning
reduction potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020097521A
Other languages
Japanese (ja)
Other versions
JP2021190652A (en
Inventor
祐一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2020097521A priority Critical patent/JP7480594B2/en
Publication of JP2021190652A publication Critical patent/JP2021190652A/en
Application granted granted Critical
Publication of JP7480594B2 publication Critical patent/JP7480594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は電子産業分野等で使用される電子部品・電子部材の洗浄水の製造装置に関し、特にアンモニアや過酸化水を添加することで、導電性と酸化還元電位を調製した電子部品や電子部材の洗浄水の洗浄性を制御可能な電子部品や電子部材の洗浄水の製造装置に関する。 The present invention relates to an apparatus for producing cleaning water for electronic components and electronic materials used in the electronics industry and the like, and in particular to an apparatus for producing cleaning water for electronic components and electronic materials that can control the cleaning properties of the cleaning water for electronic components and electronic materials by adjusting the conductivity and redox potential by adding ammonia or aqueous peroxide.

半導体ウエハや半導体デバイスなどの電子部品や電子部材の処理に使用される洗浄水として、超純水に導電率付与物質や酸化還元電位をコントロール物質、ガスを添加した溶液が使用されている。また、これらによる洗浄後のリンス工程には超純水が用いられるが、超純水はその純度が高いほど比抵抗値が高くなるため、洗浄時に静電気が発生しやすくなり、絶縁膜の静電破壊や微粒子の再付着を招くといった問題があることが知られている。そのため、超純水に炭酸ガスやアンモニアなどを溶解した希薄な薬液をリンス水とすることでpH調整を行い、静電気を低減して上述したような問題に取り組んでいる。 Solutions in which electrical conductivity-imparting substances, substances that control redox potential, and gases have been added to ultrapure water are used as cleaning water for processing electronic parts and materials such as semiconductor wafers and semiconductor devices. In addition, ultrapure water is used in the rinsing process after cleaning with these methods. However, the higher the purity of ultrapure water, the higher its resistivity becomes, which is known to cause problems such as electrostatic damage to insulating films and re-adhesion of fine particles. For this reason, dilute chemical solutions in which carbon dioxide gas or ammonia is dissolved in ultrapure water are used as rinsing water to adjust the pH and reduce static electricity, addressing the above-mentioned problems.

ところで、近年では、ウエハを洗浄する際に、ウエハ表面の所定の物質を溶解せずに洗浄するニーズが増えている。このためには、ウエハ材料に応じて、特定の洗浄薬液を調製し、この洗浄薬液により洗浄を行っていた。 In recent years, however, there has been an increasing need to clean wafers without dissolving certain substances on the wafer surface. To achieve this, specific cleaning solutions are prepared according to the wafer material, and cleaning is carried out using these cleaning solutions.

しかしながら、ウエハ材料に応じて洗浄薬液を調製していたのでは高価であり、この洗浄薬液を含む排水を回収して洗浄薬液を再利用するのは困難で、薬品コストもかかるという問題点がある。 However, preparing cleaning solutions according to the wafer material is expensive, and it is difficult to collect wastewater containing the cleaning solutions and reuse the cleaning solutions, which is problematic in that it also requires high chemical costs.

そこで、従来から半導体基板のウェット洗浄方法であるRCA洗浄で使用されているアンモニア水と過酸化水素水と水との混合液を洗浄液として用いることが考えられる。例えば、図2に示すように、洗浄液の製造装置11は、超純水Wの供給ライン12に開閉弁13Bを備えた配管13Aを介して接続された導電性付与剤としてのアンモニア水供給装置13と、開閉弁14Bを備えた配管14Aを介して接続された酸化還元電位調整剤としての過酸化水素水供給装置14とを備え、超純水供給ライン12の末端はユースポイントUPとなっている。そして、超純水供給ライン12のアンモニア水供給装置13の後段には導電率計15が設けられているとともに、過酸化水素水供給装置14の後段にはORP計6が設けられていて、これらの測定値に基づいて、アンモニア水供給装置13からのアンモニア水の供給量及び過酸化水素水供給装置14からの過酸化水素水の供給量を制御可能となっている。 Therefore, it is considered to use a mixture of ammonia water, hydrogen peroxide water, and water, which has been used in the RCA cleaning, which is a wet cleaning method for semiconductor substrates, as the cleaning liquid. For example, as shown in FIG. 2, a cleaning liquid manufacturing device 11 includes an ammonia water supply device 13 as a conductivity imparting agent connected to a supply line 12 of ultrapure water W via a pipe 13A equipped with an on-off valve 13B, and a hydrogen peroxide water supply device 14 as an oxidation-reduction potential regulator connected via a pipe 14A equipped with an on-off valve 14B, and the end of the ultrapure water supply line 12 is a use point UP. A conductivity meter 15 is provided downstream of the ammonia water supply device 13 on the ultrapure water supply line 12, and an ORP meter 6 is provided downstream of the hydrogen peroxide water supply device 14, and based on the measured values, the amount of ammonia water supplied from the ammonia water supply device 13 and the amount of hydrogen peroxide water supplied from the hydrogen peroxide water supply device 14 can be controlled.

このような洗浄液製造装置11では、超純水Wにアンモニア水を添加してpHをアルカリ側として導電性を高めるとともに、過酸化水素水を添加して酸化還元電位を正の方向に高めて、このアルカリ性の洗浄液によりウエハを洗浄することで、化学反応でウエハ表面をエッチングして除去することを基本メカニズムとしていることから、ウエハ表面の所定の材料のみを溶解させるという、溶解性のコントロールが困難である、という問題点がある。この対策として希薄な薬液を調整することが考えられるが、希薄な薬液を調整するには限界があり、そのままではやはりウエハ表面の所定の材料のみを溶解させるという、溶解性のコントロールが困難である。 In this type of cleaning liquid manufacturing device 11, ammonia water is added to ultrapure water W to make the pH alkaline and increase the conductivity, and hydrogen peroxide water is added to increase the redox potential in the positive direction, and the wafer is cleaned with this alkaline cleaning liquid, which etches and removes the wafer surface through a chemical reaction. This basic mechanism poses the problem that it is difficult to control the solubility so that only the specified material on the wafer surface dissolves. One possible solution to this problem is to adjust the chemical solution to a dilute form, but there is a limit to how dilute the chemical solution can be adjusted, and as it is, it is still difficult to control the solubility so that only the specified material on the wafer surface dissolves.

本発明は上記課題に鑑みてなされたものであり、導電性と酸化還元電位を調製し、電子部品・電子部材の洗浄性を制御可能な電子部品や電子部材の洗浄水の製造装置を提供することを目的とする。 The present invention has been made in consideration of the above problems, and aims to provide an apparatus for producing cleaning water for electronic components and electronic materials that can adjust the electrical conductivity and redox potential and control the cleaning properties of electronic components and electronic materials.

上記目的に鑑み、本発明は、超純水に導電性付与剤と酸化還元電位調整剤とを添加して所望とする導電性及び酸化還元電位の電子部品部材洗浄水を製造して、この電子部品部材洗浄水をユースポイントに供給する電子部品部材洗浄水の製造装置であって、超純水供給ラインに導電性付与剤注入装置及び酸化還元電位調整剤注入装置を備え、前記導電性及び酸化還元電位調整手段とユースポイントとの間に冷却機構を設けた、電子部品部材洗浄水の製造装置を提供する(発明1)。 In view of the above object, the present invention provides an electronic component cleaning water manufacturing device that adds a conductivity imparting agent and an oxidation-reduction potential adjuster to ultrapure water to produce electronic component cleaning water with a desired conductivity and oxidation-reduction potential, and supplies the electronic component cleaning water to a use point, the electronic component cleaning water manufacturing device being provided with a conductivity imparting agent injection device and an oxidation-reduction potential adjuster injection device in the ultrapure water supply line, and a cooling mechanism being provided between the conductivity and oxidation-reduction potential adjustment means and the use point (Invention 1).

かかる発明(発明1)によれば、超純水に導電性付与剤と酸化還元電位調整剤を微量添加して電子部品部材洗浄水を調製し、この電子部品部材洗浄水を冷却機構で所定の温度に冷却してユースポイントに供給することにより、電子部品部材洗浄水の活性を低下させ、ウエハなどの電子部品部材の溶解を抑制することができる。しかも、導電性付与剤と酸化還元電位調整剤を微量添加した希薄溶液とすることで、ウエハなどの電子部品部材の表面の所定の材料のみを溶解させるという溶解性のコントロールが可能となる。 According to this invention (Invention 1), electronic component cleaning water is prepared by adding trace amounts of a conductivity imparting agent and an oxidation-reduction potential adjuster to ultrapure water, and this electronic component cleaning water is cooled to a predetermined temperature by a cooling mechanism and supplied to the point of use, thereby reducing the activity of the electronic component cleaning water and suppressing the dissolution of electronic components such as wafers. Furthermore, by making it into a dilute solution to which trace amounts of a conductivity imparting agent and an oxidation-reduction potential adjuster have been added, it is possible to control the solubility so that only the specified material on the surface of electronic components such as wafers is dissolved.

上記発明(発明1)においては、前記導電性付与剤がアンモニアもしくは炭酸であることが好ましい(発明2)。 In the above invention (Invention 1), it is preferable that the conductivity imparting agent is ammonia or carbonic acid (Invention 2).

かかる発明(発明2)によれば、電子部品部材洗浄水に導電性を付与しつつ、液性をアルカリ性又は酸性に調整することができ、さらにその濃度を調整することにより電子部品部材洗浄水のpHを調整することができる。 According to this invention (Invention 2), it is possible to impart conductivity to the electronic component cleaning water while adjusting the liquid property to alkaline or acidic, and furthermore, by adjusting the concentration, it is possible to adjust the pH of the electronic component cleaning water.

上記発明(発明1,2)においては、前記酸化還元電位調整剤が、過酸化水素水、O又はHであることが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), it is preferable that the oxidation-reduction potential regulator is hydrogen peroxide, O3 or H2 (Invention 3).

かかる発明(発明2,3)によれば、電子部品部材洗浄水の酸化還元電位を正又は不に調整することができ、さらにその濃度を調整することにより電子部品部材洗浄水の酸化還元電位を調整することができる。 According to such inventions (Inventions 2 and 3), the redox potential of the cleaning water for electronic components can be adjusted to be positive or negative, and the redox potential of the cleaning water for electronic components can be adjusted by adjusting the concentration.

上記発明(発明1~3)においては、前記冷却機構が電子部品部材洗浄水を20℃以下でユースポイントに供給可能であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), it is preferable that the cooling mechanism is capable of supplying electronic component cleaning water to the point of use at 20°C or less (Invention 4).

かかる発明(発明4)によれば、超純水に導電性付与剤と酸化還元電位調整剤を微量添加して20℃以下に冷却した電子部品部材洗浄水をユースポイント供給することで、ウエハなどの電子部品部材の溶解を効果的に抑制することができる。 According to this invention (Invention 4), by adding trace amounts of a conductivity imparting agent and an oxidation-reduction potential adjuster to ultrapure water and cooling it to 20°C or less to wash electronic components, the dissolution of electronic components such as wafers can be effectively suppressed by supplying the cleaning water to the point of use.

上記発明(発明1~4)においては、前記超純水供給ラインに導電性付与剤注入装置の下流側に導電率計又は比抵抗計を備えるとともに、前記酸化還元電位調整剤注入装置の下流側に酸化還元剤濃度計測装置又はORP計を備えることが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), it is preferable that the ultrapure water supply line is provided with a conductivity meter or resistivity meter downstream of the conductivity imparting agent injection device, and that an oxidation-reduction agent concentration measuring device or ORP meter is provided downstream of the oxidation-reduction potential regulator injection device (Invention 5).

かかる発明(発明5)によれば、超純水に導電性付与剤と酸化還元電位調整剤を微量添加した電子部品部材洗浄水の導電率やORPを測定し、この測定値に応じて導電性付与剤注入装置及び酸化還元電位調整剤注入装置からの添加量を制御することで、電子部品部材洗浄水の導電性及び酸化還元電位を調整し、ウエハなどの電子部品部材の溶解をさらに効果的に抑制することができる。 According to this invention (Invention 5), the conductivity and ORP of electronic component cleaning water, which is ultrapure water to which a trace amount of a conductivity imparting agent and an oxidation-reduction potential adjuster have been added, are measured, and the amounts added from the conductivity imparting agent injection device and the oxidation-reduction potential adjuster injection device are controlled according to the measured values, thereby adjusting the conductivity and oxidation-reduction potential of the electronic component cleaning water and making it possible to more effectively suppress dissolution of electronic component materials such as wafers.

本発明の電子部品部材洗浄水の製造装置によれば、超純水に導電性付与剤と酸化還元電位調整剤を微量添加した電子部品部材洗浄水を冷却機構で所定の温度に冷却してユースポイントに供給することにより、ウエハなどの電子部品部材の溶解を抑制した洗浄が可能となる。しかも、導電性付与剤と酸化還元電位調整剤を微量添加した希薄溶液とすることで、ウエハなどの電子部品部材の表面の所定の材料のみを溶解させるという溶解性のコントロールが可能となる。 According to the electronic component cleaning water manufacturing device of the present invention, electronic component cleaning water, which is ultrapure water to which trace amounts of a conductivity imparting agent and an oxidation-reduction potential adjuster have been added, is cooled to a predetermined temperature by a cooling mechanism and supplied to the point of use, making it possible to clean electronic components such as wafers while suppressing dissolution. Furthermore, by making it a dilute solution to which trace amounts of a conductivity imparting agent and an oxidation-reduction potential adjuster have been added, it is possible to control the solubility so that only the specified material on the surface of electronic components such as wafers is dissolved.

本発明の一実施形態による電子部品部材洗浄水の製造装置を示す概略図である。1 is a schematic diagram showing an apparatus for producing electronic component cleaning water according to an embodiment of the present invention. 従来の電子部品部材洗浄水の製造装置を示す概略図である。FIG. 1 is a schematic diagram showing a conventional apparatus for producing cleaning water for electronic components.

以下、本発明の電子部品部材洗浄水の製造装置の第一の実施形態について添付図面を参照にして詳細に説明する。 The first embodiment of the electronic component cleaning water manufacturing device of the present invention will be described in detail below with reference to the attached drawings.

〔電子部品部材洗浄水の製造装置〕
図1は、一実施形態による電子部品部材洗浄水(以下、単に洗浄水という場合がある)の製造装置を示しており、図1において電子部品部材洗浄水製造装置1は、超純水Wの供給ライン2に開閉弁3Bを備えた配管3Aを介して接続された導電性付与剤供給装置3と、開閉弁4Bを備えた配管4Aを介して接続された酸化還元電位調整剤供給装置4とを備える。そして、超純水供給ライン2の末端はユースポイントUPとなっていて、このユースポイントUPの前段には、冷却機構7が設けられている。なお、本実施形態においては、超純水供給ライン2の導電性付与剤供給装置3の後段には導電率計5が設けられているとともに、酸化還元電位調整剤供給装置4の後段にはORP計6が設けられていて、これらの測定値に基づいて、導電性付与剤供給装置3からの導電性付与剤の供給量及び酸化還元電位調整剤供給装置4からの酸化還元電位調整剤の供給量を図示しない制御機構により制御可能となっている。
[Apparatus for producing cleaning water for electronic components]
1 shows an apparatus for producing cleaning water for electronic components (hereinafter, sometimes simply referred to as cleaning water) according to one embodiment, and in FIG. 1, the apparatus for producing cleaning water for electronic components 1 includes a conductivity imparting agent supplying device 3 connected to a supply line 2 for ultrapure water W via a pipe 3A equipped with an on-off valve 3B, and an oxidation-reduction potential adjuster supplying device 4 connected via a pipe 4A equipped with an on-off valve 4B. The end of the ultrapure water supply line 2 is a use point UP, and a cooling mechanism 7 is provided in front of the use point UP. In this embodiment, a conductivity meter 5 is provided in the downstream of the conductivity imparting agent supplying device 3 on the ultrapure water supply line 2, and an ORP meter 6 is provided in the downstream of the oxidation-reduction potential adjuster supplying device 4, and based on the measured values thereof, the supply amount of the conductivity imparting agent from the conductivity imparting agent supplying device 3 and the supply amount of the oxidation-reduction potential adjuster from the oxidation-reduction potential adjuster supplying device 4 can be controlled by a control mechanism (not shown).

ここで、冷却機構7はチラーと呼ばれるものであり、本実施形態においてはユースポイントUPに、常温の超純水Wの流量に対して電子部品部材の洗浄水W1を20℃以下、例えば10~20℃で供給可能な能力を有するものであることが好ましい。 The cooling mechanism 7 is called a chiller, and in this embodiment, it is preferable that the chiller has the capacity to supply cleaning water W1 for electronic components at a temperature of 20°C or less, for example 10 to 20°C, to the point of use UP relative to the flow rate of ultrapure water W at room temperature.

<超純水>
本実施形態において、原水となる超純水Wとは、例えば、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。
<Ultrapure water>
In this embodiment, the ultrapure water W serving as the raw water preferably has, for example, a resistivity of 18.1 MΩ cm or more, fine particles: 1000 particles/L or less with a particle size of 50 nm or more, live bacteria: 1 particle/L or less, TOC (Total Organic Carbon): 1 μg/L or less, total silicon: 0.1 μg/L or less, metals: 1 ng/L or less, ions: 10 ng/L or less, hydrogen peroxide: 30 μg/L or less, and a water temperature of 25±2° C.

<導電性付与剤>
本実施形態において導電性付与剤とは、原料水である超純水Wに溶解することでイオン(アニオンまたはカチオン)を生成し、そのイオンによって超純水Wに導電性を付与する物質を意味する。このような導電性付与物質としては、酸性の付与物質としては、塩酸、硝酸、硫酸、酢酸などの液体及びCOガスなどのガス体を用いることができる。また、アルカリ性の付与剤としては、アンモニア、水酸化ナトリウム、水酸化カリウム又はTMAH等を用いることができるが、半導体ウエハの洗浄に使用される場合には、アンモニア、CO(溶解水であってもよい)が好適であり、特にアンモニアが好適である。このアンモニアは所定の濃度のアンモニア水として用いることが好ましい。これらの導電性付与剤は、洗浄液のpHなど所望とする液性に応じて適宜選択すればよい。
<Conductive agent>
In this embodiment, the conductivity imparting agent means a substance that dissolves in ultrapure water W, which is raw water, to generate ions (anions or cations) and imparts conductivity to the ultrapure water W by the ions. As such a conductivity imparting agent, liquids such as hydrochloric acid, nitric acid, sulfuric acid, and acetic acid, and gases such as CO 2 gas can be used as acidic imparting agents. In addition, as an alkaline imparting agent, ammonia, sodium hydroxide, potassium hydroxide, TMAH, etc. can be used, but when used to clean semiconductor wafers, ammonia and CO 2 (which may be dissolved in water) are suitable, and ammonia is particularly suitable. This ammonia is preferably used as ammonia water of a predetermined concentration. These conductivity imparting agents may be appropriately selected according to the desired liquid properties, such as the pH of the cleaning liquid.

<酸化還元電位調整剤>
本実施形態において、酸化還元電位調整剤とは、原料水である超純水Wに溶解することで、酸化性あるいは還元性を付与して酸化還元電位を変動させる物質を意味する。このような酸化還元電位調整剤としては、特に制限はないが、フェリシアン化カリウムやフェロシアン化カリウムなどは、金属成分を含有するため好ましくない。したがって、酸化還元電位を高く調整する場合には、過酸化水素水などの液体やオゾンガス、酸素ガスなどのガス体を用いることができる。また、酸化還元電位を低く調整する場合にはシュウ酸、硫化水素、ヨウ化カリウムなどの液体や水素などのガス体を用いることが好ましい。半導体ウエハの洗浄に使用される場合には、過酸化水素水等の液体やオゾンガスや水素ガス等のガス体(溶解水であってもよい)が好ましく、特に酸化還元電位の制御が比較的容易であることから過酸化水素水を用いることが好ましい。これらの酸化還元電位調整剤は、洗浄液の酸化還元電位の正負など所望とする液性に応じて選択すればよい。
<Oxidation-reduction potential regulator>
In this embodiment, the redox potential adjuster means a substance that dissolves in ultrapure water W, which is raw water, to impart oxidizing or reducing properties and change the redox potential. There is no particular limitation on such redox potential adjusters, but potassium ferricyanide and potassium ferrocyanide are not preferred because they contain metal components. Therefore, when adjusting the redox potential to a higher level, liquids such as hydrogen peroxide water, gases such as ozone gas and oxygen gas can be used. When adjusting the redox potential to a lower level, liquids such as oxalic acid, hydrogen sulfide, potassium iodide, and gases such as hydrogen are preferably used. When used to clean semiconductor wafers, liquids such as hydrogen peroxide water, gases such as ozone gas and hydrogen gas (which may be dissolved water), and hydrogen peroxide water are particularly preferred because the control of the redox potential is relatively easy. These redox potential adjusters may be selected according to the desired liquid properties, such as the positive or negative redox potential of the cleaning liquid.

〔電子部品部材洗浄水の製造方法〕
次に前述したような構成を有する本実施形態の電子部品部材洗浄水の製造装置を用いた電子部品部材洗浄水の製造方法について説明する。
[Method for producing electronic component cleaning water]
Next, a method for producing cleaning water for electronic components using the apparatus for producing cleaning water for electronic components according to this embodiment having the above-mentioned configuration will be described.

<導電性付与工程>
まず、供給ライン2から超純水Wが供給されると、この超純水Wの流量から設定された導電率となる導電性付与剤の濃度に基づき、必要な導電性付与剤を導電性付与剤供給装置3から添加する。このとき、供給ライン2に設けられた導電率計5により導電性付与剤添加後の超純水Wの導電率を測定し、設定された導電率となるように導電性付与剤の添加量を調整することが好ましい。
<Conductivity imparting step>
First, when ultrapure water W is supplied from the supply line 2, a necessary amount of the conductivity imparting agent is added from the conductivity imparting agent supply device 3 based on the concentration of the conductivity imparting agent that results in a set conductivity from the flow rate of this ultrapure water W. At this time, it is preferable to measure the conductivity of the ultrapure water W after the addition of the conductivity imparting agent by a conductivity meter 5 provided on the supply line 2, and adjust the amount of the conductivity imparting agent to be added so as to achieve the set conductivity.

上述したような導電性付与工程により、超純水Wの導電率を5μS/cm以下とすることが好ましい。超純水Wの導電率を5μS/cmを超えると、ウエハ表面の洗浄抑制効果が十分でない。したがって、導電性付与剤は極微量添加すればよい。 It is preferable to set the conductivity of the ultrapure water W to 5 μS/cm or less by the above-mentioned conductivity imparting process. If the conductivity of the ultrapure water W exceeds 5 μS/cm, the effect of suppressing cleaning of the wafer surface is insufficient. Therefore, it is sufficient to add only a very small amount of the conductivity imparting agent.

<酸化還元電位調整工程>
次に、超純水Wの流量から設定された酸化還元電位となる酸化還元電位調整剤の濃度に基づき、必要な酸化還元電位調整剤を酸化還元電位調整剤供給装置4から添加する。このとき、供給ライン2に設けられたORP計6により酸化還元電位調整剤添加後の超純水Wの酸化還元電位を測定し、設定された酸化還元電位となるように酸化還元電位調整剤の添加量を調整することが好ましい。
<Oxidation-reduction potential adjustment step>
Next, a necessary amount of the oxidation-reduction potential adjuster is added from the oxidation-reduction potential adjuster supply device 4 based on the concentration of the oxidation-reduction potential adjuster that will result in the oxidation-reduction potential set from the flow rate of the ultrapure water W. At this time, it is preferable to measure the oxidation-reduction potential of the ultrapure water W after the addition of the oxidation-reduction potential adjuster with an ORP meter 6 provided in the supply line 2, and adjust the amount of the oxidation-reduction potential adjuster to be added so as to achieve the set oxidation-reduction potential.

上述したような酸化還元電位調整工程において、超純水Wの酸化還元電位を大きくしすぎるとウエハ表面の洗浄抑制効果が十分でないことから、酸化還元電位は±10V未満程度となるように酸化還元電位調整剤を極希薄に溶解することが好ましい。超純水Wを原水とした本実施形態においては、具体的には、酸化還元電位調整剤が過酸化水素の場合には、濃度50ppm以下、特に10ppm以下とすることが好ましく、酸化還元電位調整剤がオゾン(O)の場合には、濃度10ppm以下、特に5ppm以下とすることが好ましく、酸化還元電位調整剤が水素(H)の場合には、濃度1ppm以下、特に0.5ppm以下とすることが好ましい。 In the above-mentioned oxidation-reduction potential adjusting step, if the oxidation-reduction potential of the ultrapure water W is made too large, the effect of inhibiting cleaning of the wafer surface is insufficient, and therefore it is preferable to dissolve the oxidation-reduction potential adjuster in an extremely dilute state so that the oxidation-reduction potential is less than about ±10 V. In this embodiment in which the raw water is ultrapure water W, specifically, when the oxidation-reduction potential adjuster is hydrogen peroxide, the concentration is preferably 50 ppm or less, particularly 10 ppm or less, when the oxidation-reduction potential adjuster is ozone (O 3 ), the concentration is preferably 10 ppm or less, particularly 5 ppm or less, and when the oxidation-reduction potential adjuster is hydrogen (H 3 ), the concentration is preferably 1 ppm or less, particularly 0.5 ppm or less.

<冷却工程>
このようにして超純水Wを所望とする導電性及び酸化還元電位に調整した洗浄水W1は活性が高く、ウエハ表面の所定の材料のみを選択的に溶解させるなど溶解性のコントロールが困難である。そこで、ユースポイントUPには20℃以下で洗浄水W1が供給されることが好ましい。したがって、洗浄水W1を冷却機構7で0℃以上20℃未満に冷却することが好ましい。このため冷却機構7の出口での洗浄水W1の温度を測定して、冷却機構7の冷却能を制御することで所望とする温度に調整することが好ましい。
<Cooling process>
The cleaning water W1, which is obtained by adjusting the ultrapure water W to the desired conductivity and oxidation-reduction potential in this manner, is highly active, and it is difficult to control the solubility, such as selectively dissolving only a specific material on the wafer surface. Therefore, it is preferable that the cleaning water W1 is supplied to the point of use UP at 20° C. or less. Therefore, it is preferable to cool the cleaning water W1 to a temperature between 0° C. and less than 20° C. by the cooling mechanism 7. For this reason, it is preferable to measure the temperature of the cleaning water W1 at the outlet of the cooling mechanism 7 and adjust it to the desired temperature by controlling the cooling capacity of the cooling mechanism 7.

なお、上記冷却工程は、並列に連結される複数のチラーを有するチラーユニットを冷却機構7として用いて、各チラーの冷却機能の低下の程度に応じて、複数のチラーの運転状態を切り替えることにより行ってもよい。複数のチラーの運転状態を切り替えることにより、使用するチラーを選択することができるので、例えば微生物等が発生して冷却機能が低下したチラーがある場合でも、チラーユニット全体の運転は停止させずに継続することができ、冷却した洗浄水W1の製造効率が向上する。 The cooling process may be performed by using a chiller unit having multiple chillers connected in parallel as the cooling mechanism 7 and switching the operating state of the multiple chillers depending on the degree of deterioration of the cooling function of each chiller. By switching the operating state of the multiple chillers, the chiller to be used can be selected. Therefore, even if there is a chiller whose cooling function has deteriorated due to the generation of microorganisms, for example, the operation of the entire chiller unit can be continued without being stopped, and the production efficiency of the cooled cleaning water W1 is improved.

以上のように、本実施形態の電子部品部材洗浄水の製造装置によれば、ウエハの洗浄水W1を所定の温度、特に0℃以上20℃未満の温度に冷却した低温の洗浄水W1を用いることにより、洗浄水W1の活性が低下するので、ウエハ表面の所定の材料のみを溶解させるなど洗浄水1の溶解性をコントロールすることができる。特に本実施形態によれば、低濃度の導電性付与剤及び酸化還元電位調整剤を用いることで、ウエハ表面の所定の材料のみを溶解させるなど洗浄水1の溶解性をコントロールしているので、薬液使用量を低減することができる。これにより、使用した溶液の回収再利用が容易になる、という効果も奏する。 As described above, according to the electronic component cleaning water manufacturing device of this embodiment, the activity of the cleaning water W1 for the wafer is reduced by using low-temperature cleaning water W1 cooled to a predetermined temperature, particularly a temperature of 0°C or higher but lower than 20°C, and the solubility of the cleaning water 1 can be controlled, such as by dissolving only the specified material on the wafer surface. In particular, according to this embodiment, the solubility of the cleaning water 1 is controlled by using a low concentration of a conductivity imparting agent and an oxidation-reduction potential adjuster, such that only the specified material on the wafer surface is dissolved, and therefore the amount of chemical solution used can be reduced. This also has the effect of making it easier to recover and reuse the used solution.

以上、本発明について添付図面を参照にして前記実施形態に基づき説明してきたが、本発明は前記実施形態に限定されず、種々の変更実施が可能である。例えば、導電性付与剤としてはアンモニアを用い、酸化還元電位調整剤としては過酸化水素を用いるのが一般的であるが、種々の導電性付与剤と酸化還元電位調整剤の組み合わせが可能である。また、導電性付与剤供給装置3及び酸化還元電位調整剤供給装置4から導電性付与剤及び酸化還元電位調整剤を添加せずに超純水Wを冷却して洗浄液として用いてもよい。 The present invention has been described above based on the above embodiment with reference to the attached drawings, but the present invention is not limited to the above embodiment and various modifications are possible. For example, it is common to use ammonia as the conductivity imparting agent and hydrogen peroxide as the redox potential adjuster, but various combinations of conductivity imparting agents and redox potential adjusters are possible. In addition, ultrapure water W may be cooled and used as a cleaning liquid without adding the conductivity imparting agent and the redox potential adjuster from the conductivity imparting agent supply device 3 and the redox potential adjuster supply device 4.

以下の具体的実施例により本発明をさらに詳細に説明する。 The present invention will be explained in more detail with the following specific examples.

[比較例1]
冷却機構7を有しない図1に示す洗浄液製造装置を用い、常温の超純水Wに導電性付与剤供給装置3からアンモニア水(導電性付与剤)を導電率が100μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から過酸化水素水(酸化還元電位調整剤)を100ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、アンモニア及び過酸化水素水の濃度が高く、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。
[Comparative Example 1]
Using the cleaning liquid production device shown in FIG. 1 without the cooling mechanism 7, ammonia water (conductivity imparting agent) was added from the conductivity imparting agent supplying device 3 to ultrapure water W at room temperature so that the conductivity was 100 μS/cm, and then hydrogen peroxide water (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supplying device 4 to 100 ppm to produce cleaning water W1. Then, this cleaning water W1 was sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 25° C. At this time, a large amount of chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) was required, and the concentrations of ammonia and hydrogen peroxide were high, making it difficult to recover and reuse the cleaning liquid 1. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1.

[比較例2]
比較例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が1μS/cmとなるように添加した以外は同様にして洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%(抑制効果が高いほど大きいこととする)とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Comparative Example 2]
In Comparative Example 1, cleaning water W1 was produced in the same manner, except that ammonia (conductivity imparting agent) water was added from the conductivity imparting agent supplying device 3 to the ultrapure water W at room temperature so that the conductivity was 1 μS/cm. Then, this cleaning water W1 was sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 25° C. At this time, a large amount of chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) was required, and recovery and reuse of the cleaning liquid 1 was difficult. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1. In addition, the wafer dissolution suppression effect when the wafer dissolution suppression effect of the cleaning liquid W1 of Comparative Example 1 is set to 100% (the higher the suppression effect, the greater the effect), the amount of cleaning liquid W1 used compared to Comparative Example 1, and the judgment of whether recovery and reuse of the cleaning liquid 1 is difficult or easy are also shown in Table 2.

[比較例3]
比較例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が100μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4からオゾン(O)(酸化還元電位調整剤)を30ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Comparative Example 3]
In Comparative Example 1, ammonia (conductivity imparting agent) water was added from the conductivity imparting agent supplying device 3 to ultrapure water W at room temperature so that the conductivity was 100 μS/cm, and then ozone (O 3 ) (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supplying device 4 so that the concentration was 30 ppm to produce cleaning water W1. Then, this cleaning water W1 was sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 25° C. At this time, a large amount of chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) was required, and recovery and reuse of the cleaning liquid 1 was difficult. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1. In addition, the wafer dissolution suppression effect when the wafer dissolution suppression effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the amount of cleaning liquid W1 used compared to Comparative Example 1, and the judgment of whether recovery and reuse of the cleaning liquid 1 is difficult or easy are also shown in Table 2.

[比較例4]
比較例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が100μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から水素(H)(酸化還元電位調整剤)を1.2ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Comparative Example 4]
In Comparative Example 1, ammonia (conductivity imparting agent) water was added from the conductivity imparting agent supplying device 3 to the ultrapure water W at room temperature so that the conductivity was 100 μS/cm, and then hydrogen (H 2 ) (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supplying device 4 so that the concentration was 1.2 ppm to produce cleaning water W1. Then, this cleaning water W1 was sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 25° C. At this time, a large amount of chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) was required, and recovery and reuse of the cleaning liquid 1 was difficult. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1. In addition, the wafer dissolution suppression effect when the wafer dissolution suppression effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the amount of cleaning liquid W1 used compared to Comparative Example 1, and the judgment of whether recovery and reuse of the cleaning liquid 1 is difficult or easy are also shown in Table 2.

[比較例5]
比較例1において、常温の超純水Wに導電性付与剤供給装置3からCO(導電性付与剤)を導電率が10μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から過酸化水素水(酸化還元電位調整剤)を100ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Comparative Example 5]
In Comparative Example 1, CO 2 (conductivity imparting agent) was added from the conductivity imparting agent supplying device 3 to the ultrapure water W at room temperature so that the conductivity was 10 μS/cm, and then hydrogen peroxide water (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supplying device 4 to 100 ppm to produce cleaning water W1. Then, this cleaning water W1 was sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 25° C. At this time, a large amount of chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) was required, and recovery and reuse of the cleaning liquid 1 was difficult. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1. In addition, the wafer dissolution suppression effect when the wafer dissolution suppression effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the amount of cleaning liquid W1 used compared to Comparative Example 1, and the judgment of whether recovery and reuse of the cleaning liquid 1 is difficult or easy are also shown in Table 2.

[実施例1]
図1に示す洗浄液製造装置を用いて、常温の超純水Wに導電性付与剤供給装置3からアンモニア水(導電性付与剤)を導電率が1μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から過酸化水素(酸化還元電位調整剤)を5ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)の使用量は比較例1と比べて少量であり、アンモニア水及び過酸化水素水の濃度が低く、洗浄液1の回収再利用は比較的容易であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Example 1]
Using the cleaning liquid manufacturing apparatus shown in FIG. 1, ammonia water (conductivity imparting agent) was added from the conductivity imparting agent supplying device 3 to ultrapure water W at room temperature so that the conductivity was 1 μS/cm, and then hydrogen peroxide (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supplying device 4 to 5 ppm to produce cleaning water W1. Then, this cleaning water W1 was cooled by the cooling mechanism 7 and sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 15° C. At this time, the amount of chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) used was small compared to Comparative Example 1, and the concentrations of ammonia water and hydrogen peroxide water were low, so that recovery and reuse of the cleaning liquid 1 was relatively easy. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1. Table 2 also shows the wafer dissolution suppression effect when the wafer dissolution suppression effect of cleaning solution W1 in Comparative Example 1 is taken as 100%, the amount of cleaning solution W1 used compared to Comparative Example 1, and a judgment of whether it is difficult or easy to recover and reuse cleaning solution W1.

[実施例2]
実施例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が1μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4からオゾン(O)(酸化還元電位調整剤)を2ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)の使用量は比較例1と比べて少量であり、洗浄液1の回収再利用は比較的容易であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Example 2]
In Example 1, ammonia (conductivity imparting agent) water was added from the conductivity imparting agent supplying device 3 to the ultrapure water W at room temperature so that the conductivity was 1 μS/cm, and then ozone (O 3 ) (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supplying device 4 so that the concentration was 2 ppm to produce cleaning water W1. Then, this cleaning water W1 was cooled by the cooling mechanism 7 and sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 15° C. At this time, the amount of chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) used was small compared to Comparative Example 1, and recovery and reuse of the cleaning liquid 1 was relatively easy. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1. In addition, the wafer dissolution suppression effect when the wafer dissolution suppression effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the amount of cleaning liquid W1 used compared to Comparative Example 1, and the judgment of whether recovery and reuse of the cleaning liquid 1 is difficult or easy are also shown in Table 2.

[実施例3]
実施例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が1μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から水素(H)(酸化還元電位調整剤)を0.2ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)の使用量は比較例1と比べて少量であり、洗浄液1の回収再利用は比較的容易であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Example 3]
In Example 1, ammonia (conductivity imparting agent) water was added from the conductivity imparting agent supplying device 3 to the ultrapure water W at room temperature so that the conductivity was 1 μS/cm, and then hydrogen (H 2 ) (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supplying device 4 so that the concentration was 0.2 ppm to produce cleaning water W1. Then, this cleaning water W1 was cooled by the cooling mechanism 7 and sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 15° C. At this time, the amount of chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) used was small compared to Comparative Example 1, and recovery and reuse of the cleaning liquid 1 was relatively easy. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1. In addition, the wafer dissolution suppression effect when the wafer dissolution suppression effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the amount of cleaning liquid W1 used compared to Comparative Example 1, and the judgment of whether recovery and reuse of the cleaning liquid 1 is difficult or easy are also shown in Table 2.

[実施例4]
実施例1において、常温の超純水Wに導電性付与剤供給装置3からCO(導電性付与剤)を導電率が1μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から過酸化水素(酸化還元電位調整剤)を5ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)の使用量は比較例1と比べて少量であり、洗浄液1の回収再利用は比較的容易であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Example 4]
In Example 1, CO 2 (conductivity imparting agent) was added from the conductivity imparting agent supplying device 3 to the ultrapure water W at room temperature so that the conductivity was 1 μS/cm, and then hydrogen peroxide (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supplying device 4 to 5 ppm to produce cleaning water W1. Then, this cleaning water W1 was cooled by the cooling mechanism 7 and sent to the use point to clean the wafer. The liquid temperature of the cleaning water W1 at the use point was 15° C. At this time, the amount of the chemical solution (conductivity imparting agent + oxidation-reduction potential adjuster) used was small compared to Comparative Example 1, and the recovery and reuse of the cleaning liquid 1 was relatively easy. The adjustment conditions of this cleaning water W1 and the liquid temperature at the use point UP are shown in Table 1. In addition, the wafer dissolution suppression effect when the wafer dissolution suppression effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the amount of the cleaning liquid W1 used compared to Comparative Example 1, and the judgment of whether the recovery and reuse of the cleaning liquid 1 is difficult or easy are also shown in Table 2.

[参考例1]
比較例1において、常温の超純水Wに導電性付与剤及び酸化還元電位調整剤を添加せず、そのまま洗浄水W1としてユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解の抑制効果、ウエハ溶解抑制効果を比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Reference Example 1]
In Comparative Example 1, no conductivity imparting agent or oxidation-reduction potential adjuster was added to ultrapure water W at room temperature, and the water was sent as it was to the point of use as cleaning water W1 to clean the wafer. The liquid temperature of cleaning water W1 at the point of use was 25° C. The preparation conditions of cleaning water W1 and the liquid temperature at the point of use UP are shown in Table 1. Table 2 also shows the wafer dissolution suppression effect when the wafer dissolution suppression effect of cleaning liquid W1 in Comparative Example 1 is taken as 100%, the wafer dissolution suppression effect, the amount of cleaning liquid W1 used compared to Comparative Example 1, and a judgment of whether recovery and reuse of cleaning liquid 1 is difficult or easy.

[参考例2]
実施例1において、常温の超純水Wをそのまま洗浄水W1として、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は20℃であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Reference Example 2]
In Example 1, ultrapure water W at room temperature was used as cleaning water W1 as it was, and this cleaning water W1 was cooled by cooling mechanism 7 and sent to the point of use to clean the wafer. The liquid temperature of cleaning water W1 at the point of use was 20° C. The preparation conditions of this cleaning water W1 and the liquid temperature at the point of use UP are shown in Table 1. Table 2 also shows the wafer dissolution suppression effect when the wafer dissolution suppression effect of cleaning liquid W1 in Comparative Example 1 is taken as 100%, the amount of cleaning liquid W1 used compared to Comparative Example 1, and a judgment of whether recovery and reuse of cleaning liquid 1 is difficult or easy.

[参考例3]
実施例1において、常温の超純水Wをそのまま洗浄水W1として、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%(抑制効果が高いほど大きくなる)とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Reference Example 3]
In Example 1, ultrapure water W at room temperature was used as cleaning water W1 as it was, and this cleaning water W1 was cooled by cooling mechanism 7 and sent to the point of use to clean the wafer. The liquid temperature of cleaning water W1 at the point of use was 15° C. The preparation conditions of this cleaning water W1 and the liquid temperature at the point of use UP are shown in Table 1. Table 2 also shows the wafer dissolution suppression effect when the wafer dissolution suppression effect of cleaning liquid W1 in Comparative Example 1 is taken as 100% (the higher the suppression effect, the greater the effect), the amount of cleaning liquid W1 used compared to Comparative Example 1, and a judgment of whether recovery and reuse of cleaning liquid 1 is difficult or easy.

[参考例4]
実施例1において、常温の超純水Wをそのまま洗浄水W1として、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は10℃であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Reference Example 4]
In Example 1, ultrapure water W at room temperature was used as cleaning water W1 as it was, and this cleaning water W1 was cooled by cooling mechanism 7 and sent to the point of use to clean the wafer. The liquid temperature of cleaning water W1 at the point of use was 10° C. The preparation conditions of this cleaning water W1 and the liquid temperature at the point of use UP are shown in Table 1. Table 2 also shows the wafer dissolution suppression effect when the wafer dissolution suppression effect of cleaning liquid W1 in Comparative Example 1 is taken as 100%, the amount of cleaning liquid W1 used compared to Comparative Example 1, and a judgment of whether recovery and reuse of cleaning liquid 1 is difficult or easy.

Figure 0007480594000001
Figure 0007480594000001

Figure 0007480594000002
Figure 0007480594000002

表1及び表2から明らかな通り、15℃に冷却した実施例1~4の洗浄水W1は、25℃の洗浄水W1ウエハを洗浄した場合と比較して、ウエハの溶解抑制効果が高く、薬液使用量も少量で希薄溶液であるので回収も比較的容易であった。また、参考例1~4から明らかなように、原料水となる超純水Wを洗浄水として用いた場合であっても、25℃である参考例1はウエハ溶解抑制効果が低いのに対し、温度を低下させるほどウエハの溶解抑制効果が高くなることから、洗浄水W1の温度を調整することで、ウエハの溶解抑制効果を調節することができることがわかる。 As is clear from Tables 1 and 2, the cleaning water W1 of Examples 1 to 4 cooled to 15°C had a higher effect of inhibiting the dissolution of the wafer than when the wafer was cleaned with cleaning water W1 at 25°C, and because the amount of chemical used was small and the solution was dilute, recovery was relatively easy. Also, as is clear from Reference Examples 1 to 4, even when ultrapure water W, which is the raw water, was used as the cleaning water, Reference Example 1 at 25°C had a low effect of inhibiting the dissolution of the wafer, whereas the lower the temperature, the higher the effect of inhibiting the dissolution of the wafer. This shows that the effect of inhibiting the dissolution of the wafer can be adjusted by adjusting the temperature of the cleaning water W1.

1 電子部品部材洗浄水製造装置
2 供給ライン
3 導電性付与剤供給装置
3A 配管
3B 開閉弁
4 酸化還元電位調整剤供給装置
4A 配管
4B 開閉弁
5 導電率計
6 ORP計
7 冷却機構
W 超純水
W1 洗浄水
UP ユースポイント
1 Electronic component cleaning water production device 2 Supply line 3 Conductivity imparting agent supply device 3A Pipe 3B Opening/closing valve 4 Oxidation-reduction potential adjuster supply device 4A Pipe 4B Opening/closing valve 5 Conductivity meter 6 ORP meter 7 Cooling mechanism W Ultrapure water W1 Cleaning water UP Use point

Claims (4)

超純水に導電性付与剤と酸化還元電位調整剤とを添加して所望とする導電性及び酸化還元電位の電子部品部材洗浄水を製造して、この電子部品部材洗浄水をユースポイントに供給する電子部品部材洗浄水の製造装置であって、
超純水供給ラインに導電性付与剤注入装置及び酸化還元電位調整剤注入装置を備え、
前記導電性及び酸化還元電位調整手段とユースポイントとの間に冷却機構を設け、
前記導電性付与剤がアンモニアである、電子部品部材洗浄水の製造装置。
An apparatus for producing cleaning water for electronic components, the apparatus producing cleaning water for electronic components having desired electrical conductivity and oxidation-reduction potential by adding an electrical conductivity imparting agent and an oxidation-reduction potential adjuster to ultrapure water, and supplying the cleaning water for electronic components to a point of use, comprising:
The ultrapure water supply line is provided with a conductivity imparting agent injection device and an oxidation-reduction potential adjusting agent injection device,
a cooling mechanism is provided between the electrical conductivity and oxidation-reduction potential adjusting means and a point of use;
The apparatus for producing electronic component washing water , wherein the conductivity imparting agent is ammonia .
前記酸化還元電位調整剤が、過酸化水素水、O又はHである、請求項に記載の電子部品部材洗浄水の製造装置。 The apparatus for producing electronic component cleaning water according to claim 1 , wherein the oxidation-reduction potential adjuster is hydrogen peroxide, O3 or H2 . 前記冷却機構が電子部品部材洗浄水を20℃以下でユースポイントに供給可能である、請求項1又は2に記載の電子部品部材洗浄水の製造装置。 3. The apparatus for producing cleaning water for electronic components according to claim 1, wherein the cooling mechanism is capable of supplying the cleaning water for electronic components to a point of use at a temperature of 20° C. or lower. 前記超純水供給ラインに導電性付与剤注入装置の下流側に導電率計又は比抵抗計を備えるとともに、前記酸化還元電位調整剤注入装置の下流側に酸化還元剤濃度計測装置又はORP計を備える、請求項1~のいずれか1項に記載の電子部品部材洗浄水の製造装置。 4. The apparatus for producing electronic component cleaning water according to claim 1, further comprising a conductivity meter or a resistivity meter provided downstream of the device for injecting a conductivity imparting agent in the ultrapure water supply line, and a device for measuring an oxidation-reduction agent concentration or an ORP meter provided downstream of the device for injecting an oxidation-reduction potential adjuster.
JP2020097521A 2020-06-04 2020-06-04 Electronic component cleaning water manufacturing equipment Active JP7480594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020097521A JP7480594B2 (en) 2020-06-04 2020-06-04 Electronic component cleaning water manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020097521A JP7480594B2 (en) 2020-06-04 2020-06-04 Electronic component cleaning water manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2021190652A JP2021190652A (en) 2021-12-13
JP7480594B2 true JP7480594B2 (en) 2024-05-10

Family

ID=78847532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020097521A Active JP7480594B2 (en) 2020-06-04 2020-06-04 Electronic component cleaning water manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7480594B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207271A (en) 2012-03-29 2013-10-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2016143872A (en) 2015-02-05 2016-08-08 株式会社Screenホールディングス Substrate processing apparatus
JP2019147112A (en) 2018-02-27 2019-09-05 栗田工業株式会社 MANUFACTURING DEVICE FOR pH AND OXIDATION REDUCTION POTENTIAL ADJUSTMENT WATER
JP2020031159A (en) 2018-08-23 2020-02-27 栗田工業株式会社 Electronic component washing water production system and operation method for electronic component washing water production system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013207271A (en) 2012-03-29 2013-10-07 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and substrate processing method
JP2016143872A (en) 2015-02-05 2016-08-08 株式会社Screenホールディングス Substrate processing apparatus
JP2019147112A (en) 2018-02-27 2019-09-05 栗田工業株式会社 MANUFACTURING DEVICE FOR pH AND OXIDATION REDUCTION POTENTIAL ADJUSTMENT WATER
JP2020031159A (en) 2018-08-23 2020-02-27 栗田工業株式会社 Electronic component washing water production system and operation method for electronic component washing water production system

Also Published As

Publication number Publication date
JP2021190652A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
JP2743823B2 (en) Semiconductor substrate wet treatment method
JP6299913B1 (en) pH / redox potential adjustment water production equipment
US8999069B2 (en) Method for producing cleaning water for an electronic material
JP6299912B1 (en) Apparatus for producing a diluted chemical solution capable of controlling pH and redox potential
TWI507522B (en) Treatment apparatus, method for manufacturing treatment liquid, and method for manufacturing electronic device
WO2019167289A1 (en) Manufacturing device for water with adjusted ph and oxidation–reduction potential
JP6427378B2 (en) Ammonia dissolved water supply system, ammonia dissolved water supply method, and ion exchange apparatus
JP7480594B2 (en) Electronic component cleaning water manufacturing equipment
JP6471816B2 (en) pH / redox potential adjustment water production equipment
JP2010135810A (en) METHOD OF CONTROLLING pH VALUE OF SOLUTION AND OXIDATION-REDUCTION POTENTIAL, AND APPARATUS
WO2020250495A1 (en) Ph-adjusted water production device
TWI724133B (en) Ammonia solution manufacturing device and ammonia solution manufacturing method
WO2019225024A1 (en) Germanium substrate cleaning water production device
WO2022070475A1 (en) Cleaning water supply device for electronic components and members, and method for supplying cleaning water for electronic components and members
JP2005117014A (en) Device and method for removing metal in etchant, device and method for etching semiconductor substrate, and etchant for semiconductor substrate
WO2022196470A1 (en) Functional aqueous solution supply apparatus
JP7099603B1 (en) Liquid supply equipment for semiconductor manufacturing
TWI724129B (en) Conductive aqueous solution manufacturing device and conductive aqueous solution manufacturing method
JP2004327610A (en) Method for removing photoresist of semiconductor wafer
Raghavan et al. Understanding and Controlling Electrochemical Effects in Wet Processing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7480594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150