JP7478374B2 - Electromagnetic wave shielding material and signal processing unit including same - Google Patents

Electromagnetic wave shielding material and signal processing unit including same Download PDF

Info

Publication number
JP7478374B2
JP7478374B2 JP2019546052A JP2019546052A JP7478374B2 JP 7478374 B2 JP7478374 B2 JP 7478374B2 JP 2019546052 A JP2019546052 A JP 2019546052A JP 2019546052 A JP2019546052 A JP 2019546052A JP 7478374 B2 JP7478374 B2 JP 7478374B2
Authority
JP
Japan
Prior art keywords
shielding material
resin
electromagnetic wave
electromagnetic
wave shielding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019546052A
Other languages
Japanese (ja)
Other versions
JPWO2019235561A5 (en
JPWO2019235561A1 (en
Inventor
哲 荻野
佳介 増田
正樹 西内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Artience Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Artience Co Ltd filed Critical Artience Co Ltd
Publication of JPWO2019235561A1 publication Critical patent/JPWO2019235561A1/en
Publication of JPWO2019235561A5 publication Critical patent/JPWO2019235561A5/ja
Application granted granted Critical
Publication of JP7478374B2 publication Critical patent/JP7478374B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、電磁波シールド材及びこれを備える信号処理ユニットに関し、特に、周辺環境からレーダーを保護するとともに、レーダーの信号伝達を阻害しないレーダーカバーに好適に用いることができる電磁波シールド材及びこれを備える信号処理ユニットに関する。なお、本明細書において「シールド」とは、吸収すなわち反射損失、遮蔽すなわち透過損失の少なくとも一方の意味で用いる。The present invention relates to an electromagnetic shielding material and a signal processing unit equipped with the same, and in particular to an electromagnetic shielding material suitable for use in a radar cover that protects a radar from the surrounding environment and does not impede radar signal transmission, and a signal processing unit equipped with the same. Note that in this specification, "shield" is used to mean at least one of absorption, i.e., reflection loss, and shielding, i.e., transmission loss.

特許文献1には、熱可塑性樹脂85重量%から95重量% 、カーボンナノチューブ1重量%から5重量%及びカーボンブラック3重量%から10重量%を含み、また前記カーボンナノチューブ及びカーボンブラックを3:7から1:7の重量比を含むことにより、優れた機械的物性とともにレーダー保護用として要求される電磁波の反射損失及び透過損失をバランス良く現わすレーダーカバー用熱可塑性樹脂組成物について開示されている。
特表2016-504471号公報
Patent Document 1 discloses a thermoplastic resin composition for radar covers that contains 85% to 95% by weight of a thermoplastic resin, 1% to 5% by weight of carbon nanotubes, and 3% to 10% by weight of carbon black, and contains the carbon nanotubes and carbon black in a weight ratio of 3:7 to 1:7, thereby providing excellent mechanical properties and a good balance of the reflection loss and transmission loss of electromagnetic waves required for radar protection.
JP 2016-504471 A

ここで、特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物は、周辺環境からレーダーを十分に保護するとともに、レーダーの信号伝達を阻害しないようにするためには、電磁波の反射損失及び透過損失について、改善の余地があることがわかった。Here, it has been found that the thermoplastic resin composition for radar covers disclosed in Patent Document 1 has room for improvement in terms of electromagnetic wave reflection loss and transmission loss in order to adequately protect the radar from the surrounding environment while not impeding radar signal transmission.

具体的には、特許文献1に開示されているレーダーカバーは、2dBから9dB範囲の電磁波の反射損失、及び、3dBから12dB範囲の電磁波の透過損失が得られる旨が記載されているが(0036段落)、本発明者らの知見によれば、約60GHz~約110GHzの周波数帯域では、電磁波の反射損失と電磁波の透過損失との兼ね合いにもよるが、典型例を示すと、電磁波の反射損失は約5dB以上、電磁波の透過損失は約15dB以上であることが必要である。Specifically, the radar cover disclosed in Patent Document 1 is described as being able to obtain an electromagnetic wave reflection loss in the range of 2 dB to 9 dB and an electromagnetic wave transmission loss in the range of 3 dB to 12 dB (paragraph 0036), but according to the inventors' findings, in the frequency band of approximately 60 GHz to approximately 110 GHz, typically the electromagnetic wave reflection loss needs to be approximately 5 dB or more and the electromagnetic wave transmission loss needs to be approximately 15 dB or more, although this depends on the balance between the electromagnetic wave reflection loss and the electromagnetic wave transmission loss.

なお、本発明者らの知見に基づき、上記のような条件の数値が必要であるという根拠は、以下のとおりである。すなわち、電磁波の透過損失に着目すると、電磁波の透過損失が例えば20dBであれば、電磁波の遮蔽率は90%であるから、電磁波シールド材の第1面から入射した電磁波は、電磁波シールド材の第2面から出射する際には90%が減衰され10%となる。Based on the findings of the inventors, the reasons why the numerical values of the above conditions are necessary are as follows: In other words, when focusing on the transmission loss of electromagnetic waves, if the transmission loss of electromagnetic waves is, for example, 20 dB, the electromagnetic wave shielding rate is 90%, so that the electromagnetic waves incident on the first surface of the electromagnetic shielding material are attenuated by 90% to 10% when they are emitted from the second surface of the electromagnetic shielding material.

そして、残った電磁波が何らかの部材に衝突し、そこで反射されて、再び、第2面を通じて電磁波シールド材に入射すると、電磁波シールド材の第1面から出射する際には、その90%が減衰され10%となる。したがって、この例では、当初の電磁波に対して99%が減衰することになる。 If the remaining electromagnetic waves collide with some other component, are reflected there, and then enter the electromagnetic shielding material again through the second surface, 90% of the waves will be attenuated to 10% when they leave the first surface of the electromagnetic shielding material. Therefore, in this example, the initial electromagnetic waves will be attenuated by 99%.

このように考えてみると、透過損失が優れていれば、反射損失については5dB程度あれば十分ということができる。さらに、信頼性の高い電磁波シールド材を提供しようとするならば、電磁波シールド材の製造誤差などを原因として発生する個体差であったり、電磁波シールド材の使用環境であったりなどを考慮して、電磁波シールド材のユーザに対する品質保証の観点から、更に幾分かの電磁波の遮蔽をすればよいといえる。Considering this, if the transmission loss is excellent, a reflection loss of about 5 dB can be said to be sufficient. Furthermore, if one wishes to provide a highly reliable electromagnetic shielding material, it would be sufficient to provide some more electromagnetic shielding from the perspective of quality assurance for users of the electromagnetic shielding material, taking into consideration individual differences caused by manufacturing errors in the electromagnetic shielding material and the environment in which the electromagnetic shielding material is used.

そうすると、電磁波シールド材を設置する個所の近傍に、金属などのように電磁波の遮蔽機能がある他のものが存在している場合には、反射損失が約6dBもあれば十分であろうと考えられ、また、電磁波の遮蔽機能がある他のものが存在していない場合であっても、反射損失が約7dBもあれば十分であろうと考えられる。 Therefore, if there is something else with electromagnetic wave shielding function, such as metal, near the location where the electromagnetic shielding material is to be installed, a reflection loss of approximately 6 dB would be sufficient, and even if there is no other thing with electromagnetic wave shielding function present, a reflection loss of approximately 7 dB would be sufficient.

一方、電磁波の反射損失に着目してみると、電磁波の反射損失が5dBであれば、電磁波の吸収率は50%であり、更に透過損失が20dBであれば、吸収率は90%であるから、100という電磁波のうち50%が反射されるとともに、残りの50%の電磁波のうち90%が遮蔽されるので、結果的には電磁波シールド材の出射面から出射される電磁波は5%まで低減されるとも考えられる。On the other hand, if we look at the reflection loss of electromagnetic waves, if the reflection loss of electromagnetic waves is 5 dB, the absorption rate of electromagnetic waves is 50%, and if the transmission loss is 20 dB, the absorption rate is 90%, so 50% of 100 electromagnetic waves is reflected and 90% of the remaining 50% electromagnetic waves is shielded, so that the electromagnetic waves emitted from the exit surface of the electromagnetic wave shielding material are reduced to 5%.

したがって、電磁波の反射損失は約5dB以上、電磁波の透過損失は約15dB以上であることが必要であるということがいえるのである。 Therefore, it can be said that the reflection loss of electromagnetic waves must be approximately 5 dB or more, and the transmission loss of electromagnetic waves must be approximately 15 dB or more.

なお、ここでは電磁波の透過損失が20dBであることを前提に説明したが、これが仮に15dBとなっても、電磁波の遮蔽率は約82%であるので、反射損失が5dBであれば、残り約18%の電磁波は約9%まで低減できるし、必要であれば、反射損失が例えば6dBという条件の電磁波シールド材を用いればよいということになる。 Note that the explanation here is based on the assumption that the electromagnetic wave transmission loss is 20 dB, but even if this is reduced to 15 dB, the electromagnetic wave shielding rate is approximately 82%, so if the reflection loss is 5 dB, the remaining approximately 18% of electromagnetic waves can be reduced to approximately 9%, and if necessary, an electromagnetic wave shielding material with a reflection loss of, for example, 6 dB can be used.

以上の考察から、本発明は、少なくとも90%以上の遮蔽性能が得られる電磁波シールド材を提供することを課題とする。 Based on the above considerations, the objective of the present invention is to provide an electromagnetic wave shielding material that can achieve shielding performance of at least 90%.

上記課題を解決するために、本発明の電磁波シールド材及びこれを備える信号処理ユニットは、
主成分となる樹脂と、
電磁波の反射損失50%以上になる分量で前記樹脂に含有される電磁波遮蔽物質1と、
電磁波の透過損失80%以上になる分量で前記樹脂に含有される電磁波遮蔽物質2と、
を含む。
In order to solve the above problems, the electromagnetic shielding material and the signal processing unit including the same according to the present invention are
The main component is resin,
an electromagnetic wave shielding material 1 contained in the resin in an amount such that the reflection loss of electromagnetic waves is 50% or more;
an electromagnetic wave shielding material 2 contained in the resin in an amount such that the electromagnetic wave transmission loss is 80% or more;
including.

前記樹脂は熱可塑性樹脂とすることができ、前記各電磁波遮蔽物質はナノカーボンとすることができる。 The resin may be a thermoplastic resin, and each of the electromagnetic wave shielding materials may be nanocarbon.

より詳しく一例をあげると、前記樹脂は、ポリオレフィン、ポリフェニレンサルファイド、ポリアミド、ポリカーボネート、ポリブチレン、ポリエーテルイミドなどのいずれか又はこれらのうちいくつかを任意に組合せることができる。前記各電磁波遮蔽物質は、カーボンナノチューブ、カーボンブラック、カーボンナノコイル、カーボンナノファイバー、グラフェン、フラーレンなどのうち、電磁波の反射損失の上昇に寄与する電磁波遮蔽物質1と、電磁波の透過損失の上昇に寄与する電磁波遮蔽物質2とを、任意に組合せることができる。いくつかを任意に組合せることができる。 More specifically, the resin may be any one of polyolefin, polyphenylene sulfide, polyamide, polycarbonate, polybutylene, polyetherimide, etc., or any combination of several of these. The electromagnetic wave shielding materials may be any combination of an electromagnetic wave shielding material 1 that contributes to an increase in the reflection loss of electromagnetic waves and an electromagnetic wave shielding material 2 that contributes to an increase in the transmission loss of electromagnetic waves, among carbon nanotubes, carbon black, carbon nanocoils, carbon nanofibers, graphene, fullerene, etc., or any combination of several of these materials.

また、前記各電磁波遮蔽物質を前記樹脂に対して分散させる分散剤を含んでもよい。前記分散剤は天然・半合成・合成ワックスのいずれかとすることができる。より詳しく一例をあげると、前記分散剤は、パラフィンワックス、モンタンワックス、アマイドワックス、エチレン-ビス-ステアラミド、脂肪酸金属塩、シリコーン、ポリオレフィンワックスなどのいずれか又はこれらのうちいくつかを任意に組合せることができる。 The resin may also contain a dispersant that disperses the electromagnetic wave shielding materials in the resin. The dispersant may be any of natural, semi-synthetic, and synthetic waxes. In more detail, the dispersant may be any of paraffin wax, montan wax, amide wax, ethylene-bis-stearamide, fatty acid metal salts, silicone, polyolefin wax, etc., or any combination of these.

なお、本発明の電磁波シールド材の製造工程は限定的でなく、例えば、プレス加工を採用してもよいし、射出加工を採用してもよい。なお、プレス加工を採用した場合には、電磁波シールド材の表面抵抗率は、概ね、250Ω/□~750Ω/□であり、電磁波シールド材の厚さが2mm~6mmという条件においては、300Ω/□~500Ω/□程度のものが好適な遮蔽性能を有することが分かった。The manufacturing process of the electromagnetic shielding material of the present invention is not limited, and may be, for example, press processing or injection processing. When press processing is used, the surface resistivity of the electromagnetic shielding material is generally 250 Ω/□ to 750 Ω/□, and it has been found that a surface resistivity of about 300 Ω/□ to 500 Ω/□ has suitable shielding performance when the thickness of the electromagnetic shielding material is 2 mm to 6 mm.

また、本発明の信号処理ユニットは、電磁波シールド材を有する自動車用近接レーダー、携帯電話機・スマートフォン・PDA・タブレット端末・パーソナルコンピュータを含む通信機器、各種近接レーダーとすることができる。 In addition, the signal processing unit of the present invention can be used as an automotive proximity radar having electromagnetic shielding material, communication devices including mobile phones, smartphones, PDAs, tablet terminals, and personal computers, and various proximity radars.

実施例1の電磁波シールド材の透過損失を示す図である。FIG. 4 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 1. 実施例1の電磁波シールド材の反射損失を示す図である。FIG. 4 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 1. 実施例2の電磁波シールド材の透過損失を示す図である。FIG. 11 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 2. 実施例2の電磁波シールド材の反射損失を示す図である。FIG. 11 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 2. 実施例3の電磁波シールド材の透過損失を示す図である。FIG. 11 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 3. 実施例3の電磁波シールド材の反射損失を示す図である。FIG. 11 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 3. 実施例4の電磁波シールド材の透過損失を示す図である。FIG. 11 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 4. 実施例4の電磁波シールド材の反射損失を示す図である。FIG. 11 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 4. 実施例5の電磁波シールド材の透過損失を示す図である。FIG. 13 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 5. 実施例5の電磁波シールド材の反射損失を示す図である。FIG. 13 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 5. 実施例6の電磁波シールド材の透過損失を示す図である。FIG. 13 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 6. 実施例6の電磁波シールド材の反射損失を示す図である。FIG. 13 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 6. 実施例7の電磁波シールド材の透過損失を示す図である。FIG. 13 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 7. 実施例7の電磁波シールド材の反射損失を示す図である。FIG. 13 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 7. 実施例8の電磁波シールド材の透過損失を示す図である。FIG. 13 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 8. 実施例8の電磁波シールド材の反射損失を示す図である。FIG. 13 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 8. 実施例9の電磁波シールド材の透過損失を示す図である。FIG. 13 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 9. 実施例9の電磁波シールド材の反射損失を示す図である。FIG. 13 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 9.

以下、本発明の実施形態について図表を用いて説明する。 Below, an embodiment of the present invention is explained using diagrams and charts.

本実施形態の電磁波シールド材は、
(1)主成分となる樹脂と、
(2)樹脂に含有される電磁波遮蔽物質と、
を含むことが必須である。
さらに、選択的に、樹脂に対して電磁波遮蔽物質を分散させる分散剤を含めることもできる。なお、本実施形態の電磁波シールド材自体は、金属物質を含有していない。
The electromagnetic wave shielding material of this embodiment is
(1) a resin as a main component;
(2) an electromagnetic wave shielding material contained in the resin;
It is essential to include
Furthermore, a dispersant for dispersing the electromagnetic shielding material in the resin may be optionally included. Note that the electromagnetic shielding material of this embodiment itself does not contain any metal material.

本実施形態の電磁波シールド材は、反射損失は約6dB以上とし、透過損失は約15dB以上の性能とすることで、たとえ、電磁波シールド材の製造誤差、個体差などがあっても、製造品のほぼ全てが総合的に見た場合に、電磁波の90%程度の遮蔽を実現できるようにしている。なお、このような性能となる電磁波遮蔽体をプレス加工によって製造する場合には、表面抵抗率が約300Ω/□~約500Ω/□となることがわかった。もっとも、プレス加工に代えて、射出加工などの他の加工を採用することもできる。この場合には、表面抵抗率には大きな変化があろうが、体積抵抗率・導電率には理論上変化はない。 The electromagnetic shielding material of this embodiment has a reflection loss of about 6 dB or more and a transmission loss of about 15 dB or more, so that even if there are manufacturing errors or individual differences in the electromagnetic shielding material, almost all manufactured products can achieve approximately 90% shielding of electromagnetic waves when viewed overall. It has been found that when an electromagnetic shielding body with such performance is manufactured by press processing, the surface resistivity is about 300 Ω/□ to about 500 Ω/□. However, other processes such as injection processing can be used instead of press processing. In this case, there will be a large change in the surface resistivity, but theoretically there will be no change in the volume resistivity and conductivity.

なお、本実施形態の電磁波シールド材と特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物との相違点を明らかにするために、特許文献1に開示されている性能について付言すると、実施例1~3のものとしては、それぞれ、反射損失は、6dB、5dB、3dBであり、透過損失は、3dB、3dB、5dB以上である、とされている。In addition, in order to clarify the differences between the electromagnetic wave shielding material of this embodiment and the thermoplastic resin composition for radar covers disclosed in Patent Document 1, the performance disclosed in Patent Document 1 will be described in addition, with respect to Examples 1 to 3, the reflection losses are 6 dB, 5 dB, and 3 dB, and the transmission losses are 3 dB, 3 dB, and 5 dB or more, respectively.

両者を対比すると、実施例1の反射損失こそ6dBが得られているものの、その透過損失は3dBしかなく、実施例2,3のものは反射損失についても透過損失についても本実施形態のものに比して良い性能が得られていない。いずれにしても、特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物は、本実施形態の電磁波シールド材とは、その遮蔽特性が大きく異なることがわかる。Comparing the two, while Example 1 achieved a reflection loss of 6 dB, its transmission loss was only 3 dB, and Examples 2 and 3 did not achieve better performance in terms of reflection loss or transmission loss than the present embodiment. In any case, it can be seen that the thermoplastic resin composition for radar covers disclosed in Patent Document 1 has significantly different shielding properties from the electromagnetic wave shielding material of the present embodiment.

また、樹脂は熱可塑性樹脂とすることができ、より詳しく一例をあげると、ポリオレフィン、ポリフェニレンスルファイド、ポリアミド、ポリイミド、ポリアミドイミド、ポリカーボネート、ポリアセタール、ポリエーテルスルホン、ポリブチレン、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルイミド、ポリアルキレンテレフタレート、ポリスルホン、ポリスチレン、シンジオタクチックポリスチレン、アクリロニトリルブタジエンスチレン、ポリフェニレンオキシド、アクリル系樹脂、液晶重合体樹脂などのいずれか又はこれらのうちいくつかを任意に組合せることができる。The resin may be a thermoplastic resin, and more specifically, examples of the resin may include polyolefin, polyphenylene sulfide, polyamide, polyimide, polyamideimide, polycarbonate, polyacetal, polyethersulfone, polybutylene, polyetherimide, polyetherketone, polyetherimide, polyalkylene terephthalate, polysulfone, polystyrene, syndiotactic polystyrene, acrylonitrile butadiene styrene, polyphenylene oxide, acrylic resins, liquid crystal polymer resins, etc., or any combination of these.

さらに、電磁波遮蔽物質は、電磁波の反射損失と透過損失との上昇に寄与する、一種類又は数種類のナノカーボンとすることができる。典型的には、カーボンナノチューブ、カーボンブラック、カーボンナノコイル、カーボンナノファイバー、グラフェン、フラーレンなどのうち、電磁波の反射損失の上昇に寄与するものと、電磁波の透過損失の上昇に寄与するものとを、任意に組合せることができるが、単一のナノカーボンを選択することもできる。 Furthermore, the electromagnetic wave shielding material may be one or several kinds of nanocarbons that contribute to increasing the reflection loss and transmission loss of electromagnetic waves. Typically, among carbon nanotubes, carbon black, carbon nanocoils, carbon nanofibers, graphene, fullerene, etc., those that contribute to increasing the reflection loss of electromagnetic waves and those that contribute to increasing the transmission loss of electromagnetic waves may be arbitrarily combined, but a single nanocarbon may also be selected.

このうち、電磁波の反射損失の上昇に寄与するものとしてはカーボンナノチューブ、電磁波の透過損失の上昇に寄与するものとしてはカーボンブラックが、市場での入手容易なものとして挙げられる。カーボンナノチューブについては、0.5nm~20nmの平均内径を有するものとすることができる。カーボンブラックについては、二次平均粒径が10μm~200μmのものとすることができる。 Among these, carbon nanotubes contribute to an increase in the reflection loss of electromagnetic waves, and carbon black contributes to an increase in the transmission loss of electromagnetic waves, and are easily available on the market. Carbon nanotubes can have an average inner diameter of 0.5 nm to 20 nm. Carbon black can have an average secondary particle diameter of 10 μm to 200 μm.

さらにまた、選択的に電磁波シールド材に含めることが可能な分散剤は、天然・半合成・合成ワックスのいずれかとすることができ、パラフィンワックス、モンタンワックス、アマイドワックス、エチレン-ビス-ステアラミド、脂肪酸金属塩、シリコーン、ポリオレフィンワックスなどのいずれか又はこれらのうちいくつかを任意に組合せることができる。Furthermore, the dispersant that can be selectively included in the electromagnetic shielding material can be any of natural, semi-synthetic, or synthetic waxes, and can be any of paraffin wax, montan wax, amide wax, ethylene-bis-stearamide, fatty acid metal salts, silicone, polyolefin wax, etc., or any combination of several of these.

樹脂と電磁波遮蔽物質との混合割合は、樹脂としてポリプロピレン、電磁波遮蔽物質1としてカーボンナノチューブ、電磁波遮蔽物質2としてカーボンブラックを用いた場合には、[樹脂:電磁波遮蔽物質1:電磁波遮蔽物質2=約90重量%:約0.1重量%~約1重量%:約10重量]とすることができ、分散剤を用いる場合には、樹脂の分量を5%~40%程度減らして、その代わりに、分散剤を混合すればよい。The mixing ratio of resin and electromagnetic shielding material, when using polypropylene as the resin, carbon nanotubes as electromagnetic shielding material 1, and carbon black as electromagnetic shielding material 2, can be [resin: electromagnetic shielding material 1: electromagnetic shielding material 2 = approximately 90% by weight: approximately 0.1% by weight to approximately 1% by weight: approximately 10% by weight]. When using a dispersant, the amount of resin can be reduced by approximately 5% to 40%, and the dispersant can be mixed in instead.

もっとも、本発明者らの考察によれば、分散剤としては、市場流通性・価格などに着目すると、ポリエチレンワックスが選択しやすく、ポリエチレンワックス又はこれに類する分散剤を選択する場合には、樹脂等として選択する材料にもよるが、樹脂の分量を5%~20%程度減らして、その代わりに、ポリエチレンワックス等を混合すればよい。However, according to the inventors' considerations, polyethylene wax is an easy choice as a dispersant when market availability and price are taken into consideration. When polyethylene wax or a similar dispersant is selected, the amount of resin can be reduced by about 5% to 20%, depending on the material selected as the resin, etc., and polyethylene wax, etc. can be mixed in instead.

なお、特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物について付言すると、特許文献1には分散剤について考察及び言及がなされていないので、この点は明らかではないが、[熱可塑性樹脂:カーボンナノチューブ:カーボンブラック=85重量%~95重量%:1重量%~5重量%:3重量%~10重量%]であり、かつ、[カーボンナノチューブ:カーボンブラック=3:7~1:7]の重量比である。 In addition, with regard to the thermoplastic resin composition for radar covers disclosed in Patent Document 1, there is no discussion or mention of dispersants in Patent Document 1, so this point is not clear, but the composition is [thermoplastic resin: carbon nanotubes: carbon black = 85% by weight to 95% by weight: 1% by weight to 5% by weight: 3% by weight to 10% by weight] and the weight ratio is [carbon nanotubes: carbon black = 3:7 to 1:7].

したがって、本実施形態の電磁波遮材は、カーボンナノチューブの組成割合が相対的に少ないという点で、特許文献1に開示されているレーダーカバー用熱可塑性樹脂組成物とは異なる。そして、一般的に、電磁波遮材を構成するもののうち、カーボンナノチューブは高価であることから、相対的にカーボンナノチューブの混合量を少なくできるということは、本実施形態の電磁波遮材は、安価に実現できるということになる。Therefore, the electromagnetic wave shielding material of this embodiment differs from the thermoplastic resin composition for radar covers disclosed in Patent Document 1 in that the composition ratio of carbon nanotubes is relatively small. And since carbon nanotubes are generally expensive among the components that make up an electromagnetic wave shielding material, being able to relatively reduce the amount of carbon nanotubes mixed means that the electromagnetic wave shielding material of this embodiment can be realized at low cost.

以下、本発明の実施例の電磁波シールド材について、樹脂としてポリプロピレンを主成分としたもの、電磁波遮蔽物質1としてカーボンナノチューブ、電磁波遮蔽物質2としてカーボンブラックを用いて行った場合を例に説明する。また、実施例1~実施例4では、電磁波シールド材の厚さを約2mmとし、実施例5~実施例9では、電磁波シールド材の厚さを約6mmとした。 Below, the electromagnetic shielding material of the embodiment of the present invention will be described using as an example a resin mainly composed of polypropylene, carbon nanotubes as electromagnetic shielding material 1, and carbon black as electromagnetic shielding material 2. In addition, in Examples 1 to 4, the thickness of the electromagnetic shielding material was approximately 2 mm, and in Examples 5 to 9, the thickness of the electromagnetic shielding material was approximately 6 mm.

このような厚さとした理由は、厚さが2mmのものについては、例えばADASのレーダーのように、電磁波シールド材を設置する個所の近傍に、金属などのように電磁波の遮蔽機能がある他のものが存在していて、かつ、電磁波シールド材の設置スペースが相対的に小さい場合に好適に用いることができる条件を想定しただけである。The reason for setting this thickness is that a thickness of 2 mm is assumed to be suitable for use in cases where there is something else with electromagnetic wave shielding function, such as metal, near the location where the electromagnetic shielding material is to be installed, such as an ADAS radar, and the installation space for the electromagnetic shielding material is relatively small.

また、厚さが6mmのものについては、例えばADASのレーダーと当該レーダーを自動車に取り付けるために取付部とが一体となったレーダユニットのように、電磁波シールド材を設置する個所の近傍に、金属などのように電磁波の遮蔽機能がある他のものが存在しているが存在していて、かつ、電磁波シールド材の設置スペースが相対的に大きい場合に好適に用いることができる条件を想定しただけである。 In addition, with regard to the 6 mm thickness, we have only assumed conditions under which the electromagnetic shielding material can be suitably used when there is another object with electromagnetic wave shielding function, such as metal, near the location where the electromagnetic shielding material is to be installed, such as a radar unit in which an ADAS radar is integrated with a mounting portion for attaching the radar to an automobile, and the installation space for the electromagnetic shielding material is relatively large.

なお、レーダーでは、そのアンテナから放射されるバックローブが、その電子制御ユニット(ECU)に到達することを回避するために、電磁波シールド材を用いることが考えられる。そうすると、これに限定されるものではないが、一例をあげると、電磁波シールド材を電子制御ユニット自体に貼付することが考えられる。In addition, in order to prevent the back lobe emitted from the radar antenna from reaching the electronic control unit (ECU), it is possible to use an electromagnetic shielding material. One example, but not limited to this, is to attach the electromagnetic shielding material to the electronic control unit itself.

また、レーダユニットでは、その取付部に貼付する、又は、この一部或いは全部の材料とすることが考えられる。さらに、レーダーがホーン型アンテナを備える場合には、当該アンテナの外側に貼付することも考えられる。In addition, in the case of a radar unit, it is conceivable that the label may be attached to the mounting portion, or may be used as a part or all of the material of the mounting portion. Furthermore, if the radar is equipped with a horn-type antenna, it is conceivable that the label may be attached to the outside of the antenna.

ここで、上記のように、電磁波シールド材の厚さを2mm、6mmとすることは、技術的観点からすると、それほど意味を持たないので、これらの厚さに限定されるものではない点には留意されたい。したがって、電磁波シールド材の用途及び設置環境に応じて要求される遮蔽性能を満たすものを、実施例1~実施例9の中から適宜選択して、信号処理ユニットに備えればよい。It should be noted that, as stated above, setting the thickness of the electromagnetic shielding material to 2 mm or 6 mm does not mean much from a technical point of view, and therefore the thickness is not limited to these thicknesses. Therefore, it is sufficient to select from Examples 1 to 9 an electromagnetic shielding material that satisfies the shielding performance required depending on the application and installation environment of the material, and provide it in the signal processing unit.

もっとも、実施例1~実施例9に示す製造条件は例示的であり、例えば、カーボンナノチューブの混合量が実施例1よりは少ないが、実施例2よりも多い条件で製造された電磁波シールド材が、信号処理ユニットへ採用できることが除外されるわけではない点についても留意されたい。 However, it should be noted that the manufacturing conditions shown in Examples 1 to 9 are illustrative, and it is not excluded that an electromagnetic shielding material manufactured under conditions in which the amount of carbon nanotubes mixed is less than that in Example 1 but more than that in Example 2 can be used in a signal processing unit.

(実施例1)
樹脂:約88.80wt%
電磁波遮蔽物質1:約1.200wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造した。
Example 1
Resin: Approximately 88.80 wt%
Electromagnetic wave shielding material 1: about 1.200 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 2 mm by a known method.

なお、実施例1の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約2.00S/mであり、表面抵抗率は約250Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 1 were measured, the electrical conductivity was approximately 2.00 S/m and the surface resistivity was approximately 250 Ω/□.

図1は、実施例1の電磁波シールド材の透過損失を示す図である。図1の横軸には周波数[GHz]を示し、図1の縦軸には透過損失[dB]を示している。図1に示すように、実施例1の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が20dB以上であることがわかる。 Figure 1 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 1. The horizontal axis of Figure 1 shows frequency [GHz], and the vertical axis of Figure 1 shows transmission loss [dB]. As shown in Figure 1, it can be seen that the electromagnetic shielding material of Example 1 has a transmission loss of 20 dB or more over the entire frequency band from 75 GHz to 110 GHz.

図2は、実施例1の電磁波シールド材の反射損失を示す図である。図2の横軸には周波数[GHz]を示し、図2の縦軸には反射損失[dB]を示している。図2に示すように、実施例1の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が6dB以上であることがわかる。 Figure 2 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 1. The horizontal axis of Figure 2 shows frequency [GHz], and the vertical axis of Figure 2 shows reflection loss [dB]. As shown in Figure 2, it can be seen that the electromagnetic shielding material of Example 1 has a reflection loss of 6 dB or more over the entire frequency band from 75 GHz to 110 GHz.

(実施例2)
樹脂:約89.30wt%
電磁波遮蔽物質1:約0.700wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造した。
Example 2
Resin: Approximately 89.30 wt%
Electromagnetic wave shielding material 1: about 0.700 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 2 mm by a known method.

なお、実施例2の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約1.67S/mであり、表面抵抗率は約300Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 2 were measured, the electrical conductivity was approximately 1.67 S/m and the surface resistivity was approximately 300 Ω/□.

図3は、実施例2の電磁波シールド材の透過損失を示す図である。図3の横軸には周波数[GHz]を示し、図3の縦軸には透過損失[dB]を示している。図3に示すように、実施例2の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が20dB以上であることがわかる。 Figure 3 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 2. The horizontal axis of Figure 3 shows frequency [GHz], and the vertical axis of Figure 3 shows transmission loss [dB]. As shown in Figure 3, it can be seen that the electromagnetic shielding material of Example 2 has a transmission loss of 20 dB or more over the entire frequency band from 75 GHz to 110 GHz.

図4は、実施例2の電磁波シールド材の反射損失を示す図である。図4の横軸には周波数[GHz]を示し、図4の縦軸には反射損失[dB]を示している。図4に示すように、実施例2の電磁波シールド材は、60GHz~90GHzの周波数帯域全体に亘り、反射損失が6dB以上であることがわかる。 Figure 4 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 2. The horizontal axis of Figure 4 shows frequency [GHz], and the vertical axis of Figure 4 shows reflection loss [dB]. As shown in Figure 4, it can be seen that the electromagnetic shielding material of Example 2 has a reflection loss of 6 dB or more over the entire frequency band from 60 GHz to 90 GHz.

(実施例3)
樹脂:約89.40wt%
電磁波遮蔽物質1:約0.600wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造した。
Example 3
Resin: Approximately 89.40 wt%
Electromagnetic wave shielding material 1: about 0.600 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 2 mm by a known method.

なお、実施例3の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約1.25S/mであり、表面抵抗率は約400Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 3 were measured, the electrical conductivity was approximately 1.25 S/m and the surface resistivity was approximately 400 Ω/□.

図5は、実施例3の電磁波シールド材の透過損失を示す図である。図5の横軸には周波数[GHz]を示し、図5の縦軸には透過損失[dB]を示している。図5に示すように、実施例3の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失がほぼ20dB以上であることがわかる。 Figure 5 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 3. The horizontal axis of Figure 5 shows frequency [GHz], and the vertical axis of Figure 5 shows transmission loss [dB]. As shown in Figure 5, it can be seen that the electromagnetic shielding material of Example 3 has a transmission loss of approximately 20 dB or more over the entire frequency band from 75 GHz to 110 GHz.

図6は、実施例3の電磁波シールド材の反射損失を示す図である。図6の横軸には周波数[GHz]を示し、図6の縦軸には反射損失[dB]を示している。図6に示すように、実施例3の電磁波シールド材は、60GHz~90GHzの周波数帯域全体に亘り、反射損失が6dB以上であることがわかる。 Figure 6 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 3. The horizontal axis of Figure 6 shows frequency [GHz], and the vertical axis of Figure 6 shows reflection loss [dB]. As shown in Figure 6, it can be seen that the electromagnetic shielding material of Example 3 has a reflection loss of 6 dB or more over the entire frequency band from 60 GHz to 90 GHz.

(実施例4)
樹脂:約89.37wt%
電磁波遮蔽物質1:約0.630wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造した。
Example 4
Resin: about 89.37 wt%
Electromagnetic wave shielding material 1: about 0.630 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 2 mm by a known method.

なお、実施例4の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約1.00S/mであり、表面抵抗率は約500Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 4 were measured, the electrical conductivity was approximately 1.00 S/m and the surface resistivity was approximately 500 Ω/□.

図7は、実施例4の電磁波シールド材の透過損失を示す図である。図7の横軸には周波数[GHz]を示し、図7の縦軸には透過損失[dB]を示している。図7に示すように、実施例4の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が15dB以上であることがわかる。 Figure 7 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 4. The horizontal axis of Figure 7 shows frequency [GHz], and the vertical axis of Figure 7 shows transmission loss [dB]. As shown in Figure 7, it can be seen that the electromagnetic shielding material of Example 4 has a transmission loss of 15 dB or more over the entire frequency band from 75 GHz to 110 GHz.

図8は、実施例4の電磁波シールド材の反射損失を示す図である。図8の横軸には周波数[GHz]を示し、図8の縦軸には反射損失[dB]を示している。図8に示すように、実施例4の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が6dB以上であることがわかる。 Figure 8 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 4. The horizontal axis of Figure 8 shows frequency [GHz], and the vertical axis of Figure 8 shows reflection loss [dB]. As shown in Figure 8, it can be seen that the electromagnetic shielding material of Example 4 has a reflection loss of 6 dB or more over the entire frequency band from 75 GHz to 110 GHz.

(実施例5)
樹脂:約89.73wt%
電磁波遮蔽物質1:約0.270wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
Example 5
Resin: about 89.73 wt%
Electromagnetic wave shielding material 1: about 0.270 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 6 mm by a known method.

なお、実施例5の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.67S/mであり、表面抵抗率は約250Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 5 were measured, the electrical conductivity was approximately 0.67 S/m and the surface resistivity was approximately 250 Ω/□.

図9は、実施例5の電磁波シールド材の透過損失を示す図である。図9の横軸には周波数[GHz]を示し、図9の縦軸には透過損失[dB]を示している。図9に示すように、実施例5の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が30dB以上であり、とりわけ、約90GHz~110GHzの周波数帯域全体では、遮蔽性能が40dB以上であることがわかる。 Figure 9 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 5. The horizontal axis of Figure 9 shows frequency [GHz], and the vertical axis of Figure 9 shows transmission loss [dB]. As shown in Figure 9, the electromagnetic shielding material of Example 5 has a transmission loss of 30 dB or more over the entire frequency band of 75 GHz to 110 GHz, and in particular, it can be seen that the shielding performance is 40 dB or more over the entire frequency band of approximately 90 GHz to 110 GHz.

図10は、実施例5の電磁波シールド材の反射損失を示す図である。図10の横軸には周波数[GHz]を示し、図10の縦軸には反射損失[dB]を示している。図10に示すように、実施例5の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が8dB以上であることがわかる。 Figure 10 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 5. The horizontal axis of Figure 10 shows frequency [GHz], and the vertical axis of Figure 10 shows reflection loss [dB]. As shown in Figure 10, it can be seen that the electromagnetic shielding material of Example 5 has a reflection loss of 8 dB or more over the entire frequency band from 75 GHz to 110 GHz.

(実施例6)
樹脂:約89.76wt%
電磁波遮蔽物質1:約0.240wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
Example 6
Resin: about 89.76 wt%
Electromagnetic wave shielding material 1: about 0.240 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 6 mm by a known method.

なお、実施例6の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.56S/mであり、表面抵抗率は約300Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 6 were measured, the electrical conductivity was approximately 0.56 S/m and the surface resistivity was approximately 300 Ω/□.

図11は、実施例6の電磁波シールド材の透過損失を示す図である。図11の横軸には周波数[GHz]を示し、図11の縦軸には透過損失[dB]を示している。図11に示すように、実施例6の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が35dB以上であり、とりわけ、約90GHz~110GHzの周波数帯域全体では、遮蔽性能が40dB以上であることがわかる。 Figure 11 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 6. The horizontal axis of Figure 11 shows frequency [GHz], and the vertical axis of Figure 11 shows transmission loss [dB]. As shown in Figure 11, the electromagnetic shielding material of Example 6 has a transmission loss of 35 dB or more over the entire frequency band of 75 GHz to 110 GHz, and in particular, it can be seen that the shielding performance is 40 dB or more over the entire frequency band of approximately 90 GHz to 110 GHz.

図12は、実施例6の電磁波シールド材の反射損失を示す図である。図12の横軸には周波数[GHz]を示し、図12の縦軸には反射損失[dB]を示している。図12に示すように、実施例6の電磁波シールド材は、60GHz~90GHzの周波数帯域全体に亘り、反射損失が約7dB以上であることがわかる。 Figure 12 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 6. The horizontal axis of Figure 12 shows frequency [GHz], and the vertical axis of Figure 12 shows reflection loss [dB]. As shown in Figure 12, it can be seen that the electromagnetic shielding material of Example 6 has a reflection loss of approximately 7 dB or more over the entire frequency band from 60 GHz to 90 GHz.

(実施例7)
樹脂:約89.775wt%
電磁波遮蔽物質1:約0.225wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
(Example 7)
Resin: about 89.775 wt%
Electromagnetic wave shielding material 1: about 0.225 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 6 mm by a known method.

なお、実施例7の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.56S/mであり、表面抵抗率は約400Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 7 were measured, the electrical conductivity was approximately 0.56 S/m and the surface resistivity was approximately 400 Ω/□.

図13は、実施例7の電磁波シールド材の透過損失を示す図である。図13の横軸には周波数[GHz]を示し、図13の縦軸には透過損失[dB]を示している。図13に示すように、実施例7の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が30dB以上であり、とりわけ、約80GHz~100GHzの周波数帯域全体では、遮蔽性能が35dB以上、約100GHz~110GHzの周波数帯域全体では、遮蔽性能が40dB以上、であることがわかる。 Figure 13 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 7. The horizontal axis of Figure 13 shows frequency [GHz], and the vertical axis of Figure 13 shows transmission loss [dB]. As shown in Figure 13, the electromagnetic shielding material of Example 7 has a transmission loss of 30 dB or more over the entire frequency band of 75 GHz to 110 GHz, and in particular, the shielding performance is 35 dB or more over the entire frequency band of approximately 80 GHz to 100 GHz, and the shielding performance is 40 dB or more over the entire frequency band of approximately 100 GHz to 110 GHz.

図14は、実施例7の電磁波シールド材の反射損失を示す図である。図14の横軸には周波数[GHz]を示し、図14の縦軸には反射損失[dB]を示している。図14に示すように、実施例7の電磁波シールド材は、60GHz~90GHzの周波数帯域全体に亘り、反射損失が8dB以上であることがわかる。 Figure 14 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 7. The horizontal axis of Figure 14 shows frequency [GHz], and the vertical axis of Figure 14 shows reflection loss [dB]. As shown in Figure 14, it can be seen that the electromagnetic shielding material of Example 7 has a reflection loss of 8 dB or more over the entire frequency band from 60 GHz to 90 GHz.

(実施例8)
樹脂:約89.91wt%
電磁波遮蔽物質1:約0.09wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
(Example 8)
Resin: Approximately 89.91 wt%
Electromagnetic wave shielding material 1: about 0.09 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 6 mm by a known method.

なお、実施例8の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.33S/mであり、表面抵抗率は約500Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 8 were measured, the electrical conductivity was approximately 0.33 S/m and the surface resistivity was approximately 500 Ω/□.

図15は、実施例8の電磁波シールド材の透過損失を示す図である。図15の横軸には周波数[GHz]を示し、図15の縦軸には透過損失[dB]を示している。図15に示すように、実施例8の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が30dB以上であることがわかる。 Figure 15 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 8. The horizontal axis of Figure 15 shows frequency [GHz], and the vertical axis of Figure 15 shows transmission loss [dB]. As shown in Figure 15, it can be seen that the electromagnetic shielding material of Example 8 has a transmission loss of 30 dB or more over the entire frequency band from 75 GHz to 110 GHz.

図16は、実施例8の電磁波シールド材の反射損失を示す図である。図16の横軸には周波数[GHz]を示し、図16の縦軸には反射損失[dB]を示している。図16に示すように、実施例8の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が8dB以上であることがわかる。 Figure 16 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 8. The horizontal axis of Figure 16 shows frequency [GHz], and the vertical axis of Figure 16 shows reflection loss [dB]. As shown in Figure 16, it can be seen that the electromagnetic shielding material of Example 8 has a reflection loss of 8 dB or more over the entire frequency band from 75 GHz to 110 GHz.

(実施例9)
樹脂:約89.928wt%
電磁波遮蔽物質1:約0.072wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約6mmの厚さの電磁波シールド材を製造した。
Example 9
Resin: Approximately 89.928 wt%
Electromagnetic wave shielding material 1: about 0.072 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The mixture was mixed and appropriately stirred using a twin-screw extruder so as to disperse the mixture uniformly, and then pressed into an electromagnetic shielding material having a thickness of about 6 mm by a known method.

なお、実施例9の電磁波シールド材について、導電率及び表面抵抗率を測定してみたところ、導電率は約0.33S/mであり、表面抵抗率は約750Ω/□であった。When the electrical conductivity and surface resistivity of the electromagnetic shielding material of Example 9 were measured, the electrical conductivity was approximately 0.33 S/m and the surface resistivity was approximately 750 Ω/□.

図17は、実施例9の電磁波シールド材の透過損失を示す図である。図17の横軸には周波数[GHz]を示し、図17の縦軸には透過損失[dB]を示している。図17に示すように、実施例9の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、透過損失が30dB以上であることがわかる。 Figure 17 is a diagram showing the transmission loss of the electromagnetic shielding material of Example 9. The horizontal axis of Figure 17 shows frequency [GHz], and the vertical axis of Figure 17 shows transmission loss [dB]. As shown in Figure 17, it can be seen that the electromagnetic shielding material of Example 9 has a transmission loss of 30 dB or more over the entire frequency band from 75 GHz to 110 GHz.

図18は、実施例9の電磁波シールド材の反射損失を示す図である。図18の横軸には周波数[GHz]を示し、図18の縦軸には反射損失[dB]を示している。図18に示すように、実施例9の電磁波シールド材は、75GHz~110GHzの周波数帯域全体に亘り、反射損失が7dB以上であることがわかる。 Figure 18 is a diagram showing the reflection loss of the electromagnetic shielding material of Example 9. The horizontal axis of Figure 18 shows frequency [GHz], and the vertical axis of Figure 18 shows reflection loss [dB]. As shown in Figure 18, it can be seen that the electromagnetic shielding material of Example 9 has a reflection loss of 7 dB or more over the entire frequency band from 75 GHz to 110 GHz.

(比較例1)
樹脂:約89.5wt%
電磁波遮蔽物質1:約0.5wt%
電磁波遮蔽物質2:約10.00wt%
を混合し、これらが均一に分散するように二軸押出機を用いることによって適宜撹拌させ、プレス加工をするなど既知の手法によって、約2mmの厚さの電磁波シールド材を製造したものは、95GHz未満の透過損失が15dBを下回ったので、所要の遮蔽性能が得られないことが分かった。
(Comparative Example 1)
Resin: Approximately 89.5 wt%
Electromagnetic wave shielding material 1: about 0.5 wt%
Electromagnetic wave shielding material 2: about 10.00 wt%
The above ingredients were mixed, appropriately stirred using a twin-screw extruder so that they were uniformly dispersed, and then pressed into an electromagnetic shielding material having a thickness of about 2 mm. However, the transmission loss at frequencies below 95 GHz was less than 15 dB, indicating that the required shielding performance could not be obtained.

実施例1~9の電磁波シールド材の各々について、電磁波の反射損失は自由空間法によって、透過損失はASTM D4935に基づいて測定した。具体的には、反射損失は実施例1~9の電磁波シールド材に対して75GHzから110GHzの電磁波を照射した後、試片の表面から反射されて出る信号強さと照射時の信号強さとの差から求めた。また、透過損失は、実施例1~9の電磁波シールド材に対して75GHzから110GHzの電磁波を照射した後、試片を通過して出る信号強さと照射時の信号強さとの差から求めた。For each of the electromagnetic shielding materials of Examples 1 to 9, the electromagnetic wave reflection loss was measured by the free space method, and the transmission loss was measured based on ASTM D4935. Specifically, the reflection loss was determined by irradiating the electromagnetic shielding materials of Examples 1 to 9 with electromagnetic waves of 75 GHz to 110 GHz, and then measuring the difference in signal strength reflected from the surface of the specimen and the signal strength at the time of irradiation. The transmission loss was determined by irradiating the electromagnetic shielding materials of Examples 1 to 9 with electromagnetic waves of 75 GHz to 110 GHz, and then measuring the difference in signal strength transmitted through the specimen and the signal strength at the time of irradiation.

実施例1~9の電磁波シールド材における電磁波の反射損失及び透過損失は、いずれも、反射損失が6dB以上であって、かつ、透過損失が15dB以上であることがわかる。加えて、実施例1~9の電磁波シールド材は、測定した周波数帯域全般での反射損失がフラットな傾向にあるため、電子回路設計がしやすいという利点もある。It can be seen that the electromagnetic wave reflection loss and transmission loss of the electromagnetic wave shielding materials of Examples 1 to 9 are both 6 dB or more in reflection loss and 15 dB or more in transmission loss. In addition, the electromagnetic wave shielding materials of Examples 1 to 9 tend to have flat reflection loss across the entire measured frequency band, which makes it easier to design electronic circuits.

参考のため、ランダムに選定した実施例2,3,6,7の電磁波シールド材については、周波数帯域の下限を60GHzとして反射損失を計測してみた。その結果、いずれの電磁波シールド材については、反射損失が6dBであることを確認した。For reference, the reflection loss was measured for the randomly selected electromagnetic shielding materials of Examples 2, 3, 6, and 7, with the lower limit of the frequency band set to 60 GHz. As a result, it was confirmed that the reflection loss for each of the electromagnetic shielding materials was 6 dB.

本実施例では、電磁波シールド材を自動車用近接レーダーに適用する例について説明したが、電磁波シールド材は、自動車用近接レーダー以外にも、73GHzの周波数帯域を使用する携帯電話機・スマートフォン・PDA・タブレット端末・パーソナルコンピュータなどに付帯する通信機器、76GHz~83GHzの各種近接レーダーなどにも適用することができる。これらの場合にも、電子制御ユニット或いはこれに相当する部材自体又はその周辺に電磁波シールド材を貼付又は配置すればよい。
In this embodiment, an example of applying the electromagnetic shielding material to an automotive proximity radar has been described, but the electromagnetic shielding material can also be applied to communication devices attached to mobile phones, smartphones, PDAs, tablet terminals, personal computers, etc. that use the 73 GHz frequency band, various proximity radars of 76 GHz to 83 GHz, etc. In these cases, the electromagnetic shielding material can be attached or disposed on the electronic control unit or an equivalent member itself or in the vicinity thereof.

Claims (7)

主成分となる樹脂と、
電磁波の反射損失の絶対値が大きくなることに寄与する前記樹脂に含有される電磁波遮蔽物質1と、
電磁波の透過損失の絶対値が大きくなることに寄与する前記樹脂に含有される電磁波遮蔽物質2と、
を含む、電磁波シールド材であって、
前記各電磁波遮蔽物質(ただし、銀微粒子で焼結されていない)を前記樹脂に対して分散させる分散剤を含み、
その厚さが2mmである場合に、75GHz~110GHzの周波数帯域全体に亘り、反射損失の絶対値が5dB以上であり、かつ、透過損失の絶対値が15dB以上ある、電磁波シールド材。
The main component is resin,
an electromagnetic wave shielding material 1 contained in the resin, which contributes to increasing the absolute value of the reflection loss of the electromagnetic wave;
an electromagnetic wave shielding material 2 contained in the resin, which contributes to increasing the absolute value of the electromagnetic wave transmission loss;
An electromagnetic wave shielding material comprising:
a dispersant for dispersing the electromagnetic wave shielding materials (not sintered with silver fine particles) in the resin;
An electromagnetic wave shielding material having a thickness of 2 mm , the absolute value of the reflection loss being 5 dB or more and the absolute value of the transmission loss being 15 dB or more over the entire frequency band from 75 GHz to 110 GHz.
前記樹脂は熱可塑性樹脂であり、
前記各電磁波遮蔽物質はナノカーボンである、請求項1記載の電磁波シールド材。
The resin is a thermoplastic resin,
The electromagnetic wave shielding material according to claim 1 , wherein each of said electromagnetic wave shielding substances is nanocarbon.
前記樹脂は、ポリアミド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルイミド樹脂、ポリアルキレンテレフタレート樹脂、アクリル系樹脂、ポリスルホン樹脂、ポリフェニレンスルファイド、ポリオレフィン、ポリスチレン樹脂、シンジオタクチックポリスチレン樹脂、アクリロニトリルブタジエンスチレン樹脂、ポリフェニレンオキシド樹脂、ポリブチレン、液晶重合体樹脂のいずれか又はこれらのうちいくつかの任意の組合せであり、
前記各電磁波遮蔽物質は、カーボンナノチューブ、カーボンブラック、カーボンナノコイル、カーボンナノファイバー、グラフェン、フラーレンのうち、電磁波の反射損失の絶対値が大きくなることに寄与する前記電磁波遮蔽物質1と、電磁波の透過損失の絶対値が大きくなることに寄与する前記電磁波遮蔽物質2との任意の組合せである、請求項1記載の電磁波シールド材。
The resin is any one of polyamide resin, polyimide resin, polyamideimide resin, polyacetal resin, polycarbonate resin, polyethersulfone resin, polyetherketone resin, polyetherimide resin, polyalkylene terephthalate resin, acrylic resin, polysulfone resin, polyphenylene sulfide, polyolefin, polystyrene resin, syndiotactic polystyrene resin, acrylonitrile butadiene styrene resin, polyphenylene oxide resin, polybutylene, and liquid crystal polymer resin, or any combination of some of these,
2. The electromagnetic wave shielding material according to claim 1, wherein each of the electromagnetic wave shielding substances is an arbitrary combination of the electromagnetic wave shielding substance 1, which contributes to increasing the absolute value of the reflection loss of the electromagnetic wave, and the electromagnetic wave shielding substance 2, which contributes to increasing the absolute value of the transmission loss of the electromagnetic wave, selected from carbon nanotubes, carbon black, carbon nanocoils, carbon nanofibers, graphene, and fullerenes.
前記分散剤は天然・半合成・合成ワックスのいずれかである、請求項1記載の電磁波シールド材。 The electromagnetic shielding material according to claim 1, wherein the dispersant is any of natural, semi-synthetic, and synthetic waxes. 前記分散剤は、パラフィンワックス、モンタンワックス、アマイドワックス、エチレン-ビス-ステアラミド、脂肪酸金属塩、シリコーン、ポリオレフィンワックスなどのいずれか又はこれらのうちいくつかの任意の組合せである、請求項1記載の電磁波シールド材。 The electromagnetic shielding material according to claim 1, wherein the dispersant is any one of paraffin wax, montan wax, amide wax, ethylene-bis-stearamide, fatty acid metal salt, silicone, polyolefin wax, etc., or any combination of several of these. 請求項1~5のいずれか記載の電磁波シールド材を備える信号処理ユニットであって、
前記電磁波シールド材の厚さは2mm以上である、信号処理ユニット。
A signal processing unit comprising the electromagnetic shielding material according to any one of claims 1 to 5,
A signal processing unit, wherein the electromagnetic wave shielding material has a thickness of 2 mm or more.
前記電磁波シールド材を有する自動車用近接レーダー、携帯電話機・スマートフォン・PDA・タブレット端末・パーソナルコンピュータを含む通信機器、各種近接レーダーである、請求項6記載の信号処理ユニット。 The signal processing unit according to claim 6 is an automobile proximity radar having the electromagnetic shielding material, a communication device including a mobile phone, a smartphone, a PDA, a tablet terminal, and a personal computer, and various proximity radars.
JP2019546052A 2018-06-06 2019-06-06 Electromagnetic wave shielding material and signal processing unit including same Active JP7478374B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018109081 2018-06-06
JP2018109081 2018-06-06
PCT/JP2019/022505 WO2019235561A1 (en) 2018-06-06 2019-06-06 Electromagnetic shielding material and signal processing unit provided with same

Publications (3)

Publication Number Publication Date
JPWO2019235561A1 JPWO2019235561A1 (en) 2021-04-30
JPWO2019235561A5 JPWO2019235561A5 (en) 2022-04-20
JP7478374B2 true JP7478374B2 (en) 2024-05-07

Family

ID=68770454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019546052A Active JP7478374B2 (en) 2018-06-06 2019-06-06 Electromagnetic wave shielding material and signal processing unit including same

Country Status (2)

Country Link
JP (1) JP7478374B2 (en)
WO (1) WO2019235561A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022210013A1 (en) * 2021-04-02 2022-10-06
JP6927448B1 (en) * 2021-04-27 2021-09-01 東洋インキScホールディングス株式会社 Thermoplastic resin composition and molded product for electromagnetic wave absorber
JP7274083B2 (en) * 2021-08-31 2023-05-16 東洋インキScホールディングス株式会社 THERMOPLASTIC RESIN COMPOSITION AND MOLDED PRODUCT FOR ELECTRICAL AND ELECTRONIC PACKAGING

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144000A (en) 2007-12-12 2009-07-02 Starlite Co Ltd Resin-carbon composite material
JP2013519745A (en) 2010-02-13 2013-05-30 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Use of mixtures in the preparation of impact modified thermoplastic compositions.
WO2015064708A1 (en) 2013-11-01 2015-05-07 公立大学法人大阪府立大学 Conductive sheet, method for manufacturing same, carbon composite paste, carbon composite filler, conductive resin material, and conductive rubber material
JP2018137326A (en) 2017-02-21 2018-08-30 株式会社アルバック Electromagnetic wave absorber and method for manufacturing the same
JP2019197822A (en) 2018-05-10 2019-11-14 株式会社アルバック Electromagnetic wave absorber and manufacturing method thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59217751A (en) * 1983-05-25 1984-12-07 Polyplastics Co Polyacetal resin composition
JP2002374091A (en) * 2001-06-14 2002-12-26 Showa Electric Wire & Cable Co Ltd Radio wave absorbing material and radio wave absorber using it
JP2004296758A (en) * 2003-03-27 2004-10-21 Takechi Kogyo Gomu Co Ltd Millimeter wave absorber
JP2007074662A (en) * 2005-09-09 2007-03-22 Hitachi Ltd Millimeter wave radar system
JP5272530B2 (en) * 2007-06-13 2013-08-28 住友化学株式会社 Foaming resin composition and foamed molded article
JP2009060060A (en) * 2007-09-03 2009-03-19 Osaka Industrial Promotion Organization Electromagnetic wave absorbing sheet
JP2010209162A (en) * 2009-03-09 2010-09-24 Toyo Ink Mfg Co Ltd Carbon nanotube dispersion
KR101269422B1 (en) * 2009-12-30 2013-06-04 제일모직주식회사 Polycarbonate Resin Composition having Excellent Wear resistance and Electric Conductivity, and Method of Preparing the Same
JP6467140B2 (en) * 2013-05-30 2019-02-06 ダイセルポリマー株式会社 Thermoplastic resin composition for molded article having millimeter wave shielding performance
CN104837926B (en) * 2013-12-06 2017-10-13 Lg化学株式会社 Thermoplastic resin composition for radome
KR101800845B1 (en) * 2016-03-30 2017-11-23 금호석유화학 주식회사 Electroconductive resin composition and molded product thereof
JPWO2018066574A1 (en) * 2016-10-04 2019-07-18 日本ゼオン株式会社 Electromagnetic wave shield structure and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009144000A (en) 2007-12-12 2009-07-02 Starlite Co Ltd Resin-carbon composite material
JP2013519745A (en) 2010-02-13 2013-05-30 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Use of mixtures in the preparation of impact modified thermoplastic compositions.
WO2015064708A1 (en) 2013-11-01 2015-05-07 公立大学法人大阪府立大学 Conductive sheet, method for manufacturing same, carbon composite paste, carbon composite filler, conductive resin material, and conductive rubber material
JP2018137326A (en) 2017-02-21 2018-08-30 株式会社アルバック Electromagnetic wave absorber and method for manufacturing the same
JP2019197822A (en) 2018-05-10 2019-11-14 株式会社アルバック Electromagnetic wave absorber and manufacturing method thereof

Also Published As

Publication number Publication date
WO2019235561A1 (en) 2019-12-12
JPWO2019235561A1 (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP7478374B2 (en) Electromagnetic wave shielding material and signal processing unit including same
Sankaran et al. Recent advances in electromagnetic interference shielding properties of metal and carbon filler reinforced flexible polymer composites: A review
TWI773656B (en) Electromagnetic wave absorber
Choudhary et al. Mechanistic insight into the critical concentration of barium hexaferrite and the conductive polymeric phase with respect to synergistically electromagnetic interference (EMI) shielding
Geetha et al. EMI shielding: Methods and materials—A review
Al‐Saleh et al. Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black
EP3085215B1 (en) Electromagnetic interference (emi) shielding products using titanium monoxide (tio) based materials
JP2019195083A (en) Electric wave absorption sheet
Pan et al. Epoxy composite foams with excellent electromagnetic interference shielding and heat‐resistance performance
JP2015015373A (en) Electromagnetic wave-absorbing resin composition, and molded product thereof
JPWO2019235561A5 (en)
Yang et al. Synthesis and microwave absorbing characteristics of functionally graded carbonyl iron/polyurethane composites
JP5424606B2 (en) Noise suppressor and manufacturing method thereof
US20100288979A1 (en) Electromagnetic shielding material and method for manufacturing the same
CN112625445B (en) Electromagnetic shielding sheet and method for producing same
JP2023006918A (en) Molding for housing, resin composition used for forming the same, and master batch
JP2002158482A (en) Metallic powder for electromagnetic wave absorber, electromagnetic wave absorber, and paint
JPH0697691A (en) Electromagnetic shield structure
Kurt et al. Rheological, mechanical, and X‐band microwave absorption properties of nickel and nickel‐coated carbon‐filled cyclo‐olefin copolymer composites
US11756714B2 (en) Composite magnetic material and method for manufacturing same
JPH1027986A (en) Radio wave absorber
JP2008244358A (en) Noise suppressing sheet and coating material
KR100850007B1 (en) Composition for shielding electromagnetic wave, method of manufacturing the composition, and camera houseing for shielding electromagnetic wave
JP2007201113A (en) High intensity wave absorber
JP3990658B2 (en) Electromagnetic wave absorber

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220412

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221025

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20221223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230724

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230814

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20231027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240411

R150 Certificate of patent or registration of utility model

Ref document number: 7478374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150