JP7478138B2 - Metallic copper fine particle-containing resin composition and method for producing same - Google Patents

Metallic copper fine particle-containing resin composition and method for producing same Download PDF

Info

Publication number
JP7478138B2
JP7478138B2 JP2021512197A JP2021512197A JP7478138B2 JP 7478138 B2 JP7478138 B2 JP 7478138B2 JP 2021512197 A JP2021512197 A JP 2021512197A JP 2021512197 A JP2021512197 A JP 2021512197A JP 7478138 B2 JP7478138 B2 JP 7478138B2
Authority
JP
Japan
Prior art keywords
metallic copper
fatty acid
resin composition
polyol
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021512197A
Other languages
Japanese (ja)
Other versions
JPWO2020204119A1 (en
Inventor
泰啓 小坂
和彰 大橋
章子 小金井
大輔 生田目
亮介 濱野
明 石河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomatec Co Ltd
Original Assignee
Tomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomatec Co Ltd filed Critical Tomatec Co Ltd
Publication of JPWO2020204119A1 publication Critical patent/JPWO2020204119A1/ja
Application granted granted Critical
Publication of JP7478138B2 publication Critical patent/JP7478138B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • A01N25/10Macromolecular compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、金属銅微粒子含有樹脂組成物及びその製造方法に関するものであり、より詳細には、金属銅微粒子が均一に分散され、抗ウイルス性を効率よく発現可能な金属銅微粒子含有樹脂組成物及びその製造方法に関する。The present invention relates to a resin composition containing metallic copper microparticles and a method for producing the same, and more specifically to a resin composition containing metallic copper microparticles in which metallic copper microparticles are uniformly dispersed and which can efficiently exhibit antiviral properties, and a method for producing the same.

従来より、抗菌性や抗ウイルス性を有する材料には、銀イオンや銅(II)イオンが有効成分として使用されており、これらの金属イオンをゼオライトやシリカゲルなどの物質に担持させ、或いは溶媒中に分散させて成る抗ウイルス材料が種々提案されている。
しかしながら、上記金属イオンは、インフルエンザウイルスのようなエンベロープ構造を有するウイルスに対する抗ウイルス性を発現することはできるが、ノロウイルスのようなエンベロープ構造を持たないウイルスに対しては抗ウイルス性を発現することはできなかった。
Conventionally, silver ions or copper (II) ions have been used as active ingredients in materials having antibacterial or antiviral properties, and various antiviral materials have been proposed in which these metal ions are supported on substances such as zeolite or silica gel or dispersed in a solvent.
However, although the above metal ions can exhibit antiviral activity against viruses having an envelope structure, such as influenza viruses, they are unable to exhibit antiviral activity against viruses that do not have an envelope structure, such as noroviruses.

エンベロープ構造の有無にかかわらず、抗ウイルス性を発現可能な金属化合物として一価銅化合物も知られており、例えば、下記特許文献1には、一価の銅化合物微粒子と、還元剤と、分散媒を含有し、pH6以下であることを特徴とする抗ウイルス組成物が記載されている。下記特許文献2には、BET比表面積が5~100m/gの亜酸化銅粒子と、アルデヒド基を有する糖類と、光触媒物質とを含有することを特徴とする抗菌抗ウイルス性組成物が記載されている。下記特許文献3には、銅粒子及び銅化合物粒子の少なくともいずれか一方を酸化物粒子に担持した、平均二次粒子径が80nm~600nmの銅担持酸化物と、平均二次粒子径が1μm~15μmの硫酸バリウムと撥水性の樹脂バインダーとを有する抗ウイルス性塗膜が記載されている。 Monovalent copper compounds are also known as metal compounds capable of exhibiting antiviral properties, regardless of the presence or absence of an envelope structure. For example, Patent Document 1 below describes an antiviral composition that contains monovalent copper compound fine particles, a reducing agent, and a dispersion medium, and has a pH of 6 or less. Patent Document 2 below describes an antibacterial and antiviral composition that contains cuprous oxide particles with a BET specific surface area of 5 to 100 m 2 /g, a saccharide having an aldehyde group, and a photocatalytic substance. Patent Document 3 below describes an antiviral coating film that contains a copper-supported oxide having an average secondary particle diameter of 80 nm to 600 nm, in which at least one of copper particles and copper compound particles is supported on an oxide particle, barium sulfate having an average secondary particle diameter of 1 μm to 15 μm, and a water-repellent resin binder.

特許第5194185号公報Patent No. 5194185 特開2013-82654号公報JP 2013-82654 A 特開2015-205998号公報JP 2015-205998 A

しかしながら、一価銅化合物の微粒子は凝集しやすく、一価銅化合物を均一に分散させることは困難であり、分散液を抗ウイルス組成物として利用する場合や塗料と混合してコーティングされた抗ウイルス成型体として用いる場合において、一価銅化合物の微粒子が有する抗ウイルス性を効率よく発現することが困難であった。
また、上記特許文献で挙げられているような粒子径の大きい一価銅化合物を用いた場合には、粒子表面積が小さくなり、ウイルスとの接触機会が減少することで抗ウイルス性が低下する。また、粒子径の大きい一価銅化合物がコーティングされた抗ウイルス成型体では、ヘイズや光透過率が悪化して透明性が損なわれるという問題がある。
更に、一価銅化合物の微粒子は粉砕することによっても得られるが、被膜剤や安定化剤がないため凝集しやすく、亜酸化銅から酸化銅(II)への酸化が起こりやすいといった問題もある。
However, fine particles of a monovalent copper compound tend to aggregate, making it difficult to uniformly disperse the monovalent copper compound. Thus, when the dispersion liquid is used as an antiviral composition or when it is mixed with a paint and used as a coated antiviral molded body, it has been difficult to efficiently express the antiviral properties of the fine particles of the monovalent copper compound.
In addition, when a monovalent copper compound having a large particle size as described in the above patent document is used, the particle surface area is reduced, and the antiviral properties are reduced due to a decrease in the chance of contact with the virus. In addition, an antiviral molded product coated with a monovalent copper compound having a large particle size has a problem that the haze and light transmittance are deteriorated, resulting in a loss of transparency.
Furthermore, fine particles of a monovalent copper compound can also be obtained by pulverization, but since there is no coating agent or stabilizer, the particles tend to aggregate, and oxidation of cuprous oxide to copper(II) oxide is likely to occur.

本発明者等は、このような問題を解決するため、効率よく高い抗ウイルス性を発現可能な微粒子について鋭意研究を続けた結果、一価銅化合物よりも金属銅がより高い抗ウイルス性を発現できることを見出すと共に、金属銅微粒子の表面を脂肪酸及び該脂肪酸のエステル化合物で被覆することにより、低沸点溶媒中に高濃度で含有されている場合にも凝集することなく均一に分散することを見出した。
上記金属銅微粒子は、低沸点溶媒を分散媒とする分散液の状態で提供されることから、この分散液を樹脂に添加し、加熱混練して金属銅微粒子を均一に分散させることは、溶媒が揮発しやすく、また引火の危険性があり製造現場では取扱が困難である。
従って本発明の目的は、抗ウイルス性を効率よく発現可能な金属銅微粒子が均一に分散された金属銅微粒子含有樹脂組成物及びその製造方法を提供することである。
In order to solve these problems, the present inventors have conducted intensive research into microparticles that can efficiently exhibit high antiviral properties, and as a result, have found that metallic copper can exhibit higher antiviral properties than monovalent copper compounds, and that by coating the surface of metallic copper microparticles with a fatty acid and an ester compound of the fatty acid, the microparticles can be uniformly dispersed without aggregation even when contained in a low-boiling point solvent at a high concentration.
Since the metallic copper microparticles are provided in the form of a dispersion liquid in a low-boiling point solvent as a dispersion medium, adding this dispersion liquid to a resin and heating and kneading it to uniformly disperse the metallic copper microparticles would be difficult to handle at the manufacturing site because the solvent would easily evaporate and there would be a risk of fire.
Therefore, an object of the present invention is to provide a metallic copper microparticle-containing resin composition in which metallic copper microparticles capable of efficiently exhibiting antiviral properties are uniformly dispersed, and a method for producing the same.

本発明の第二の製造方法によれば、ポリオール中に脂肪酸銅を添加し、これを加熱混合することにより、脂肪酸及び/又は該脂肪酸とポリオールのエステル化合物で被覆された金属銅微粒子が分散する分散液を調製し、該分散液からポリオールを除去することにより、脂肪酸及び/又はエステル化合物が被覆された金属銅微粒子を得た後、該金属銅微粒子を樹脂に添加し、混練することを特徴とする金属銅微粒子含有樹脂組成物の製造方法が提供される。According to the second manufacturing method of the present invention, a method for manufacturing a resin composition containing metallic copper microparticles is provided, which is characterized in that a fatty acid copper is added to a polyol, which is then heated and mixed to prepare a dispersion in which metallic copper microparticles coated with a fatty acid and/or an ester compound of the fatty acid and a polyol are dispersed, the polyol is removed from the dispersion to obtain metallic copper microparticles coated with a fatty acid and/or an ester compound, and the metallic copper microparticles are then added to a resin and kneaded.

本発明の第四の製造方法によれば、ポリオール中に脂肪酸及び銅化合物を添加し、これを加熱混合することにより、脂肪酸及び/又は該脂肪酸とポリオールから成るエステル化合物で被覆された金属銅微粒子が分散する分散液を調製し、該分散液からポリオールを除去することにより脂肪酸及び/又はエステル化合物で被覆された金属銅微粒子を得た後、該金属銅微粒子を樹脂に添加し、混練することを特徴とする金属銅微粒子含有樹脂組成物の製造方法。According to the fourth manufacturing method of the present invention, a fatty acid and a copper compound are added to a polyol, which is then heated and mixed to prepare a dispersion in which metallic copper fine particles coated with a fatty acid and/or an ester compound consisting of the fatty acid and a polyol are dispersed, the polyol is removed from the dispersion to obtain metallic copper fine particles coated with a fatty acid and/or an ester compound, and the metallic copper fine particles are then added to a resin and kneaded to produce a resin composition containing metallic copper fine particles.

本発明の製造方法においては、
1.前記銅化合物が、酢酸銅、塩化銅、臭化銅の何れかであること、
2.前記ポリオールが、ジエチレングリコール、エチレングリコール、トリエチレングリコール、プロピレングリコール、グリセリンの何れかであること、
が好適である。
In the production method of the present invention,
1. The copper compound is any one of copper acetate, copper chloride, and copper bromide;
2. The polyol is any one of diethylene glycol, ethylene glycol, triethylene glycol, propylene glycol, and glycerin;
is preferred.

本発明の金属銅微粒子含有樹脂組成物においては、金属銅微粒子が脂肪酸及び/又は該脂肪酸とポリオールのエステル化合物で被覆されていることから、樹脂中で凝集することなく均一に分散されており、この樹脂組成物を用いて成形された成形品は優れた抗ウイルス性を発現できる。
また本発明の金属銅微粒子含有樹脂組成物は、抗ウイルス性のみならず、抗菌性、導電性、紫外線遮蔽性、防汚性等の特性をも有している。特に、エンベロープ構造の有無にかかわらず抗ウイルス性を発現可能であり、ノロウイルス等のエンベロープ構造を持たないウイルスに対しても抗ウイルス性を発現することができる。
本発明の金属銅微粒子含有樹脂組成物の製造方法においては、脂肪酸及び/又は該脂肪酸とポリオールのエステル化合物が被覆された金属銅微粒子が凝集することなく均一に分散された樹脂組成物を効率よく製造することができる。
In the resin composition containing metallic copper microparticles of the present invention, the metallic copper microparticles are coated with a fatty acid and/or an ester compound of the fatty acid and a polyol, and are therefore uniformly dispersed in the resin without agglomeration, and molded articles made using this resin composition can exhibit excellent antiviral properties.
Furthermore, the resin composition containing metallic copper fine particles of the present invention has not only antiviral properties, but also properties such as antibacterial properties, electrical conductivity, ultraviolet shielding properties, antifouling properties, etc. In particular, it can exhibit antiviral properties regardless of the presence or absence of an envelope structure, and can also exhibit antiviral properties against viruses that do not have an envelope structure, such as norovirus.
In the method for producing a resin composition containing metallic copper microparticles of the present invention, a resin composition can be efficiently produced in which metallic copper microparticles coated with a fatty acid and/or an ester compound of the fatty acid and a polyol are uniformly dispersed without agglomeration.

(金属銅微粒子含有樹脂組成物)
本発明の金属銅微粒子含有樹脂組成物において、金属銅微粒子は表面が脂肪酸及び/又はエステル化合物で被覆されていることにより、樹脂中で微粒子の凝集を抑制することが可能であり、優れた抗ウイルス性を長期に亘って発現できる。
抗ウイルス性を示す有効成分である金属銅はウイルスを吸着してウイルスを不活性化することが可能であり、エンベロープ構造の有無にかかわらず優れた抗ウイルス性を発現することができる。すなわち、金属銅微粒子が有する優れた抗ウイルス性は、金属銅から発生する活性酸素の酸化力によって、微小蛋白質から成るウイルスの蛋白質を変性させると共に、金属銅がウイルスの蛋白質のチオール基と反応することによって蛋白質を変性させることにより、ウイルスを不活性化できると考えられる。尚、脂肪酸及び/又はエステル化合物が被覆された金属銅微粒子が抗ウイルス性を発現されるメカニズムは明らかではないが、金属銅微粒子表面に存在する被覆に付着したウイルスが被覆と置換することにより、金属銅と接触すると考えられる。
(Metallic copper fine particle-containing resin composition)
In the resin composition containing metallic copper microparticles of the present invention, the metallic copper microparticles have their surfaces coated with a fatty acid and/or an ester compound, which makes it possible to suppress aggregation of the microparticles in the resin and allows excellent antiviral properties to be exhibited over a long period of time.
Metallic copper, an active ingredient exhibiting antiviral properties, can adsorb viruses and inactivate them, and can exhibit excellent antiviral properties regardless of the presence or absence of an envelope structure. In other words, the excellent antiviral properties of metallic copper microparticles are believed to be due to the oxidizing power of active oxygen generated from metallic copper, which denatures the proteins of viruses consisting of microproteins, and metallic copper reacts with the thiol groups of the proteins of the viruses to denature the proteins, thereby inactivating the viruses. The mechanism by which metallic copper microparticles coated with fatty acids and/or ester compounds exhibit antiviral properties is not clear, but it is believed that viruses attached to the coating present on the surface of the metallic copper microparticles are replaced by the coating and come into contact with metallic copper.

また、後述の実施例からわかるように、実施例1,2,3は抗ウイルス性を有するのに対して、エステル化合物を後添加した比較例2は抗ウイルス性を示さない。これは、金属銅微粒子が混練中に酸化されているからと考えられる。エステル成分を混練時に添加しても効果は無く、最初から被覆されていることが重要である。
本発明の金属銅微粒子含有樹脂組成物において、樹脂中の金属銅微粒子は、脂肪酸又はエステル化合物のそれぞれが金属銅微粒子の周囲に配位する一方、エステル化合物は脂肪酸と親和性を有することから、脂肪酸の周囲又は脂肪酸と混合した状態で脂肪酸及びエステル化合物の両方が金属銅微粒子に配位していると考えられる。
金属銅微粒子含有樹脂組成物においては、エステル化合物が十分に被覆された金属銅微粒子を十分に含有することにより、特に優れた抗ウイルス性が発現される。
In addition, as will be seen from the examples described later, Examples 1, 2, and 3 have antiviral properties, whereas Comparative Example 2, to which the ester compound was added later, does not exhibit antiviral properties. This is believed to be because the metallic copper particles are oxidized during kneading. Adding the ester component during kneading has no effect, and it is important that the particles are coated from the beginning.
In the resin composition containing metallic copper microparticles of the present invention, the metallic copper microparticles in the resin are coordinated around the metallic copper microparticles with either a fatty acid or an ester compound, while since the ester compound has an affinity for the fatty acid, it is believed that both the fatty acid and the ester compound are coordinated around the fatty acid or mixed with the fatty acid to the metallic copper microparticles.
In the metallic copper fine particle-containing resin composition, particularly excellent antiviral properties are exhibited by containing a sufficient amount of metallic copper fine particles that are sufficiently coated with an ester compound.

[金属銅微粒子]
金属銅微粒子表面を被覆する脂肪酸としては、ミリスチン酸,ステアリン酸,オレイン酸,パルミチン酸,n-デカン酸,パラトイル酸,コハク酸,マロン酸,酒石酸,リンゴ酸,グルタル酸,アジピン酸、酢酸等を例示することができ、これらは複数種の組み合わせであってもよいが、特に炭素数が10~22の高級脂肪酸、中でもステアリン酸であることが好適である。
金属銅微粒子表面を被覆するエステル化合物は、後述する本発明の金属銅微粒子粉末の製造方法における原料である脂肪酸及びポリオールに由来するエステル化合物であることが好適であるが、原料由来以外のエステル化合物を配合することもでき、これらは異なるエステル化合物であってもよいが、好適には、原料由来のエステル化合物と同種のものであることが望ましい。
金属銅微粒子表面を被覆する好適なエステル化合物としては、上記脂肪酸のエステル化合物と後述するポリオールとのエステル化合物、例えばこれに限定されないが、ジエチレングリコールジステアレート、エチレングリコールジステアレート、プロピレングリコールジステアレート、ポリエチレングリコールジステアレート、ポリプロピレングリコールジステアレート等を挙げることができる。
[Metallic copper particles]
Examples of fatty acids that may be used to coat the surface of the metallic copper microparticles include myristic acid, stearic acid, oleic acid, palmitic acid, n-decanoic acid, para-toic acid, succinic acid, malonic acid, tartaric acid, malic acid, glutaric acid, adipic acid, and acetic acid. These may also be used in combination with multiple types of acids, but higher fatty acids having 10 to 22 carbon atoms, and of these, stearic acid, are particularly preferred.
The ester compound coating the surface of the metallic copper microparticles is preferably an ester compound derived from the fatty acids and polyols that are the raw materials in the method for producing metallic copper microparticle powder of the present invention described below, but it is also possible to blend ester compounds other than those derived from the raw materials, and these may be different ester compounds, but it is preferable that they are of the same type as the ester compounds derived from the raw materials.
Suitable ester compounds for coating the surface of metallic copper microparticles include ester compounds of the above-mentioned fatty acids and the polyols described below, such as, but not limited to, diethylene glycol distearate, ethylene glycol distearate, propylene glycol distearate, polyethylene glycol distearate, and polypropylene glycol distearate.

本発明の金属銅微粒子含有樹脂組成物中の金属銅微粒子の平均一次粒径は、10~500nm、特に10~200nmの範囲にあることが好適である。金属銅微粒子の平均粒径が上記範囲にあることにより、優れた抗ウイルス性能を効率よく発現することが可能になる。すなわち、このように平均一次粒径の小さい金属銅微粒子は、金属銅微粒子の酸素との接触率が高いことから、効率よく活性酸素を発生することができ、優れた抗ウイルス性能を発現することが可能になる。尚、本明細書でいう平均一次粒径とは、金属銅微粒子と金属銅微粒子との間に隙間がないものを一つの粒子とし、その平均をとったものをいう。平均一次粒径は走査型顕微鏡で得た画像から、画像解析式粒度分布測定ソフトウェア(例えばMac-View等)を用いることにより算出することができる。
金属銅微粒子に対する前記脂肪酸及び/又はエステル化合物の被覆量は、0.1~20質量%、特に0.1~10質量%の範囲にあることが好適である。上記範囲よりも被覆量が少ない場合には、上記範囲にある場合に比して金属銅微粒子の酸化や凝集のおそれがあり、一方上記範囲よりも被覆量が多い場合には、上記範囲にある場合に比して抗ウイルス性が低下するおそれがある。
The average primary particle size of the metallic copper fine particles in the metallic copper fine particle-containing resin composition of the present invention is preferably in the range of 10 to 500 nm, particularly 10 to 200 nm. By having the average particle size of the metallic copper fine particles in the above range, it is possible to efficiently exhibit excellent antiviral performance. That is, metallic copper fine particles having such a small average primary particle size can efficiently generate active oxygen because the contact rate of the metallic copper fine particles with oxygen is high, and it is possible to exhibit excellent antiviral performance. In addition, the average primary particle size referred to in this specification refers to the average of metallic copper fine particles with no gap between them, which are regarded as one particle. The average primary particle size can be calculated from an image obtained by a scanning microscope using image analysis type particle size distribution measurement software (e.g., Mac-View, etc.).
The amount of the fatty acid and/or ester compound coated on the metallic copper fine particles is preferably in the range of 0.1 to 20% by mass, particularly preferably 0.1 to 10% by mass. If the amount of coating is less than the above range, there is a risk of oxidation or aggregation of the metallic copper fine particles compared to when the amount is within the above range, while if the amount of coating is more than the above range, there is a risk of reduced antiviral properties compared to when the amount is within the above range.

[樹脂]
本発明の金属銅微粒子含有樹脂組成物において、金属銅微粒子を含有する樹脂としては、低-,中-,高-密度ポリエチレン、線状低密度ポリエチレン、線状超低密度ポリエチレン、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン、プロピレン-エチレン共重合体、ポリブテン-1、エチレン-ブテン-1共重合体、プロピレン-ブテン-1共重合体、エチレン-プロピレン-ブテン-1共重合体等のオレフィン樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタエート等のポリエステル樹脂、ナイロン6、ナイロン6,6、ナイロン6,10等のポリアミド樹脂、ポリカーボネート樹脂等の従来公知の熱可塑性樹脂、フェノール樹脂、エポキシ樹脂、ウレタン樹脂、メラミン樹脂、尿素樹脂、アルキド樹脂、不飽和ポリエステル樹脂、シリコーン樹脂等の熱硬化性樹脂や、或いは光硬化型アクリル系樹脂等の従来公知の熱硬化性樹脂を例示することができる。
[resin]
In the resin composition containing metallic copper particles of the present invention, examples of the resin containing metallic copper particles include olefin resins such as low-, medium-, and high-density polyethylene, linear low-density polyethylene, linear very low-density polyethylene, isotactic polypropylene, syndiotactic polypropylene, propylene-ethylene copolymer, polybutene-1, ethylene-butene-1 copolymer, propylene-butene-1 copolymer, and ethylene-propylene-butene-1 copolymer; polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyamide resins such as nylon 6, nylon 6,6, and nylon 6,10; and polycarbonate resins. Thermosetting resins such as phenolic resins, epoxy resins, urethane resins, melamine resins, urea resins, alkyd resins, unsaturated polyester resins, and silicone resins, as well as conventionally known thermosetting resins such as photocurable acrylic resins.

本発明の金属銅微粒子含有樹脂組成物において、金属銅微粒子は、樹脂(固形分)に対して0.01~20質量%、0.01~2質量%、特に0.01~0.2質量%の量で配合されていることが好適である。上記範囲よりも金属微粒子の量が少ない場合には、抗ウイルス性を十分に発現することができず、その一方上記範囲よりも金属微粒子の量が多い場合には、上記範囲にある場合に比して経済性が劣るだけでなく、かえって成形性や塗工性が損なわれるおそれがある。尚、本発明の金属銅微粒子含有樹脂組成物においては、高濃度のマスターバッチを製造し、このマスターバッチを樹脂に配合して金属銅微粒子含有量が上記範囲にある成形品を成形しても勿論よい。
本発明の金属銅微粒子含有樹脂組成物には、その用途に応じて、それ自体公知の各種配合剤、例えば、充填剤、可塑剤、レベリング剤、増粘剤、減粘剤、安定剤、酸化防止剤、紫外線吸収剤、分散剤、顔料等を公知の処方に従って配合することができる。
In the resin composition containing metallic copper particles of the present invention, the metallic copper particles are preferably blended in an amount of 0.01 to 20% by mass, 0.01 to 2% by mass, particularly 0.01 to 0.2% by mass relative to the resin (solid content). If the amount of metallic particles is less than the above range, antiviral properties cannot be fully expressed, while if the amount of metallic particles is more than the above range, not only is the economical efficiency inferior compared to the case in the above range, but moldability and coatability may be impaired. In addition, in the resin composition containing metallic copper particles of the present invention, a high-concentration master batch may be produced and this master batch may be blended with a resin to mold a molded product having a metallic copper particle content in the above range.
Depending on the application, the resin composition containing metallic copper particles of the present invention can be blended with various known compounding agents, such as fillers, plasticizers, leveling agents, thickeners, viscosity reducers, stabilizers, antioxidants, ultraviolet absorbers, dispersants, pigments, etc., in accordance with known recipes.

(第一及び第二の製造方法)
本発明の金属銅微粒子樹脂組成物は以下の製造方法によって調製することができる。
(1)金属銅微粒子含有分散液の調製
脂肪酸銅をポリオールに添加し、これを加熱することにより、脂肪酸及び/又は該脂肪酸とポリオールのエステル化合物が表面に被覆された金属銅微粒子が分散するポリオール分散液を調製する。
加熱温度は、用いる脂肪酸銅の分解開始温度未満の温度であり、具体的には160~230℃の範囲であることが好ましい。加熱混合の時間は、60~360分であることが好適である。
(First and second manufacturing methods)
The metallic copper particle resin composition of the present invention can be prepared by the following production method.
(1) Preparation of dispersion containing metallic copper microparticles Fatty acid copper is added to a polyol and heated to prepare a polyol dispersion in which metallic copper microparticles having their surfaces coated with fatty acids and/or ester compounds of the fatty acids and polyols are dispersed.
The heating temperature is preferably lower than the decomposition starting temperature of the fatty acid copper used, specifically in the range of 160 to 230° C. The heating and mixing time is preferably 60 to 360 minutes.

脂肪酸銅の配合量は、ポリオール当たり0.1~5質量%の範囲にあることが好ましい。上記範囲よりも脂肪酸銅の量が少ない場合には、上記範囲にある場合に比して十分な抗ウイルス性を分散液に付与することができないおそれがある。一方上記範囲よりも脂肪酸銅の量が多い場合には上記範囲にある場合に比して、経済性が劣ると共に塗工性や成形性が損なわれるおそれがある。
ポリオールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール、グリセリンを挙げることができるが、本発明においては、高沸点及び還元性を有することが好ましいことから、特にグリセリンを好適に使用することができる。
The amount of fatty acid copper is preferably in the range of 0.1 to 5% by mass per polyol. If the amount of fatty acid copper is less than the above range, there is a risk that sufficient antiviral properties cannot be imparted to the dispersion liquid compared to when the amount is within the above range. On the other hand, if the amount of fatty acid copper is more than the above range, there is a risk that the economic efficiency is inferior and the coatability and moldability are impaired compared to when the amount is within the above range.
Examples of polyols include ethylene glycol, diethylene glycol, triethylene glycol, polyethylene glycol, polypropylene glycol, and glycerin. In the present invention, glycerin is particularly suitable since it has a high boiling point and reducing property.

(2)金属銅微粒子分散液を用いた樹脂組成物の調製
次いで、脂肪酸及び/又は該脂肪酸とポリオールのエステル化合物で被覆された金属銅微粒子が分散するポリオール分散液を樹脂に添加し、混練することにより、金属微粒子含有樹脂組成物を調製する。
ポリオールを溶媒とする金属銅微粒子含有分散液を用いる場合には、上述した熱可塑性樹脂及び熱硬化性樹脂のいずれを用いることができる。
ポリオレフィン、ポリエステル、ポリアミド等の熱可塑性樹脂を用いる場合には、二軸押出機を用い、樹脂を溶融混練しながら金属銅微粒子含有分散液を添加して樹脂中に金属銅微粒子を分散させて、溶融状態にある金属銅微粒子含有樹脂組成物を調製する。
溶融混練された金属銅微粒子含有樹脂組成物を、ストランド状に押出しこれを切断してペレット状の成形体とすることもできるし、Tダイを用いてフィルム状の成形体とすることもできるし、或いは紡糸して不織布状の成形体とする等、従来公知の成形体の形状に成形することができる。
また熱硬化性樹脂を用いる場合には、熱硬化性樹脂及び硬化剤と共に、金属銅微粒子含有分散液を添加して、加熱硬化することにより、塗膜や成形体を成形することができる。
(2) Preparation of resin composition using metallic copper microparticle dispersion Next, a polyol dispersion in which metallic copper microparticles coated with a fatty acid and/or an ester compound of the fatty acid and a polyol are dispersed is added to a resin and kneaded to prepare a metal microparticle-containing resin composition.
When a dispersion liquid containing metallic copper particles in which a polyol is used as a solvent is used, either the thermoplastic resin or the thermosetting resin described above can be used.
When using a thermoplastic resin such as polyolefin, polyester, or polyamide, a twin-screw extruder is used, and while the resin is melt-kneaded, a dispersion liquid containing metallic copper particles is added to disperse the metallic copper particles in the resin, thereby preparing a molten metallic copper particle-containing resin composition.
The melt-kneaded resin composition containing metallic copper microparticles can be extruded into a strand shape and cut into a pellet-shaped molded product, or it can be molded into a film-shaped molded product using a T-die, or it can be spun into a nonwoven fabric-like molded product, or it can be molded into any of the conventionally known molded product shapes.
When a thermosetting resin is used, a dispersion containing metallic copper particles is added together with the thermosetting resin and a curing agent, and then heated and cured to form a coating film or a molded article.

(3)金属銅微粒子粉末を用いた樹脂組成物の調製
本発明の第二の製造方法においては、上述した金属銅微粒子含有分散液から分散媒を除去して回収した乾燥状態にある金属銅微粒子粉末を用い、これを樹脂に添加することにより金属銅微粒子含有樹脂組成物を調製することができる。
ポリオールを分散媒とする金属銅微粒子含有分散液からの金属銅微粒子の回収は、膜分離、遠心分離、蒸発、デカンテーション等、従来公知の分離方法により行うことができるが、好適には、下記の方法により行うことにより、特に抗ウイルス性に優れた脂肪酸及び/又はエステル化合物の被覆量が調整された金属銅微粒子を回収することができる。
(3) Preparation of resin composition using metallic copper microparticle powder In the second manufacturing method of the present invention, a metallic copper microparticle powder in a dry state recovered by removing the dispersion medium from the metallic copper microparticle-containing dispersion liquid described above is used and added to a resin to prepare a metallic copper microparticle-containing resin composition.
The recovery of metallic copper microparticles from a metallic copper microparticle-containing dispersion liquid in which a polyol is used as a dispersion medium can be carried out by a conventionally known separation method such as membrane separation, centrifugation, evaporation, decantation, etc., but it is preferable to recover metallic copper microparticles having an adjusted coating amount of a fatty acid and/or an ester compound with particularly excellent antiviral properties by carrying out the method described below.

すなわち、上記金属銅微粒子含有ポリオール分散液と低沸点溶媒とを混合し、混合液を調製する。
上記混合液を、0~40℃の温度で30~120分間静置することにより、ポリオール及び低沸点溶媒を相分離させる。混合液が相分離されると、混合液中に存在していた過剰な脂肪酸銅、遊離脂肪酸又は脂肪酸のエステル化合物、或いは不純物が低沸点溶媒側に抽出され、脂肪酸及び/又は該脂肪酸とポリオールのエステル化合物で被覆された金属銅微粒子はポリオール中に沈殿した状態で残存する。
次いで、相分離された混合液から低沸点溶媒を除去することにより、ポリオール中に脂肪酸及び/又は該脂肪酸とポリオールのエステル化合物で被覆された金属銅微粒子が沈殿した分散液を得ることができる。尚、ポリオール中に金属銅微粒子が分散した分散液を得るためには、低沸点溶媒との混合に際して、分散剤を添加しないことが重要である。低沸点溶媒の除去は、単蒸留、減圧蒸留、精密蒸留、薄膜蒸留、抽出等の、従来公知の分離方法によって行うことができる。
That is, the above-mentioned polyol dispersion containing metallic copper particles and a low boiling point solvent are mixed to prepare a mixed liquid.
The mixed liquid is allowed to stand for 30 to 120 minutes at a temperature of 0 to 40° C. to cause phase separation of the polyol and the low-boiling point solvent. When the mixed liquid is phase-separated, excess fatty acid copper, free fatty acid or fatty acid ester compound, or impurities present in the mixed liquid are extracted into the low-boiling point solvent side, and metallic copper fine particles coated with fatty acid and/or ester compound of said fatty acid and polyol remain in a precipitated state in the polyol.
Next, the low boiling point solvent is removed from the phase-separated mixture to obtain a dispersion in which metallic copper particles coated with fatty acid and/or ester compound of fatty acid and polyol are precipitated in polyol. In order to obtain a dispersion in which metallic copper particles are dispersed in polyol, it is important not to add a dispersant when mixing with the low boiling point solvent. The removal of the low boiling point solvent can be performed by a conventionally known separation method such as simple distillation, reduced pressure distillation, precision distillation, thin film distillation, extraction, etc.

低沸点溶媒は、ポリオールに対して10~200質量%の量でポリオール分散液に添加することが好ましい。
低沸点溶媒としては、酢酸メチル、酢酸エチル、酢酸ブチル等のエステル類、ヘキサン、ヘプタン、トルエン、キシレン、シクロヘキサン等の炭化水素類、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン等のケトン類等の低沸点溶媒を例示することができるが、エステル系溶媒が好ましく、中でも、酢酸ブチル、酢酸エチル、メチルイソブチルケトンを好適に使用できる。低沸点溶媒は、ポリオールと相溶しないことが重要であり、ポリオールと低沸点溶媒の溶解度パラメータ(Sp値)の差が3以上となるように組み合わせることが好ましい。
好適には、ポリオールとしてジエチレングリコール(Sp値:12.6)を用いた場合には、低沸点溶媒として酢酸ブチル(Sp値:8.4)を用いることが望ましい。
The low boiling point solvent is preferably added to the polyol dispersion in an amount of 10 to 200% by mass based on the polyol.
Examples of low-boiling point solvents include esters such as methyl acetate, ethyl acetate, and butyl acetate, hydrocarbons such as hexane, heptane, toluene, xylene, and cyclohexane, and ketones such as methyl isobutyl ketone, methyl ethyl ketone, and cyclohexanone, but ester solvents are preferred, and among them, butyl acetate, ethyl acetate, and methyl isobutyl ketone can be preferably used. It is important that the low-boiling point solvent is not miscible with the polyol, and it is preferable to combine the polyol and the low-boiling point solvent so that the difference in solubility parameter (Sp value) between them is 3 or more.
Preferably, when diethylene glycol (Sp value: 12.6) is used as the polyol, butyl acetate (Sp value: 8.4) is used as the low boiling point solvent.

このようにして得られた金属銅微粒子粉末を用いて、金属銅微粒子含有樹脂組成物を調製する場合には、熱可塑性樹脂と金属微粒子粉末を二軸押出機に混合して投入することが好ましい。押出機に投入された熱可塑性樹脂と金属微粒子粉末は、樹脂を溶融混練しながら金属銅微粒子を樹脂中に分散させて、溶融状態にある金属銅微粒子含有樹脂組成物を調製することができる。調製された金属銅微粒子含有樹脂組成物は、金属銅微粒子含有分散液を用いた場合と同様にして成形体を成形することができる。尚、金属銅微粒子を熱可塑性樹脂と直接混合させる場合には、熱可塑性樹脂の融点が低いことが望ましいことから、ポリオレフィンを用いることが好適である。
熱硬化性樹脂を用いる場合には、上述した金属微粒子含有分散液を使用した場合と同様に、熱硬化性樹脂及び硬化剤に、金属銅微粒子粉末を添加混合し、加熱硬化させることができる。
塗膜、樹脂成形品等への加熱硬化条件は、用いる熱硬化性樹脂又は硬化剤の種類によって一概に規定できないが、用いる熱硬化性樹脂の硬化温度及び硬化時間を基準して設定することができる
When preparing a resin composition containing metallic copper microparticles using the metallic copper microparticle powder obtained in this way, it is preferable to mix the thermoplastic resin and the metallic microparticle powder and feed them into a twin-screw extruder. The thermoplastic resin and the metallic microparticle powder fed into the extruder can be melt-kneaded while dispersing the metallic copper microparticles in the resin to prepare a molten metallic copper microparticle-containing resin composition. The prepared metallic copper microparticle-containing resin composition can be molded into a molded body in the same manner as when using a metallic copper microparticle-containing dispersion. In addition, when the metallic copper microparticles are directly mixed with the thermoplastic resin, it is preferable to use a polyolefin, since it is desirable for the thermoplastic resin to have a low melting point.
When a thermosetting resin is used, metallic copper fine particle powder can be added to and mixed with the thermosetting resin and curing agent, and then heated and cured, in the same manner as in the case where the metal fine particle-containing dispersion liquid described above is used.
Heat curing conditions for coatings, resin molded products, etc. cannot be generally defined depending on the type of thermosetting resin or curing agent used, but can be set based on the curing temperature and curing time of the thermosetting resin used.

(第三及び第四の製造方法)
本発明の金属銅微粒子樹脂組成物は上述した第一及び第二の製造方法の他、以下の方法によっても調製することができる。
すなわち、上述した第一及び第二の製造方法において、原料として使用した脂肪酸銅に代えて、脂肪酸及び銅化合物の組み合わせを添加する以外は第一及び第二の製造方法と同様に行うことにより、脂肪酸及び/又はエステル化合物が被覆した金属銅微粒子が分散した分散液を調製することができ、得られた分散液は第一及び第二の製造方法と同様にして使用することができる。
銅化合物としては、酸化物、酢酸化合物、塩化物、臭化物、水酸化物、シアン化物等を例示することができるが、特に酢酸銅、塩化銅、臭化銅の何れかを好適に使用できる。
脂肪酸及び銅化合物の配合量は、ポリオール当たり、それぞれ0.1~5質量%の量で配合することが好ましい。
(Third and fourth manufacturing methods)
The metallic copper particle resin composition of the present invention can be prepared by the following method in addition to the first and second production methods described above.
That is, in the first and second manufacturing methods described above, by carrying out the same procedures as the first and second manufacturing methods except that a combination of a fatty acid and a copper compound is added instead of the fatty acid copper used as a raw material, a dispersion liquid in which metallic copper particles coated with a fatty acid and/or an ester compound are dispersed can be prepared, and the resulting dispersion liquid can be used in the same manner as the first and second manufacturing methods.
Examples of copper compounds include oxides, acetates, chlorides, bromides, hydroxides, and cyanides, with copper acetate, copper chloride, and copper bromide being particularly preferred.
The amount of the fatty acid and the copper compound to be blended is preferably 0.1 to 5% by mass, respectively, based on the polyol.

(金属銅微粒子含有樹脂組成物の用途)
本発明の金属銅微粒子含有組成物のより具体的な用途としては、熱可塑性樹脂をベース樹脂とする樹脂組成物として、フィルム、シート、不織布、繊維、或いはペレット等の成型体を直接成形して成る成型体等を例示することができる。また熱硬化性樹脂をベースとする場合には、塗料組成物として、不織布や樹脂フィルム或いは繊維製品等を基材とし、この基材表面に塗工して塗膜を形成して成る成型体等を例示できる。
(Uses of the resin composition containing metallic copper particles)
More specific applications of the metallic copper microparticle-containing composition of the present invention include molded articles obtained by directly molding molded articles such as films, sheets, nonwoven fabrics, fibers, or pellets as resin compositions based on thermoplastic resins. In addition, in the case of a thermosetting resin base, examples of the coating composition include molded articles obtained by applying a coating film to the surface of a substrate such as a nonwoven fabric, a resin film, or a fiber product.

(金属銅微粒子分散液の作製)
ジエチレングリコールに対してステアリン酸銅2.5質量%を加え、撹拌しながら加熱した。190℃に達した時点から2時間加熱した後、ジエチレングリコール分散液を120℃以下まで冷却した。冷却後、酢酸ブチルを加えて約1分撹拌した。静置しジエチレングリコール層と酢酸ブチル層が分離後、酢酸ブチル層を除去し金属銅微粒子を含有したジエチレングリコール分散液1を得た。
また、作製した分散液1に分散剤であるDISPERBYK―2090(ビック・ケミー社製)1.0質量%とジエチレングリコールジステアレート1.0質量%を溶かした酢酸ブチルを加えて撹拌した。1時間ほど静置した後、酢酸ブチル層を採取し、酢酸ブチル分散液2を得た。
(Preparation of metallic copper particle dispersion)
2.5% by mass of copper stearate was added to diethylene glycol, and the mixture was heated with stirring. After heating for 2 hours from the time when the temperature reached 190°C, the diethylene glycol dispersion was cooled to 120°C or less. After cooling, butyl acetate was added and the mixture was stirred for about 1 minute. After the mixture was left to stand and the diethylene glycol layer and the butyl acetate layer were separated, the butyl acetate layer was removed to obtain diethylene glycol dispersion 1 containing metallic copper fine particles.
In addition, butyl acetate in which 1.0% by mass of dispersant DISPERBYK-2090 (manufactured by BYK-Chemie) and 1.0% by mass of diethylene glycol distearate were dissolved was added to the prepared dispersion 1 and stirred. After leaving it to stand for about 1 hour, the butyl acetate layer was collected to obtain butyl acetate dispersion 2.

(実施例1)
作製した分散液1を金属銅が0.5質量%になるよう添加しながら、ポリプロピレン樹脂(日本ポリプロ製 WMG03)を押出成形機設定温度230℃、Q(吐出量)/N(スクリュー回転数)=4/100=0.04の成形条件で2軸押出機((株)テクノベル製)を用いてマスターバッチを作製した。
次いで、ポリプロピレン樹脂(プライムポリプロ製 S119)中に金属銅の含有量が0.05質量%になるように前記マスターバッチを配合し、2次成形温度200℃で2軸押出機にて混練し、ノズル径600μmから押出し、エアーエジェクターにて延伸させてポリプロピレン繊維を作製し、エンボスロールで加熱圧着して不織布を得た。
Example 1
A master batch was prepared using a twin-screw extruder (manufactured by Technovel Co., Ltd.) under molding conditions of an extrusion molding machine set temperature of 230° C. and Q (discharge rate)/N (screw rotation speed)=4/100=0.04, while adding the prepared dispersion 1 so that metallic copper became 0.5% by mass.
Next, the master batch was blended into polypropylene resin (S119 manufactured by Prime Polypro) so that the metallic copper content was 0.05% by mass, and the mixture was kneaded in a twin-screw extruder at a secondary molding temperature of 200° C., extruded from a nozzle diameter of 600 μm, and stretched with an air ejector to produce polypropylene fibers, which were then heated and pressed with an embossing roll to obtain a nonwoven fabric.

(金属銅微粒子粉末の作製)
作製した分散液1を孔径10μmのメンブレンフィルターで吸引濾過し、水で洗浄後、50℃で2時間乾燥して金属銅微粒子粉末1を得た。
作製した分散液2の溶媒を乾固させて金属銅微粒子粉末2を得た。
(Preparation of metallic copper fine particle powder)
The prepared dispersion liquid 1 was suction filtered through a membrane filter having a pore size of 10 μm, washed with water, and then dried at 50° C. for 2 hours to obtain metallic copper fine particle powder 1.
The solvent in the prepared dispersion liquid 2 was dried to obtain metallic copper fine particle powder 2.

(実施例2)
ポリプロピレン樹脂(日本ポリプロ製 WMG03)中に得られた金属銅微粒子粉末1を0.5質量%配合し、押出成形機設定温度230℃、Q(吐出量)/N(スクリュー回転数)=4/100=0.04の成形条件で2軸押出機((株)テクノベル製)を用いてマスターバッチを作製した。
次いで、ポリプロピレン樹脂(プライムポリプロ製 S119)中に金属銅の含有量が0.05質量%になるように前記マスターバッチを配合し、2次成形温度200℃で2軸押出機にて混練し、ノズル径600μmから押出し、エアーエジェクターにて延伸させてポリプロピレン繊維を作製し、エンボスロールで加熱圧着して不織布を得た。
Example 2
The obtained metallic copper microparticle powder 1 was blended in an amount of 0.5% by mass into polypropylene resin (WMG03 manufactured by Japan Polypropylene), and a master batch was prepared using a twin-screw extruder (manufactured by Technovel Co., Ltd.) under molding conditions of an extrusion molding machine set temperature of 230°C and Q (discharge rate)/N (screw rotation speed) = 4/100 = 0.04.
Next, the master batch was blended into polypropylene resin (S119 manufactured by Prime Polypro) so that the metallic copper content was 0.05% by mass, and the mixture was kneaded in a twin-screw extruder at a secondary molding temperature of 200° C., extruded from a nozzle diameter of 600 μm, and stretched with an air ejector to produce polypropylene fibers, which were then heated and pressed with an embossing roll to obtain a nonwoven fabric.

(実施例3)
ポリプロピレン樹脂(日本ポリプロ製 WMG03)中に得られた金属銅微粒子粉末2を0.5質量%配合し、押出成形機設定温度230℃、Q(吐出量)/N(スクリュー回転数)=4/100=0.04の成形条件で2軸押出機((株)テクノベル製)を用いてマスターバッチを作製した。
次いで、ポリプロピレン樹脂(プライムポリプロ製 S119)中に金属銅の含有量が0.05質量%になるように前記マスターバッチを配合し、2次成形温度200℃で2軸押出機にて混練し、ノズル径600μmから押出し、エアーエジェクターにて延伸させてポリプロピレン繊維を作製し、エンボスロールで加熱圧着して不織布を得た。
Example 3
The obtained metallic copper microparticle powder 2 was mixed in an amount of 0.5% by mass into polypropylene resin (WMG03 manufactured by Japan Polypropylene), and a master batch was prepared using a twin-screw extruder (manufactured by Technovel Co., Ltd.) under molding conditions of an extrusion molding machine set temperature of 230°C and Q (discharge rate)/N (screw rotation speed) = 4/100 = 0.04.
Next, the master batch was blended into polypropylene resin (S119 manufactured by Prime Polypro) so that the metallic copper content was 0.05% by mass, and the mixture was kneaded in a twin-screw extruder at a secondary molding temperature of 200° C., extruded from a nozzle diameter of 600 μm, and stretched with an air ejector to produce polypropylene fibers, which were then heated and pressed with an embossing roll to obtain a nonwoven fabric.

(比較例1)
使用した金属銅微粒子粉末を粉末1から市販の金属銅微粒子粉末3(Sigma-Aldrich社製)に変更した以外は実施例2と同様に不織布を作製した。
(Comparative Example 1)
A nonwoven fabric was prepared in the same manner as in Example 2, except that the metallic copper fine particle powder used was changed from Powder 1 to commercially available metallic copper fine particle powder 3 (manufactured by Sigma-Aldrich).

(比較例2)
使用した金属銅微粒子粉末を粉末1から市販の金属銅微粒子粉末3(Sigma-Aldrich社製)に変更して、ジエチレングリコールジステアレート0.5質量%を加えた以外は実施例2と同様に不織布を作製した。
(Comparative Example 2)
A nonwoven fabric was prepared in the same manner as in Example 2, except that the metallic copper fine particle powder used was changed from Powder 1 to commercially available metallic copper fine particle powder 3 (manufactured by Sigma-Aldrich) and 0.5% by mass of diethylene glycol distearate was added.

(不織布の抗ウイルス性評価方法)
1.宿主細胞にウイルスを感染させ、培養後、遠心分離により細胞残渣を除去したものをウイルス懸濁液とする。
2.上記1のウイルス懸濁液を滅菌蒸留水で10倍希釈したものを試験ウイルス懸濁液とする。
3.不織布の試験片0.4gに試験ウイルス懸濁液0.2mLを接種する。
4.25℃2時間放置後、SCDLP培地20mLを加えボルテックスミキサーで撹拌し、検体からウイルスを洗い出す。
5.プラーク測定法にてウイルス感染価を測定し、抗ウイルス活性値を算出する。
6.抗ウイルス活性値が3.0以上であれば、そのウイルスに対して十分な抗ウイルス性があると判断できる。
(Method for evaluating antiviral properties of nonwoven fabric)
1. Host cells are infected with a virus, cultured, and then centrifuged to remove cell debris to obtain a virus suspension.
2. The virus suspension obtained in step 1 above is diluted 10-fold with sterile distilled water to prepare the test virus suspension.
3. Inoculate a 0.4 g test piece of nonwoven fabric with 0.2 mL of the test virus suspension.
4. After leaving the specimen at 25°C for 2 hours, 20 mL of SCDLP medium is added and stirred with a vortex mixer to wash out the virus from the specimen.
5. The viral infectivity is measured by the plaque assay method, and the antiviral activity value is calculated.
6. If the antiviral activity value is 3.0 or more, it can be determined that the product has sufficient antiviral properties against the virus.

作製した不織布の抗ウイルス製評価結果を表1に示す。The antiviral evaluation results of the nonwoven fabric prepared are shown in Table 1.

本発明の金属銅微粒子含有樹脂組成物は、紙製品、マスク、ウエットティッシュ、エアコンフィルター、空気清浄機用フィルター、衣服、作業服、カーテン、カーペット、自動車用部材、包装部材、鮮度保持剤、シーツ、タオル、バスマット、おむつカバー、ぬいぐるみ、スリッパ、靴インソール、ワイパーなどの掃除用品等の繊維製品の製造に用いることができ、これらの製品に抗ウイルス性を付与することが可能になる。
また、医療用具、医療用具の包装フィルム、廃棄容器、ゴミ袋、介護施設或いは病院や学校などの公共施設の壁材や床材、ワックスコート材、吐しゃ物の処理用具などに使用することができる。
更に、衛生製品以外にも、導電膜、フィルム、金属板、ガラス板、船舶用塗料、熱交換器フィン、或いは食器等のセラミックス製品、ゴム製品、蛇口等の金属製品、加湿器用添加剤、液体洗剤、イオン吸着剤、消臭剤など各種用途に適用可能である。
The resin composition containing metallic copper microparticles of the present invention can be used to produce textile products such as paper products, masks, wet tissues, air conditioner filters, air purifier filters, clothing, work clothes, curtains, carpets, automotive parts, packaging parts, freshness-preserving agents, sheets, towels, bath mats, diaper covers, stuffed animals, slippers, shoe insoles, and cleaning supplies such as wipers, making it possible to impart antiviral properties to these products.
In addition, the material can be used for medical equipment, packaging films for medical equipment, waste containers, garbage bags, wall materials and floor materials in nursing homes or public facilities such as hospitals and schools, wax coating materials, and vomit disposal tools.
Furthermore, in addition to sanitary products, the composition can be used for a variety of applications, including conductive films, films, metal plates, glass plates, marine paints, heat exchanger fins, ceramic products such as tableware, rubber products, metal products such as faucets, additives for humidifiers, liquid detergents, ion adsorbents, and deodorants.

Claims (4)

ポリオール中に脂肪酸銅を添加し、これを加熱混合することにより、脂肪酸及び/又は該脂肪酸とポリオールのエステル化合物で被覆された金属銅微粒子が分散する分散液を調製し、該分散液からポリオールを除去することにより脂肪酸及び/又はエステル化合物が被覆された金属銅微粒子を得た後、該金属銅微粒子を樹脂に添加し、混練することを特徴とする金属銅微粒子含有樹脂組成物の製造方法。 A method for producing a resin composition containing metallic copper particles, comprising: adding fatty acid copper to a polyol, heating and mixing the mixture to prepare a dispersion in which metallic copper particles coated with a fatty acid and/or an ester compound of the fatty acid and a polyol are dispersed; removing the polyol from the dispersion to obtain metallic copper particles coated with a fatty acid and/or an ester compound; and then adding the metallic copper particles to a resin and kneading the resulting mixture. ポリオール中に脂肪酸及び銅化合物を添加し、これを加熱混合することにより、脂肪酸及び/又は該脂肪酸とポリオールから成るエステル化合物で被覆された金属銅微粒子が分散する分散液を調製し、該分散液からポリオールを除去することにより脂肪酸及び/又はエステル化合物で被覆された金属銅微粒子を得た後、該金属銅微粒子を樹脂に添加し、混練することを特徴とする金属銅微粒子含有樹脂組成物の製造方法。 A method for producing a resin composition containing metallic copper particles, comprising: adding a fatty acid and a copper compound to a polyol, heating and mixing the mixture to prepare a dispersion in which metallic copper particles coated with a fatty acid and/or an ester compound consisting of the fatty acid and a polyol are dispersed; removing the polyol from the dispersion to obtain metallic copper particles coated with a fatty acid and/or an ester compound; and then adding the metallic copper particles to a resin and kneading the resulting mixture. 前記銅化合物が、酢酸銅、塩化銅、臭化銅の何れかである請求項記載の金属銅微粒子含有樹脂組成物の製造方法。 3. The method for producing a resin composition containing metallic copper particles according to claim 2 , wherein the copper compound is any one of copper acetate, copper chloride and copper bromide. 前記ポリオールが、ジエチレングリコール、エチレングリコール、トリエチレングリコール、プロピレングリコール、グリセリンの何れかである請求項1又は2記載の金属銅微粒子含有樹脂組成物の製造方法。 3. The method for producing a resin composition containing metallic copper particles according to claim 1 , wherein the polyol is any one of diethylene glycol, ethylene glycol, triethylene glycol, propylene glycol and glycerin.
JP2021512197A 2019-04-03 2020-04-02 Metallic copper fine particle-containing resin composition and method for producing same Active JP7478138B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019071609 2019-04-03
JP2019071609 2019-04-03
PCT/JP2020/015135 WO2020204119A1 (en) 2019-04-03 2020-04-02 Metal copper fine particle-containing resin composition and method for producing same

Publications (2)

Publication Number Publication Date
JPWO2020204119A1 JPWO2020204119A1 (en) 2020-10-08
JP7478138B2 true JP7478138B2 (en) 2024-05-02

Family

ID=72669121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021512197A Active JP7478138B2 (en) 2019-04-03 2020-04-02 Metallic copper fine particle-containing resin composition and method for producing same

Country Status (3)

Country Link
JP (1) JP7478138B2 (en)
TW (1) TW202043354A (en)
WO (1) WO2020204119A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7207601B2 (en) * 2020-04-24 2023-01-18 Dic株式会社 Masterbatch, resin composition, molded article and method for producing them
JP7062745B1 (en) 2020-12-23 2022-05-06 日本ペイントマリン株式会社 An antibacterial or antiviral resin composition, and a method for imparting antibacterial or antiviral properties.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178942A (en) 2016-03-28 2017-10-05 東洋製罐グループホールディングス株式会社 Antiviral molded body
JP2018100255A (en) 2016-03-28 2018-06-28 東洋製罐グループホールディングス株式会社 Dispersion liquid, method for producing the same, and copper compound particles
JP2018100234A (en) 2016-12-20 2018-06-28 東罐マテリアル・テクノロジー株式会社 Metal fine particle, metal fine particle-containing fluid dispersion, and production method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3347875B2 (en) * 1994-05-25 2002-11-20 松下電器産業株式会社 Antibacterial antiviral antifungal agent and its complex
US20060047022A1 (en) * 2004-08-30 2006-03-02 Craig Daniel H Thermoplastic compositions including inorganic particulates
JP6984122B2 (en) * 2016-12-15 2021-12-17 東洋製罐グループホールディングス株式会社 Dispersion with antiviral properties
JP6512255B2 (en) * 2017-10-03 2019-05-15 東洋製罐グループホールディングス株式会社 Metal copper fine particles and method for producing the same
JP7021956B2 (en) * 2018-01-11 2022-02-17 東洋製罐グループホールディングス株式会社 Copper ultrafine particle-containing resin composition and its manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017178942A (en) 2016-03-28 2017-10-05 東洋製罐グループホールディングス株式会社 Antiviral molded body
JP2018100255A (en) 2016-03-28 2018-06-28 東洋製罐グループホールディングス株式会社 Dispersion liquid, method for producing the same, and copper compound particles
JP2018100234A (en) 2016-12-20 2018-06-28 東罐マテリアル・テクノロジー株式会社 Metal fine particle, metal fine particle-containing fluid dispersion, and production method thereof

Also Published As

Publication number Publication date
WO2020204119A1 (en) 2020-10-08
TW202043354A (en) 2020-12-01
JPWO2020204119A1 (en) 2020-10-08

Similar Documents

Publication Publication Date Title
WO2017170593A1 (en) Dispersion liquid, method for producing same, and copper compound particles
JP7478138B2 (en) Metallic copper fine particle-containing resin composition and method for producing same
JP7120382B2 (en) Method for producing copper compound fine particle-containing dispersion
JP6512255B2 (en) Metal copper fine particles and method for producing the same
JP6885146B2 (en) Antiviral molded body
WO2009107721A1 (en) Fatty acid metal salt for forming ultrafine metal particle
US11452743B2 (en) Metallic copper fine particles and method for producing the same
WO2020204118A1 (en) Fine particle powder of metallic copper and method for manufacturing same
JP2005179607A (en) Antibacterial composite particle
JP2020169387A (en) Metal copper fine particle powder and method for producing the same
JP5629428B2 (en) Fatty acid metal salt for forming ultrafine metal particles
CN113684557A (en) Polylactic acid melt-spraying material and preparation method and application thereof
CN117402428A (en) Polymer composite master batch with deodorizing and antibacterial functions, preparation method and application thereof
EP1642925A1 (en) Highly concentrated and finely dispersed additve masterbatches in granular form
JP2009209052A (en) Fatty acid metal salt for forming ultrafine metal particle
JP7572156B2 (en) Antiviral agent consisting of metallic copper particles
CN108329579A (en) A kind of oil resistant PP composite material and preparation method thereof
CN107383601B (en) Easy-to-clean dustproof modified plastic composition, easy-to-clean dustproof mesh enclosure and preparation method thereof, and easy-to-clean dustproof electric fan
JP5629425B2 (en) Fatty acid metal salt for forming ultrafine metal particles
JP2012036282A (en) Silver-containing resin composition, and method for producing the same
JP2020169167A (en) Antiviral agent comprising metal copper fine particle
JP5474443B2 (en) Additive particle and additive particle connected body
JP7392905B1 (en) Dispersion containing fine metal particles with antimicrobial properties and excellent stability over time
JP6743798B2 (en) Antiviral agent
JP5693974B2 (en) Process for producing resin composition containing ultrafine metal particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230313

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240419

R150 Certificate of patent or registration of utility model

Ref document number: 7478138

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150