JP2009060060A - Electromagnetic wave absorbing sheet - Google Patents

Electromagnetic wave absorbing sheet Download PDF

Info

Publication number
JP2009060060A
JP2009060060A JP2007228403A JP2007228403A JP2009060060A JP 2009060060 A JP2009060060 A JP 2009060060A JP 2007228403 A JP2007228403 A JP 2007228403A JP 2007228403 A JP2007228403 A JP 2007228403A JP 2009060060 A JP2009060060 A JP 2009060060A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave absorbing
absorbing sheet
average coil
average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007228403A
Other languages
Japanese (ja)
Inventor
Yukihiro Fujiyama
幸広 藤山
Ryota Tomokane
遼太 友兼
Kenichiro Tanaka
健一郎 田中
Yugo Azuma
勇吾 東
Toshinori Nosaka
俊紀 野坂
Seiji Akita
成司 秋田
Yoshikazu Nakayama
喜萬 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Osaka Prefecture
Osaka University NUC
Osaka Industrial Promotion Organization
Osaka Prefecture University
Original Assignee
Nissin Electric Co Ltd
Osaka Prefecture
Osaka University NUC
Osaka Industrial Promotion Organization
Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd, Osaka Prefecture, Osaka University NUC, Osaka Industrial Promotion Organization, Osaka Prefecture University filed Critical Nissin Electric Co Ltd
Priority to JP2007228403A priority Critical patent/JP2009060060A/en
Priority to PCT/JP2008/064838 priority patent/WO2009031409A1/en
Publication of JP2009060060A publication Critical patent/JP2009060060A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic wave absorber capable of dealing with absorption of electromagnetic waves of several GHz to several dozens of GHz. <P>SOLUTION: An electromagnetic wave absorbing sheet contains a carbon nano-coil and a resin, wherein (1) the carbon nano-coil has an average coil length of ≥1 μm and <100 μm, an average coil diameter of ≥1 nm and <1 μm and an average coil pitch of ≥1 nm and <1 μm and (2) the carbon nano-coil is contained in a ratio of 1 to 10 pts.wt. based on 100 pts.wt. of the resin. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、カーボンナノコイルを用いた新規な電磁波吸収シートに関する。   The present invention relates to a novel electromagnetic wave absorbing sheet using carbon nanocoils.

近年、携帯電話等の通信機器の増大、多様化により、それぞれに対応した電磁波を吸収するさまざまな電磁波吸収シートが提供されている(特許文献1等)。例えば、電磁波吸収は、フェライト等を用いた電磁波吸収体、カーボンブラック等を用いた電磁波吸収体などが提案されている。   2. Description of the Related Art In recent years, various electromagnetic wave absorbing sheets that absorb electromagnetic waves corresponding to each have been provided due to the increase and diversification of communication devices such as mobile phones (Patent Document 1, etc.). For example, for electromagnetic wave absorption, an electromagnetic wave absorber using ferrite or the like, an electromagnetic wave absorber using carbon black or the like has been proposed.

しかしながら、これら電磁波吸収体は特定の吸収波長域のみで吸収するに過ぎず、幅広い波長域に対応することができない。例えば、フェライト等を用いた電磁波吸収体は数GHzの帯域を吸収するが、数十GHzの帯域では吸収できない。一方、カーボンブラック等を用いた電磁波吸収体は、数十GHzでの吸収は可能であるが、数GHzの帯域における吸収には不向きである。
特開2004−140335号公報
However, these electromagnetic wave absorbers only absorb in a specific absorption wavelength range and cannot cope with a wide wavelength range. For example, an electromagnetic wave absorber using ferrite or the like absorbs a band of several GHz but cannot absorb a band of several tens of GHz. On the other hand, an electromagnetic wave absorber using carbon black or the like can absorb at several tens of GHz, but is not suitable for absorption in a band of several GHz.
JP 2004-140335 A

従って、数GHz〜数十GHzの電磁波の吸収に対応可能な電磁波吸収体の提供が望まれている。   Therefore, it is desired to provide an electromagnetic wave absorber that can cope with absorption of electromagnetic waves of several GHz to several tens GHz.

本発明者らは、上記従来技術に鑑み鋭意研究を重ねた結果、電磁波吸収体に、特定構造のカーボンナノコイルを特定量含有させることにより、上記問題を解決することを見出し、本発明を完成するに至った。すなわち、本発明は下記の電磁波吸収シート及び電磁波吸収シートの製造方法に係る。   As a result of intensive studies in view of the above prior art, the present inventors have found that the above problem can be solved by containing a specific amount of carbon nanocoils having a specific structure in the electromagnetic wave absorber, thereby completing the present invention. It came to do. That is, this invention concerns on the manufacturing method of the following electromagnetic wave absorption sheet and electromagnetic wave absorption sheet.

項1.カーボンナノコイル及び樹脂を含有する電磁波吸収シートであって、
(1)前記カーボンナノコイルが、平均コイル長1μm以上100μm未満、平均コイル径1nm以上1μm未満及び平均コイルピッチ1nm以上1μm未満であり、
(2)前記カーボンナノコイルが、樹脂100重量部に対し、1〜10重量部の割合で含有されている、
ことを特徴とする電磁波吸収シート。
Item 1. An electromagnetic wave absorbing sheet containing carbon nanocoils and a resin,
(1) The carbon nanocoil has an average coil length of 1 μm to less than 100 μm, an average coil diameter of 1 nm to less than 1 μm, and an average coil pitch of 1 nm to less than 1 μm,
(2) The carbon nanocoil is contained in a ratio of 1 to 10 parts by weight with respect to 100 parts by weight of the resin.
An electromagnetic wave absorbing sheet.

項2.前記カーボンナノコイルが、平均コイル長10μm〜40μm、平均コイル径が1nm〜1μm未満及び平均コイルピッチ1nm以上1μm未満である、項1に記載の電磁波吸収シート。   Item 2. Item 2. The electromagnetic wave absorbing sheet according to Item 1, wherein the carbon nanocoil has an average coil length of 10 µm to 40 µm, an average coil diameter of 1 nm to less than 1 µm, and an average coil pitch of 1 nm to less than 1 µm.

項3.前記カーボンナノコイルが、平均コイル長20μm〜40μm、平均コイル径が400nm〜800nm未満及び平均コイルピッチ400nm〜800nmである、項1に記載の電磁波吸収シート。   Item 3. Item 2. The electromagnetic wave absorbing sheet according to Item 1, wherein the carbon nanocoil has an average coil length of 20 μm to 40 μm, an average coil diameter of 400 nm to less than 800 nm, and an average coil pitch of 400 nm to 800 nm.

項4.電磁波吸収シートの厚みが1μm〜10mm以下である、項1〜3のいずれかに記載の電磁波吸収シート。   Item 4. Item 4. The electromagnetic wave absorbing sheet according to any one of Items 1 to 3, wherein the electromagnetic wave absorbing sheet has a thickness of 1 µm to 10 mm.

項5.前記カーボンナノコイルが、電磁波吸収シートの面方向に配向している、項1〜4のいずれかに記載の電磁波吸収シート。   Item 5. Item 5. The electromagnetic wave absorbing sheet according to any one of Items 1 to 4, wherein the carbon nanocoil is oriented in a surface direction of the electromagnetic wave absorbing sheet.

項6.1GHz〜100GHzの周波数帯域において、反射損失が10dB以上である吸収帯域を有する、項1〜5のいずれかに記載の電磁波吸収シート。   Item 6. The electromagnetic wave absorbing sheet according to any one of Items 1 to 5, having an absorption band in which reflection loss is 10 dB or more in a frequency band of 6.1 GHz to 100 GHz.

項7.一方の面に金属板が積層されてなる、項1〜6のいずれかに記載の電磁波吸収シート。   Item 7. Item 7. The electromagnetic wave absorbing sheet according to any one of Items 1 to 6, wherein a metal plate is laminated on one surface.

項8.カーボンナノコイル及び樹脂を含有する電磁波吸収シートの製造方法であって、
平均コイル長1μm以上100μm未満、平均コイル径1nm以上1μm未満及び平均コイルピッチ1nm以上1μm未満であるカーボンナノコイルを、樹脂が溶解した有機溶媒に混合し、次いで、当該有機溶媒を蒸発させる工程、
を備えた、電磁波吸収シートの製造方法。
Item 8. A method for producing an electromagnetic wave absorbing sheet containing carbon nanocoils and a resin,
A step of mixing carbon nanocoils having an average coil length of 1 μm or more and less than 100 μm, an average coil diameter of 1 nm or more and less than 1 μm, and an average coil pitch of 1 nm or more and less than 1 μm with an organic solvent in which the resin is dissolved, and then evaporating the organic solvent;
The manufacturing method of the electromagnetic wave absorption sheet | seat provided with.

電磁波吸収シート
本発明の電磁波吸収シートは、(1)前記カーボンナノコイルが、平均コイル長1μm以上100μm未満、平均コイル径1nm以上1μm未満及び平均コイルピッチ1nm以上1μm未満であり、(2)前記カーボンナノコイルが、樹脂100重量部に対し、1〜10重量部の割合で含有されている、ことを特徴とする。
Electromagnetic wave absorbing sheet The electromagnetic wave absorbing sheet of the present invention is (1) the carbon nanocoil has an average coil length of 1 μm or more and less than 100 μm, an average coil diameter of 1 nm or more and less than 1 μm, and an average coil pitch of 1 nm or more and less than 1 μm, (2) The carbon nanocoil is contained in a ratio of 1 to 10 parts by weight with respect to 100 parts by weight of the resin.

本発明の電磁波吸収シートに含まれるカーボンナノコイルは、平均コイル長1μm以上100μm未満、平均コイル径1nm以上1μm未満及び平均コイルピッチ1nm以上1μm未満であることを特徴とする。好ましくは、平均コイル長10μm〜40μm、平均コイル径が1nm〜1μm未満及び平均コイルピッチ1nm以上1μm未満である。最も好ましくは、平均コイル長20μm〜40μm、平均コイル径が400nm〜800nm未満及び平均コイルピッチ400nm〜800nmである。この範囲とすることにより、電磁波をより多く吸収することができ、1GHz〜100GHzという幅広い波長域の電磁波に対して優れた電磁波吸収特性を得ることができる。なお、本発明における電磁波吸収特性は反射減衰量を元に評価している。   The carbon nanocoil contained in the electromagnetic wave absorbing sheet of the present invention has an average coil length of 1 μm or more and less than 100 μm, an average coil diameter of 1 nm or more and less than 1 μm, and an average coil pitch of 1 nm or more and less than 1 μm. Preferably, the average coil length is 10 μm to 40 μm, the average coil diameter is 1 nm to less than 1 μm, and the average coil pitch is 1 nm or more and less than 1 μm. Most preferably, the average coil length is 20 μm to 40 μm, the average coil diameter is 400 nm to less than 800 nm, and the average coil pitch is 400 nm to 800 nm. By setting it as this range, more electromagnetic waves can be absorbed and the electromagnetic wave absorption characteristic excellent with respect to the electromagnetic waves of the wide wavelength range of 1 GHz-100 GHz can be obtained. The electromagnetic wave absorption characteristics in the present invention are evaluated based on the return loss.

カーボンナノコイルの繊維径は限定的でないが、通常、1nm〜500nm程度、好ましくは50nm〜300nm程度である。   The fiber diameter of the carbon nanocoil is not limited, but is usually about 1 nm to 500 nm, preferably about 50 nm to 300 nm.

本発明のカーボンナノコイルの平均コイル長は、カーボンナノコイルを任意で100本選択し、当該カーボンナノコイル100本を走査型電子顕微鏡(SEM)で2000倍の倍率で画像を撮影し、当該画像のコイル長を目視で計測した場合の100本の平均値をいう。平均コイル径、平均コイルピッチ及び平均繊維径も上記平均コイル長と同様に任意で選択したカーボンナノコイル100本のSEM画像(2000倍)で観察した場合の平均値をいう。   As for the average coil length of the carbon nanocoils of the present invention, 100 carbon nanocoils are arbitrarily selected, and 100 carbon nanocoils are imaged at a magnification of 2000 times with a scanning electron microscope (SEM). The average value of 100 when the coil length is measured visually. The average coil diameter, the average coil pitch, and the average fiber diameter are average values when observed with an SEM image (2000 times) of 100 carbon nanocoils arbitrarily selected in the same manner as the average coil length.

本発明の電磁波吸収シート中における上記カーボンナノコイルの配合量は、樹脂100重量部に対して、1〜10重量程度であり、好ましくは3〜5重量部程度である。1重量部未満であると、電磁波の吸収が不十分であり、一方、10重量部を超えると、電磁波が吸収せずに反射することとなる。   The compounding amount of the carbon nanocoil in the electromagnetic wave absorbing sheet of the present invention is about 1 to 10 parts by weight, preferably about 3 to 5 parts by weight with respect to 100 parts by weight of the resin. When the amount is less than 1 part by weight, the electromagnetic wave is not sufficiently absorbed. On the other hand, when the amount exceeds 10 parts by weight, the electromagnetic wave is reflected without being absorbed.

本発明では、電磁波吸収シート中において、上記カーボンナノコイルが電磁吸収シートの面方向に配向(面配向)していることが好ましい。例えば、図1の左図に示すように、上記カーボンナノコイルの軸方向(の直線)が電磁波吸収シートの平面(XY平面)上に存在するに配向していることが好ましい。より具体的には、カーボンナノコイルの軸方向と電磁波吸収シートの平面とがなす角度が10°以下であるカーボンナノコイルの個数が、電磁波吸収シートに含まれるカーボンナノコイルの全個数中50%以上(特に80%以上)であることが好ましい。なお、図1の左図のように平面方向(XY平面)に配向していればよく、必ずしも一の方向に配向(一軸配向)していなくてもよい。   In the present invention, in the electromagnetic wave absorbing sheet, the carbon nanocoils are preferably oriented (plane orientation) in the plane direction of the electromagnetic absorbing sheet. For example, as shown in the left figure of FIG. 1, it is preferable that the axial direction (straight line) of the carbon nanocoil is present on the plane (XY plane) of the electromagnetic wave absorbing sheet. More specifically, the number of carbon nanocoils in which the angle formed between the axial direction of the carbon nanocoils and the plane of the electromagnetic wave absorbing sheet is 10 ° or less is 50% of the total number of carbon nanocoils included in the electromagnetic wave absorbing sheet. It is preferable that it is above (especially 80% or more). In addition, as long as it is orientating in the plane direction (XY plane) like the left figure of FIG. 1, it does not necessarily need to orient (uniaxial orientation) to one direction.

上記電磁波吸収シートに使用する樹脂は限定されず、例えば、熱可塑性樹脂及び熱硬化性樹脂のいずれでもよく、また、弾性材料であるエラストマーであってもよい。これらの中でも、特に有機溶媒に溶解する熱可塑性樹脂が好ましい。具体的には、例えば、スチレン系樹脂、アクリル系樹脂、ウレタン系樹脂のほか、ポリビニールアルコール(PVA)、ポリエチレン(PE)、ポリカーボネート(PC)、ポリプロピレン(PP)等が挙げられる。これらの中でも、特にスチレン系樹脂、ウレタン系樹脂等が好ましい。   Resin used for the said electromagnetic wave absorption sheet is not limited, For example, either a thermoplastic resin and a thermosetting resin may be sufficient, and the elastomer which is an elastic material may be sufficient. Among these, a thermoplastic resin that is particularly soluble in an organic solvent is preferable. Specifically, for example, polyvinyl alcohol (PVA), polyethylene (PE), polycarbonate (PC), polypropylene (PP), etc., in addition to styrene resin, acrylic resin, and urethane resin. Of these, styrene resins and urethane resins are particularly preferable.

本発明の電磁波吸収シートには、そのほか、必要に応じて、カーボンブラック、カーボンナノチューブ、VGCF等の炭素系材料、フェライト等の磁性材料等の添加材を含んでいてもよい。   In addition, the electromagnetic wave absorbing sheet of the present invention may contain additives such as carbon black, carbon nanotubes, carbon materials such as VGCF, and magnetic materials such as ferrite, if necessary.

電磁波吸収シートの厚みは、通常25mm以下、好ましくは10mm以下、より好ましくは5mm以下程度である。これにより、軽量化、コンパクト化等が可能となる。下限は限定的でないが、例えば、1μm程度とすればよい。   The thickness of the electromagnetic wave absorbing sheet is usually 25 mm or less, preferably 10 mm or less, more preferably about 5 mm or less. This makes it possible to reduce the weight and size. The lower limit is not limited, but may be about 1 μm, for example.

なお、本発明の電磁吸収シートは、必要に応じて、そのシート表面の一方の面に金属板が積層されていてもよい。金属の種類は限定的でなく、公知又は市販のものを使用することができる。例えば、アルミニウム、鉄、銅、ニッケル、およびこれらの合金、金属化合物等が挙げられる。金属板の厚みも限定的でなく、電磁波及シートの使用用途に応じて幅広く設定できるが、通常1μm〜10mm程度とすればよい。   In addition, as for the electromagnetic absorption sheet of this invention, the metal plate may be laminated | stacked on one surface of the sheet | seat surface as needed. The kind of metal is not limited, and a known or commercially available metal can be used. Examples thereof include aluminum, iron, copper, nickel, and alloys and metal compounds thereof. The thickness of the metal plate is not limited, and can be set widely depending on the use application of the electromagnetic wave and the sheet, but it is usually about 1 μm to 10 mm.

本発明の電磁波吸収シートは、1GHz〜100GHzという吸収波長域において、反射損失が10dB以上(特に20dB以上)という高い吸収帯域を少なくとも一部に有している。特に、当該高い吸収帯域が1Hz〜10GHz程度(特に1GHz〜10GHz)という幅をもって有することが可能となる。   The electromagnetic wave absorbing sheet of the present invention has at least a part of a high absorption band with a reflection loss of 10 dB or more (particularly 20 dB or more) in an absorption wavelength region of 1 GHz to 100 GHz. In particular, the high absorption band can have a width of about 1 Hz to 10 GHz (particularly 1 GHz to 10 GHz).

また、本発明の電磁波吸収シートは、その厚みを例えば後述する調整方法等により適宜変化させることにより、上述した所望の吸収帯域を容易に変化させ、所望の吸収帯域を有することが可能となる。   Further, the electromagnetic wave absorbing sheet of the present invention can have the desired absorption band by easily changing the above-described desired absorption band by appropriately changing the thickness of the electromagnetic wave absorbing sheet by, for example, an adjusting method described later.

製造方法
本発明の電磁波吸収シートは、例えば、樹脂が溶解した有機溶媒に、カーボンナノコイルを混合し、次いで、有機溶媒を蒸発させることにより、製造することができる。
Production Method The electromagnetic wave absorbing sheet of the present invention can be produced , for example, by mixing carbon nanocoils in an organic solvent in which a resin is dissolved, and then evaporating the organic solvent.

本発明のカーボンナノコイルは、公知又は市販のものを使用してもよいが、例えば、カーボンナノコイル用触媒を担持させたアルミナ基板(以下「触媒付きアルミナ基板」という)を100〜1000℃(好ましくは500〜800℃)程度に加熱し、その加熱した触媒付きアルミナ基板に、アセチレン等の炭化水素と不活性ガスとの混合気体を吹き付けて成長させる熱CVD(Chemical Vapor Deposition)法によって好適に製造することができる。   For the carbon nanocoil of the present invention, a known or commercially available carbon nanocoil may be used. For example, an alumina substrate carrying a catalyst for carbon nanocoil (hereinafter referred to as “alumina substrate with catalyst”) at 100 to 1000 ° C. ( It is preferably applied by a thermal CVD (Chemical Vapor Deposition) method in which a heated gas is heated to about 500 to 800 ° C. and a mixed gas of a hydrocarbon such as acetylene and an inert gas is sprayed onto the heated alumina substrate with catalyst. Can be manufactured.

上記カーボンナノコイル用触媒には、例えばインジウム・スズ・鉄系触媒が好適に用いられる。このようなインジウム・スズ・鉄系触媒としては、例えば金属塩酸塩、具体例としては、三塩化鉄(FeCl)等の塩化鉄と、三塩化インジウム(InCl)等の塩化インジウムと、二塩化スズ(SnCl)等の塩化スズとの混合溶液から共沈法で作製した沈殿物を300〜1000℃(好ましくは500〜900℃)で焼成した混合酸化物が好適に用いられる。また、インジウム・スズ・鉄系触媒としては、前述した金属塩酸塩以外に、金属硝酸塩、金属硫酸塩または金属有機酸塩を用いてもよい。なお、このような触媒には、例えば、酸化鉄、酸化インジウム、酸化スズ等の金属酸化物等の粉末が混合されていてもよい。また、カーボンナノコイル用触媒として、前述のインジウム・スズ・鉄系の三元系触媒の他にも、酸化インジウムを含まない触媒、例えば、スズ・鉄系の二元系触媒、具体的には酸化鉄と酸化スズとの二元系触媒等を使用してもよい。 For the carbon nanocoil catalyst, for example, an indium / tin / iron catalyst is preferably used. Examples of such indium / tin / iron-based catalysts include metal hydrochlorides, and specific examples include iron chloride such as iron trichloride (FeCl 3 ), indium chloride such as indium trichloride (InCl 3 ), A mixed oxide obtained by calcining a precipitate produced by a coprecipitation method from a mixed solution with tin chloride such as tin chloride (SnCl 2 ) at 300 to 1000 ° C. (preferably 500 to 900 ° C.) is preferably used. Further, as the indium / tin / iron-based catalyst, metal nitrate, metal sulfate, or metal organic acid salt may be used in addition to the metal hydrochloride described above. In addition, powders, such as metal oxides, such as iron oxide, an indium oxide, and a tin oxide, may be mixed with such a catalyst, for example. Further, as a catalyst for carbon nanocoil, in addition to the above-mentioned indium / tin / iron-based ternary catalyst, a catalyst not containing indium oxide, for example, a tin / iron-based binary catalyst, specifically, A binary catalyst of iron oxide and tin oxide may be used.

混合溶液の溶媒には、例えば、水、イソプロピルアルコール(IPA)、エタノールなどのアルコール類が挙げられる。   Examples of the solvent of the mixed solution include water, isopropyl alcohol (IPA), and alcohols such as ethanol.

不活性ガスとしては、例えばヘリウム、アルゴン等が挙げられる。   Examples of the inert gas include helium and argon.

熱CVD法によって製造する際のカーボンナノコイル用触媒の組成、成長時間、触媒付きアルミナ基板の加熱温度、炭化水素の種類、炭化水素の濃度および流量などを制御することによって、カーボンナノコイルのコイル長、コイル径、コイルピッチ等を適宜制御することができる。   The carbon nanocoil coil is controlled by controlling the composition, growth time, heating temperature of the alumina substrate with the catalyst, hydrocarbon type, hydrocarbon concentration and flow rate, etc., when producing the catalyst by the thermal CVD method. The length, coil diameter, coil pitch, etc. can be appropriately controlled.

また、例えば、カーボンナノコイルに超音波等を照射することにより、コイル長等を短くして、カーボンナノコイルの性状を変化させることも可能である。   In addition, for example, by irradiating the carbon nanocoil with ultrasonic waves or the like, it is possible to shorten the coil length or the like and change the properties of the carbon nanocoil.

上記カーボンナノコイル及び樹脂は、上述したものが挙げられる。有機溶媒は、上記樹脂を溶解させるものであれば制限されず、樹脂の種類等に応じて適宜決定されるが、例えば、クロロホルム、メチルエチルケトン(MEK)、トルエン、テトラヒドロフラン(THF)等が挙げられる。これらの中でも、クロロホルム等が樹脂の溶解の容易さ及び蒸発時の気泡発生の抑制の観点から好ましい。   Examples of the carbon nanocoil and the resin include those described above. The organic solvent is not limited as long as it dissolves the resin, and is appropriately determined according to the type of the resin. Examples thereof include chloroform, methyl ethyl ketone (MEK), toluene, and tetrahydrofuran (THF). Among these, chloroform and the like are preferable from the viewpoint of ease of dissolution of the resin and suppression of bubble generation during evaporation.

有機溶媒中の樹脂の含有量(樹脂固形分)は限定的でなく、例えば、有機溶媒及び樹脂の合計量100重量部に対して、1〜25重量部、好ましくは1〜10重量部程度とすればよい。   The resin content (resin solid content) in the organic solvent is not limited. For example, it is 1 to 25 parts by weight, preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the total amount of the organic solvent and the resin. do it.

カーボンナノコイルの含有量は、上述した電磁波吸収シートの配合量となるように行えばよい。   What is necessary is just to carry out so that content of a carbon nanocoil may become the compounding quantity of the electromagnetic wave absorption sheet mentioned above.

有機溶媒の蒸発は、自然蒸発、すなわち、大気雰囲気中(例えば、10〜30℃程度)で静置することにより行うことが好ましい。これにより、有機溶媒の蒸発が徐々に行われるため、蒸発により樹脂が固化して得られる電磁波吸収シート中のカーボンナノコイルが水平面に横たわりやすくなり、ひいては面方向に配向しやすくできる。   The organic solvent is preferably evaporated by natural evaporation, that is, by standing in an air atmosphere (for example, about 10 to 30 ° C.). Thereby, since the organic solvent is gradually evaporated, the carbon nanocoils in the electromagnetic wave absorbing sheet obtained by solidifying the resin by evaporation can easily lie on the horizontal plane, and thus can be easily oriented in the plane direction.

静置時間は有機溶媒の種類、濃度等に応じて適宜決定されるが、通常、1〜24時間程度という幅広い範囲から決定すればよい。   The standing time is appropriately determined according to the type, concentration, and the like of the organic solvent, but is usually determined from a wide range of about 1 to 24 hours.

なお、本発明の電磁波吸収シートは、そのほか、溶液混合法、加熱混練法、プリプレグを形成後硬化させる法、樹脂のエマルション液又はサスペンション液に上記コイルを分散後乾燥させる法等の公知の各種手段を用いて、上記カーボンナノコイルを樹脂に分散して製造することもできる。   In addition, the electromagnetic wave absorbing sheet of the present invention includes various other known means such as a solution mixing method, a heat-kneading method, a method of curing after forming a prepreg, and a method of dispersing the coil in a resin emulsion or suspension and drying it. Can be used by dispersing the carbon nanocoil in a resin.

厚みの調整方法
本発明の電磁波吸収シート厚みの調整方法は、下記式(1)
Adjusting method of thickness The adjusting method of the electromagnetic wave absorbing sheet thickness of the present invention is represented by the following formula (1).

Figure 2009060060
Figure 2009060060

(ただし、λは入射電磁波の波長を示し、εγは複素比誘電率を示し、dは電磁波及シートの厚さを示し、jは虚数単位を示す。)
又は当該式(1)から導出される式を用いることにより、2つの曲線(複素比誘電率の実部(εγ’)を示す曲線及び複素比誘電率の虚部(εγ’’)を示す曲線)を同一のグラフに表出し、次いで、当該2つの曲線の交点における厚さdを求め、当該求めた厚さdとなるように電磁波吸収シートを調整する。これにより、電磁波吸収シートの厚みと当該シートが最も効率よく吸収する電磁波の周波数(吸収ピーク)との関係がグラフから簡易に判断することができ、ひいては優れた電磁波吸収特性を持つ電磁波吸収シートを容易に作製することができる。以下、厚みの調整方法について下記に詳細する。
(Where λ represents the wavelength of the incident electromagnetic wave, ε γ represents the complex dielectric constant, d represents the thickness of the electromagnetic wave and the sheet, and j represents the imaginary unit.)
Alternatively, by using an expression derived from the expression (1), two curves (a curve indicating a real part (ε γ ′) of a complex relative dielectric constant and an imaginary part (ε γ ″) of a complex relative dielectric constant) The curve d) is displayed on the same graph, and then the thickness d at the intersection of the two curves is obtained, and the electromagnetic wave absorbing sheet is adjusted so as to be the obtained thickness d. As a result, the relationship between the thickness of the electromagnetic wave absorbing sheet and the frequency (absorption peak) of the electromagnetic wave that the sheet absorbs most efficiently can be easily determined from the graph, and thus an electromagnetic wave absorbing sheet having excellent electromagnetic wave absorption characteristics can be obtained. It can be easily manufactured. Hereinafter, the thickness adjusting method will be described in detail below.

図2に、厚さがd、複素比誘電率が   In FIG. 2, the thickness is d and the complex dielectric constant is

Figure 2009060060
Figure 2009060060

(但し、εγ’は複素比誘電率の実部を示し、εγ’’は複素比誘電率の虚部を示し、jは虚数単位を示す。)で表される電磁波吸収シート及び当該電磁吸収シートに裏張りされた金属板を示す。なお、本発明の厚み調整方法及びそれに関連する測定において、金属板は積層(裏張り)されていてもよいし、積層されていなくてもよい。 Where ε γ ′ represents the real part of the complex relative dielectric constant, ε γ ″ represents the imaginary part of the complex relative dielectric constant, and j represents the imaginary unit. The metal plate backed by the absorption sheet is shown. In the thickness adjusting method of the present invention and the measurement related thereto, the metal plate may be laminated (backed) or may not be laminated.

この電波吸収シートに電磁波が図2に示されるように垂直入射する場合、この電磁波吸収シートが無反射となる条件は、下記式(2)   When electromagnetic waves are perpendicularly incident on the radio wave absorbing sheet as shown in FIG. 2, the condition that the electromagnetic wave absorbing sheet is non-reflective is the following formula (2)

Figure 2009060060
Figure 2009060060

(ただし、λは入射電磁波の波長を示し、εγは複素比誘電率を示し、dは電磁波及シート(金属板は含まない)の厚さを示し、jは虚数単位を示す)で表される。
上式(2)を満足する複素比誘電率εγは無数に存在するが、このうち最も小さい厚さdを与えるεγは、次式(1)で近似的に与えることができる。
Where λ is the wavelength of the incident electromagnetic wave, ε γ is the complex dielectric constant, d is the thickness of the electromagnetic wave and sheet (not including the metal plate), and j is the imaginary unit. The
There are an infinite number of complex dielectric constants ε γ that satisfy the above equation (2). Of these, ε γ that gives the smallest thickness d can be approximately given by the following equation (1).

Figure 2009060060
Figure 2009060060

(ただし、λは入射電磁波の波長を示し、εγは複素比誘電率を示し、dは電磁波及シート(金属板は含まない)の厚さを示し、jは虚数単位を示す。)
なお、この近似式による解(これを「近似解」という。)と、厳密解(一般的に電磁波吸収シートの厚みと吸収周波数域との関係を示す式を用いた解)との関係を図3に示す。図3から両者の解は良好な一致を示す。
(Where λ indicates the wavelength of the incident electromagnetic wave, ε γ indicates the complex dielectric constant, d indicates the thickness of the electromagnetic wave and the sheet (not including the metal plate), and j indicates the imaginary unit.)
The relationship between the solution by this approximate expression (this is referred to as “approximate solution”) and the exact solution (generally a solution using an expression showing the relationship between the thickness of the electromagnetic wave absorbing sheet and the absorption frequency range) is shown in FIG. 3 shows. From FIG. 3, both solutions show good agreement.

ここで、式(1)を変形すると、電磁波吸収シートの厚みdを与える下記の2つの式を導出することができる。   Here, by transforming the formula (1), the following two formulas that give the thickness d of the electromagnetic wave absorbing sheet can be derived.

Figure 2009060060
Figure 2009060060

(ただし、Coは真空中の光速(=2.99792458×10m/s)を示し、fは周波数(Hz)を示す。) (However, Co represents the speed of light in a vacuum (= 2.99979458 × 10 8 m / s), and f represents frequency (Hz).)

厚みの調整方法として具体的には、目的の電磁波吸収シートの複素比誘電率の実部εγ’及び複素比誘電率の虚部εγ’’を例えば同軸間法、自由空間法等の公知の測定方法で測定した後、上記式(3a)及び式(3b)にεγ’及びεγ’’を代入し、次いで、横軸に周波数f、縦軸に電磁波吸収シートの厚さdとして、代入された式(3a)及び式(3b)を同一のグラフにプロットすればよい。このプロットされたグラフは、例えば、図4のようなグラフとして得られる。なお、図4において、曲線aは式(3a)、曲線bは式(3b)のプロットである。 Specifically, as the thickness adjustment method, the real part ε γ ′ of the complex relative permittivity and the imaginary part ε γ ′ of the complex relative permittivity of the target electromagnetic wave absorbing sheet are known, for example, the intercoaxial method, the free space method, etc. Ε γ ′ and ε γ ″ are substituted into the above formulas (3a) and (3b), then the frequency f is plotted on the horizontal axis and the thickness d of the electromagnetic wave absorbing sheet is plotted on the vertical axis. The substituted equations (3a) and (3b) may be plotted on the same graph. This plotted graph is obtained, for example, as a graph as shown in FIG. In FIG. 4, curve a is a plot of equation (3a) and curve b is a plot of equation (3b).

この図4において、式(3a)で与えられるdと式(3b)で与えられるdが一致、すなわち図4の曲線aと曲線bが交差する(又は実質的に接する)場合に、式(1)で与えられる近似的な無反射条件が満足され、良好な吸収ピークを有する。   In FIG. 4, when d given by the expression (3a) and d given by the expression (3b) coincide, that is, when the curve a and the curve b in FIG. 4 intersect (or substantially touch each other), the expression (1 The approximate non-reflective condition given in (1) is satisfied and has a good absorption peak.

具体的には、例えば、図4では5〜6GHz付近、厚さ約5mmの点で曲線aと曲線bが交差している。このことは、この点付近で無反射条件が満たされること、すなわちこの材料を厚さ5mmの平板状に加工し、必要に応じて金属板で裏張りすると、5〜6GHz付近で吸収のピークをもつ電磁波吸収シートが得られることを意味する。   Specifically, for example, in FIG. 4, the curve a and the curve b intersect at a point in the vicinity of 5 to 6 GHz and a thickness of about 5 mm. This means that the non-reflection condition is satisfied in the vicinity of this point, that is, if this material is processed into a flat plate with a thickness of 5 mm and lined with a metal plate as necessary, an absorption peak is observed in the vicinity of 5 to 6 GHz. This means that an electromagnetic wave absorbing sheet is obtained.

なお、電磁波吸収シートを所望の厚みに調節する方法は、所望の厚みになるように製造時点で予め樹脂量を調節して成形してもよく、また、一度成形された電磁波吸収シートを熱プレスで圧縮すること等によって調節してもよい。   In addition, the method of adjusting the electromagnetic wave absorbing sheet to a desired thickness may be molded by adjusting the amount of resin in advance at the time of manufacture so that the desired thickness is obtained. You may adjust by compressing by.

本発明によれば、厚みを変えるだけで、例えば、1GHz〜100GHzの周波数域において特定の周波数の電磁波を高効率で吸収することができる。また、シート厚みが10mm以下という薄さで電磁波を吸収することができるため、軽量化の点で優れる。さらにカーボンナノコイルの配合割合が、母材である樹脂に対し10重量部以下という少ない含有量であるため、従来のカーボンブラックを用いた電磁波吸収シートよりも少量の含有量であり、コスト面でも優れている。   According to the present invention, an electromagnetic wave having a specific frequency can be absorbed with high efficiency in a frequency range of 1 GHz to 100 GHz, for example, by simply changing the thickness. Further, since the electromagnetic wave can be absorbed with a sheet thickness of 10 mm or less, it is excellent in terms of weight reduction. Furthermore, since the blending ratio of the carbon nanocoil is a small content of 10 parts by weight or less with respect to the resin as the base material, the content is smaller than that of the electromagnetic wave absorbing sheet using the conventional carbon black, and also in terms of cost. Are better.

具体的には、本発明の請求項1に係る電磁波吸収シートは、平均コイル長1μm以上100μm未満、平均コイル径1nm以上1μm未満及び平均コイルピッチ1nm以上1μm未満のカーボンナノコイルを樹脂100重量部に対し1〜10重量部含有しているため、1GHz〜100GHzの周波数帯において、所望の厚みの範囲(好ましくは厚み1μm〜10mm)において、厚みを変化させれば10dB以上の反射損失を持つ電磁波吸収体の作製が可能であり、市場の要望している周波数帯に合わせた電磁波吸収シートの提供が可能である。また、作製した吸収シートの吸収体域においては、10dBを超える吸収域の幅が広く、広帯域用の電磁波吸収シートとしても優れている。   Specifically, in the electromagnetic wave absorbing sheet according to claim 1 of the present invention, a carbon nanocoil having an average coil length of 1 μm or more and less than 100 μm, an average coil diameter of 1 nm or more and less than 1 μm, and an average coil pitch of 1 nm or more and less than 1 μm is 100 parts by weight of resin. 1-10 parts by weight with respect to an electromagnetic wave having a reflection loss of 10 dB or more if the thickness is changed in a desired thickness range (preferably 1 μm to 10 mm) in a frequency band of 1 GHz to 100 GHz. An absorber can be produced, and an electromagnetic wave absorbing sheet can be provided in accordance with a frequency band desired by the market. Moreover, in the absorber area | region of the produced absorption sheet, the width | variety of the absorption range exceeding 10 dB is wide, and it is excellent also as an electromagnetic wave absorption sheet for broadband.

本発明の請求項2に係る電磁波吸収シートは、平均コイル長10μm〜40μm未満、平均コイル径400nm〜800nm未満及び平均コイルピッチ400nm〜800nmのカーボンナノコイルを樹脂100重量部に対し1〜10重量部含有しているため、1GHz〜100GHzの周波数帯において、より優れた電磁波吸収体の作製が可能であり、市場の要望している周波数帯に合わせた電磁波吸収シートの提供が可能である。また、作製した吸収シートの吸収体域においては、10dBを超える吸収域の幅が広く、広帯域用の電磁波吸収シートとしても優れている。   In the electromagnetic wave absorbing sheet according to claim 2 of the present invention, the carbon nanocoil having an average coil length of 10 μm to less than 40 μm, an average coil diameter of 400 nm to less than 800 nm, and an average coil pitch of 400 nm to 800 nm is 1 to 10 wt. Therefore, it is possible to produce a better electromagnetic wave absorber in the frequency band of 1 GHz to 100 GHz, and it is possible to provide an electromagnetic wave absorbing sheet that matches the frequency band desired by the market. Moreover, in the absorber area | region of the produced absorption sheet, the width | variety of the absorption range exceeding 10 dB is wide, and it is excellent also as an electromagnetic wave absorption sheet for broadband.

本発明の請求項3に係る電磁波吸収シートは、平均コイル長さ20μm〜40μm、平均コイル径400nm〜800nm、平均コイルピッチ400nm〜800nmのカーボンナノコイルを樹脂100重量部に対し1〜10重量部含有しているため、1GHz〜100GHz(特に1GHz〜20GHz)の周波数に対して特に優れた電磁波吸収特性を示す。   The electromagnetic wave absorbing sheet according to claim 3 of the present invention is 1 to 10 parts by weight of carbon nanocoils having an average coil length of 20 μm to 40 μm, an average coil diameter of 400 nm to 800 nm, and an average coil pitch of 400 nm to 800 nm with respect to 100 parts by weight of the resin. Since it contains, the electromagnetic wave absorption characteristic especially excellent with respect to the frequency of 1 GHz-100 GHz (especially 1 GHz-20 GHz) is shown.

より具体的には、平均コイル長さ20μm〜40μm、平均コイル径400nm〜800nm、平均コイルピッチ400nm〜800nmのカーボンナノコイルを用いた請求項3に係る電磁波吸収シートにおいて、カーボンナノコイルの混入量を樹脂100重量部に対し1〜10重量部、電磁波吸収シートの厚みを1mm〜10mmとしたものは、1〜20GHzの周波数に対して電磁波吸収量が20dB以上という優れた電磁波吸収特性を示す。また、カーボンナノコイルの添加量が少量でも優れた反射損失を示すため、カーボンナノコイルによる高コスト化を抑制できると同時に、シートの厚みが特に薄いためコンパクト化が大幅に図れる。このことは実施例9における電磁波吸収特性を示した図13より、厚みが1.6mmの場合吸収ピークを示す周波数が20GHzであることから分かる。   More specifically, the amount of carbon nanocoil mixed in the electromagnetic wave absorbing sheet according to claim 3, wherein carbon nanocoils having an average coil length of 20 μm to 40 μm, an average coil diameter of 400 nm to 800 nm, and an average coil pitch of 400 nm to 800 nm are used. 1 to 10 parts by weight with respect to 100 parts by weight of the resin and the thickness of the electromagnetic wave absorbing sheet of 1 mm to 10 mm shows excellent electromagnetic wave absorption characteristics such that the electromagnetic wave absorption amount is 20 dB or more with respect to the frequency of 1 to 20 GHz. In addition, since the reflection loss is excellent even with a small amount of carbon nanocoil added, the cost increase due to the carbon nanocoil can be suppressed, and at the same time, the sheet thickness is particularly thin, so that the size can be greatly reduced. This can be seen from FIG. 13 showing the electromagnetic wave absorption characteristics in Example 9 because the frequency showing the absorption peak is 20 GHz when the thickness is 1.6 mm.

また、平均コイル長さ20μm〜40μm、平均コイル径400nm〜800nm、平均コイルピッチ400nm〜800nmのカーボンナノコイルを用いた請求項3に係る電磁波吸収シートにおいて、カーボンナノコイルの混入量を樹脂100重量部に対し1〜10重量部、電磁波吸収シートの厚みを500μm〜3mmとしたものは、20〜60GHzの周波数に対して電磁波吸収量が20dB以上という優れた電磁波吸収特性を示す。また、カーボンナノコイルの添加量が少量でも優れた反射損失を示すため、カーボンナノコイルによる高コスト化を抑制できると同時に、シートの厚みが特に薄いためコンパクト化が大幅に図れる。このことは実施例8における電磁波吸収量を示した図13より、厚みが500μmの場合吸収ピークを示す周波数が60GHzであることから分かる。   The electromagnetic wave absorbing sheet according to claim 3, wherein carbon nanocoils having an average coil length of 20 μm to 40 μm, an average coil diameter of 400 nm to 800 nm, and an average coil pitch of 400 nm to 800 nm are used. 1 to 10 parts by weight with respect to the part, and the electromagnetic wave absorbing sheet having a thickness of 500 μm to 3 mm exhibit excellent electromagnetic wave absorption characteristics such that the electromagnetic wave absorption amount is 20 dB or more with respect to the frequency of 20 to 60 GHz. In addition, since the reflection loss is excellent even with a small amount of carbon nanocoil added, the cost increase due to the carbon nanocoil can be suppressed, and at the same time, the sheet thickness is particularly thin, so that the size can be greatly reduced. This can be seen from FIG. 13 showing the amount of electromagnetic wave absorption in Example 8 because the frequency showing the absorption peak is 60 GHz when the thickness is 500 μm.

さらに、平均コイル長さ20μm〜40μm、平均コイル径400nm〜800nm、平均コイルピッチ400nm〜800nmのカーボンナノコイルを用いた請求項3に係る電磁波吸収シートにおいて、カーボンナノコイルの混入量を樹脂100重量部に対し1〜10重量部、電磁波吸収シートの厚みを1μm〜2mmとしたものは、60〜100GHzの周波数に対して電磁波吸収量が20dB以上という優れた電磁波吸収特性を示す。また、カーボンナノコイルの添加量が少量でも優れた反射損失を示すため、カーボンナノコイルによる高コスト化を抑制できると同時に、シートの厚みが特に薄いためコンパクト化が大幅に図れる。このことは実施例9における電磁波吸収量を示した図13より、厚みが1.6mmの場合吸収ピークを示す周波数が100GHzであることから分かる。   Furthermore, in the electromagnetic wave absorbing sheet according to claim 3, wherein carbon nanocoils having an average coil length of 20 μm to 40 μm, an average coil diameter of 400 nm to 800 nm, and an average coil pitch of 400 nm to 800 nm are used, When the thickness of the electromagnetic wave absorbing sheet is 1 μm to 2 mm with respect to the part, the electromagnetic wave absorption amount is 20 dB or more with respect to the frequency of 60 to 100 GHz. In addition, since the reflection loss is excellent even with a small amount of carbon nanocoil added, the cost increase due to the carbon nanocoil can be suppressed, and at the same time, the sheet thickness is particularly thin, so that the size can be greatly reduced. This can be seen from FIG. 13 showing the amount of electromagnetic wave absorption in Example 9 because the frequency showing the absorption peak is 100 GHz when the thickness is 1.6 mm.

以下に実施例及び比較例を挙げて、本発明をさらに詳細に説明する。なお、本発明は、下記の実施例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, this invention is not limited to the following Example.

実施例1
スチレン系樹脂(スチレン系エラストマー;シェル化学社製、「クレイトン」)を、クロロホルムに樹脂固形分が25重量%程度となるように添加及び攪拌することにより、樹脂が溶解したクロロホルム溶液を調製した。
Example 1
A chloroform solution in which the resin was dissolved was prepared by adding and stirring a styrene resin (styrene elastomer; manufactured by Shell Chemical Co., Ltd., “Clayton”) so that the resin solid content was about 25 wt%.

次いで、調製した溶液に、カーボンナノコイル(平均コイル長20μm、平均コイル径440nm、平均コイルピッチ560nm、平均繊維径150nm)を、溶解した樹脂100重量部に対して、5重量部となるように添加及び攪拌した後、半日程度静置することにより、クロロホルムを徐々に蒸発させて、実施例1の電磁波吸収シート(厚さ200μm)を製造した。   Next, carbon nanocoils (average coil length 20 μm, average coil diameter 440 nm, average coil pitch 560 nm, average fiber diameter 150 nm) are added to the prepared solution so as to be 5 parts by weight with respect to 100 parts by weight of the dissolved resin. After the addition and stirring, the mixture was allowed to stand for about half a day, whereby chloroform was gradually evaporated to produce the electromagnetic wave absorbing sheet (thickness: 200 μm) of Example 1.

実施例2
カーボンナノコイル(平均コイル長20μm、平均コイル径440nm、平均コイルピッチ560nm、平均繊維径150nm)の代わりに、当該カーボンナノコイルを超音波ホモジナイザー(エスエムテー社製、50W、20kHz)で超音波を10分間照射することによりコイル長を短く切断したカーボンナノコイル(平均コイル長10μm、平均コイル径440nm、平均コイルピッチ560nm、平均繊維径150nm)を用いた以外は、実施例1と同様にして、実施例2の電磁波吸収シート(厚さ200μm)を製造した。
Example 2
Instead of the carbon nanocoil (average coil length 20 μm, average coil diameter 440 nm, average coil pitch 560 nm, average fiber diameter 150 nm), the carbon nanocoil was subjected to ultrasonication with an ultrasonic homogenizer (manufactured by SMT Co., 50 W, 20 kHz). Implementation was performed in the same manner as in Example 1 except that carbon nanocoils (average coil length 10 μm, average coil diameter 440 nm, average coil pitch 560 nm, average fiber diameter 150 nm) cut by shortening the coil length by irradiation for minutes were used. The electromagnetic wave absorbing sheet of Example 2 (thickness: 200 μm) was produced.

電磁波吸収特性の測定(同軸管法)
下記の測定器具を用いて、同軸管法により、実施例1及び2の電磁波吸収シートの複素比誘電率を測定した。測定結果を図5(左図が実施例1、右図が実施例2)に示す。
・誘電率測定用治具:同軸管(外径7mm、内径3.04m;(株)関東電子応用開発社製、「CSH2−APC7」)、
・ネットワークアナライザ: Agilent Technologies E8361A (10MHz−67GHz)
・ソフトウェア: Agilent Technologies 85071 Version E1.01
(計算モデルとして “precision model”を使用)
図5から、電磁波吸収シートの厚みを2mm、2.5mm及び3mmとした場合の電磁波吸収量(反射減衰量)を計算した。この計算結果を図6(左図が実施例1、右図が実施例2)に示す。
Measurement of electromagnetic wave absorption characteristics (coaxial tube method)
The complex relative dielectric constant of the electromagnetic wave absorbing sheets of Examples 1 and 2 was measured by the coaxial tube method using the following measuring instrument. The measurement results are shown in FIG. 5 (the left figure is Example 1 and the right figure is Example 2).
Dielectric constant measuring jig: coaxial tube (outer diameter 7 mm, inner diameter 3.04 m; manufactured by Kanto Electronics Application Development Co., Ltd., “CSH2-APC7”),
Network analyzer: Agilent Technologies E8361A (10MHz-67GHz)
Software: Agilent Technologies 85071 Version E1.01
("Precision model" is used as the calculation model)
From FIG. 5, the electromagnetic wave absorption amount (reflection attenuation amount) when the thickness of the electromagnetic wave absorbing sheet was 2 mm, 2.5 mm, and 3 mm was calculated. The calculation results are shown in FIG. 6 (the left figure is Example 1 and the right figure is Example 2).

面配向の測定試験
実施例1の電磁波吸収シートの表面を酸素プラズマでアッシングし、走査型電子顕微鏡(JEOL、JSM7401F)にて、5000倍の倍率で画像を撮影した。画像に撮影されたカーボンナノコイルの中から任意に100本選択し、当該カーボンナノコイルの軸方向と、電磁波吸収シートとのなす角度を測定したところ、90本以上のカーボンナノコイルの角度が10°以下であった。
Measurement test of plane orientation The surface of the electromagnetic wave absorbing sheet of Example 1 was ashed with oxygen plasma, and an image was taken at a magnification of 5000 times with a scanning electron microscope (JEOL, JSM7401F). 100 arbitrarily selected from the carbon nanocoils photographed in the image, and the angle formed between the axial direction of the carbon nanocoils and the electromagnetic wave absorbing sheet was measured. As a result, 90 or more carbon nanocoils had an angle of 10 It was less than °.

実施例3
カーボンナノコイル(平均コイル長20μm、平均コイル径440nm、平均コイルピッチ560nm、平均繊維径150nm)を、樹脂100重量部に対して、5重量部の代わりに4重量部となるように添加した以外は実施例1と同様にして、実施例3の電磁波吸収シート(厚さ500μm)を製造した。
Example 3
Carbon nanocoil (average coil length 20 μm, average coil diameter 440 nm, average coil pitch 560 nm, average fiber diameter 150 nm) was added to 100 parts by weight of resin so as to be 4 parts by weight instead of 5 parts by weight. Produced the electromagnetic wave absorbing sheet of Example 3 (thickness: 500 μm) in the same manner as in Example 1.

実施例4
カーボンナノコイル(平均コイル長20μm、平均コイル径440nm、平均コイルピッチ560nm、平均繊維径150nm)の代わりに、カーボンナノコイル(平均コイル長26μm、平均コイル径920nm、平均コイルピッチ670nm、平均繊維径200nm)を用いた以外は、実施例3と同様にして、本願実施例4の電磁波吸収シート(厚さ500μm)を製造した。
Example 4
Instead of carbon nanocoils (average coil length 20 μm, average coil diameter 440 nm, average coil pitch 560 nm, average fiber diameter 150 nm), carbon nanocoils (average coil length 26 μm, average coil diameter 920 nm, average coil pitch 670 nm, average fiber diameter) The electromagnetic wave absorbing sheet (thickness: 500 μm) of Example 4 of the present application was produced in the same manner as Example 3 except that 200 nm) was used.

<電磁波吸収特性の測定(同軸管法)>
実施例3及び4の電磁波吸収シートの電磁波吸収特性について、実施例1と同様にして求めた。図7に、実施例3及び4の電磁波吸収シートの複素比誘電率の測定結果(左図が実施例3、右図が実施例4)を示す。図8に、電磁波吸収シートの厚みを実施例3では2mm、2.5mm及び3mmとした場合の、実施例4では5mm、10mm及び20mmとした場合の、電磁波吸収量の計算結果(左図が実施例3、右図が実施例4)に示す。
<Measurement of electromagnetic wave absorption characteristics (coaxial tube method)>
The electromagnetic wave absorption characteristics of the electromagnetic wave absorbing sheets of Examples 3 and 4 were determined in the same manner as in Example 1. FIG. 7 shows the measurement results of the complex dielectric constant of the electromagnetic wave absorbing sheets of Examples 3 and 4 (the left figure is Example 3 and the right figure is Example 4). FIG. 8 shows the results of calculation of the amount of electromagnetic wave absorption when the thickness of the electromagnetic wave absorbing sheet is 2 mm, 2.5 mm and 3 mm in Example 3 and 5 mm, 10 mm and 20 mm in Example 4 (the left figure is Example 3 and the right figure are shown in Example 4).

実施例5
カーボンナノコイル(平均コイル長20μm、平均コイルピッチ560nm、平均繊維径150nm、平均コイル径440nm)の代わりに、カーボンナノコイル(平均コイル長28μm、平均コイル径440nm、平均コイルピッチ960nm、平均繊維径220nm)を用いた以外は、実施例1と同様にして、実施例5の電磁波吸収シート(厚さ500μm)を製造した。
Example 5
Instead of carbon nanocoils (average coil length 20 μm, average coil pitch 560 nm, average fiber diameter 150 nm, average coil diameter 440 nm), carbon nanocoils (average coil length 28 μm, average coil diameter 440 nm, average coil pitch 960 nm, average fiber diameter) The electromagnetic wave absorbing sheet (thickness: 500 μm) of Example 5 was manufactured in the same manner as Example 1 except that 220 nm) was used.

<電磁波吸収特性の測定(同軸管法)>
実施例5の電磁波吸収シートの電磁波吸収特性について、実施例1と同様にして求めた。図9に、実施例5の電磁波吸収シートの複素比誘電率の測定結果を示す。図10に、電磁波吸収シートの厚みを3mm、6mm、12mm及び24mmとした場合の電磁波吸収量の計算結果に示す。
<Measurement of electromagnetic wave absorption characteristics (coaxial tube method)>
The electromagnetic wave absorption characteristics of the electromagnetic wave absorbing sheet of Example 5 were determined in the same manner as in Example 1. In FIG. 9, the measurement result of the complex dielectric constant of the electromagnetic wave absorption sheet of Example 5 is shown. FIG. 10 shows the calculation results of the electromagnetic wave absorption when the thickness of the electromagnetic wave absorbing sheet is 3 mm, 6 mm, 12 mm, and 24 mm.

実施例6
スチレン系樹脂の代わりに、ウレタン系樹脂(ディーアイシー・バイエル・ポリマー社製、「パンデックス」)を用い、かつ、カーボンナノコイル(平均コイル長20μm、平均コイル径440nm、平均コイルピッチ560nm、平均繊維径150nm)を、当該樹脂100重量部に対して、5重量部の代わりに4重量部となるように添加した以外は、実施例1と同様にして、実施例6の電磁波吸収シート(厚さ500μm)を製造した。
Example 6
Instead of styrene resin, urethane resin (manufactured by DIC Bayer Polymer, “Pandex”) is used, and carbon nanocoil (average coil length 20 μm, average coil diameter 440 nm, average coil pitch 560 nm, average The electromagnetic wave absorbing sheet (thickness) of Example 6 was the same as Example 1 except that the fiber diameter was 150 nm) added to 4 parts by weight instead of 5 parts by weight with respect to 100 parts by weight of the resin. 500 μm) was manufactured.

実施例7
カーボンナノコイル(平均コイル長20μm、平均コイル径440nm、平均コイルピッチ560nm、平均繊維径150nm)を、樹脂100重量部に対して、4重量部の代わりに3重量部となるように添加した以外は実施例6と同様にして、実施例7の電磁波吸収シート(厚さ500μm)を製造した。
Example 7
Carbon nanocoil (average coil length 20 μm, average coil diameter 440 nm, average coil pitch 560 nm, average fiber diameter 150 nm) was added to 100 parts by weight of resin so that the amount was 3 parts by weight instead of 4 parts by weight. Produced the electromagnetic wave absorbing sheet of Example 7 (thickness: 500 μm) in the same manner as in Example 6.

<電磁波吸収特性の測定(同軸管法)>
実施例6及び7の電磁波吸収シートの電磁波吸収特性について、実施例1と同様にして求めた。図11に、実施例6及び7の電磁波吸収シートの複素比誘電率の測定結果(左図が実施例6、右図が実施例7)を示す。図12に、電磁波吸収シートの厚みを2mm、2.5mm及び3mmとした場合の電磁波吸収量の計算結果(左図が実施例6、右図が実施例7)に示す。
<Measurement of electromagnetic wave absorption characteristics (coaxial tube method)>
The electromagnetic wave absorption characteristics of the electromagnetic wave absorbing sheets of Examples 6 and 7 were determined in the same manner as in Example 1. FIG. 11 shows the measurement results of the complex relative permittivity of the electromagnetic wave absorbing sheets of Examples 6 and 7 (the left figure is Example 6 and the right figure is Example 7). FIG. 12 shows the calculation results of the electromagnetic wave absorption when the thickness of the electromagnetic wave absorbing sheet is 2 mm, 2.5 mm, and 3 mm (the left figure is Example 6 and the right figure is Example 7).

実施例8及び9
得られる電磁波吸収シートの厚さを、それぞれ500μm、1.6mmとした以外は実施例1と同様にして、実施例8(厚さ500μm、10cm×10cm)及び実施例9(厚さ1.6mm、10cm×10cm)の電磁波吸収シートを製造した。
Examples 8 and 9
Example 8 (thickness 500 μm, 10 cm × 10 cm) and Example 9 (thickness 1.6 mm) were the same as Example 1 except that the thickness of the obtained electromagnetic wave absorbing sheet was 500 μm and 1.6 mm, respectively. A 10 cm × 10 cm) electromagnetic wave absorbing sheet was produced.

<実施例1および実施例2(コイル長さの影響)の考察>
実施例1および実施例2から得られる図6の電磁波吸収量を比較すると、実施例1の方はいずれの厚みにおいても30dB以上の電磁波吸収量をもつのに対して、実施例2では20dB前後であり、実施例1のコイル長さが20μmの方が、コイル長さが10μmの実施例2よりも電磁波吸収特性が非常に優れていることが分かる。本実施例の結果より、電磁波吸収シートに添加するカーボンナノコイルの平均コイル長は20μm〜40μmが最も好ましい。
<Consideration of Example 1 and Example 2 (Influence of Coil Length)>
Comparing the electromagnetic wave absorption amount of FIG. 6 obtained from Example 1 and Example 2, the direction of Example 1 has an electromagnetic wave absorption amount of 30 dB or more at any thickness, whereas in Example 2, it is around 20 dB. Thus, it can be seen that the coil length of Example 1 having a coil length of 20 μm is much superior in electromagnetic wave absorption characteristics than Example 2 having a coil length of 10 μm. From the results of this example, the average coil length of the carbon nanocoil added to the electromagnetic wave absorbing sheet is most preferably 20 μm to 40 μm.

<実施例3および実施例4(コイル径の影響)の考察>
実施例3および実施例4から得られる図8の電磁波吸収量を比較すると、実施例3の方はいずれの厚みにおいても30dB以上の電磁波吸収量をもつのに対して、実施例4では10dB前後であり、実施例3の平均コイル径が440nmの方が、平均コイル径が920nmの実施例4よりも電磁波吸収特性が非常に優れていることが分かる。本実施例の結果より、電磁波吸収シートに添加するカーボンナノコイルの平均コイル径は400nm〜800nmが最も好ましい。
<Consideration of Example 3 and Example 4 (Influence of Coil Diameter)>
Comparing the electromagnetic wave absorption amount of FIG. 8 obtained from Example 3 and Example 4, the direction of Example 3 has an electromagnetic wave absorption amount of 30 dB or more at any thickness, whereas in Example 4, it is around 10 dB. Thus, it can be seen that the electromagnetic coil absorption characteristics of Example 3 having an average coil diameter of 440 nm are much better than those of Example 4 having an average coil diameter of 920 nm. From the results of this example, the average coil diameter of the carbon nanocoil added to the electromagnetic wave absorbing sheet is most preferably 400 nm to 800 nm.

<実施例1および実施例5(コイルピッチの影響)の考察>
実施例1および実施例5から得られる図6(左)と図10の電磁波吸収量を比較すると、実施例1の方はいずれの厚みにおいても30dB以上の電磁波吸収量をもつのに対して、実施例5では10dB前後であり、実施例3の平均コイルピッチが560nmの方が、平均コイル径が960nmの実施例5よりも電磁波吸収特性が非常に優れていることが分かる。本実施例の結果より、電磁波吸収シートに添加するカーボンナノコイルの平均コイルピッチは400nm〜800nmが最も好ましい。
<Consideration of Example 1 and Example 5 (Influence of Coil Pitch)>
6 (left) obtained from Example 1 and Example 5 and the electromagnetic wave absorption amount of FIG. 10 are compared, Example 1 has an electromagnetic wave absorption amount of 30 dB or more at any thickness. In Example 5, it is about 10 dB, and it can be seen that the average coil pitch of Example 3 is 560 nm and the electromagnetic wave absorption characteristics are much better than Example 5 where the average coil diameter is 960 nm. From the results of this example, the average coil pitch of the carbon nanocoils added to the electromagnetic wave absorbing sheet is most preferably 400 nm to 800 nm.

<電磁波吸収特性の測定(自由空間法)>
実施例8及び9の電磁波吸収シートを用いて、ミリ波帯域の電磁波吸収量を自由空間法により測定した。この測定結果を図13に示す。
<Measurement of electromagnetic wave absorption characteristics (free space method)>
Using the electromagnetic wave absorbing sheets of Examples 8 and 9, the electromagnetic wave absorption amount in the millimeter wave band was measured by the free space method. The measurement results are shown in FIG.

なお、測定器具としてファインセラミックスセンター設置の電磁波吸収測定装置(ネットワークアナライザ;アジレントテクノロジー社製;型番8510XF、ホーンアンテナ;HVS Technologies,lnc.製;型番FSS−07)を使用した。   As a measuring instrument, an electromagnetic wave absorption measuring apparatus (network analyzer; manufactured by Agilent Technologies; model 8510XF, horn antenna; manufactured by HVS Technologies, Inc .; model FSS-07) installed at the Fine Ceramics Center was used.

図13から、本願発明の電磁波吸収シートは、18GHz以上という高い周波数帯域においても、電磁波を吸収することが可能であることが分かった。   From FIG. 13, it was found that the electromagnetic wave absorbing sheet of the present invention can absorb electromagnetic waves even in a high frequency band of 18 GHz or higher.

<実施例8および実施例9の考察>
図13より、厚みが1.6mmの場合は、周波数が20GHz近辺に電磁波吸収量が20dB以上の吸収ピークを持つことがわかり、また厚みが500μmの場合は、周波数が60GHz近辺に電磁波吸収量が20dB以上の吸収ピークを持つことが分かる。
<Consideration of Example 8 and Example 9>
From FIG. 13, it can be seen that when the thickness is 1.6 mm, the frequency has an absorption peak with an electromagnetic wave absorption of 20 dB or more near 20 GHz, and when the thickness is 500 μm, the electromagnetic wave absorption amount is around 60 GHz. It turns out that it has an absorption peak of 20 dB or more.

<近似解による吸収特性の測定>
実施例6の電磁波吸収シートについて、上記(1)式を用いて導出された上記(3a)及び(3b)に基づいて、2つの曲線(複素比誘電率の実部(εγ’)を示す曲線及び複素比誘電率の虚部(εγ’’)を示す曲線)を同一のグラフに表出した。これを図14に示す。この図14から明らかなように実部(εγ’)の曲線と虚部(εγ’’)の曲線が周波数700MHz〜18GHz付近で実質的に一致していることから、本発明の電磁波吸収シートは700MHz〜18GHzの幅広い帯域に対して吸収可能な電磁波吸収シートを調節できることが分かる。
<Measurement of absorption characteristics by approximate solution>
For the electromagnetic wave absorbing sheet of Example 6, two curves (the real part (ε γ ′) of the complex relative dielectric constant) are shown based on the above (3a) and (3b) derived using the above equation (1). The curve and the imaginary part (ε γ ″) of the complex dielectric constant were expressed in the same graph. This is shown in FIG. As is apparent from FIG. 14, the curve of the real part (ε γ ′) and the curve of the imaginary part (ε γ ″) substantially coincide with each other in the vicinity of the frequency of 700 MHz to 18 GHz. It can be seen that the sheet can adjust an electromagnetic wave absorbing sheet that can absorb a wide band of 700 MHz to 18 GHz.

図1は本発明の電磁波吸収シート中におけるカーボンナノコイルが面配向している場合と面配向していない場合の概念図を示す。FIG. 1 shows a conceptual diagram when carbon nanocoils in the electromagnetic wave absorbing sheet of the present invention are plane-oriented and when they are not plane-oriented. 図2は、金属板が積層された電磁波吸収シートを示す。FIG. 2 shows an electromagnetic wave absorbing sheet in which metal plates are laminated. 図3は、厳密解と近似解との整合性を示したグラフである。FIG. 3 is a graph showing the consistency between the exact solution and the approximate solution. 図4は、本発明の厚み調整方法に使用するグラフの一例である。FIG. 4 is an example of a graph used in the thickness adjustment method of the present invention. 図5は、本願実施例1及び2の電磁波吸収シートの複素比誘電率の測定結果を示す。FIG. 5 shows the measurement results of the complex relative dielectric constant of the electromagnetic wave absorbing sheets of Examples 1 and 2 of the present application. 図6は、本願実施例1及び2の電磁波吸収シートの電磁波吸収量の測定結果を示す。FIG. 6 shows the measurement results of the electromagnetic wave absorption amount of the electromagnetic wave absorbing sheets of Examples 1 and 2 of the present application. 図7は、本願実施例3及び4の電磁波吸収シートの複素比誘電率の測定結果を示す。FIG. 7 shows the measurement results of the complex relative dielectric constant of the electromagnetic wave absorbing sheets of Examples 3 and 4 of the present application. 図8は、本願実施例3及び4の電磁波吸収シートの電磁波吸収量の測定結果を示す。FIG. 8 shows the measurement results of the electromagnetic wave absorption amount of the electromagnetic wave absorbing sheets of Examples 3 and 4 of the present application. 図9は、本願実施例5の電磁波吸収シートの複素比誘電率の測定結果を示す。FIG. 9 shows the measurement result of the complex dielectric constant of the electromagnetic wave absorbing sheet of Example 5 of the present application. 図10は、本願実施例5の電磁波吸収シートの電磁波吸収量の測定結果を示す。FIG. 10 shows the measurement results of the electromagnetic wave absorption amount of the electromagnetic wave absorbing sheet of Example 5 of the present application. 図11は、本願実施例6及び7の電磁波吸収シートの複素比誘電率の測定結果を示す。FIG. 11 shows the measurement results of the complex relative dielectric constant of the electromagnetic wave absorbing sheets of Examples 6 and 7 of the present application. 図12は、本願実施例6及び7の電磁波吸収シートの電磁波吸収量の測定結果を示す。FIG. 12 shows the measurement results of the electromagnetic wave absorption amount of the electromagnetic wave absorbing sheets of Examples 6 and 7 of the present application. 図13は、本願実施例8及び9の電磁波吸収シートの電磁波吸収量の測定結果を示す。FIG. 13 shows the measurement results of the electromagnetic wave absorption amount of the electromagnetic wave absorbing sheets of Examples 8 and 9 of the present application. 図14は、実施例6の電磁波吸収シートについて、厚みと吸収周波数との関係を示すグラフである。FIG. 14 is a graph showing the relationship between thickness and absorption frequency for the electromagnetic wave absorbing sheet of Example 6.

Claims (8)

カーボンナノコイル及び樹脂を含有する電磁波吸収シートであって、
(1)前記カーボンナノコイルが、平均コイル長1μm以上100μm未満、平均コイル径1nm以上1μm未満及び平均コイルピッチ1nm以上1μm未満であり、
(2)前記カーボンナノコイルが、樹脂100重量部に対し、1〜10重量部の割合で含有されている、
ことを特徴とする電磁波吸収シート。
An electromagnetic wave absorbing sheet containing carbon nanocoils and a resin,
(1) The carbon nanocoil has an average coil length of 1 μm to less than 100 μm, an average coil diameter of 1 nm to less than 1 μm, and an average coil pitch of 1 nm to less than 1 μm,
(2) The carbon nanocoil is contained in a ratio of 1 to 10 parts by weight with respect to 100 parts by weight of the resin.
An electromagnetic wave absorbing sheet.
前記カーボンナノコイルが、平均コイル長10μm〜40μm、平均コイル径が1nm〜1μm未満及び平均コイルピッチ1nm以上1μm未満である、請求項1に記載の電磁波吸収シート。   The electromagnetic wave absorbing sheet according to claim 1, wherein the carbon nanocoil has an average coil length of 10 μm to 40 μm, an average coil diameter of 1 nm to less than 1 μm, and an average coil pitch of 1 nm to less than 1 μm. 前記カーボンナノコイルが、平均コイル長20μm〜40μm、平均コイル径が400nm〜800nm未満及び平均コイルピッチ400nm〜800nmである、請求項1に記載の電磁波吸収シート。   The electromagnetic wave absorbing sheet according to claim 1, wherein the carbon nanocoil has an average coil length of 20 μm to 40 μm, an average coil diameter of 400 nm to less than 800 nm, and an average coil pitch of 400 nm to 800 nm. 電磁波吸収シートの厚みが1μm〜10mm以下である、請求項1〜3のいずれかに記載の電磁波吸収シート。   The electromagnetic wave absorbing sheet according to claim 1, wherein the electromagnetic wave absorbing sheet has a thickness of 1 μm to 10 mm. 前記カーボンナノコイルが、電磁波吸収シートの面方向に配向している、請求項1〜4のいずれかに記載の電磁波吸収シート。   The electromagnetic wave absorbing sheet according to claim 1, wherein the carbon nanocoil is oriented in a surface direction of the electromagnetic wave absorbing sheet. 1GHz〜100GHzの周波数帯域において、反射損失が10dB以上である吸収帯域を有する、請求項1〜5のいずれかに記載の電磁波吸収シート。   The electromagnetic wave absorbing sheet according to any one of claims 1 to 5, which has an absorption band in which a reflection loss is 10 dB or more in a frequency band of 1 GHz to 100 GHz. 一方の面に金属板が積層されてなる、請求項1〜6のいずれかに記載の電磁波吸収シート。   The electromagnetic wave absorbing sheet according to claim 1, wherein a metal plate is laminated on one surface. カーボンナノコイル及び樹脂を含有する電磁波吸収シートの製造方法であって、
平均コイル長1μm以上100μm未満、平均コイル径1nm以上1μm未満及び平均コイルピッチ1nm以上1μm未満であるカーボンナノコイルを、樹脂が溶解した有機溶媒に混合し、次いで、当該有機溶媒を蒸発させる工程、
を備えた、電磁波吸収シートの製造方法。
A method for producing an electromagnetic wave absorbing sheet containing carbon nanocoils and a resin,
A step of mixing carbon nanocoils having an average coil length of 1 μm or more and less than 100 μm, an average coil diameter of 1 nm or more and less than 1 μm, and an average coil pitch of 1 nm or more and less than 1 μm with an organic solvent in which the resin is dissolved, and then evaporating the organic solvent;
The manufacturing method of the electromagnetic wave absorption sheet | seat provided with.
JP2007228403A 2007-09-03 2007-09-03 Electromagnetic wave absorbing sheet Pending JP2009060060A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007228403A JP2009060060A (en) 2007-09-03 2007-09-03 Electromagnetic wave absorbing sheet
PCT/JP2008/064838 WO2009031409A1 (en) 2007-09-03 2008-08-20 Electromagnetic wave absorbing sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228403A JP2009060060A (en) 2007-09-03 2007-09-03 Electromagnetic wave absorbing sheet

Publications (1)

Publication Number Publication Date
JP2009060060A true JP2009060060A (en) 2009-03-19

Family

ID=40428729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228403A Pending JP2009060060A (en) 2007-09-03 2007-09-03 Electromagnetic wave absorbing sheet

Country Status (2)

Country Link
JP (1) JP2009060060A (en)
WO (1) WO2009031409A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138401A (en) * 2010-01-19 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010138377A (en) * 2009-10-01 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010138398A (en) * 2010-01-05 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010138378A (en) * 2009-10-01 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010144182A (en) * 2010-01-25 2010-07-01 Mitsubishi Engineering Plastics Corp Resin composition and resin molded article for inhibiting electromagnetic wave
WO2012133423A1 (en) * 2011-03-30 2012-10-04 日東電工株式会社 Electromagnetic wave absorber and method for producing electromagnetic wave absorber
WO2012133419A1 (en) * 2011-03-30 2012-10-04 日東電工株式会社 Electromagnetic wave absorber and method for producing electromagnetic wave absorber
WO2013099421A1 (en) * 2011-12-26 2013-07-04 日立造船株式会社 Fibrous carbon-containing resin
KR101455116B1 (en) * 2012-09-21 2014-10-27 (주)창성 Electromagnetic Wave Absorber For Car Radar and Fabrication Method of The Same.
CN105979759A (en) * 2016-07-18 2016-09-28 福建星宏新材料科技有限公司 Wave-absorbing particle
CN106344396A (en) * 2015-12-03 2017-01-25 福建星宏新材料科技有限公司 Micro-carbon spring compound ceramic ball
DE102017205290A1 (en) 2016-03-31 2017-10-05 The University Of Tokyo Radio frequency antenna element and radio frequency antenna module
JP2018063970A (en) * 2016-10-11 2018-04-19 大同特殊鋼株式会社 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
WO2019235364A1 (en) 2018-06-06 2019-12-12 国立大学法人 東京大学 Radio wave-absorbing laminate film, production method therefor, and element including same
KR102061451B1 (en) 2019-05-13 2020-01-02 신라대학교 산학협력단 Process for the Preparation of Carbon Paper Containing Hybrid Materials of Carbon Microcoils-Carbon Nanocoils
WO2021033517A1 (en) 2019-08-19 2021-02-25 国立大学法人 東京大学 Radio wave absorber film and method for producing same
WO2021230320A1 (en) 2020-05-13 2021-11-18 国立大学法人 東京大学 Electromagnetic wave absorber and paste for forming electromagnetic wave absorber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011233642A (en) * 2010-04-26 2011-11-17 Nitto Denko Corp Electromagnetic wave absorber
CN106163247A (en) * 2016-07-18 2016-11-23 福建星宏新材料科技有限公司 A kind of wide frequency domain absorbing material
WO2019235561A1 (en) * 2018-06-06 2019-12-12 株式会社新日本電波吸収体 Electromagnetic shielding material and signal processing unit provided with same
CN114654850B (en) * 2022-05-06 2024-03-22 福州恒美光电材料有限公司 Polyimide composite film with electromagnetic shielding function and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235281A (en) * 1993-02-09 1994-08-23 Yoji Kozuka Radio wave shielding body and absorber
JP2002094283A (en) * 2000-09-11 2002-03-29 Seiji Motojima Coiled carbon fiber and its manufacturing method and electromagnetic absorption material
JP2004137459A (en) * 2002-08-23 2004-05-13 Seiji Motojima Resin particle containing coil-shaped carbon fiber, method for producing the same and foamed molded article
JP2005311332A (en) * 2004-03-22 2005-11-04 Toray Ind Inc Radio wave absorbing sheet and radio wave absorber using the same
JP2005327853A (en) * 2004-05-13 2005-11-24 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppressor and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000232292A (en) * 1999-02-10 2000-08-22 Kansai Paint Co Ltd Radio-wave absorbing body
JP2005033015A (en) * 2003-07-14 2005-02-03 Seiji Motojima Electromagnetic wave absorbing body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235281A (en) * 1993-02-09 1994-08-23 Yoji Kozuka Radio wave shielding body and absorber
JP2002094283A (en) * 2000-09-11 2002-03-29 Seiji Motojima Coiled carbon fiber and its manufacturing method and electromagnetic absorption material
JP2004137459A (en) * 2002-08-23 2004-05-13 Seiji Motojima Resin particle containing coil-shaped carbon fiber, method for producing the same and foamed molded article
JP2005311332A (en) * 2004-03-22 2005-11-04 Toray Ind Inc Radio wave absorbing sheet and radio wave absorber using the same
JP2005327853A (en) * 2004-05-13 2005-11-24 Shin Etsu Polymer Co Ltd Electromagnetic wave noise suppressor and its manufacturing method

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010138377A (en) * 2009-10-01 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010138378A (en) * 2009-10-01 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010138398A (en) * 2010-01-05 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010138401A (en) * 2010-01-19 2010-06-24 Mitsubishi Engineering Plastics Corp Electromagnetic wave-inhibiting resin composition and molded article
JP2010144182A (en) * 2010-01-25 2010-07-01 Mitsubishi Engineering Plastics Corp Resin composition and resin molded article for inhibiting electromagnetic wave
WO2012133423A1 (en) * 2011-03-30 2012-10-04 日東電工株式会社 Electromagnetic wave absorber and method for producing electromagnetic wave absorber
WO2012133419A1 (en) * 2011-03-30 2012-10-04 日東電工株式会社 Electromagnetic wave absorber and method for producing electromagnetic wave absorber
JP2012209516A (en) * 2011-03-30 2012-10-25 Nitto Denko Corp Electromagnetic wave absorber and method of manufacturing electromagnetic wave absorber
JP2012209515A (en) * 2011-03-30 2012-10-25 Nitto Denko Corp Electromagnetic wave absorber and method of manufacturing the same
WO2013099421A1 (en) * 2011-12-26 2013-07-04 日立造船株式会社 Fibrous carbon-containing resin
KR101455116B1 (en) * 2012-09-21 2014-10-27 (주)창성 Electromagnetic Wave Absorber For Car Radar and Fabrication Method of The Same.
CN106344396A (en) * 2015-12-03 2017-01-25 福建星宏新材料科技有限公司 Micro-carbon spring compound ceramic ball
DE102017205290A1 (en) 2016-03-31 2017-10-05 The University Of Tokyo Radio frequency antenna element and radio frequency antenna module
KR20170113324A (en) 2016-03-31 2017-10-12 고쿠리츠다이가쿠호우진 도쿄다이가쿠 High-frequency antenna element, and high-frequency antenna module
US10374307B2 (en) 2016-03-31 2019-08-06 The University Of Tokyo High-frequency antenna element and high-frequency antenna module
CN105979759A (en) * 2016-07-18 2016-09-28 福建星宏新材料科技有限公司 Wave-absorbing particle
JP2018063970A (en) * 2016-10-11 2018-04-19 大同特殊鋼株式会社 Electromagnetic wave absorber and method for manufacturing electromagnetic wave absorber
WO2019235364A1 (en) 2018-06-06 2019-12-12 国立大学法人 東京大学 Radio wave-absorbing laminate film, production method therefor, and element including same
KR20210005691A (en) 2018-06-06 2021-01-14 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Electromagnetic wave absorption laminated film, manufacturing method thereof, and device comprising same
KR102061451B1 (en) 2019-05-13 2020-01-02 신라대학교 산학협력단 Process for the Preparation of Carbon Paper Containing Hybrid Materials of Carbon Microcoils-Carbon Nanocoils
WO2021033517A1 (en) 2019-08-19 2021-02-25 国立大学法人 東京大学 Radio wave absorber film and method for producing same
KR20220047781A (en) 2019-08-19 2022-04-19 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Radio wave absorber film, and method for manufacturing the same
EP4020506A4 (en) * 2019-08-19 2023-09-13 The University of Tokyo Radio wave absorber film and method for producing same
WO2021230320A1 (en) 2020-05-13 2021-11-18 国立大学法人 東京大学 Electromagnetic wave absorber and paste for forming electromagnetic wave absorber

Also Published As

Publication number Publication date
WO2009031409A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
JP2009060060A (en) Electromagnetic wave absorbing sheet
Zhao et al. Galvanic replacement reaction involving core–shell magnetic chains and orientation‐tunable microwave absorption properties
Zuo et al. Multimaterial 3D-printing of graphene/Li0. 35Zn0. 3Fe2. 35O4 and graphene/carbonyl iron composites with superior microwave absorption properties and adjustable bandwidth
Wang et al. A general approach to composites containing nonmetallic fillers and liquid gallium
Zhang et al. Microwave absorption enhancement of Fe3O4/polyaniline core/shell hybrid microspheres with controlled shell thickness
Wang et al. Microwave absorption properties of carbon nanotubes-epoxy composites in a frequency range of 2-20 GHz
Lv et al. Coin-like α-Fe2O3@ CoFe2O4 core–shell composites with excellent electromagnetic absorption performance
KR100769016B1 (en) RESIN COMPOSITION FOR GHz-BAND ELECTRONIC COMPONENT AND GHz-BAND ELECTRONIC COMPONENT
JP6616653B2 (en) Electromagnetic wave absorber and paste for film formation
Liu et al. Excellent microwave absorbing property of multiwalled carbon nanotubes with skin–core heterostructure formed by outer dominated fluorination
Hosseini et al. Nanocomposite based on epoxy and MWCNTs modified with NiFe2O4 nanoparticles as efficient microwave absorbing material
Fang et al. Metal–organic framework-derived carbon/carbon nanotubes mediate impedance matching for strong microwave absorption at fairly low temperatures
Su et al. Effect of carbon black on dielectric and microwave absorption properties of carbon black/cordierite plasma-sprayed coatings
KR20100046445A (en) Method for purificating carbon nanotube and electromagnetic wave absorption material to include carbon nanotube that fabricated using the same
Didehban et al. Radar absorption properties of Ni0. 5Zn0. 5Fe2O4/PANI/epoxy nanocomposites
Joon et al. Lightweight and solution processible thin sheets of poly (o-toluidine)-carbon fiber-novolac composite for EMI shielding
Zeng et al. Hollow CoS2 Nanobubble Prisms Derived from ZIF‐67 through Facile Two‐Step Self‐Engaged Method for Electromagnetic Wave Absorption
US20210289676A1 (en) Composite material
Sheng et al. Printing nanostructured copper for electromagnetic interference shielding
JP2004162052A (en) Electromagnetic wave-absorbing coating material composition, electromagnetic wave-absorbing housing and electromagnetic wave-absorbing film or sheet
Fan et al. GO@ Fe3O4@ CuSilicate composite with a hierarchical structure: fabrication, microstructure, and highly electromagnetic shielding performance
JP2012230958A (en) Magnetic particle, magnetic material for high frequency, and high-frequency device
KR20110113999A (en) Sheet composition and sheet for shielding electromagnetic wave, and manufacturing method thereof
WO2014141787A1 (en) Composition for forming electrically conductive film, and method for producing electrically conductive film using same
JP2008282862A (en) Composition for radio wave absorber, radio wave absorber, and manufacturing method of radio wave absorber

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20100903

Free format text: JAPANESE INTERMEDIATE CODE: A523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110318

A131 Notification of reasons for refusal

Effective date: 20120508

Free format text: JAPANESE INTERMEDIATE CODE: A131

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

RD02 Notification of acceptance of power of attorney

Effective date: 20120806

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD02 Notification of acceptance of power of attorney

Effective date: 20120814

Free format text: JAPANESE INTERMEDIATE CODE: A7422

A521 Written amendment

Effective date: 20120820

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402