JP7478373B2 - Sediment improvement method and device using sediment microbial fuel cell - Google Patents

Sediment improvement method and device using sediment microbial fuel cell Download PDF

Info

Publication number
JP7478373B2
JP7478373B2 JP2021214629A JP2021214629A JP7478373B2 JP 7478373 B2 JP7478373 B2 JP 7478373B2 JP 2021214629 A JP2021214629 A JP 2021214629A JP 2021214629 A JP2021214629 A JP 2021214629A JP 7478373 B2 JP7478373 B2 JP 7478373B2
Authority
JP
Japan
Prior art keywords
sediment
microbial fuel
bottom sediment
fuel cell
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021214629A
Other languages
Japanese (ja)
Other versions
JP2023098103A (en
Inventor
昌也 松木
周作 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukuoka Prefectural Government
Original Assignee
Fukuoka Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukuoka Prefectural Government filed Critical Fukuoka Prefectural Government
Priority to JP2021214629A priority Critical patent/JP7478373B2/en
Publication of JP2023098103A publication Critical patent/JP2023098103A/en
Application granted granted Critical
Publication of JP7478373B2 publication Critical patent/JP7478373B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Treatment Of Sludge (AREA)
  • Fuel Cell (AREA)

Description

特許法第30条第2項適用 第55回日本水環境学会年会(2020年度)講演集にて公開Application of Article 30, Paragraph 2 of the Patent Act Published in the Proceedings of the 55th Annual Meeting of the Japan Society on Water Environment (2020)

本発明は、微生物の有機物代謝を利用することにより、追加エネルギーを必要とすることなく、効率的に底質改善を行うことができる堆積物微生物燃料電池を用いた底質改善方法及び底質改善装置に関する。 The present invention relates to a bottom sediment improvement method and device using a sediment microbial fuel cell that utilizes the organic matter metabolism of microorganisms to efficiently improve bottom sediment without requiring additional energy.

従来、水が交換され難い湖沼及び港湾等の閉鎖系又は半閉鎖系水域(以下、これらをまとめて閉鎖性水域という)では、流れ込んだ産業排水及び生活排水に含まれる有機物が堆積してヘドロになると、栄養塩を放出して、アオコの大量発生及び硫化水素の生成による青潮の発生等を引き起こすという問題があった。そして、これらの有害物及び悪臭の発生並びに水中の溶存酸素の低下等は、水生生物の生育及び周辺住民の生活環境に対して悪影響を与えるため、閉鎖性水域の環境改善が求められてきた。しかし、堆積したヘドロ(底質)を取り除く浚渫工事に手間と費用がかかるだけでなく、残土の処分も問題となっている。そこで、環境負荷が少なく、低コストで底質環境を改善することができる技術が求められており、自然界に存在する微生物を活性化させて堆積したヘドロを生物学的に分解する方法が注目されている。例えば、堆積物微生物燃料電池(Sediment Microbial Fuel Cells、以下、SMFCともいう)を含む微生物燃料電池は、底質中の嫌気性発電細菌による有機物分(ヘドロ等)の分解(代謝)で生じた電子が、底質中に設置したアノード(負極)を経由して、水中に設置したカソード(正極)に移動し、水中の溶存酸素と反応することで発電する技術である。このように、微生物燃料電池は、底質のヘドロを分解、浄化する一方で電力も発生させることができるため、次世代の閉鎖性水域の環境改善技術として期待されており、特許文献1及び特許文献2に示すような改善提案が行われている。 Conventionally, in closed or semi-closed water areas such as lakes, marshes, and harbors where water exchange is difficult (hereinafter, these are collectively referred to as closed water areas), there has been a problem that when organic matter contained in the industrial and domestic wastewater that flows into the area accumulates and turns into sludge, it releases nutrients, causing the mass outbreak of blue-green algae and the generation of hydrogen sulfide, resulting in the occurrence of blue tides. The generation of these harmful substances and foul odors, as well as the decrease in dissolved oxygen in the water, have a negative impact on the growth of aquatic organisms and the living environment of surrounding residents, and therefore there has been a demand for environmental improvement in closed water areas. However, not only is dredging work to remove the accumulated sludge (bottom sediment) time-consuming and expensive, but the disposal of the surplus soil has also become a problem. Therefore, there is a demand for technology that can improve the bottom sediment environment at low cost with little environmental impact, and a method of biologically decomposing accumulated sludge by activating microorganisms that exist in nature has attracted attention. For example, microbial fuel cells, including sediment microbial fuel cells (hereinafter also referred to as SMFCs), are a technology that generates electricity by transferring electrons generated by the decomposition (metabolism) of organic matter (sludge, etc.) by anaerobic power-generating bacteria in bottom sediments to a cathode (positive electrode) installed in water via an anode (negative electrode) installed in the bottom sediment, and reacting with dissolved oxygen in the water. In this way, microbial fuel cells are expected to be the next generation of environmental improvement technology for closed water areas because they can decompose and purify bottom sediment sludge while also generating electricity, and improvement proposals have been made, such as those shown in Patent Document 1 and Patent Document 2.

特開2016-168560号公報JP 2016-168560 A 特開2018-12086号公報JP 2018-12086 A 特開2016-175058号公報JP 2016-175058 A

特許文献1は、底質に配置される第1の電極(アノード)と外部回路で電気的に接続される第2の電極(カソード)を水深の異なる位置に複数配置することや、縦長に形成することにより、第1の電極の上方の水深の異なる位置にある第2の電極において、水素イオン、電子及び酸素の反応を行わせ、水素イオンを効率よく捕捉し、水深や環境変化に応じて異なる水中の溶存酸素を効率的に利用して水生成反応を促進し、底質改善の能力向上及び安定化を図ろうとするものである。しかし、水中の溶存酸素量は限られているため、第2の電極の数を増やすことや、面積を拡大することだけでは底質改善の能力向上に限界があり、特に貧酸素環境では十分な底質改善効果が得られないという課題がある。
また、特許文献2は、光照射体を用いて底泥に光照射を行うことにより、藻類の繁殖を促し、藻類の光合成によって、水底周辺の貧酸素環境を改善しようとするものであるため、藻類が十分に繁殖するまでに時間がかかり、その間は、貧酸素環境を改善することができないという課題がある。さらに、貧酸素環境の改善を藻類の光合成に頼っているため、貧酸素環境の改善具合が藻類の繁殖状況によって左右され、改善効果が安定しないという課題もある。
一方、特許文献3には、ヘドロ浄化処理施設において、生物燃料電池で発電した電力でポンプを駆動し、ポンプの吐出側配管に配設した微細気泡発生装置から溶存酸素供給対象水域(水層中)に酸素を供給(吐出)して曝気を行う曝気装置及び曝気方法が提案されている。しかし、生物燃料電池は発電量が少なく、これまでの研究は消費電力の少ないセンサーへの利用を検討したものがほとんどである。つまり、ただ単に生物燃料電池にポンプを接続するだけではポンプの駆動に十分な電力を供給することは困難であり、例え駆動できたとしても一時的なものに過ぎず、長時間にわたってポンプを駆動し続けることは不可能である。従って、微細気泡発生装置の動作が安定せず、供給できる酸素量が限られ、広範囲の閉鎖性水域の底質を継続して安定的に改善することはできない。そこで、特許文献3では、生物燃料電池で発電した直流を蓄電器に充電すると共に放電する充放電制御装置を用いることが記載されているが、例え、一旦、蓄電器に充電してから放電するとしても、絶え間なく放電し続ければ、いずれは放電量が充電量に追いつき、電力を供給できなくなるため、充放電制御及び運転方法に何らかの工夫が必要である。しかし、特許文献3には、充放電制御装置の具体的な構成及び動作について記載されておらず、どのようにして安定した(継続的な)曝気を行い、底質改善を実現するのか不明である。また、生物燃料電池(堆積物微生物燃料電池)の電圧は低く昇圧も不可欠であるが、特許文献3では昇圧についても記載されていない。
本発明はかかる事情に鑑みてなされたもので、堆積物微生物燃料電池由来の電力を有効活用し、底質改善の対象となる閉鎖性水域に安定的に酸素を供給して溶存酸素濃度を高めることにより、堆積物微生物燃料電池の動作を安定させると共に、広範囲の閉鎖性水域の底質を確実かつ効率的に改善することができる実用性及び省エネルギー性に優れた堆積物微生物燃料電池を用いた底質改善方法及び底質改善装置を提供することを目的とする。
In Patent Document 1, a first electrode (anode) is placed on the bottom sediment, and a second electrode (cathode) is electrically connected to the second electrode by an external circuit. The second electrode is placed at a different depth above the first electrode, and hydrogen ions, electrons, and oxygen react with each other to efficiently capture hydrogen ions. The oxygen dissolved in the water varies depending on the water depth and environmental changes, and the water-generating reaction is efficiently utilized to improve and stabilize the bottom sediment improvement. However, since the amount of dissolved oxygen in the water is limited, there is a limit to how much the bottom sediment improvement can be improved by simply increasing the number of second electrodes or expanding the area, and there is a problem that sufficient bottom sediment improvement effects cannot be obtained, especially in an oxygen-poor environment.
In addition, Patent Document 2 aims to improve the hypoxic environment around the bottom of the water by irradiating the bottom mud with light using a light irradiator to promote algae growth and improve the hypoxic environment around the bottom of the water through the photosynthesis of the algae, but there is a problem that it takes time for the algae to grow sufficiently, and during that time the hypoxic environment cannot be improved. Furthermore, since the improvement of the hypoxic environment relies on the photosynthesis of the algae, the degree of improvement of the hypoxic environment depends on the growth status of the algae, and there is also a problem that the improvement effect is not stable.
On the other hand, Patent Document 3 proposes an aeration device and an aeration method in which a pump is driven by electricity generated by a biofuel cell in a sludge purification treatment facility, and oxygen is supplied (discharged) from a fine bubble generator disposed in the discharge piping of the pump to a water area (into the water layer) to which dissolved oxygen is to be supplied, thereby performing aeration. However, biofuel cells generate a small amount of electricity, and most of the research to date has been on the use of low-power sensors. In other words, it is difficult to supply sufficient power to drive the pump by simply connecting the pump to the biofuel cell, and even if it can be driven, it is only temporary, and it is impossible to continue driving the pump for a long period of time. Therefore, the operation of the fine bubble generator is unstable, the amount of oxygen that can be supplied is limited, and it is not possible to continuously and stably improve the bottom sediment of a wide range of closed water areas. Therefore, Patent Document 3 describes the use of a charge/discharge control device that charges and discharges the direct current generated by the biofuel cell into a storage battery. However, even if the storage battery is once charged and then discharged, if the battery is continuously discharged, the discharge amount will eventually catch up with the charge amount and the battery will no longer be able to supply power, so some kind of ingenuity is required for the charge/discharge control and operation method. However, Patent Document 3 does not describe the specific configuration and operation of the charge/discharge control device, and it is unclear how to perform stable (continuous) aeration and achieve bottom sediment improvement. In addition, the voltage of the biofuel cell (sediment microbial fuel cell) is low and boosting is essential, but Patent Document 3 does not describe boosting the voltage.
The present invention has been made in consideration of these circumstances, and aims to provide a bottom sediment improvement method and device using a sediment microbial fuel cell that is highly practical and energy-saving, and that can effectively utilize the electricity generated from a sediment microbial fuel cell to steadily supply oxygen to a closed water area that is the target of bottom sediment improvement, thereby increasing the dissolved oxygen concentration, thereby stabilizing the operation of the sediment microbial fuel cell and reliably and efficiently improving the bottom sediment of a wide range of closed water areas.

前記第1の目的に沿う本発明に係る堆積物微生物燃料電池を用いた底質改善方法は、底質改善の対象となる閉鎖性水域の底質に埋設される第1の電極(アノード)と、該第1の電極と電気的に接続され前記底質の上方の直上水中に設置される第2の電極(カソード)とを有し、前記底質に含まれる有機物が該底質中の微生物に分解されて生じる電子が、前記第1の電極を通って前記第2の電極に移動することにより発電を行う堆積物微生物燃料電池を用いた底質改善方法において、
1又は複数の前記堆積物微生物燃料電池で発電される電力を蓄電し、昇圧しながら断続的にモータ駆動式の曝気用ポンプに供給して、該曝気用ポンプにより前記直上水を間欠的に曝気する。
The bottom sediment improvement method according to the present invention, which is in line with the first object, comprises a first electrode (anode) buried in the bottom sediment of a closed body of water to be improved, and a second electrode (cathode) electrically connected to the first electrode and placed in the water immediately above the bottom sediment, and organic matter contained in the bottom sediment is decomposed by microorganisms in the bottom sediment, and electrons generated by the decomposition move through the first electrode to the second electrode, thereby generating electricity.
The electricity generated by one or more of the sediment microbial fuel cells is stored and, while being boosted, is intermittently supplied to a motor-driven aeration pump, which intermittently aerates the above-mentioned water.

第1の発明に係る堆積物微生物燃料電池を用いた底質改善方法において、前記曝気用ポンプによる曝気で前記直上水の溶存酸素濃度を2mg/L以上に上昇させることが好ましい。 In the bottom sediment improvement method using a sediment microbial fuel cell according to the first invention, it is preferable to increase the dissolved oxygen concentration of the immediately above water to 2 mg/L or more by aeration using the aeration pump.

前記第2の目的に沿う本発明に係る堆積物微生物燃料電池を用いた底質改善装置は、底質改善の対象となる閉鎖性水域の底質に埋設される第1の電極(アノード)と、該第1の電極と電気的に接続され前記底質の上方の直上水中に設置される第2の電極(カソード)とを有し、前記底質に含まれる有機物が該底質中の微生物に分解されて生じる電子が、前記第1の電極を通って前記第2の電極に移動することにより発電を行う堆積物微生物燃料電池を用いた底質改善装置において、
1又は複数の前記堆積物微生物燃料電池を有する発電部と、複数のコンデンサを有する充放電昇圧部と、モータ駆動式の曝気用ポンプと、前記充放電昇圧部を制御する制御部とを備え、該制御部は、前記発電部による前記充放電昇圧部への充電と、前記充放電昇圧部による前記曝気用ポンプへの放電を切替えて、前記曝気用ポンプにより前記直上水を間欠的に曝気する。
The bottom sediment improvement device using a sediment microbial fuel cell according to the present invention, which is in line with the second object, comprises a first electrode (anode) that is buried in the bottom sediment of a closed body of water that is to be improved, and a second electrode (cathode) that is electrically connected to the first electrode and placed in the water immediately above the bottom sediment, and generates electricity by electrons generated when organic matter contained in the bottom sediment is decomposed by microorganisms in the bottom sediment and the electrons move through the first electrode to the second electrode in the bottom sediment improvement device using a sediment microbial fuel cell,
The system comprises a power generation unit having one or more of the sediment microbial fuel cells, a charge/discharge boost unit having multiple capacitors, a motor-driven aeration pump, and a control unit that controls the charge/discharge boost unit, and the control unit switches between charging the charge/discharge boost unit by the power generation unit and discharging to the aeration pump by the charge/discharge boost unit, thereby intermittently aerating the immediately above water using the aeration pump.

第2の発明に係る堆積物微生物燃料電池を用いた底質改善装置において、前記充放電昇圧部は、充電時に前記各コンデンサを1又は複数の前記堆積物微生物燃料電池に接続し、放電時に前記各コンデンサを1又は複数の前記堆積物微生物燃料電池から切り離して複数の該コンデンサを直列接続する切替手段を有し、前記制御部は、所定の時間間隔で前記切替手段を動作させて前記充電と前記放電の切替えを行う自動スイッチング回路を備えていることが好ましい。 In the bottom sediment improvement device using a sediment microbial fuel cell according to the second invention, the charge/discharge boost unit has a switching means for connecting each of the capacitors to one or more of the sediment microbial fuel cells during charging, and for disconnecting each of the capacitors from one or more of the sediment microbial fuel cells during discharging, and for connecting the multiple capacitors in series, and it is preferable that the control unit has an automatic switching circuit that operates the switching means at a predetermined time interval to switch between the charging and discharging.

第2の発明に係る堆積物微生物燃料電池を用いた底質改善装置において、前記自動スイッチング回路は、充放電時間設定手段を有し、該充放電時間設定手段で設定される充電時間と放電時間に従って前記切替手段による前記充電と前記放電の切替えが行われることがさらに好ましい。 In the bottom sediment improvement device using a sediment microbial fuel cell according to the second invention, it is further preferable that the automatic switching circuit has a charge/discharge time setting means, and that the switching means switches between the charging and discharging in accordance with the charging time and discharging time set by the charge/discharge time setting means.

第2の発明に係る堆積物微生物燃料電池を用いた底質改善装置において、前記充放電時間設定手段は、可変抵抗を有し、該可変抵抗の抵抗値が変更されることにより、前記充電時間と前記放電時間が調整されてもよい。 In the bottom sediment improvement device using a sediment microbial fuel cell according to the second invention, the charge/discharge time setting means may have a variable resistor, and the charge time and the discharge time may be adjusted by changing the resistance value of the variable resistor.

第1の発明に係る堆積物微生物燃料電池を用いた底質改善方法は、1又は複数の堆積物微生物燃料電池で発電される電力を蓄電、昇圧しながら断続的にモータ駆動式の曝気用ポンプに供給して、曝気用ポンプにより直上水を間欠的に曝気することにより、堆積物微生物燃料電池で発電される電力を有効利用して底質改善を確実かつ効率的に行うことができ、省エネルギー性に優れる。 The bottom sediment improvement method using a sediment microbial fuel cell according to the first invention stores and boosts the electricity generated by one or more sediment microbial fuel cells while intermittently supplying it to a motor-driven aeration pump, which then intermittently aerates the water directly above it. This makes effective use of the electricity generated by the sediment microbial fuel cell to reliably and efficiently improve the bottom sediment, and is highly energy-saving.

第2の発明に係る堆積物微生物燃料電池を用いた底質改善装置は、制御部で、発電部による充放電昇圧部への充電と、充放電昇圧部による曝気用ポンプへの放電を切替えることにより、発電部の堆積物微生物燃料電池で発電される電圧が小さくても、充放電昇圧部を充電し、昇圧して使用することにより、曝気用ポンプの駆動に必要な電力を供給することができ、追加エネルギーを必要とすることなく、曝気用ポンプで直上水を間欠的に曝気して直上水の溶存酸素濃度を上昇させ、栄養塩の溶出抑制効果を高めて、低コストで効率的に底質改善を行うことができる。 The bottom sediment improvement device using the sediment microbial fuel cell of the second invention has a control unit that switches between charging the charge/discharge boost unit using the power generation unit and discharging to the aeration pump using the charge/discharge boost unit. Even if the voltage generated by the sediment microbial fuel cell of the power generation unit is low, the charge/discharge boost unit can be charged and boosted for use to supply the power needed to drive the aeration pump. This allows the aeration pump to intermittently aerate the water just above it, increasing the dissolved oxygen concentration in the water just above it, without requiring additional energy, and thus enabling bottom sediment improvement to be performed efficiently and at low cost.

本発明の一実施の形態に係る堆積物微生物燃料電池を用いた底質改善方法における堆積物微生物燃料電池の構成を示す模式正面図である。1 is a schematic front view showing the configuration of a sediment microbial fuel cell in a bottom sediment improvement method using a sediment microbial fuel cell according to one embodiment of the present invention. FIG. 本発明の一実施の形態に係る堆積物微生物燃料電池を用いた底質改善装置の充電時の動作を示す回路図である。FIG. 2 is a circuit diagram showing the operation of a bottom sediment improvement device using a sediment microbial fuel cell during charging according to one embodiment of the present invention. 同堆積物微生物燃料電池を用いた底質改善装置の放電時の動作を示す回路図である。FIG. 2 is a circuit diagram showing the operation of the bottom sediment improvement device using the same sediment microbial fuel cell during discharging. 同堆積物微生物燃料電池を用いた底質改善装置の制御部の構成を示す回路図である。FIG. 2 is a circuit diagram showing the configuration of a control unit of the bottom sediment improvement device using the same sediment microbial fuel cell. (A)、(B)はそれぞれ同堆積物微生物燃料電池を用いた底質改善装置における堆積物微生物燃料電池の電極間電圧の時間変化を示すグラフ及び曝気用ポンプを駆動するモータに印加される電圧の時間変化を示すグラフである。(A) and (B) are graphs showing the time change in inter-electrode voltage of a sediment microbial fuel cell in a bottom sediment improvement device using the same sediment microbial fuel cell, and graphs showing the time change in voltage applied to a motor driving an aeration pump, respectively. 同堆積物微生物燃料電池を用いた底質改善装置が適用された閉鎖性水域における直上水の溶存酸素濃度の時間変化を示すグラフである。13 is a graph showing the time change in the dissolved oxygen concentration in the immediately upstream water in a closed water area to which the bottom sediment improvement device using the same sediment microbial fuel cell has been applied.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
図1に示すように、本発明の一実施の形態に係る堆積物微生物燃料電池を用いた底質改善方法(以下、単に底質改善方法ともいう)における堆積物微生物燃料電池10は、底質改善の対象となる閉鎖性水域11の底質12に埋設される第1の電極(アノード)14と、第1の電極14と電気的に接続され底質12の上方の直上水15中に設置される第2の電極(カソード)16とを有し、底質12に含まれる有機物が底質12中の微生物(嫌気性微生物)に分解されて生じる電子が、第1の電極14を通って第2の電極16に移動することにより発電を行うものである。
Next, with reference to the attached drawings, an embodiment of the present invention will be described for better understanding of the present invention.
As shown in Figure 1, a sediment microbial fuel cell 10 in a bottom sediment improvement method using a sediment microbial fuel cell according to one embodiment of the present invention (hereinafter simply referred to as the bottom sediment improvement method) has a first electrode (anode) 14 buried in bottom sediment 12 in a closed water area 11 that is the target of bottom sediment improvement, and a second electrode (cathode) 16 electrically connected to the first electrode 14 and installed in the water 15 directly above the bottom sediment 12, and generates electricity by electrons generated when organic matter contained in the bottom sediment 12 is decomposed by microorganisms (anaerobic microorganisms) in the bottom sediment 12 moving through the first electrode 14 to the second electrode 16.

第1の電極14と第2の電極16は、例えば、チタン、鉄、ステンレス等の導電性を有する電気接続線18で接続されており、堆積物微生物燃料電池10で発電される電力は、曝気用ポンプ19を駆動するためのモータ(直流モータ、図示せず)に供給可能である。しかし、堆積物微生物燃料電池10で発電される電圧は小さく、曝気用ポンプ19(モータ)を安定して連続的に駆動することはできない。
そこで、本発明に係る底質改善方法では、複数の堆積物微生物燃料電池10で発電される電力を蓄電し、昇圧しながら断続的にモータ駆動式の曝気用ポンプ19に供給して、曝気用ポンプ19により直上水15を間欠的に曝気する。特に、曝気用ポンプ19による曝気で直上水15の溶存酸素濃度(DO)を2mg/L以上に上昇させることにより、栄養塩の溶出抑制効果を高めて、効率的に底質改善を行うことができる。
The first electrode 14 and the second electrode 16 are connected by an electrical connection wire 18 having electrical conductivity, such as titanium, iron, or stainless steel, and the power generated by the sediment microbial fuel cell 10 can be supplied to a motor (DC motor, not shown) for driving an aeration pump 19. However, the voltage generated by the sediment microbial fuel cell 10 is small, and the aeration pump 19 (motor) cannot be driven stably and continuously.
Therefore, in the bottom sediment improvement method according to the present invention, the electricity generated by the multiple sediment microbial fuel cells 10 is stored and boosted while being intermittently supplied to a motor-driven aeration pump 19, which intermittently aerates the immediately upstream water 15. In particular, by increasing the dissolved oxygen concentration (DO) of the immediately upstream water 15 to 2 mg/L or more through aeration by the aeration pump 19, the effect of suppressing elution of nutrients can be enhanced, and bottom sediment improvement can be performed efficiently.

第1の電極14の材料としては、金属材料及び炭素材料等の導電材料が用いられるが、微生物による有機物の分解で生じる電子を受け取ることができるものであれば特に限定されない。具体的には、金属材料として、鉄、ステンレス、チタン、アルミニウム、銅、白金等が用いられ、炭素材料として、グラファイト、炭素繊維等が用いられる。図1では、第1の電極14を四角形の平板状としたが、第1の電極の形態は、特に限定されるものではなく、メッシュ状、格子状、ブロック状、多孔質状等の様々な形態から選択され、外形も四角形に限らず、円形、多角形、その他の各種形状から適宜、選択される。なお、第1の電極が炭素繊維で形成される場合は、カーボンクロス、カーボンマット、カーボンフェルト、カーボンペーパー等を第1の電極として用いることができる。
第2の電極16の材料としては、第1の電極14の材料と同様のものが用いられるが、電気伝導度が高く、腐食し難い炭素材料が好適に用いられる。また、第2の電極の形態として、第1の電極の形態と同様のものが用いられるが、上記の形態は、屈曲又は湾曲されてもよいし、表面に凹凸が形成されてもよい。
The material of the first electrode 14 is a conductive material such as a metal material and a carbon material, but is not particularly limited as long as it can receive electrons generated by the decomposition of organic matter by microorganisms. Specifically, iron, stainless steel, titanium, aluminum, copper, platinum, etc. are used as the metal material, and graphite, carbon fiber, etc. are used as the carbon material. In FIG. 1, the first electrode 14 is a rectangular flat plate, but the shape of the first electrode is not particularly limited and can be selected from various shapes such as mesh, lattice, block, and porous, and the outer shape is not limited to a rectangular shape but can be appropriately selected from various shapes such as a circle, a polygon, and others. In addition, when the first electrode is formed of carbon fiber, carbon cloth, carbon mat, carbon felt, carbon paper, etc. can be used as the first electrode.
The second electrode 16 is made of the same material as the first electrode 14, but is preferably made of a carbon material that has high electrical conductivity and is resistant to corrosion. The second electrode is made of the same shape as the first electrode, but the shape may be bent or curved, or may have an uneven surface.

続いて、図2及び図3に示す本発明の一実施の形態に係る堆積物微生物燃料電池を用いた底質改善装置(以下、単に底質改善装置ともいう)20について説明する。この例では底質改善装置20は、複数(ここでは7つ)の堆積物微生物燃料電池10を有する発電部21、複数(ここでは7つ)のコンデンサ22を有する充放電昇圧部23、モータ駆動式の曝気用ポンプ19、及び充放電昇圧部23を制御する制御部25を備えている。そして、制御部25が、発電部21による充放電昇圧部23(各コンデンサ22)への充電と、充放電昇圧部23による曝気用ポンプ19への放電(電力供給)を切替えて、曝気用ポンプ19により直上水15を間欠的に曝気する構成となっている。
つまり、複数の堆積物微生物燃料電池10が発電した電力で複数のコンデンサ22を所定時間充電して十分な電力を蓄電し、昇圧してから放電することにより、モータの稼動電圧以上の電圧をモータに印加して曝気用ポンプ19を所定時間駆動することが可能となり、充電と放電が繰り返されることにより、直上水15の曝気が間欠的(断続的)に行われることになる。この曝気は、図1に示すように、曝気用ポンプ19の吐出口に接続された吐出管26の先側(出口)が直上水15の中に挿入され、空気(酸素)が吹き込まれることにより行われる。
Next, a bottom sediment improvement device (hereinafter, also simply referred to as a bottom sediment improvement device) 20 using a sediment microbial fuel cell according to one embodiment of the present invention shown in Figures 2 and 3 will be described. In this example, the bottom sediment improvement device 20 includes a power generation unit 21 having a plurality (seven in this case) of sediment microbial fuel cells 10, a charge/discharge boost unit 23 having a plurality (seven in this case) of capacitors 22, a motor-driven aeration pump 19, and a control unit 25 that controls the charge/discharge boost unit 23. The control unit 25 switches between charging the charge/discharge boost unit 23 (each capacitor 22) by the power generation unit 21 and discharging (power supply) to the aeration pump 19 by the charge/discharge boost unit 23, so that the aeration pump 19 intermittently aerates the immediately upstream water 15.
In other words, by charging the multiple capacitors 22 for a predetermined time with the power generated by the multiple sediment microbial fuel cells 10 to store sufficient power, boosting the voltage, and then discharging, it becomes possible to apply a voltage equal to or higher than the motor's operating voltage to the motor to drive the aeration pump 19 for a predetermined time, and by repeating charging and discharging, aeration of the upstream water 15 is performed intermittently. This aeration is performed by inserting the tip (outlet) of the discharge pipe 26 connected to the discharge port of the aeration pump 19 into the upstream water 15 and blowing in air (oxygen), as shown in Figure 1.

以下、底質改善装置20の詳細を説明する。
充放電昇圧部23は、充電時に、図2に示すように、各コンデンサ22を各コンデンサ22に対応する各堆積物微生物燃料電池10にそれぞれ接続し、放電時に、図3に示すように、各コンデンサ22を各堆積物微生物燃料電池10から切り離して複数(全て)のコンデンサ22を直列接続する切替手段27を有している。そして、制御部25は、所定の時間間隔で切替手段27を動作させて充電と放電の切替えを行う。ここで、発電部21(各堆積物微生物燃料電池10)と充放電昇圧部23(各コンデンサ22)の間には充電用回路28が設けられ、充放電昇圧部23(各コンデンサ21)と曝気用ポンプ19の間には放電用回路29が設けられている。従って、充電時は、切替手段27で充電用回路28が選択されることにより、各コンデンサ22が充電用回路28を介して各コンデンサ22に対応する各堆積物微生物燃料電池10にそれぞれ接続され、各コンデンサ22が独立して各堆積物微生物燃料電池10で充電される(複数のコンデンサ22が並列して充電される)。また、放電時は、切替手段27で放電用回路29が選択されることにより、複数(全て)のコンデンサ22が放電用回路29を介して直列に接続され、昇圧された状態で曝気用ポンプ19(モータ)への放電が行われる。なお、図2及び図3では、制御部25と切替手段27を接続する信号線(配線)を省略した。
The bottom sediment improvement device 20 will be described in detail below.
The charge/discharge boost unit 23 has a switching means 27 that connects each capacitor 22 to each sediment microbial fuel cell 10 corresponding to each capacitor 22 during charging, as shown in FIG. 2, and disconnects each capacitor 22 from each sediment microbial fuel cell 10 and connects multiple (all) capacitors 22 in series during discharging, as shown in FIG. 3. The control unit 25 operates the switching means 27 at a predetermined time interval to switch between charging and discharging. Here, a charging circuit 28 is provided between the power generation unit 21 (each sediment microbial fuel cell 10) and the charge/discharge boost unit 23 (each capacitor 22), and a discharging circuit 29 is provided between the charge/discharge boost unit 23 (each capacitor 21) and the aeration pump 19. Therefore, during charging, the charging circuit 28 is selected by the switching means 27, and each capacitor 22 is connected to each sediment microbial fuel cell 10 corresponding to each capacitor 22 via the charging circuit 28, and each capacitor 22 is independently charged by each sediment microbial fuel cell 10 (multiple capacitors 22 are charged in parallel). During discharge, the discharging circuit 29 is selected by the switching means 27, so that the multiple (all) capacitors 22 are connected in series via the discharging circuit 29, and discharge is performed to the aeration pump 19 (motor) in a boosted state. Note that the signal lines (wiring) connecting the control unit 25 and the switching means 27 are omitted in Figures 2 and 3.

切替手段27には、リレースイッチ(スイッチング素子の一例)30が使用され、制御部25は、図4に示す非安定マルチバイブレータ回路を用いて、所定の時間間隔で切替手段27を動作させて充電と放電の切替えを行う自動スイッチング回路31及び自動スイッチング回路31を作動させるための電源32を備えている。自動スイッチング回路31は、充放電時間設定手段33を有し、この充放電時間設定手段33で設定される充電時間と放電時間に従って切替手段27による充電と放電の切替えが行われる。具体的には、充放電時間設定手段33は、可変抵抗34を有し、その可変抵抗34の抵抗値が変更されることにより、充電時間と放電時間がそれぞれ調整されるものが好適に用いられるが、これに限定されることなく、適宜、選択される。なお、切替手段の構成は、本実施の形態に限定されるものではなく、適宜、選択される。また、制御部(自動スイッチング回路)の構成も、本実施の形態に限定されるものではなく、切替手段、充電用回路及び放電用回路の構成等に応じて、適宜、選択される。 The switching means 27 uses a relay switch (one example of a switching element) 30, and the control unit 25 includes an automatic switching circuit 31 that operates the switching means 27 at a predetermined time interval to switch between charging and discharging using an astable multivibrator circuit shown in FIG. 4, and a power source 32 for operating the automatic switching circuit 31. The automatic switching circuit 31 has a charge/discharge time setting means 33, and switching between charging and discharging is performed by the switching means 27 according to the charge time and discharge time set by the charge/discharge time setting means 33. Specifically, the charge/discharge time setting means 33 has a variable resistor 34, and the charge time and discharge time are adjusted by changing the resistance value of the variable resistor 34, but is not limited to this and can be selected as appropriate. The configuration of the switching means is not limited to this embodiment and can be selected as appropriate. The configuration of the control unit (automatic switching circuit) is also not limited to this embodiment and can be selected as appropriate depending on the configuration of the switching means, the charging circuit, and the discharging circuit, etc.

本実施の形態では、1台の底質改善装置において、7つの堆積物微生物燃料電池に対応させて7つのコンデンサを用いた場合について説明したが、堆積物微生物燃料電池の数は、適宜、選択することができ、十分な電極面積を確保することができれば1つでもよい。また、コンデンサは昇圧のために複数であればよく、堆積物微生物燃料電池の数と同数である必要はなく、その数は、適宜、選択される。さらに、充電時の堆積物微生物燃料電池とコンデンサとの接続方法は、堆積物微生物燃料電池及びコンデンサのそれぞれの数に応じて、適宜、選択され、例えば複数のコンデンサを1つの堆積物微生物燃料電池で充電してもよいし、複数のコンデンサのそれぞれを複数の堆積物微生物燃料電池で充電してもよい。 In this embodiment, the case where seven capacitors are used in one bottom sediment improvement device to correspond to seven sediment microbial fuel cells has been described, but the number of sediment microbial fuel cells can be selected as appropriate, and may be one if sufficient electrode area can be secured. In addition, the number of capacitors is selected as appropriate, as long as there are multiple capacitors for boosting the voltage, and the number does not need to be the same as the number of sediment microbial fuel cells. Furthermore, the method of connecting the sediment microbial fuel cells and the capacitors during charging is selected as appropriate depending on the respective numbers of sediment microbial fuel cells and capacitors. For example, multiple capacitors may be charged with one sediment microbial fuel cell, or multiple capacitors may each be charged with multiple sediment microbial fuel cells.

次に、本発明の作用効果を確認するために行った実験結果について説明する。
(実施例1)
図2~図4に示した底質改善装置20につき性能評価を行った。本実施例では、図1に示した閉鎖性水域11の状態を再現するために、横幅30cm×奥行き17cm×高さ25cmの水槽を使用し、その中に、富栄養化した池から採取した底質12を高さ10cmまで敷き詰め、その上に、直上水15として、同じ池から採取した表層水を水深10cm(水槽の底から高さ20cmの位置)まで充填した。なお、実験中に蒸発で減少する直上水15は蒸留水で補充した。第1の電極14として、4cm×10cmの7枚のカーボンフェルトを5cm置きに底質12に埋め込んだ。また、第2の電極16として、8cm×10cm(第1の電極14の2倍の面積)の7枚のカーボンフェルトを直上水15の中(第1の電極14の上方)に並べた。このとき、第2の電極16の上部が直上水15の水面から出るようにした。そして、第1の電極14と、対となる第2の電極16を、ステンレス線を用いた電気接続線18で1枚ずつ接続して7つの堆積物微生物燃料電池10を構成し、発電部21とした(図2、図3参照)。また、充放電昇圧部23(切替手段27)、制御部25(自動スイッチング回路31)、充電用回路28、放電用回路29等のその他の構成は底質改善装置20(図2~図4参照)と同様とした。
Next, the results of experiments conducted to confirm the effects of the present invention will be described.
Example 1
The performance of the bottom sediment improvement device 20 shown in Figures 2 to 4 was evaluated. In this example, in order to reproduce the state of the closed water area 11 shown in Figure 1, a tank with a width of 30 cm, a depth of 17 cm, and a height of 25 cm was used. The bottom sediment 12 collected from a eutrophic pond was spread in the tank to a height of 10 cm, and the surface water collected from the same pond was filled on top of the bottom sediment 12 to a depth of 10 cm (a position 20 cm above the bottom of the tank) as the directly above water 15. The directly above water 15, which was reduced by evaporation during the experiment, was replenished with distilled water. As the first electrode 14, seven pieces of carbon felt measuring 4 cm x 10 cm were embedded in the bottom sediment 12 at intervals of 5 cm. As the second electrode 16, seven pieces of carbon felt measuring 8 cm x 10 cm (twice the area of the first electrode 14) were arranged in the directly above water 15 (above the first electrode 14). At this time, the top of the second electrode 16 was set to be above the surface of the directly above water 15. The first electrodes 14 and the paired second electrodes 16 were connected one by one with electrical connection wires 18 made of stainless steel wire to form seven sediment microbial fuel cells 10, which served as power generation units 21 (see Figures 2 and 3). The rest of the configuration, including the charge/discharge boost unit 23 (switching means 27), the control unit 25 (automatic switching circuit 31), the charging circuit 28, and the discharging circuit 29, was the same as that of the bottom sediment improvement device 20 (see Figures 2 to 4).

以上のように構成された底質改善装置20(堆積物微生物燃料電池10)を約3ヶ月馴化した後、動作確認を行った。なお、直上水15の水温は、外部電力で駆動されるヒーターにより26℃に調整した。
本実施例では、図4に示す制御部25(非安定マルチバイブレータ回路を用いた自動スイッチング回路31)の充放電時間設定手段33(可変抵抗34)で、充電(待機)時間を約88秒、放電(曝気)時間を約1秒に調整し、充電と放電を繰り返し行った。このときの各堆積物微生物燃料電池10の電極間電圧及び曝気用ポンプ19を駆動するモータに印加される電圧をそれぞれ電圧ロガーにより1秒間隔で測定した結果を図5(A)、(B)に示す。なお、図5(A)は、7つの堆積物微生物燃料電池10の電極間電圧の代表値を示している。
The bottom sediment improvement device 20 (sediment microbial fuel cell 10) constructed as above was acclimated for about three months, and then its operation was checked. The water temperature of the upstream water 15 was adjusted to 26° C. by a heater driven by external electricity.
In this example, the charge (standby) time was adjusted to about 88 seconds and the discharge (aeration) time to about 1 second using the charge/discharge time setting means 33 (variable resistor 34) of the control unit 25 (automatic switching circuit 31 using a non-stable multivibrator circuit) shown in Figure 4, and charging and discharging were repeated. The inter-electrode voltage of each sediment microbial fuel cell 10 and the voltage applied to the motor driving the aeration pump 19 were measured at 1 second intervals using a voltage logger, and the results are shown in Figures 5 (A) and (B). Note that Figure 5 (A) shows a representative value of the inter-electrode voltage of seven sediment microbial fuel cells 10.

図5(A)から、各堆積物微生物燃料電池10に接続されたコンデンサ22が、徐々に充電され一気に放電するサイクルを約1.5分周期で安定して繰り返していることがわかる。また、図5(B)から、充電中は、曝気用ポンプ19を駆動するモータに電圧は印加されず、約1.5分周期で訪れる放電のタイミングで、モータの稼動電圧(ここでは1.5V)以上の電圧がモータに印加されていることがわかる。
従って、本発明に係る底質改善装置20によれば、制御部25で、発電部21による充放電昇圧部23への充電と、充放電昇圧部23による曝気用ポンプ19への放電を切替えることにより、発電部21の各堆積物微生物燃料電池10の発電量が少なくても、充放電昇圧部23を充電して、曝気用ポンプ19の駆動に必要な電力を蓄電することができ、追加エネルギーを必要とすることなく、曝気用ポンプ19を安定して断続的(間欠的)に駆動できることが確認された。
From Fig. 5(A), it can be seen that the capacitor 22 connected to each sediment microbial fuel cell 10 stably repeats a cycle of gradually charging and suddenly discharging in a cycle of about 1.5 minutes. Also, from Fig. 5(B), it can be seen that during charging, no voltage is applied to the motor driving the aeration pump 19, and at the timing of discharging, which occurs in a cycle of about 1.5 minutes, a voltage equal to or higher than the motor's operating voltage (here, 1.5 V) is applied to the motor.
Therefore, according to the bottom sediment improvement device 20 of the present invention, the control unit 25 switches between charging the charge/discharge boost unit 23 by the power generation unit 21 and discharging to the aeration pump 19 by the charge/discharge boost unit 23, so that even if the amount of power generated by each sediment microbial fuel cell 10 of the power generation unit 21 is small, the charge/discharge boost unit 23 can be charged and the electricity required to drive the aeration pump 19 can be stored, and it has been confirmed that the aeration pump 19 can be driven stably and intermittently (intermittently) without requiring additional energy.

(実施例2)
次に、底質改善装置20による底質改善効果を確認するために、実施例1と同様の構成及び条件で底質改善装置20が稼動している場合と稼動していない場合(非稼動の場合)のそれぞれの直上水15の溶存酸素濃度(DO)の変化を調べた。ロガー付きDOメーターを用いて直上水15の溶存酸素濃度(DO)を約1時間置きに測定した結果を図6に示す。本実施例では、底質改善装置20を3日間稼動後、4日間非稼動とし、再び3日間稼動後に非稼動とした。
図6から、底質改善装置20の稼動中は、直上水15のDOが徐々に増加して、栄養塩の溶出抑制に効果が見られる2mg/L以上に達し、底質改善装置20の非稼動中は、直上水15のDOが徐々に低下する傾向を示すことがわかる。
従って、本発明に係る底質改善方法及び底質改善装置20によれば、曝気用ポンプ19により直上水15を間欠的に曝気して直上水15の溶存酸素濃度を上昇させることができ、栄養塩の溶出抑制効果を高めて、低コストで効率的に底質改善が可能であることが確認された。この底質改善装置20の構成をスケールアップすることにより、実際の閉鎖性水域における栄養塩の溶出を広範囲にわたって抑制することができるものと考えられる。
Example 2
Next, in order to confirm the bottom sediment improvement effect of the bottom sediment improvement device 20, changes in the dissolved oxygen concentration (DO) of the immediately upstream water 15 were examined when the bottom sediment improvement device 20 was operating and when it was not operating (non-operating) under the same configuration and conditions as in Example 1. The dissolved oxygen concentration (DO) of the immediately upstream water 15 was measured at approximately hourly intervals using a DO meter with a logger, and the results are shown in Figure 6. In this example, the bottom sediment improvement device 20 was operated for three days, then non-operated for four days, and then operated for three days again before being non-operated.
From Figure 6, it can be seen that while the bottom sediment improvement device 20 is operating, the DO of the immediately above water 15 gradually increases and reaches 2 mg/L or more, which is an effective level for suppressing the leaching of nutrients, and while the bottom sediment improvement device 20 is not operating, the DO of the immediately above water 15 tends to gradually decrease.
Therefore, it was confirmed that the bottom sediment improvement method and bottom sediment improvement device 20 of the present invention can intermittently aerate the immediately above water 15 with the aeration pump 19 to increase the dissolved oxygen concentration of the immediately above water 15, thereby enhancing the effect of suppressing the elution of nutrients, and enabling efficient bottom sediment improvement at low cost. It is considered that by scaling up the configuration of this bottom sediment improvement device 20, it is possible to suppress the elution of nutrients over a wide range in an actual closed water area.

以上、本発明の実施の形態を説明したが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。
底質改善の対象となる閉鎖性水域の水は淡水でも海水でもよい。1台の底質改善装置で使用される第1、第2の電極の数、大きさ及び配置は、適宜、選択される。また、一箇所の閉鎖性水域に設置される底質改善装置の数及び配置は、閉鎖性水域の広さ及び環境(汚染状況等)に応じて、適宜、選択される。曝気用ポンプが間欠運転される時間間隔も適宜、選択される。
Although the embodiments of the present invention have been described above, the present invention is not limited to the configurations described in the above embodiments, and also includes other embodiments and variations that can be considered within the scope of the matters described in the claims.
The water in the closed water area to be improved may be fresh water or sea water. The number, size and arrangement of the first and second electrodes used in one bottom sediment improvement device are appropriately selected. The number and arrangement of bottom sediment improvement devices installed in one closed water area are appropriately selected according to the size of the closed water area and the environment (pollution state, etc.). The time interval for intermittent operation of the aeration pump is also appropriately selected.

10:堆積物微生物燃料電池、11:閉鎖性水域、12:底質、14:、第1の電極、15:直上水、16:第2の電極、18:電気接続線、19:曝気用ポンプ、20:底質改善装置、21:発電部、22:コンデンサ、23:充放電昇圧部、25:制御部、26吐出管、27:切替手段、28:充電用回路、29:放電用回路、30:リレースイッチ、31:自動スイッチング回路、32:電源、33:充放電時間設定手段、34:可変抵抗 10: Sediment microbial fuel cell, 11: Closed water area, 12: Bottom sediment, 14:, First electrode, 15: Overflow water, 16: Second electrode, 18: Electrical connection line, 19: Aeration pump, 20: Bottom sediment improvement device, 21: Power generation unit, 22: Capacitor, 23: Charge/discharge boost unit, 25: Control unit, 26 Discharge pipe, 27: Switching means, 28: Charging circuit, 29: Discharging circuit, 30: Relay switch, 31: Automatic switching circuit, 32: Power source, 33: Charge/discharge time setting means, 34: Variable resistor

Claims (6)

底質改善の対象となる閉鎖性水域の底質に埋設されるアノードと、該アノードと電気的に接続され前記底質の上方の直上水中に設置されるカソードとを有し、前記底質に含まれる有機物が該底質中の微生物に分解されて生じる電子が、前記アノードを通って前記カソードに移動することにより発電を行う堆積物微生物燃料電池を用いた底質改善方法において、
1又は複数の前記堆積物微生物燃料電池で発電される電力を蓄電し、昇圧しながら断続的にモータ駆動式の曝気用ポンプの駆動に必要な電力を供給して、該曝気用ポンプにより前記カソードが設置される前記直上水を間欠的に曝気して該直上水の溶存酸素濃度を上昇させ、前記底質を改善することを特徴とする堆積物微生物燃料電池を用いた底質改善方法。
A method for improving bottom sediment using a sediment microbial fuel cell includes an anode buried in the bottom sediment of a closed water area to be improved, and a cathode electrically connected to the anode and installed in the water immediately above the bottom sediment, and organic matter contained in the bottom sediment is decomposed by microorganisms in the bottom sediment, and electrons generated by the decomposition move through the anode to the cathode to generate electricity, the method comprising the steps of:
A bottom sediment improvement method using a sediment microbial fuel cell, characterized in that the electricity generated by one or more of the sediment microbial fuel cells is stored and boosted while intermittently supplying the electricity necessary to drive a motor-driven aeration pump, which intermittently aerates the water immediately above where the cathode is installed using the aeration pump to increase the dissolved oxygen concentration of the water immediately above, thereby improving the bottom sediment .
請求項1記載の堆積物微生物燃料電池を用いた底質改善方法において、前記曝気用ポンプによる曝気で前記直上水の溶存酸素濃度を2mg/L以上に上昇させることを特徴とする堆積物微生物燃料電池を用いた底質改善方法。 A bottom sediment improvement method using a sediment microbial fuel cell according to claim 1, characterized in that the dissolved oxygen concentration of the immediately above water is increased to 2 mg/L or more by aeration using the aeration pump. 底質改善の対象となる閉鎖性水域の底質に埋設されるアノードと、該アノードと電気的に接続され前記底質の上方の直上水中に設置されるカソードとを有し、前記底質に含まれる有機物が該底質中の微生物に分解されて生じる電子が、前記アノードを通って前記カソードに移動することにより発電を行う堆積物微生物燃料電池を用いた底質改善装置において、
1又は複数の前記堆積物微生物燃料電池を有する発電部と、複数のコンデンサを有する充放電昇圧部と、モータ駆動式の曝気用ポンプと、前記充放電昇圧部を制御する制御部とを備え、該制御部は、前記発電部による前記充放電昇圧部への充電と、前記充放電昇圧部による前記曝気用ポンプへの放電を切替えて、前記曝気用ポンプの駆動に必要な電力を断続的に供給し、該曝気用ポンプにより前記カソードが設置される前記直上水を間欠的に曝気して該直上水の溶存酸素濃度を上昇させ、前記底質を改善することを特徴とする堆積物微生物燃料電池を用いた底質改善装置。
A bottom sediment improvement device using a sediment microbial fuel cell has an anode buried in the bottom sediment of a closed water area to be improved, and a cathode electrically connected to the anode and installed in the water immediately above the bottom sediment, and generates electricity by electrons generated by decomposition of organic matter contained in the bottom sediment by microorganisms in the bottom sediment and moving through the anode to the cathode ,
A bottom sediment improvement device using a sediment microbial fuel cell comprising a power generation unit having one or more of the sediment microbial fuel cells, a charge/discharge boost unit having multiple capacitors, a motor-driven aeration pump, and a control unit that controls the charge/discharge boost unit, wherein the control unit switches between charging the charge/discharge boost unit by the power generation unit and discharging to the aeration pump by the charge/discharge boost unit to intermittently supply the power necessary to drive the aeration pump, and the aeration pump intermittently aerates the water immediately above where the cathode is installed using the aeration pump to increase the dissolved oxygen concentration of the water immediately above, thereby improving the bottom sediment .
請求項3記載の堆積物微生物燃料電池を用いた底質改善装置において、前記充放電昇圧部は、充電時に前記各コンデンサを1又は複数の前記各堆積物微生物燃料電池に接続し、放電時に前記各コンデンサを1又は複数の前記堆積物微生物燃料電池から切り離して複数の該コンデンサを直列接続する切替手段を有し、前記制御部は、所定の時間間隔で前記切替手段を動作させて前記充電と前記放電の切替えを行う自動スイッチング回路を備えていることを特徴とする堆積物微生物燃料電池を用いた底質改善装置。 A bottom sediment improvement device using a sediment microbial fuel cell as described in claim 3, characterized in that the charge/discharge boost unit has a switching means for connecting each of the capacitors to one or more of the sediment microbial fuel cells during charging, and for disconnecting each of the capacitors from one or more of the sediment microbial fuel cells during discharging, and for connecting the multiple capacitors in series, and the control unit has an automatic switching circuit that operates the switching means at a predetermined time interval to switch between the charging and discharging. 請求項4記載の堆積物微生物燃料電池を用いた底質改善装置において、前記自動スイッチング回路は、充放電時間設定手段を有し、該充放電時間設定手段で設定される充電時間と放電時間に従って前記切替手段による前記充電と前記放電の切替えが行われることを特徴とする堆積物微生物燃料電池を用いた底質改善装置。 A bottom sediment improvement device using a sediment microbial fuel cell according to claim 4, characterized in that the automatic switching circuit has a charge/discharge time setting means, and the switching means switches between the charging and discharging in accordance with the charging time and discharging time set by the charge/discharge time setting means. 請求項5記載の堆積物微生物燃料電池を用いた底質改善装置において、前記充放電時間設定手段は、可変抵抗を有し、該可変抵抗の抵抗値が変更されることにより、前記充電時間と前記放電時間が調整されることを特徴とする堆積物微生物燃料電池を用いた底質改善装置。 A bottom sediment improvement device using a sediment microbial fuel cell according to claim 5, characterized in that the charge/discharge time setting means has a variable resistor, and the charge time and the discharge time are adjusted by changing the resistance value of the variable resistor.
JP2021214629A 2021-12-28 2021-12-28 Sediment improvement method and device using sediment microbial fuel cell Active JP7478373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021214629A JP7478373B2 (en) 2021-12-28 2021-12-28 Sediment improvement method and device using sediment microbial fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021214629A JP7478373B2 (en) 2021-12-28 2021-12-28 Sediment improvement method and device using sediment microbial fuel cell

Publications (2)

Publication Number Publication Date
JP2023098103A JP2023098103A (en) 2023-07-10
JP7478373B2 true JP7478373B2 (en) 2024-05-07

Family

ID=87072144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021214629A Active JP7478373B2 (en) 2021-12-28 2021-12-28 Sediment improvement method and device using sediment microbial fuel cell

Country Status (1)

Country Link
JP (1) JP7478373B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210968A (en) 2014-04-28 2015-11-24 積水化学工業株式会社 Microbial fuel system, power storage method of microbial fuel cell, and power storage circuit
JP2016175058A (en) 2014-07-06 2016-10-06 株式会社 Nサイエンス Aeration device and aeration method using natural energy
JP2017183011A (en) 2016-03-29 2017-10-05 シャープ株式会社 Microbial fuel cell, and microbial fuel cell system
WO2019181281A1 (en) 2018-03-23 2019-09-26 栗田工業株式会社 Microbial power generation device and method for operating same
JP2020174665A (en) 2019-04-18 2020-10-29 東洋インキScホールディングス株式会社 Animal rearing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015210968A (en) 2014-04-28 2015-11-24 積水化学工業株式会社 Microbial fuel system, power storage method of microbial fuel cell, and power storage circuit
JP2016175058A (en) 2014-07-06 2016-10-06 株式会社 Nサイエンス Aeration device and aeration method using natural energy
JP2017183011A (en) 2016-03-29 2017-10-05 シャープ株式会社 Microbial fuel cell, and microbial fuel cell system
WO2019181281A1 (en) 2018-03-23 2019-09-26 栗田工業株式会社 Microbial power generation device and method for operating same
JP2020174665A (en) 2019-04-18 2020-10-29 東洋インキScホールディングス株式会社 Animal rearing system

Also Published As

Publication number Publication date
JP2023098103A (en) 2023-07-10

Similar Documents

Publication Publication Date Title
CN107098459B (en) Electrochemical device and method for treating high-concentration ammonia nitrogen organic wastewater
CN112573667B (en) Sewage treatment device and method based on algae-bacteria symbiotic electrochemical system
CN105565497A (en) Air cathode microbial fuel cell constructed wetland device of biological carbon matrix anode
CN108821439B (en) Immersed microalgae-microbe electrochemical system for in-situ remediation of nutrient salt pollution in surface water body and remediation method
CN106630177A (en) Method and device for treating coking wastewater and producing hydrogen gas by microbial electrolysis cell
CN101924227A (en) Microbial fuel cell and application thereof
Sharma et al. Demonstration of energy and nutrient recovery from urine by field-scale microbial fuel cell system
CN111792806B (en) Black and odorous water body sediment repair system based on electrodynamic principle
CN210261492U (en) Plant floating bed device for repairing urban tidal river black and odorous bottom mud by using microbial fuel cell
JP5829956B2 (en) Method and system for controlling microbial reaction in bottom soil
Winfield et al. Response of ceramic microbial fuel cells to direct anodic airflow and novel hydrogel cathodes
Narayan et al. Treatment of sewage (domestic wastewater or municipal wastewater) and electricity production by integrating constructed wetland with microbial fuel cell
JP7478373B2 (en) Sediment improvement method and device using sediment microbial fuel cell
RU2657289C1 (en) Biofuel cell
CN210559981U (en) Equipment for repairing urban tidal river black and odorous bottom mud by using microbial fuel cell
CN101264974A (en) Device for increasing active sludge oxygen-consuming rate by using electrostatic field
CN112250163B (en) Heterotopic electron compensated hydrogen autotrophic denitrification device
JP2006114375A (en) Microorganism battery for sludge treatment, and sludge purifying device using it
CN205472824U (en) Handle decentralized domestic sewage's electrolysis phosphorus removal device
CN114380387B (en) Landscape water body restoration treatment method
CN203781882U (en) Oxidation-flocculation complex bed device for landfill leachate
JP2002346566A (en) Apparatus and method for water treatment
US20120037512A1 (en) Electrodes for electrolysis of water
CN210394104U (en) Electro-catalysis experimental device for downward subsurface flow constructed wetland
CN209442737U (en) A kind of Inner electrolysis submerged plant bed apparatus

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20220121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240410

R150 Certificate of patent or registration of utility model

Ref document number: 7478373

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150