JP2007201113A - High intensity wave absorber - Google Patents
High intensity wave absorber Download PDFInfo
- Publication number
- JP2007201113A JP2007201113A JP2006017059A JP2006017059A JP2007201113A JP 2007201113 A JP2007201113 A JP 2007201113A JP 2006017059 A JP2006017059 A JP 2006017059A JP 2006017059 A JP2006017059 A JP 2006017059A JP 2007201113 A JP2007201113 A JP 2007201113A
- Authority
- JP
- Japan
- Prior art keywords
- wave absorber
- radio wave
- magnetic
- organic fiber
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Description
本発明は、電磁波による障害防止に用いられる電波吸収体に関し、特に磁性体における磁気損失を利用した電波吸収体に関するものである。 The present invention relates to a radio wave absorber that is used for prevention of interference caused by electromagnetic waves, and more particularly to a radio wave absorber that uses magnetic loss in a magnetic material.
最近の携帯電話機やゲーム機器などに代表される電子機器の急速な普及に伴い、それらの電子機器が原因とみられる電磁波による障害が頻発している。特に、電磁波の干渉により航空機器や医療機器の誤動作を招くと、人命に関わる重大な事故につながる可能性がある。 With the recent rapid spread of electronic devices such as mobile phones and game devices, failures due to electromagnetic waves that are considered to be caused by these electronic devices frequently occur. In particular, if an aircraft device or a medical device malfunctions due to electromagnetic interference, it may lead to a serious accident involving human life.
このような電磁波の障害を防止する上において、電波吸収体を用いることは有効な手段のひとつである。 The use of a radio wave absorber is one of the effective means for preventing such interference of electromagnetic waves.
この電波吸収体の1つとして、磁気損失を利用する磁性電波吸収材からなるものが知られている(例えば、特許文献1を参照。)。これは、フェライトなどの磁性体粉末を樹脂などの高分子化合物と混合して一体化したものであり、複素透磁率の虚数部(磁気損失項)の働きにより電波の磁界成分に作用して電波エネルギーを熱に変換することにより電磁波の吸収を行うものである。 As one of the radio wave absorbers, one made of a magnetic radio wave absorber using magnetic loss is known (see, for example, Patent Document 1). This is an integrated magnetic powder such as ferrite mixed with a polymer compound such as resin, which acts on the magnetic field component of radio waves by the function of the imaginary part (magnetic loss term) of the complex permeability. Electromagnetic waves are absorbed by converting energy into heat.
しかし、磁気損失を利用する磁性電波吸収材において、特許文献2に示すように、電波吸収体の基材として樹脂などの高分子化合物を用いると、電源コードのコネクタ部や電子機器の筐体などの荷重がかかる部分に用いるには強度が不足するという課題が残されていた。
本発明は、このような課題に鑑みてなされたものであり、強度が高く高性能な電波吸収体を提供することを目的とするものである。 This invention is made | formed in view of such a subject, and it aims at providing the electromagnetic wave absorber with high intensity | strength and high performance.
上記の目的を達成するため、本発明は、ガラス繊維又は有機繊維を添加して強化した樹脂に磁性損失材料を配合してなる電波吸収体である。 In order to achieve the above object, the present invention is a radio wave absorber formed by blending a magnetic loss material with a resin reinforced by adding glass fiber or organic fiber.
ガラス繊維又は有機繊維の添加量は、10〜50体積%であることが好ましい。
この有機繊維としては、ポリエステル又はポリエチレンを使用することができる。
The addition amount of glass fiber or organic fiber is preferably 10 to 50% by volume.
As this organic fiber, polyester or polyethylene can be used.
また、磁性損失材料の配合量は、5.0体積%以上であることが好ましい。
更に、誘電損失材である導電性酸化チタンと所望により導電性カーボンブラックを配合することが好ましい。
The blending amount of the magnetic loss material is preferably 5.0% by volume or more.
Furthermore, it is preferable to mix conductive titanium oxide, which is a dielectric loss material, and conductive carbon black if desired.
上記のように構成された発明によれば、ガラス繊維又は有機繊維により強化された強度の高い高性能な電波吸収体を得ることができる。 According to the invention configured as described above, it is possible to obtain a high-performance radio wave absorber having high strength reinforced by glass fibers or organic fibers.
本発明においては、磁気損失を利用した電波吸収体の基材となる樹脂にガラス繊維又は有機繊維を添加して強化することにより、強度が高く高性能な電波吸収体を提供することができる。 In the present invention, a glass fiber or an organic fiber is added to a resin serving as a base material of a radio wave absorber utilizing magnetic loss and reinforced, thereby providing a radio wave absorber with high strength and high performance.
また、本発明においては、磁気損失に誘電損失を組み合わせた電波吸収体の基材となる樹脂にガラス繊維又は有機繊維を添加して強化することにより、強度が高く、より高性能な電波吸収体を提供することができる。 Moreover, in the present invention, a glass absorber or an organic fiber is added to a resin that becomes a base material of a radio wave absorber that combines dielectric loss and magnetic loss, and is strengthened by adding glass fiber or organic fiber to enhance the strength and performance. Can be provided.
本発明の実施の形態について、図面を参照して説明する。
本発明に係る電波吸収体は、ガラス繊維又は有機繊維を添加して強化した樹脂に磁性損失材料を配合してなる電波吸収体である。
Embodiments of the present invention will be described with reference to the drawings.
The radio wave absorber according to the present invention is a radio wave absorber formed by blending a magnetic loss material with a resin reinforced by adding glass fiber or organic fiber.
この電波吸収体の基材となる樹脂としては、例えば、熱可塑性樹脂、熱硬化性樹脂、各種ゴム、エラストマーなどが用いられる。 For example, thermoplastic resins, thermosetting resins, various rubbers, elastomers, and the like are used as the resin serving as the base material of the radio wave absorber.
このような樹脂にガラス繊維又は有機繊維を添加することにより強度を向上させることができる。ガラス繊維又は有機繊維は、電波吸収体の性能に影響を与えることのないように比誘電率が極めて低い、つまり電波に対して透明であるという点から選択されたものである。 The strength can be improved by adding glass fiber or organic fiber to such a resin. The glass fiber or the organic fiber is selected from the viewpoint that the relative dielectric constant is extremely low, that is, it is transparent to the radio wave so as not to affect the performance of the radio wave absorber.
なお、有機繊維としては、例えば、ポリエステルやポリエチレンを使用することができる。 In addition, as organic fiber, polyester and polyethylene can be used, for example.
これらのガラス繊維又は有機繊維の配合量を10〜50体積%とすることにより、強度をより高くし、加工性を良好なものとすることができる。 By making the compounding quantity of these glass fiber or organic fiber into 10 to 50 volume%, intensity | strength can be made higher and workability can be made favorable.
磁性損失材料としては磁性粉、例えばフェライト材料からなる粉末が用いられる。このフェライト材料としては、マンガン−亜鉛系、ニッケル−亜鉛系、マグネシウム−亜鉛系又は銅−亜鉛系などを用いることができる。 As the magnetic loss material, magnetic powder, for example, powder made of ferrite material is used. As the ferrite material, manganese-zinc, nickel-zinc, magnesium-zinc, copper-zinc, or the like can be used.
磁性損失材料は、配合量を5.0体積%以上とすることにより、材料の複素比透磁率が実部及び虚部ともに適正な値となり、マイクロ波帯域やミリ波帯域の電波との整合を良好にすることができる。また、配合量の上限は特に規定しないが、加工性をより良好なものとする点からは60体積%以下とすることが好ましい。 For magnetic loss materials, if the blending amount is 5.0% by volume or more, the complex relative permeability of the material becomes an appropriate value for both the real part and the imaginary part, and the matching with the radio wave in the microwave band and the millimeter wave band is good. can do. The upper limit of the blending amount is not particularly specified, but is preferably 60% by volume or less from the viewpoint of improving workability.
ガラス短繊維を30体積%添加して強化したポリアミド樹脂(三菱ガス化学製レニー1091、以下同じ。)に、磁性粉(福田金属製Fe-6Si-Flake、以下同じ。)を14.7体積%を配合して射出成形したペレットから平板状の試料Aを作製した。 14.7% by volume of magnetic powder (Fukuda Metal's Fe-6Si-Flake, the same applies below) is added to polyamide resin (Mitsubishi Gas Chemical Reny 1091, the same applies below) reinforced with 30% glass short fiber added. A flat sample A was prepared from the injection-molded pellets.
また、ガラス短繊維を30体積%添加して強化したポリアミド樹脂に、磁性粉を20.5体積%を配合して射出成形したペレットから平板上の試料Bを作成した。 Further, a sample B on a flat plate was prepared from a pellet obtained by adding 20.5% by volume of magnetic powder to polyamide resin reinforced by adding 30% by volume of short glass fibers and injection molding.
更に、試料Bと同じ基材に、導電性酸化チタン(石原産業製FT-2000)を6.1体積%と磁性粉を13.8体積%を配合して射出成形したペレットから平板上の試料Cを作成した。 Further, Sample C on a flat plate was prepared from pellets obtained by injection molding of 6.1% by volume of conductive titanium oxide (FT-2000 made by Ishihara Sangyo) and 13.8% by volume of magnetic powder on the same base material as Sample B. .
なお、試料Cにおける導電性酸化チタン及び磁性粉の配合量は、試料Bにおける磁性粉の配合量とほぼ同じになるように定めたものである。 In addition, the compounding amount of the conductive titanium oxide and the magnetic powder in the sample C is determined to be almost the same as the compounding amount of the magnetic powder in the sample B.
これらの試料A、B、Cについて、透磁率と誘電率を測定した結果を図1及び図2にそれぞれ示す。図1及び図2は、横軸に周波数を、縦軸に複素比透磁率又は複素比誘電率の実部と虚部の値を、それぞれ取ったグラフである。 The results of measuring the magnetic permeability and the dielectric constant of these samples A, B, and C are shown in FIGS. 1 and 2, respectively. 1 and 2 are graphs in which the horizontal axis represents frequency and the vertical axis represents the values of the real part and the imaginary part of the complex relative permeability or complex relative permittivity.
磁性体を電波吸収の材料とした電波吸収体においては、透磁率及び誘電率の両方の特性を基に設計が行われる。 A radio wave absorber using a magnetic material as a material for radio wave absorption is designed based on characteristics of both magnetic permeability and dielectric constant.
磁性体を電波吸収体の材料として使用する場合には、一般に透磁率の虚部が実部よりも大きくなる周波数帯で使用される。また、その値は大きい方が電波吸収体の厚さを薄くすることができる。 When a magnetic material is used as a material for a radio wave absorber, it is generally used in a frequency band where the imaginary part of the magnetic permeability is larger than the real part. The larger the value is, the thinner the wave absorber can be made.
試料Aから厚さが2.0 mmの平板状の試料A’を、試料Bから厚さが5.8 mmの試料B’を、それぞれ作製して、電波の吸収性能を測定した結果を図3及び図4に示す。図3及び図4は、横軸に周波数を、縦軸に吸収性能を取ったグラフである。 A flat sample A ′ having a thickness of 2.0 mm was prepared from the sample A, and a sample B ′ having a thickness of 5.8 mm was prepared from the sample B, and the results of measuring the radio wave absorption performance were shown in FIGS. Shown in 3 and 4 are graphs in which the horizontal axis represents frequency and the vertical axis represents absorption performance.
図3から、試料A’の吸収性能の最大値は約6.0 GHz付近で約23 dB以上あり、かつ優れた吸収性能の目安となる20 dB以上の吸収性能を示す周波数が広い範囲にわたることが分かる。 From Fig. 3, it can be seen that the maximum value of the absorption performance of sample A 'is about 23 dB or more at around 6.0 GHz, and the frequency showing the absorption performance of 20 dB or more, which is a measure of excellent absorption performance, covers a wide range. .
また、図4からは、試料B’の吸収性能の最大値は約1.9 GHz付近で約22 dB以上あり、かつ優れた吸収性能の目安となる20 dB以上の吸収性能を示す周波数が広い範囲にわたることが分かる。 In addition, from FIG. 4, the maximum value of the absorption performance of sample B ′ is about 22 dB or more near about 1.9 GHz, and the frequency showing the absorption performance of 20 dB or more, which is a measure of excellent absorption performance, covers a wide range. I understand that.
従って、試料A及びBは、電波吸収体として優れた性能を有することが明らかになった。 Therefore, it became clear that Samples A and B have excellent performance as a radio wave absorber.
更に、図1より、誘電損失材である導電性酸化チタンを添加した試料Cでは、透磁率の虚部が実部より大きくなる周波数が、添加しないときよりも低周波数側に移動しており、かつ虚部の値も大きくなっていることが分かる。このことは、試料A及びBのように磁性体単体で使用するよりは、誘電損失材と組み合わせて使用することにより、より薄く、なおかつより低い周波数から有効となる電波吸収体を得ることができることを示すものである。 Furthermore, from FIG. 1, in sample C to which conductive titanium oxide, which is a dielectric loss material, was added, the frequency at which the imaginary part of the magnetic permeability is larger than the real part has moved to the lower frequency side than when not added, It can also be seen that the value of the imaginary part is also increased. This means that it is possible to obtain an electromagnetic wave absorber that is thinner and more effective from a lower frequency by using it in combination with a dielectric loss material than using a magnetic substance alone as in samples A and B. Is shown.
そこで、試料Cから厚さが4.0 mmの平板状の試料C’を作製して電波の吸収性能を測定した結果を図5に示す。図5は、横軸に周波数を、縦軸に吸収性能を取ったグラフである。 Accordingly, FIG. 5 shows the result of producing a flat sample C ′ having a thickness of 4.0 mm from the sample C and measuring the radio wave absorption performance. FIG. 5 is a graph in which the horizontal axis represents frequency and the vertical axis represents absorption performance.
図5より、吸収性能の最大値は約1.94 GHz付近で約30 dB以上あり、かつ優れた吸収性能の目安となる20 dB以上の吸収性能を示す周波数が広い範囲にわたることが分かる。 As can be seen from FIG. 5, the maximum value of the absorption performance is about 30 dB or more around 1.94 GHz, and the frequency showing the absorption performance of 20 dB or more, which is a measure of excellent absorption performance, covers a wide range.
従って、この試料は電波吸収体として優れた性能を有することが明らかになった。
また、この結果を上記の試料Bについての図4と比較すると、試料の厚さが薄いにもかかわらず、20 dB以上の吸収性能を示す周波数範囲が広いことが分かる。
Therefore, it was revealed that this sample has excellent performance as a radio wave absorber.
Further, when this result is compared with FIG. 4 for the sample B, it can be seen that the frequency range showing the absorption performance of 20 dB or more is wide although the thickness of the sample is small.
このことは、試料Cが電波吸収体として極めて優れた性能を有することを示すものである。 This indicates that the sample C has extremely excellent performance as a radio wave absorber.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006017059A JP2007201113A (en) | 2006-01-26 | 2006-01-26 | High intensity wave absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006017059A JP2007201113A (en) | 2006-01-26 | 2006-01-26 | High intensity wave absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007201113A true JP2007201113A (en) | 2007-08-09 |
Family
ID=38455399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006017059A Pending JP2007201113A (en) | 2006-01-26 | 2006-01-26 | High intensity wave absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007201113A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013094049A (en) * | 2011-10-24 | 2013-05-16 | Lg Innotek Co Ltd | Shielding apparatus and wireless power transmission apparatus |
GB2519133A (en) * | 2013-10-11 | 2015-04-15 | Qinetiq Ltd | Electromagnetic field absorbing composition |
CN112531351A (en) * | 2020-11-09 | 2021-03-19 | 航天特种材料及工艺技术研究所 | Fiber-reinforced homogeneous magnetic wave absorber and preparation method thereof |
CN113816620A (en) * | 2021-11-09 | 2021-12-21 | 中建材中研益科技有限公司 | Dielectric fiber composite wave-absorbing material with surface coated with molybdenum disulfide/iron-cobalt alloy/carbon and preparation method thereof |
-
2006
- 2006-01-26 JP JP2006017059A patent/JP2007201113A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013094049A (en) * | 2011-10-24 | 2013-05-16 | Lg Innotek Co Ltd | Shielding apparatus and wireless power transmission apparatus |
JP2015173593A (en) * | 2011-10-24 | 2015-10-01 | エルジー イノテック カンパニー リミテッド | Shielding apparatus and wireless power transmission apparatus |
US9595381B2 (en) | 2011-10-24 | 2017-03-14 | Lg Innotek Co., Ltd. | Shielding apparatus and wireless power transmission apparatus |
GB2519133A (en) * | 2013-10-11 | 2015-04-15 | Qinetiq Ltd | Electromagnetic field absorbing composition |
GB2519133B (en) * | 2013-10-11 | 2018-06-27 | Qinetiq Ltd | Electromagnetic field absorbing composition |
CN112531351A (en) * | 2020-11-09 | 2021-03-19 | 航天特种材料及工艺技术研究所 | Fiber-reinforced homogeneous magnetic wave absorber and preparation method thereof |
CN113816620A (en) * | 2021-11-09 | 2021-12-21 | 中建材中研益科技有限公司 | Dielectric fiber composite wave-absorbing material with surface coated with molybdenum disulfide/iron-cobalt alloy/carbon and preparation method thereof |
CN113816620B (en) * | 2021-11-09 | 2023-08-22 | 中建材中研益科技有限公司 | Dielectric fiber composite wave-absorbing material coated with molybdenum disulfide/iron-cobalt alloy/carbon on surface and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102634177B (en) | A kind of composite electromagnetic shield materials for cable | |
CN105647468A (en) | Wave-absorbing material based on grapheme and preparation method thereof | |
Annadurai et al. | Studies on microwave shielding materials based on ferrite‐and carbon black‐filled EPDM rubber in the X‐band frequency | |
KR101661583B1 (en) | Electromagnetic wave shielding and absorbing sheet and manufacturing method of the same | |
JP2013536990A5 (en) | ||
JP2007201113A (en) | High intensity wave absorber | |
JP4446593B2 (en) | Electromagnetic wave absorber | |
JP2006245472A (en) | Electromagnetic wave absorber | |
JP2006037078A (en) | Flame-retardant magnetic sheet | |
JP2004336028A (en) | Electromagnetic wave absorbing material | |
JP2004143347A (en) | Resin composite and electromagnetic wave absorbent using the same and package for high frequency circuits using the same | |
WO2019235561A1 (en) | Electromagnetic shielding material and signal processing unit provided with same | |
JP2005286190A (en) | Electromagnetic wave absorber | |
CN109952009B (en) | Double-layer composite wave-absorbing material and preparation method thereof | |
Mamatha et al. | Polymer based Composites for Electromagnetic Interference (EMI) Shielding: The Role of Magnetic Fillers in Effective Attenuation of Microwaves, a Review | |
KR100675514B1 (en) | Electromagnetic wave shield material | |
JP2012204734A (en) | Radio wave suppression sheet, and electronic apparatus and radio wave suppression component equipped with this sheet | |
KR102578285B1 (en) | Electromagnetic shielding composite material and its manufacturing method | |
Anaele Opara et al. | Progress in Polymer-based Composites as Efficient Materials for Electromagnetic Interference Shielding Applications: A Review | |
Sahu et al. | Polymer composites for flexible electromagnetic shields | |
KR100850007B1 (en) | Composition for shielding electromagnetic wave, method of manufacturing the composition, and camera houseing for shielding electromagnetic wave | |
JP2007201114A (en) | High intensity wave absorber | |
RU2688894C1 (en) | Electromagnetic shield | |
CN109803522B (en) | Double-layer wave-absorbing material and preparation method thereof | |
JP2002009482A (en) | Electric-wave absorbing body |