JP2021190652A - Manufacturing apparatus for electronic component/member cleaning water - Google Patents

Manufacturing apparatus for electronic component/member cleaning water Download PDF

Info

Publication number
JP2021190652A
JP2021190652A JP2020097521A JP2020097521A JP2021190652A JP 2021190652 A JP2021190652 A JP 2021190652A JP 2020097521 A JP2020097521 A JP 2020097521A JP 2020097521 A JP2020097521 A JP 2020097521A JP 2021190652 A JP2021190652 A JP 2021190652A
Authority
JP
Japan
Prior art keywords
conductivity
water
electronic component
imparting agent
cleaning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020097521A
Other languages
Japanese (ja)
Other versions
JP7480594B2 (en
Inventor
祐一 小川
Yuichi Ogawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2020097521A priority Critical patent/JP7480594B2/en
Publication of JP2021190652A publication Critical patent/JP2021190652A/en
Application granted granted Critical
Publication of JP7480594B2 publication Critical patent/JP7480594B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cleaning Or Drying Semiconductors (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

To provide a manufacturing apparatus for cleaning water for an electronic component/member capable of controlling cleanability of an electronic component/electronic member by adjusting conductivity and oxidation-reduction potential.SOLUTION: An electronic component/member cleaning water manufacturing apparatus 1 comprises a conductivity imparting agent supply device 3 and an oxidation-reduction potential conditioner supply device 4 connected to a supply line 2 of ultrapure water W. A terminal of the ultrapure water supply line 2 becomes a use point UP, and a cooling mechanism 7 is provided on a pre-stage of the use point UP. A conductivity gauge 5 is provided on a post-stage of the conductivity imparting agent supply device 3 in the ultrapure water supply line 2, and an ORP gauge 6 is provided on a post-stage of the oxidation-reduction potential conditioner supply device 4, thereby controlling a supply quantity of a conductivity imparting agent and a supply quantity of an oxidation-reduction potential conditioner on the basis of measurements thereof.SELECTED DRAWING: Figure 1

Description

本発明は電子産業分野等で使用される電子部品・電子部材の洗浄水の製造装置に関し、特にアンモニアや過酸化水を添加することで、導電性と酸化還元電位を調製した電子部品や電子部材の洗浄水の洗浄性を制御可能な電子部品や電子部材の洗浄水の製造装置に関する。 The present invention relates to an apparatus for producing cleaning water for electronic parts / members used in the field of the electronic industry, etc., and particularly for electronic parts and electronic members whose conductivity and redox potential are prepared by adding ammonia or water peroxide. The present invention relates to an apparatus for producing cleaning water for electronic parts and electronic members whose washability can be controlled.

半導体ウエハや半導体デバイスなどの電子部品や電子部材の処理に使用される洗浄水として、超純水に導電率付与物質や酸化還元電位をコントロール物質、ガスを添加した溶液が使用されている。また、これらによる洗浄後のリンス工程には超純水が用いられるが、超純水はその純度が高いほど比抵抗値が高くなるため、洗浄時に静電気が発生しやすくなり、絶縁膜の静電破壊や微粒子の再付着を招くといった問題があることが知られている。そのため、超純水に炭酸ガスやアンモニアなどを溶解した希薄な薬液をリンス水とすることでpH調整を行い、静電気を低減して上述したような問題に取り組んでいる。 As cleaning water used for processing electronic parts and electronic members such as semiconductor wafers and semiconductor devices, a solution obtained by adding a conductivity-imparting substance, a redox potential control substance, and a gas to ultrapure water is used. In addition, ultrapure water is used in the rinsing process after cleaning by these, but the higher the purity of ultrapure water, the higher the specific resistance value, so static electricity is likely to be generated during cleaning, and static electricity of the insulating film is likely to occur. It is known that there are problems such as destruction and reattachment of fine particles. Therefore, the pH is adjusted by using a dilute chemical solution in which carbon dioxide gas, ammonia, etc. are dissolved in ultrapure water as rinse water to reduce static electricity and tackle the above-mentioned problems.

ところで、近年では、ウエハを洗浄する際に、ウエハ表面の所定の物質を溶解せずに洗浄するニーズが増えている。このためには、ウエハ材料に応じて、特定の洗浄薬液を調製し、この洗浄薬液により洗浄を行っていた。 By the way, in recent years, when cleaning a wafer, there is an increasing need for cleaning the wafer surface without dissolving a predetermined substance. For this purpose, a specific cleaning chemical solution was prepared according to the wafer material, and cleaning was performed with this cleaning chemical solution.

しかしながら、ウエハ材料に応じて洗浄薬液を調製していたのでは高価であり、この洗浄薬液を含む排水を回収して洗浄薬液を再利用するのは困難で、薬品コストもかかるという問題点がある。 However, it is expensive to prepare the cleaning chemical solution according to the wafer material, and it is difficult to recover the wastewater containing the cleaning chemical solution and reuse the cleaning chemical solution, and there is a problem that the chemical cost is high. ..

そこで、従来から半導体基板のウェット洗浄方法であるRCA洗浄で使用されているアンモニア水と過酸化水素水と水との混合液を洗浄液として用いることが考えられる。例えば、図2に示すように、洗浄液の製造装置11は、超純水Wの供給ライン12に開閉弁13Bを備えた配管13Aを介して接続された導電性付与剤としてのアンモニア水供給装置13と、開閉弁14Bを備えた配管14Aを介して接続された酸化還元電位調整剤としての過酸化水素水供給装置14とを備え、超純水供給ライン12の末端はユースポイントUPとなっている。そして、超純水供給ライン12のアンモニア水供給装置13の後段には導電率計15が設けられているとともに、過酸化水素水供給装置14の後段にはORP計6が設けられていて、これらの測定値に基づいて、アンモニア水供給装置13からのアンモニア水の供給量及び過酸化水素水供給装置14からの過酸化水素水の供給量を制御可能となっている。 Therefore, it is conceivable to use a mixed solution of ammonia water, hydrogen peroxide solution, and water, which has been conventionally used in RCA cleaning, which is a wet cleaning method for semiconductor substrates, as a cleaning solution. For example, as shown in FIG. 2, the cleaning liquid manufacturing apparatus 11 is an ammonia water supply apparatus 13 as a conductivity-imparting agent connected to a supply line 12 of ultrapure water W via a pipe 13A provided with an on-off valve 13B. And a hydrogen peroxide water supply device 14 as an oxidation-reduction potential adjusting agent connected via a pipe 14A provided with an on-off valve 14B, and the end of the ultrapure water supply line 12 is a use point UP. .. A conductivity meter 15 is provided at the rear stage of the ammonia water supply device 13 of the ultrapure water supply line 12, and an ORP meter 6 is provided at the rear stage of the hydrogen peroxide water supply device 14. It is possible to control the supply amount of ammonia water from the ammonia water supply device 13 and the supply amount of hydrogen peroxide water from the hydrogen peroxide water supply device 14 based on the measured values of.

このような洗浄液製造装置11では、超純水Wにアンモニア水を添加してpHをアルカリ側として導電性を高めるとともに、過酸化水素水を添加して酸化還元電位を正の方向に高めて、このアルカリ性の洗浄液によりウエハを洗浄することで、化学反応でウエハ表面をエッチングして除去することを基本メカニズムとしていることから、ウエハ表面の所定の材料のみを溶解させるという、溶解性のコントロールが困難である、という問題点がある。この対策として希薄な薬液を調整することが考えられるが、希薄な薬液を調整するには限界があり、そのままではやはりウエハ表面の所定の材料のみを溶解させるという、溶解性のコントロールが困難である。 In such a cleaning liquid manufacturing apparatus 11, ammonia water is added to ultrapure water W to increase the conductivity with the pH on the alkaline side, and hydrogen peroxide water is added to increase the redox potential in the positive direction. Since the basic mechanism is to remove the wafer surface by etching it by a chemical reaction by cleaning the wafer with this alkaline cleaning solution, it is difficult to control the solubility by dissolving only a predetermined material on the wafer surface. There is a problem that it is. As a countermeasure, it is conceivable to adjust a dilute chemical solution, but there is a limit to adjusting the dilute chemical solution, and it is still difficult to control the solubility by dissolving only a predetermined material on the wafer surface as it is. ..

本発明は上記課題に鑑みてなされたものであり、導電性と酸化還元電位を調製し、電子部品・電子部材の洗浄性を制御可能な電子部品や電子部材の洗浄水の製造装置を提供することを目的とする。 The present invention has been made in view of the above problems, and provides an apparatus for producing cleaning water for electronic components and electronic components, which can adjust the conductivity and redox potential and control the cleaning properties of electronic components and electronic components. The purpose is.

上記目的に鑑み、本発明は、超純水に導電性付与剤と酸化還元電位調整剤とを添加して所望とする導電性及び酸化還元電位の電子部品部材洗浄水を製造して、この電子部品部材洗浄水をユースポイントに供給する電子部品部材洗浄水の製造装置であって、超純水供給ラインに導電性付与剤注入装置及び酸化還元電位調整剤注入装置を備え、前記導電性及び酸化還元電位調整手段とユースポイントとの間に冷却機構を設けた、電子部品部材洗浄水の製造装置を提供する(発明1)。 In view of the above object, the present invention comprises adding a conductivity-imparting agent and a redox potential adjusting agent to ultrapure water to produce desired electrical component member washing water having a conductivity and a redox potential, and producing the electrons. An electronic component cleaning water manufacturing device that supplies component cleaning water to use points. The ultrapure water supply line is equipped with a conductivity-imparting agent injection device and a redox potential adjuster injection device, and the conductivity and oxidation Provided is an apparatus for producing washing water for electronic component members, in which a cooling mechanism is provided between the reduction potential adjusting means and the point of use (Invention 1).

かかる発明(発明1)によれば、超純水に導電性付与剤と酸化還元電位調整剤を微量添加して電子部品部材洗浄水を調製し、この電子部品部材洗浄水を冷却機構で所定の温度に冷却してユースポイントに供給することにより、電子部品部材洗浄水の活性を低下させ、ウエハなどの電子部品部材の溶解を抑制することができる。しかも、導電性付与剤と酸化還元電位調整剤を微量添加した希薄溶液とすることで、ウエハなどの電子部品部材の表面の所定の材料のみを溶解させるという溶解性のコントロールが可能となる。 According to the present invention (Invention 1), a small amount of a conductivity-imparting agent and an oxidation-reduction potential adjusting agent is added to ultrapure water to prepare cleaning water for electronic component members, and the cleaning water for electronic component members is designated by a cooling mechanism. By cooling to a temperature and supplying it to the point of use, it is possible to reduce the activity of the electronic component cleaning water and suppress the melting of the electronic component such as a wafer. Moreover, by using a dilute solution in which a small amount of a conductivity-imparting agent and a redox potential adjusting agent is added, it is possible to control the solubility by dissolving only a predetermined material on the surface of an electronic component member such as a wafer.

上記発明(発明1)においては、前記導電性付与剤がアンモニアもしくは炭酸であることが好ましい(発明2)。 In the above invention (Invention 1), it is preferable that the conductivity-imparting agent is ammonia or carbonic acid (Invention 2).

かかる発明(発明2)によれば、電子部品部材洗浄水に導電性を付与しつつ、液性をアルカリ性又は酸性に調整することができ、さらにその濃度を調整することにより電子部品部材洗浄水のpHを調整することができる。 According to the present invention (Invention 2), the liquid property can be adjusted to alkaline or acidic while imparting conductivity to the electronic component member cleaning water, and by further adjusting the concentration thereof, the electronic component member cleaning water can be adjusted. The pH can be adjusted.

上記発明(発明1,2)においては、前記酸化還元電位調整剤が、過酸化水素水、O又はHであることが好ましい(発明3)。 In the above invention (invention 1), the redox potential modifiers, aqueous hydrogen peroxide is preferably O 3 or H 2 (invention 3).

かかる発明(発明2,3)によれば、電子部品部材洗浄水の酸化還元電位を正又は不に調整することができ、さらにその濃度を調整することにより電子部品部材洗浄水の酸化還元電位を調整することができる。 According to such inventions (Inventions 2 and 3), the redox potential of the electronic component cleaning water can be adjusted positively or negatively, and the redox potential of the electronic component cleaning water can be adjusted by adjusting the concentration thereof. Can be adjusted.

上記発明(発明1〜3)においては、前記冷却機構が電子部品部材洗浄水を20℃以下でユースポイントに供給可能であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), it is preferable that the cooling mechanism can supply the electronic component member cleaning water to the use point at 20 ° C. or lower (Invention 4).

かかる発明(発明4)によれば、超純水に導電性付与剤と酸化還元電位調整剤を微量添加して20℃以下に冷却した電子部品部材洗浄水をユースポイント供給することで、ウエハなどの電子部品部材の溶解を効果的に抑制することができる。 According to the present invention (Invention 4), a wafer or the like is supplied by adding a small amount of a conductivity-imparting agent and an oxidation-reduction potential adjusting agent to ultrapure water and supplying cleaning water for electronic components cooled to 20 ° C. or lower as a point of use. It is possible to effectively suppress the melting of electronic component members.

上記発明(発明1〜4)においては、前記超純水供給ラインに導電性付与剤注入装置の下流側に導電率計又は比抵抗計を備えるとともに、前記酸化還元電位調整剤注入装置の下流側に酸化還元剤濃度計測装置又はORP計を備えることが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), the ultrapure water supply line is provided with a conductivity meter or a resistivity meter on the downstream side of the conductivity-imparting agent injection device, and is provided on the downstream side of the redox potential adjuster injection device. Is preferably equipped with a redox agent concentration measuring device or an ORP meter (Invention 5).

かかる発明(発明5)によれば、超純水に導電性付与剤と酸化還元電位調整剤を微量添加した電子部品部材洗浄水の導電率やORPを測定し、この測定値に応じて導電性付与剤注入装置及び酸化還元電位調整剤注入装置からの添加量を制御することで、電子部品部材洗浄水の導電性及び酸化還元電位を調整し、ウエハなどの電子部品部材の溶解をさらに効果的に抑制することができる。 According to the present invention (Invention 5), the conductivity and ORP of the washing water of an electronic component member obtained by adding a small amount of a conductivity-imparting agent and a redox potential adjusting agent to ultrapure water are measured, and the conductivity is measured according to the measured values. By controlling the amount of addition from the agent injection device and the redox potential adjuster injection device, the conductivity and redox potential of the electronic component cleaning water can be adjusted, and the dissolution of electronic component such as wafers is more effective. Can be suppressed.

本発明の電子部品部材洗浄水の製造装置によれば、超純水に導電性付与剤と酸化還元電位調整剤を微量添加した電子部品部材洗浄水を冷却機構で所定の温度に冷却してユースポイントに供給することにより、ウエハなどの電子部品部材の溶解を抑制した洗浄が可能となる。しかも、導電性付与剤と酸化還元電位調整剤を微量添加した希薄溶液とすることで、ウエハなどの電子部品部材の表面の所定の材料のみを溶解させるという溶解性のコントロールが可能となる。 According to the electronic component cleaning water manufacturing apparatus of the present invention, the electronic component cleaning water obtained by adding a small amount of a conductivity-imparting agent and an oxidation-reduction potential adjusting agent to ultrapure water is cooled to a predetermined temperature by a cooling mechanism for use. By supplying the points, it is possible to perform cleaning while suppressing the melting of electronic component members such as wafers. Moreover, by using a dilute solution in which a small amount of a conductivity-imparting agent and a redox potential adjusting agent is added, it is possible to control the solubility by dissolving only a predetermined material on the surface of an electronic component member such as a wafer.

本発明の一実施形態による電子部品部材洗浄水の製造装置を示す概略図である。It is a schematic diagram which shows the manufacturing apparatus of the electronic component member washing water by one Embodiment of this invention. 従来の電子部品部材洗浄水の製造装置を示す概略図である。It is a schematic diagram which shows the manufacturing apparatus of the conventional electronic component member washing water.

以下、本発明の電子部品部材洗浄水の製造装置の第一の実施形態について添付図面を参照にして詳細に説明する。 Hereinafter, the first embodiment of the electronic component member washing water manufacturing apparatus of the present invention will be described in detail with reference to the accompanying drawings.

〔電子部品部材洗浄水の製造装置〕
図1は、一実施形態による電子部品部材洗浄水(以下、単に洗浄水という場合がある)の製造装置を示しており、図1において電子部品部材洗浄水製造装置1は、超純水Wの供給ライン2に開閉弁3Bを備えた配管3Aを介して接続された導電性付与剤供給装置3と、開閉弁4Bを備えた配管4Aを介して接続された酸化還元電位調整剤供給装置4とを備える。そして、超純水供給ライン2の末端はユースポイントUPとなっていて、このユースポイントUPの前段には、冷却機構7が設けられている。なお、本実施形態においては、超純水供給ライン2の導電性付与剤供給装置3の後段には導電率計5が設けられているとともに、酸化還元電位調整剤供給装置4の後段にはORP計6が設けられていて、これらの測定値に基づいて、導電性付与剤供給装置3からの導電性付与剤の供給量及び酸化還元電位調整剤供給装置4からの酸化還元電位調整剤の供給量を図示しない制御機構により制御可能となっている。
[Manufacturing equipment for cleaning water for electronic components]
FIG. 1 shows an apparatus for producing electronic component member cleaning water (hereinafter, may be simply referred to as wash water) according to an embodiment. In FIG. 1, the electronic component member wash water production apparatus 1 is made of ultrapure water W. A conductivity-imparting agent supply device 3 connected to the supply line 2 via a pipe 3A provided with an on-off valve 3B, and an oxidation-reduction potential adjusting agent supply device 4 connected via a pipe 4A provided with an on-off valve 4B. To prepare for. The end of the ultrapure water supply line 2 is a use point UP, and a cooling mechanism 7 is provided in front of the use point UP. In the present embodiment, the conductivity meter 5 is provided at the rear stage of the conductivity-imparting agent supply device 3 of the ultrapure water supply line 2, and the ORP is provided at the rear stage of the oxidation-reduction potential adjuster supply device 4. A total of 6 is provided, and based on these measured values, the supply amount of the conductivity-imparting agent from the conductivity-imparting agent supply device 3 and the supply of the oxidation-reduction potential adjuster from the oxidation-reduction potential adjuster supply device 4. The amount can be controlled by a control mechanism (not shown).

ここで、冷却機構7はチラーと呼ばれるものであり、本実施形態においてはユースポイントUPに、常温の超純水Wの流量に対して電子部品部材の洗浄水W1を20℃以下、例えば10〜20℃で供給可能な能力を有するものであることが好ましい。 Here, the cooling mechanism 7 is called a chiller, and in the present embodiment, at the use point UP, the cleaning water W1 of the electronic component member is 20 ° C. or less, for example, 10 to 10 with respect to the flow rate of the ultrapure water W at room temperature. It is preferable that it has a capacity that can be supplied at 20 ° C.

<超純水>
本実施形態において、原水となる超純水Wとは、例えば、抵抗率:18.1MΩ・cm以上、微粒子:粒径50nm以上で1000個/L以下、生菌:1個/L以下、TOC(Total Organic Carbon):1μg/L以下、全シリコン:0.1μg/L以下、金属類:1ng/L以下、イオン類:10ng/L以下、過酸化水素;30μg/L以下、水温:25±2℃のものが好適である。
<Ultrapure water>
In the present embodiment, the ultrapure water W as raw water is, for example, resistivity: 18.1 MΩ · cm or more, fine particles: 1000 cells / L or less with a particle size of 50 nm or more, viable bacteria: 1 cell / L or less, TOC. (Total Organic Carbon): 1 μg / L or less, total silicon: 0.1 μg / L or less, metals: 1 ng / L or less, ions: 10 ng / L or less, hydrogen peroxide; 30 μg / L or less, water temperature: 25 ± The one at 2 ° C. is preferable.

<導電性付与剤>
本実施形態において導電性付与剤とは、原料水である超純水Wに溶解することでイオン(アニオンまたはカチオン)を生成し、そのイオンによって超純水Wに導電性を付与する物質を意味する。このような導電性付与物質としては、酸性の付与物質としては、塩酸、硝酸、硫酸、酢酸などの液体及びCOガスなどのガス体を用いることができる。また、アルカリ性の付与剤としては、アンモニア、水酸化ナトリウム、水酸化カリウム又はTMAH等を用いることができるが、半導体ウエハの洗浄に使用される場合には、アンモニア、CO(溶解水であってもよい)が好適であり、特にアンモニアが好適である。このアンモニアは所定の濃度のアンモニア水として用いることが好ましい。これらの導電性付与剤は、洗浄液のpHなど所望とする液性に応じて適宜選択すればよい。
<Conductivity imparting agent>
In the present embodiment, the conductivity-imparting agent means a substance that generates ions (anions or cations) by dissolving in ultrapure water W, which is raw material water, and imparts conductivity to ultrapure water W by the ions. do. As such a conductivity-imparting substance, a liquid such as hydrochloric acid, nitric acid, sulfuric acid, acetic acid, or a gas body such as CO 2 gas can be used as the acid-imparting substance. Ammonia, sodium hydroxide, potassium hydroxide, TMAH, or the like can be used as the alkali-imparting agent, but when used for cleaning semiconductor wafers, ammonia, CO 2 (dissolved water) can be used. May be good), and ammonia is particularly preferable. This ammonia is preferably used as ammonia water having a predetermined concentration. These conductivity-imparting agents may be appropriately selected according to the desired liquid properties such as the pH of the cleaning liquid.

<酸化還元電位調整剤>
本実施形態において、酸化還元電位調整剤とは、原料水である超純水Wに溶解することで、酸化性あるいは還元性を付与して酸化還元電位を変動させる物質を意味する。このような酸化還元電位調整剤としては、特に制限はないが、フェリシアン化カリウムやフェロシアン化カリウムなどは、金属成分を含有するため好ましくない。したがって、酸化還元電位を高く調整する場合には、過酸化水素水などの液体やオゾンガス、酸素ガスなどのガス体を用いることができる。また、酸化還元電位を低く調整する場合にはシュウ酸、硫化水素、ヨウ化カリウムなどの液体や水素などのガス体を用いることが好ましい。半導体ウエハの洗浄に使用される場合には、過酸化水素水等の液体やオゾンガスや水素ガス等のガス体(溶解水であってもよい)が好ましく、特に酸化還元電位の制御が比較的容易であることから過酸化水素水を用いることが好ましい。これらの酸化還元電位調整剤は、洗浄液の酸化還元電位の正負など所望とする液性に応じて選択すればよい。
<Redox potential adjuster>
In the present embodiment, the redox potential adjuster means a substance that changes the redox potential by dissolving it in ultrapure water W, which is the raw material water, to impart oxidative or reducing properties. The redox potential adjusting agent is not particularly limited, but potassium ferricyanide, potassium ferrocyanide, and the like are not preferable because they contain a metal component. Therefore, when adjusting the redox potential to a high level, a liquid such as hydrogen peroxide solution or a gas body such as ozone gas or oxygen gas can be used. Further, when adjusting the redox potential to a low level, it is preferable to use a liquid such as oxalic acid, hydrogen sulfide or potassium iodide or a gas body such as hydrogen. When used for cleaning semiconductor wafers, a liquid such as hydrogen peroxide solution or a gas body such as ozone gas or hydrogen gas (which may be dissolved water) is preferable, and the redox potential is relatively easy to control. Therefore, it is preferable to use a hydrogen peroxide solution. These redox potential adjusting agents may be selected according to desired liquid properties such as positive or negative of the redox potential of the cleaning liquid.

〔電子部品部材洗浄水の製造方法〕
次に前述したような構成を有する本実施形態の電子部品部材洗浄水の製造装置を用いた電子部品部材洗浄水の製造方法について説明する。
[Manufacturing method of washing water for electronic parts]
Next, a method of manufacturing electronic component cleaning water using the electronic component cleaning water manufacturing apparatus of the present embodiment having the above-described configuration will be described.

<導電性付与工程>
まず、供給ライン2から超純水Wが供給されると、この超純水Wの流量から設定された導電率となる導電性付与剤の濃度に基づき、必要な導電性付与剤を導電性付与剤供給装置3から添加する。このとき、供給ライン2に設けられた導電率計5により導電性付与剤添加後の超純水Wの導電率を測定し、設定された導電率となるように導電性付与剤の添加量を調整することが好ましい。
<Conductivity imparting process>
First, when the ultrapure water W is supplied from the supply line 2, the necessary conductivity-imparting agent is imparted based on the concentration of the conductivity-imparting agent having the conductivity set from the flow rate of the ultrapure water W. Add from the agent supply device 3. At this time, the conductivity of the ultrapure water W after the addition of the conductivity-imparting agent is measured by the conductivity meter 5 provided in the supply line 2, and the amount of the conductivity-imparting agent added is adjusted so as to have the set conductivity. It is preferable to adjust.

上述したような導電性付与工程により、超純水Wの導電率を5μS/cm以下とすることが好ましい。超純水Wの導電率を5μS/cmを超えると、ウエハ表面の洗浄抑制効果が十分でない。したがって、導電性付与剤は極微量添加すればよい。 It is preferable that the conductivity of the ultrapure water W is 5 μS / cm or less by the conductivity imparting step as described above. If the conductivity of ultrapure water W exceeds 5 μS / cm, the effect of suppressing cleaning of the wafer surface is not sufficient. Therefore, the conductivity-imparting agent may be added in a very small amount.

<酸化還元電位調整工程>
次に、超純水Wの流量から設定された酸化還元電位となる酸化還元電位調整剤の濃度に基づき、必要な酸化還元電位調整剤を酸化還元電位調整剤供給装置4から添加する。このとき、供給ライン2に設けられたORP計6により酸化還元電位調整剤添加後の超純水Wの酸化還元電位を測定し、設定された酸化還元電位となるように酸化還元電位調整剤の添加量を調整することが好ましい。
<Redox potential adjustment process>
Next, a necessary redox potential adjuster is added from the redox potential adjuster supply device 4 based on the concentration of the redox potential adjuster that becomes the redox potential set from the flow rate of the ultrapure water W. At this time, the redox potential of the ultrapure water W after the addition of the redox potential adjuster is measured by the ORP meter 6 provided in the supply line 2, and the redox potential adjuster is adjusted so as to have the set redox potential. It is preferable to adjust the addition amount.

上述したような酸化還元電位調整工程において、超純水Wの酸化還元電位を大きくしすぎるとウエハ表面の洗浄抑制効果が十分でないことから、酸化還元電位は±10V未満程度となるように酸化還元電位調整剤を極希薄に溶解することが好ましい。超純水Wを原水とした本実施形態においては、具体的には、酸化還元電位調整剤が過酸化水素の場合には、濃度50ppm以下、特に10ppm以下とすることが好ましく、酸化還元電位調整剤がオゾン(O)の場合には、濃度10ppm以下、特に5ppm以下とすることが好ましく、酸化還元電位調整剤が水素(H)の場合には、濃度1ppm以下、特に0.5ppm以下とすることが好ましい。 In the redox potential adjusting step as described above, if the redox potential of the ultrapure water W is made too large, the effect of suppressing cleaning of the wafer surface is not sufficient. Therefore, the redox potential is reduced to less than ± 10 V. It is preferable to dissolve the potential adjuster very dilutely. In the present embodiment using ultrapure water W as raw water, specifically, when the redox potential adjusting agent is hydrogen peroxide, the concentration is preferably 50 ppm or less, particularly 10 ppm or less, and the redox potential is adjusted. When the agent is ozone (O 3 ), the concentration is preferably 10 ppm or less, particularly 5 ppm or less, and when the redox potential adjuster is hydrogen (H 3 ), the concentration is 1 ppm or less, particularly 0.5 ppm or less. Is preferable.

<冷却工程>
このようにして超純水Wを所望とする導電性及び酸化還元電位に調整した洗浄水W1は活性が高く、ウエハ表面の所定の材料のみを選択的に溶解させるなど溶解性のコントロールが困難である。そこで、ユースポイントUPには20℃以下で洗浄水W1が供給されることが好ましい。したがって、洗浄水W1を冷却機構7で0℃以上20℃未満に冷却することが好ましい。このため冷却機構7の出口での洗浄水W1の温度を測定して、冷却機構7の冷却能を制御することで所望とする温度に調整することが好ましい。
<Cooling process>
The cleaning water W1 in which the ultrapure water W is adjusted to the desired conductivity and oxidation-reduction potential has high activity, and it is difficult to control the solubility such as selectively dissolving only a predetermined material on the wafer surface. be. Therefore, it is preferable that the washing water W1 is supplied to the use point UP at 20 ° C. or lower. Therefore, it is preferable to cool the washing water W1 to 0 ° C. or higher and lower than 20 ° C. by the cooling mechanism 7. Therefore, it is preferable to measure the temperature of the washing water W1 at the outlet of the cooling mechanism 7 and adjust the temperature to a desired level by controlling the cooling capacity of the cooling mechanism 7.

なお、上記冷却工程は、並列に連結される複数のチラーを有するチラーユニットを冷却機構7として用いて、各チラーの冷却機能の低下の程度に応じて、複数のチラーの運転状態を切り替えることにより行ってもよい。複数のチラーの運転状態を切り替えることにより、使用するチラーを選択することができるので、例えば微生物等が発生して冷却機能が低下したチラーがある場合でも、チラーユニット全体の運転は停止させずに継続することができ、冷却した洗浄水W1の製造効率が向上する。 In the cooling step, a chiller unit having a plurality of chillers connected in parallel is used as the cooling mechanism 7, and the operating state of the plurality of chillers is switched according to the degree of deterioration of the cooling function of each chiller. You may go. Since the chiller to be used can be selected by switching the operating state of a plurality of chillers, for example, even if there is a chiller whose cooling function is deteriorated due to the generation of microorganisms, the operation of the entire chiller unit is not stopped. It can be continued, and the production efficiency of the cooled washing water W1 is improved.

以上のように、本実施形態の電子部品部材洗浄水の製造装置によれば、ウエハの洗浄水W1を所定の温度、特に0℃以上20℃未満の温度に冷却した低温の洗浄水W1を用いることにより、洗浄水W1の活性が低下するので、ウエハ表面の所定の材料のみを溶解させるなど洗浄水1の溶解性をコントロールすることができる。特に本実施形態によれば、低濃度の導電性付与剤及び酸化還元電位調整剤を用いることで、ウエハ表面の所定の材料のみを溶解させるなど洗浄水1の溶解性をコントロールしているので、薬液使用量を低減することができる。これにより、使用した溶液の回収再利用が容易になる、という効果も奏する。 As described above, according to the electronic component member cleaning water manufacturing apparatus of the present embodiment, the low temperature cleaning water W1 obtained by cooling the wafer cleaning water W1 to a predetermined temperature, particularly to a temperature of 0 ° C. or higher and lower than 20 ° C. is used. As a result, the activity of the washing water W1 is lowered, so that the solubility of the washing water 1 can be controlled by dissolving only a predetermined material on the surface of the wafer. In particular, according to the present embodiment, the solubility of the washing water 1 is controlled by using a low-concentration conductivity-imparting agent and a redox potential adjuster to dissolve only a predetermined material on the wafer surface. The amount of chemical solution used can be reduced. This also has the effect of facilitating the recovery and reuse of the used solution.

以上、本発明について添付図面を参照にして前記実施形態に基づき説明してきたが、本発明は前記実施形態に限定されず、種々の変更実施が可能である。例えば、導電性付与剤としてはアンモニアを用い、酸化還元電位調整剤としては過酸化水素を用いるのが一般的であるが、種々の導電性付与剤と酸化還元電位調整剤の組み合わせが可能である。また、導電性付与剤供給装置3及び酸化還元電位調整剤供給装置4から導電性付与剤及び酸化還元電位調整剤を添加せずに超純水Wを冷却して洗浄液として用いてもよい。 Although the present invention has been described above based on the above-described embodiment with reference to the accompanying drawings, the present invention is not limited to the above-described embodiment, and various modifications can be made. For example, ammonia is generally used as the conductivity-imparting agent and hydrogen peroxide is generally used as the redox potential adjuster, but various conductivity-imparting agents and redox potential adjusters can be combined. .. Further, the ultrapure water W may be cooled and used as a cleaning liquid without adding the conductivity-imparting agent and the redox potential adjuster from the conductivity-imparting agent supply device 3 and the redox potential adjuster supply device 4.

以下の具体的実施例により本発明をさらに詳細に説明する。 The present invention will be described in more detail with reference to the following specific examples.

[比較例1]
冷却機構7を有しない図1に示す洗浄液製造装置を用い、常温の超純水Wに導電性付与剤供給装置3からアンモニア水(導電性付与剤)を導電率が100μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から過酸化水素水(酸化還元電位調整剤)を100ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、アンモニア及び過酸化水素水の濃度が高く、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。
[Comparative Example 1]
Using the cleaning liquid manufacturing apparatus shown in FIG. 1 which does not have the cooling mechanism 7, ammonia water (conductivity-imparting agent) is added to the ultrapure water W at room temperature from the conductivity-imparting agent supply device 3 so that the conductivity becomes 100 μS / cm. After the addition, hydrogen peroxide solution (oxidation-reduction potential adjuster) was added from the oxidation-reduction potential adjuster supply device 4 so as to have a concentration of 100 ppm to produce wash water W1. Then, the washing water W1 was sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 25 ° C. At this time, a large amount of chemical solution (conductivity-imparting agent + redox potential adjuster) was required, the concentrations of ammonia and hydrogen peroxide solution were high, and it was difficult to recover and reuse the cleaning solution 1. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP.

[比較例2]
比較例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が1μS/cmとなるように添加した以外は同様にして洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%(抑制効果が高いほど大きいこととする)とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Comparative Example 2]
In Comparative Example 1, the washing water W1 was added in the same manner to the ultrapure water W at room temperature except that ammonia (conductivity-imparting agent) water was added from the conductivity-imparting agent supply device 3 so that the conductivity was 1 μS / cm. Manufactured. Then, the washing water W1 was sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 25 ° C. At this time, a large amount of chemical solution (conductivity-imparting agent + redox potential adjusting agent) was required, and it was difficult to recover and reuse the cleaning solution 1. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, the wafer dissolution suppressing effect when the wafer melting suppressing effect of the cleaning liquid W1 of Comparative Example 1 is 100% (the higher the suppressing effect is, the larger it is), the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the cleaning liquid 1 It is also shown in Table 2 together with the distinction between the judgment of difficulty or ease of recovery and reuse.

[比較例3]
比較例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が100μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4からオゾン(O)(酸化還元電位調整剤)を30ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Comparative Example 3]
In Comparative Example 1, ammonia (conductivity-imparting agent) water was added from the conductivity-imparting agent supply device 3 to ultrapure water W at room temperature so that the conductivity was 100 μS / cm, and then the oxidation-reduction potential adjuster was supplied. Ozone (O 3 ) (oxidation-reduction potential adjuster) was added from the apparatus 4 to 30 ppm to produce wash water W1. Then, the washing water W1 was sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 25 ° C. At this time, a large amount of chemical solution (conductivity-imparting agent + redox potential adjusting agent) was required, and it was difficult to recover and reuse the cleaning solution 1. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

[比較例4]
比較例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が100μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から水素(H)(酸化還元電位調整剤)を1.2ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Comparative Example 4]
In Comparative Example 1, ammonia (conductivity-imparting agent) water was added from the conductivity-imparting agent supply device 3 to ultrapure water W at room temperature so that the conductivity was 100 μS / cm, and then the oxidation-reduction potential adjuster was supplied. Hydrogen (H 2 ) (oxidation-reduction potential adjuster) was added from the apparatus 4 to 1.2 ppm to produce wash water W1. Then, the washing water W1 was sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 25 ° C. At this time, a large amount of chemical solution (conductivity-imparting agent + redox potential adjusting agent) was required, and it was difficult to recover and reuse the cleaning solution 1. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

[比較例5]
比較例1において、常温の超純水Wに導電性付与剤供給装置3からCO(導電性付与剤)を導電率が10μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から過酸化水素水(酸化還元電位調整剤)を100ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1をユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)を多量に必要とし、洗浄液1の回収再利用は困難であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Comparative Example 5]
In Comparative Example 1, CO 2 (conductivity-imparting agent) was added from the conductivity-imparting agent supply device 3 to ultrapure water W at room temperature so that the conductivity was 10 μS / cm, and then the redox potential adjuster was supplied. Washing water W1 was produced by adding hydrogen peroxide solution (oxidation-reduction potential adjuster) from the apparatus 4 so as to have a concentration of 100 ppm. Then, the washing water W1 was sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 25 ° C. At this time, a large amount of chemical solution (conductivity-imparting agent + redox potential adjusting agent) was required, and it was difficult to recover and reuse the cleaning solution 1. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

[実施例1]
図1に示す洗浄液製造装置を用いて、常温の超純水Wに導電性付与剤供給装置3からアンモニア水(導電性付与剤)を導電率が1μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から過酸化水素(酸化還元電位調整剤)を5ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)の使用量は比較例1と比べて少量であり、アンモニア水及び過酸化水素水の濃度が低く、洗浄液1の回収再利用は比較的容易であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Example 1]
Using the cleaning liquid manufacturing apparatus shown in FIG. 1, ammonia water (conductivity-imparting agent) was added from the conductivity-imparting agent supply device 3 to ultrapure water W at room temperature so that the conductivity was 1 μS / cm, and then Washing water W1 was produced by adding hydrogen peroxide (oxidation-reduction potential adjusting agent) to 5 ppm from the oxidation-reduction potential adjusting agent supply device 4. Then, the washing water W1 was cooled by the cooling mechanism 7 and sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 15 ° C. At this time, the amount of the chemical solution (conductivity-imparting agent + redox potential adjuster) used was smaller than that of Comparative Example 1, the concentrations of the ammonia water and the hydrogen peroxide solution were low, and the recovery and reuse of the cleaning solution 1 was compared. It was easy. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

[実施例2]
実施例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が1μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4からオゾン(O)(酸化還元電位調整剤)を2ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)の使用量は比較例1と比べて少量であり、洗浄液1の回収再利用は比較的容易であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Example 2]
In Example 1, ammonia (conductivity-imparting agent) water is added to ultrapure water W at room temperature from the conductivity-imparting agent supply device 3 so that the conductivity becomes 1 μS / cm, and then the oxidation-reduction potential adjuster is supplied. Ozone (O 3 ) (oxidation-reduction potential adjuster) was added from the apparatus 4 to 2 ppm to produce wash water W1. Then, the washing water W1 was cooled by the cooling mechanism 7 and sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 15 ° C. At this time, the amount of the chemical solution (conductiveness-imparting agent + redox potential adjuster) used was smaller than that of Comparative Example 1, and the recovery and reuse of the cleaning solution 1 was relatively easy. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

[実施例3]
実施例1において、常温の超純水Wに導電性付与剤供給装置3からアンモニア(導電性付与剤)水を導電率が1μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から水素(H)(酸化還元電位調整剤)を0.2ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)の使用量は比較例1と比べて少量であり、洗浄液1の回収再利用は比較的容易であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Example 3]
In Example 1, ammonia (conductivity-imparting agent) water is added to ultrapure water W at room temperature from the conductivity-imparting agent supply device 3 so that the conductivity becomes 1 μS / cm, and then the oxidation-reduction potential adjuster is supplied. Hydrogen (H 2 ) (oxidation-reduction potential adjuster) was added from the apparatus 4 to 0.2 ppm to produce wash water W1. Then, the washing water W1 was cooled by the cooling mechanism 7 and sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 15 ° C. At this time, the amount of the chemical solution (conductiveness-imparting agent + redox potential adjuster) used was smaller than that of Comparative Example 1, and the recovery and reuse of the cleaning solution 1 was relatively easy. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

[実施例4]
実施例1において、常温の超純水Wに導電性付与剤供給装置3からCO(導電性付与剤)を導電率が1μS/cmとなるように添加し、次に酸化還元電位調整剤供給装置4から過酸化水素(酸化還元電位調整剤)を5ppmとなるよう添加して洗浄水W1を製造した。そして、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この際、薬液(導電性付与剤+酸化還元電位調整剤)の使用量は比較例1と比べて少量であり、洗浄液1の回収再利用は比較的容易であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Example 4]
In Example 1, CO 2 (conductivity-imparting agent) is added from the conductivity-imparting agent supply device 3 to ultrapure water W at room temperature so that the conductivity is 1 μS / cm, and then the redox potential adjuster is supplied. Washing water W1 was produced by adding hydrogen peroxide (oxidation-reduction potential adjuster) to 5 ppm from the apparatus 4. Then, the washing water W1 was cooled by the cooling mechanism 7 and sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 15 ° C. At this time, the amount of the chemical solution (conductiveness-imparting agent + redox potential adjuster) used was smaller than that of Comparative Example 1, and the recovery and reuse of the cleaning solution 1 was relatively easy. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

[参考例1]
比較例1において、常温の超純水Wに導電性付与剤及び酸化還元電位調整剤を添加せず、そのまま洗浄水W1としてユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は25℃であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解の抑制効果、ウエハ溶解抑制効果を比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Reference Example 1]
In Comparative Example 1, the wafer was washed by sending the ultrapure water W at room temperature as the washing water W1 as it was without adding the conductivity-imparting agent and the redox potential adjusting agent. The liquid temperature of the washing water W1 at the use point was 25 ° C. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is 100%, the wafer melting suppressing effect and the wafer melting suppressing effect are compared with those of Comparative Example 1, and the amount of the cleaning liquid W1 used and the recovery and reuse of the cleaning liquid 1 are used. Table 2 also shows the distinction between difficult or easy judgments.

[参考例2]
実施例1において、常温の超純水Wをそのまま洗浄水W1として、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は20℃であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Reference Example 2]
In Example 1, the ultrapure water W at room temperature was used as the washing water W1 as it was, and the washing water W1 was cooled by the cooling mechanism 7 and sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 20 ° C. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

[参考例3]
実施例1において、常温の超純水Wをそのまま洗浄水W1として、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は15℃であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%(抑制効果が高いほど大きくなる)とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Reference Example 3]
In Example 1, the ultrapure water W at room temperature was used as the washing water W1 as it was, and the washing water W1 was cooled by the cooling mechanism 7 and sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 15 ° C. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, the wafer dissolution suppressing effect when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is 100% (the higher the suppressing effect is, the greater), the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the recovery of the cleaning liquid 1. Table 2 shows the distinction between difficult or easy reuse.

[参考例4]
実施例1において、常温の超純水Wをそのまま洗浄水W1として、この洗浄水W1を冷却機構7で冷却してユースポイントに送液してウエハを洗浄した。ユースポイントでの洗浄水W1の液温は10℃であった。この洗浄水W1の調整条件及びユースポイントUPにおける液温を表1に示す。また、比較例1の洗浄液W1のウエハ溶解抑制効果を100%とした場合のウエハ溶解抑制効果、比較例1と対比した洗浄液W1の使用量及び洗浄液1の回収再利用の困難又は容易の判断の区別とともに表2にあわせて示す。
[Reference example 4]
In Example 1, the ultrapure water W at room temperature was used as the washing water W1 as it was, and the washing water W1 was cooled by the cooling mechanism 7 and sent to the use point to wash the wafer. The liquid temperature of the washing water W1 at the use point was 10 ° C. Table 1 shows the adjustment conditions of the washing water W1 and the liquid temperature at the point of use UP. Further, when the wafer dissolution suppressing effect of the cleaning liquid W1 of Comparative Example 1 is set to 100%, the wafer dissolution suppressing effect, the amount of the cleaning liquid W1 used as compared with Comparative Example 1, and the difficulty or ease of recovery and reuse of the cleaning liquid 1 are judged. It is shown in Table 2 together with the distinction.

Figure 2021190652
Figure 2021190652

Figure 2021190652
Figure 2021190652

表1及び表2から明らかな通り、15℃に冷却した実施例1〜4の洗浄水W1は、25℃の洗浄水W1ウエハを洗浄した場合と比較して、ウエハの溶解抑制効果が高く、薬液使用量も少量で希薄溶液であるので回収も比較的容易であった。また、参考例1〜4から明らかなように、原料水となる超純水Wを洗浄水として用いた場合であっても、25℃である参考例1はウエハ溶解抑制効果が低いのに対し、温度を低下させるほどウエハの溶解抑制効果が高くなることから、洗浄水W1の温度を調整することで、ウエハの溶解抑制効果を調節することができることがわかる。 As is clear from Tables 1 and 2, the washing water W1 of Examples 1 to 4 cooled to 15 ° C. has a higher effect of suppressing dissolution of the wafer as compared with the case of washing the washing water W1 wafer at 25 ° C. Since the amount of the chemical solution used was small and the solution was a dilute solution, recovery was relatively easy. Further, as is clear from Reference Examples 1 to 4, even when ultrapure water W as a raw material water is used as cleaning water, Reference Example 1 having a temperature of 25 ° C. has a low effect of suppressing wafer melting. Since the effect of suppressing the melting of the wafer increases as the temperature is lowered, it can be seen that the effect of suppressing the melting of the wafer can be adjusted by adjusting the temperature of the washing water W1.

1 電子部品部材洗浄水製造装置
2 供給ライン
3 導電性付与剤供給装置
3A 配管
3B 開閉弁
4 酸化還元電位調整剤供給装置
4A 配管
4B 開閉弁
5 導電率計
6 ORP計
7 冷却機構
W 超純水
W1 洗浄水
UP ユースポイント
1 Electronic component cleaning water production equipment 2 Supply line 3 Conductivity imparting agent supply device 3A Piping 3B On-off valve 4 Redox potential regulator supply device 4A Piping 4B On-off valve 5 Conductivity meter 6 ORP total 7 Cooling mechanism W Ultrapure water W1 wash water UP use point

Claims (5)

超純水に導電性付与剤と酸化還元電位調整剤とを添加して所望とする導電性及び酸化還元電位の電子部品部材洗浄水を製造して、この電子部品部材洗浄水をユースポイントに供給する電子部品部材洗浄水の製造装置であって、
超純水供給ラインに導電性付与剤注入装置及び酸化還元電位調整剤注入装置を備え、
前記導電性及び酸化還元電位調整手段とユースポイントとの間に冷却機構を設けた、電子部品部材洗浄水の製造装置。
A conductivity-imparting agent and an oxidation-reduction potential adjuster are added to ultrapure water to produce desired electrical component cleaning water with conductivity and oxidation-reduction potential, and this electronic component cleaning water is supplied to use points. It is a manufacturing device for cleaning water for electronic parts and parts.
The ultrapure water supply line is equipped with a conductivity-imparting agent injection device and a redox potential adjuster injection device.
An apparatus for producing washing water for electronic component members, provided with a cooling mechanism between the conductive and redox potential adjusting means and a point of use.
前記導電性付与剤がアンモニアもしくは炭酸である、請求項1に記載の電子部品部材洗浄水の製造装置。 The apparatus for producing washing water for electronic components according to claim 1, wherein the conductivity-imparting agent is ammonia or carbonic acid. 前記酸化還元電位調整剤が、過酸化水素水、O又はHである、請求項1又は2に記載の電子部品部材洗浄水の製造装置。 The redox potential modifiers, aqueous hydrogen peroxide, an O 3 or H 2, the electronic component member cleaning water production apparatus according to claim 1 or 2. 前記冷却機構が電子部品部材洗浄水を20℃以下でユースポイントに供給可能である、請求項1〜3のいずれか1項に記載の電子部品部材洗浄水の製造装置。 The apparatus for producing electronic component cleaning water according to any one of claims 1 to 3, wherein the cooling mechanism can supply electronic component cleaning water to a use point at 20 ° C. or lower. 前記超純水供給ラインに導電性付与剤注入装置の下流側に導電率計又は比抵抗計を備えるとともに、前記酸化還元電位調整剤注入装置の下流側に酸化還元剤濃度計測装置又はORP計を備える、請求項1〜4のいずれか1項に記載の電子部品部材洗浄水の製造装置。 The ultrapure water supply line is equipped with a conductivity meter or a specific resistance meter on the downstream side of the conductivity-imparting agent injection device, and a redox agent concentration measuring device or an ORP meter is provided on the downstream side of the redox potential adjusting agent injection device. The apparatus for producing cleaning water for electronic component members according to any one of claims 1 to 4.
JP2020097521A 2020-06-04 2020-06-04 Electronic component cleaning water manufacturing equipment Active JP7480594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020097521A JP7480594B2 (en) 2020-06-04 2020-06-04 Electronic component cleaning water manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020097521A JP7480594B2 (en) 2020-06-04 2020-06-04 Electronic component cleaning water manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2021190652A true JP2021190652A (en) 2021-12-13
JP7480594B2 JP7480594B2 (en) 2024-05-10

Family

ID=78847532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020097521A Active JP7480594B2 (en) 2020-06-04 2020-06-04 Electronic component cleaning water manufacturing equipment

Country Status (1)

Country Link
JP (1) JP7480594B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5963075B2 (en) 2012-03-29 2016-08-03 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP6571942B2 (en) 2015-02-05 2019-09-04 株式会社Screenホールディングス Substrate processing equipment
JP7087444B2 (en) 2018-02-27 2022-06-21 栗田工業株式会社 Equipment for producing pH / redox potential adjusted water
JP7099172B2 (en) 2018-08-23 2022-07-12 栗田工業株式会社 How to operate the washing water manufacturing system for electronic parts and the washing water manufacturing system for electronic parts

Also Published As

Publication number Publication date
JP7480594B2 (en) 2024-05-10

Similar Documents

Publication Publication Date Title
JP2743823B2 (en) Semiconductor substrate wet treatment method
JP6299913B1 (en) pH / redox potential adjustment water production equipment
US20030094610A1 (en) Wash water or immersion water used during semiconductor manufacturing
JP6299912B1 (en) Apparatus for producing a diluted chemical solution capable of controlling pH and redox potential
JP7087444B2 (en) Equipment for producing pH / redox potential adjusted water
TWI517235B (en) Semiconductor substrate cleaning system and cleaning method of semiconductor substrate
JP2000354729A (en) Method and apparatus for producing functional water for washing
JP2021190652A (en) Manufacturing apparatus for electronic component/member cleaning water
JP6471816B2 (en) pH / redox potential adjustment water production equipment
TW202037706A (en) Semiconductor wafer treatment liquid containing hypochlorite ions and ph buffer
JP2010135810A (en) METHOD OF CONTROLLING pH VALUE OF SOLUTION AND OXIDATION-REDUCTION POTENTIAL, AND APPARATUS
JP2017005142A (en) CLEANING METHOD FOR Ge, SiGe OR GERMANIDE
JP4151927B2 (en) Semiconductor substrate cleaning method
WO2020250495A1 (en) Ph-adjusted water production device
WO2022070475A1 (en) Cleaning water supply device for electronic components and members, and method for supplying cleaning water for electronic components and members
WO2019225024A1 (en) Germanium substrate cleaning water production device
JP7099603B1 (en) Liquid supply equipment for semiconductor manufacturing
WO2018104992A1 (en) Ge, sige or germanide washing method
WO2022054320A1 (en) Cleaning water supply device for electronic components and members, and method for supplying cleaning water for electronic components and members
WO2022102252A1 (en) Production device for ph/redox potential–adjusted water
Raghavan et al. Understanding and Controlling Electrochemical Effects in Wet Processing
JP2022173817A (en) Process solution supply device for semiconductor manufacturing and method for processing semiconductor material
JP2001284295A (en) Chemical mechanical polishing method and chemical mechanical polishing device
JP2007050355A (en) Sulfuric acid recycling type cleaning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7480594

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150