JP7477367B2 - 異常機器判定システム - Google Patents

異常機器判定システム Download PDF

Info

Publication number
JP7477367B2
JP7477367B2 JP2020093852A JP2020093852A JP7477367B2 JP 7477367 B2 JP7477367 B2 JP 7477367B2 JP 2020093852 A JP2020093852 A JP 2020093852A JP 2020093852 A JP2020093852 A JP 2020093852A JP 7477367 B2 JP7477367 B2 JP 7477367B2
Authority
JP
Japan
Prior art keywords
current
power consumption
control board
current supplied
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020093852A
Other languages
English (en)
Other versions
JP2021189706A (ja
Inventor
翼 渡辺
真彰 前田
徹 矢崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2020093852A priority Critical patent/JP7477367B2/ja
Priority to CN202180031565.4A priority patent/CN115461690A/zh
Priority to PCT/JP2021/010875 priority patent/WO2021240959A1/ja
Publication of JP2021189706A publication Critical patent/JP2021189706A/ja
Application granted granted Critical
Publication of JP7477367B2 publication Critical patent/JP7477367B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring

Description

本発明は、異常機器判定システムに関する。
特許文献1には、複数の駆動機器が存在するプリンタの各駆動機器の異常を、予め取得済みの正常な状態の各駆動機器の電流値と、運用中に逐次取得する全体の消費電流から、各駆動機器の異常を判定する技術が開示されている。
特開2008-76292号
上述した特許文献1では、複数の駆動機器で電流波形が変化した場合に、差し引きを利用して運用中総電流波形から各駆動機器の運用中電流波形を求めることは難しい。
本発明の目的は、運用中に必要なセンシングコストを低減した状態で、任意かつ複数の電力消費装置の異常を総電流波形から検知することにある。
本願は、上記課題の少なくとも一部を解決する手段を複数含んでいるが、その例を挙げるならば、以下のとおりである。
本発明の一態様は、異常機器判定システムであって、正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、前記異常判定部が判定した結果を表示する判定結果表示部と、を備えることを特徴とする。
本発明によれば、運用中に必要なセンシングコストを低減した状態で、任意かつ複数の電力消費装置の異常を総電流波形から検知することができる。
上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
異常機器判定装置と対象装置の例を示す図である。 異常機器判定の対象装置の電源系回路の例を示す図である。 モータごとの一製造プロセス分の電流の波形の例を示す。 総電流波形の例を示す図である。 異常判定処理の流れの例を示すフローチャートである。 異常機器判定装置の構成例を示すブロック図である。図6(a)は、学習時に関連する構成の例を示すブロック図であり、図6(b)は、運用時に関連する構成の例を示すブロック図である。 運用時の電流波形を例示する図である。図7(a)は、取得された総電流波形を示し、図7(b)は、個別機器の電流波形を積み上げたグラフの例を示す。 運用時のモータごとの一製造プロセス分の電流の波形の例を示す図である。 異常判定処理(第一の実施例)の処理フローの例を示す図である。 算出した変化率を用いて個別機器電流波形を推定した図である。 判定結果表示部が表示する変化率の表示画面の例を示す図である。 異常判定処理(第二の実施例)の処理フローの例を示す図である。 異常時の個別機器電流波形を推定した図である。 判定結果表示部が表示する変化率の表示画面の例を示す図である。 異常判定処理(第三の実施例)の処理フローの例を示す図である。 判定結果表示部が表示する変化率の表示画面の例を示す図である。 異常判定処理(第四の実施例)の処理フローの例を示す図である。 総電流波形と各個別機器電流波形の関係性の例を示す図である。図18(a)は、取得された総電流波形を示し、図18(b)は、個別機器の電流波形を積み上げたグラフの例を示す。 算出した変化率を用いて個別機器の電流波形を推定した図である。 総電流波形と各個別機器電流波形の関係性の例を示す図である。図20(a)は、取得された総電流波形を示し、図20(b)は、個別機器の電流×電圧比のグラフを積み上げた例を示す。 第五の実施例に係る対象装置の電源系回路の例を示す図である。 異常判定処理(第五の実施例)の処理フローの例を示す図である。 総電流波形と各個別機器電流波形の関係性の例を示す図である。図23(a)は、取得された総電流波形を示し、図23(b)は、電圧比により換算した個別機器の電流×電圧比のグラフを積み上げた例を示す図である。 第六の実施例に係る対象装置の概要の構成を示す図である。 数値制御金属加工機の電源系回路の概要の構成例を示す図である。 異常判定処理(第六の実施例)の処理フローの例を示す図である。 異常機器判定装置のハードウェア構成例を示す図である。
以下の実施形態においては便宜上その必要があるときは、複数のセクションまたは実施の形態に分割して説明するが、特に明示した場合を除き、それらはお互いに無関係なものではなく、一方は他方の一部または全部の変形例、詳細、補足説明等の関係にある。
また、以下の実施形態において、要素の数等(個数、数値、量、範囲等を含む)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
さらに、以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
同様に、以下の実施形態において、構成要素等の形状、位置関係等に言及するときは特に明示した場合および原理的に明らかにそうではないと考えられる場合等を除き、実質的にその形状等に近似または類似するもの等を含むものとする。このことは、上記数値および範囲についても同様である。
また、実施形態を説明するための全図において、同一の部材には原則として同一の符号を付し、その繰り返しの説明は省略する。以下、本発明の各実施形態について図面を用いて説明する。
従来より、産業機器では、モータにより制御される機器が多く存在し、モータの実際の回転状態をエンコーダと呼ばれる検出器で取得し、モータへの制御入力値を変化させて高精度に制御する技術がある。このような実際の状態に合わせて制御入力値が変化する仕組みを利用し、制御入力値の中で特に電流値などを電流センサを用いて外部から取得し、モータの異常状態を判定する取り組みが行われている。
そのような技術では、モータから減速機などのギアを用いて回転を伝達する場合には、そのギアの異常状態も判定することができ得る。近年のロボットや工作機械などの産業機器では一つの機器内に複数の駆動部が存在し、それぞれをモータで制御していることも珍しくない。そのため、各駆動部について電流値を取得する手法により、駆動部ごとの異常を判定することが可能とも考えられる。
しかしながら、複数搭載されたモータなどの駆動機器の異常を判定する際に、各駆動機器に電流センサ等のセンサを取り付けると、センサ単体コストに加えて、アナログのセンサデータをデジタル信号に変えるアナログ-デジタルコンバータや、デジタル信号を読み込むためのロギング装置が各駆動機器に必要になり、それらの装置コストも付随して必要となり、センシングコストが高くなってしまう。
上述の特許文献1に記載のシステムでは、運用前に学習フェーズを設けて、各駆動機器の電流を測定して記憶し、運用中は各駆動機器の消費電流の総和となる各駆動機器の大元に存在する制御基板の消費電流(以後総電流と呼称)のみをセンサで測定して異常を検出している。
このような技術では、対象の駆動機器の電流波形を算出する際には、運用中に測定した総電流から、対象の駆動機器を除く他の駆動機器の電流を差し引くことにより、対象の駆動機器の運用中の電流波形を得る。異常判定の際には、得られた対象の駆動機器の運用中電流波形と、記憶しておいた対象の駆動機器の電流波形とを比較して、判定を行う。
しかしながら、本手法では二つの欠点が存在する。一つ目は、複数の駆動機器で同時に電流波形が変化した場合に、差し引きを利用して運用中総電流波形から各駆動機器の運用中電流波形を求めることが困難であることである。二つ目は、一つの駆動機器で電流波形が変化するのみだとしても、最初に異常が発生する駆動機器しか対象にすることができないことである。
以下の実施例では、いずれも実際の装置が取りうる種々の構成についても対応しているため、異常機器判定システムとして高い汎用性を有することも優れた点である。
図1は、異常機器判定装置と対象装置の例を示す図である。対象装置は、制御Box200と、ロボット部300とを含んで構成されている。対象装置の電源は配電盤100から取得されている。ロボット部300には、複数の稼働軸が存在し、第一稼働軸301、第二稼働軸302、第三稼働軸303、第四稼働軸304、第五稼働軸305、第六稼働軸306は、それぞれ矢印方向に回転運動をすることができる。それぞれの稼働軸は、正常動作時に電力を消費する電力消費装置であるといえる。制御Box200は、ロボット部300の動作を制御する。
異常機器判定装置1は、対象装置の制御Box200と接続される。異常機器判定装置1は、記憶部10と、処理部20と、を備える。記憶部10には、基準となる波形を記憶する基準波形記憶部11が格納される。より具体的には、記憶部10は、電力消費装置に供給される電流と、複数の電力消費装置に電力を供給する制御基板に供給される電流と、のそれぞれを時系列に記録した基準波形を記憶する。
処理部20には、電流取得部21と、異常判定部22と、判定結果表示部23と、が含まれる。電流取得部21は、後述する電流センサを介して、制御基板220に供給される電流を時系列に取得する。異常判定部22は、取得した電流値の異常の有無を判定する。判定結果表示部23は、異常判定部22が判定した結果を表示する。
図27は、異常機器判定装置のハードウェア構成例を示す図である。異常機器判定装置1は、中央処理装置(Central Processing Unit:CPU)2と、メモリ3と、ハードディスク装置(Hard Disk Drive:HDD)などの外部記憶装置4と、CD(Compact Disk)やDVD(Digital Versatile Disk)などの可搬性を有する記憶媒体5に対して情報を読む読取装置6と、キーボードやマウス、バーコードリーダなどの入力装置7と、ディスプレイなどの出力装置8と、インターネットなどの通信ネットワークを介して他のコンピュータと通信する通信装置9とを備えた一般的なコンピュータ、あるいはこのコンピュータを複数備えたネットワークシステムにより実現できる。なお、読取装置6は、可搬性を有する記憶媒体5の読取だけでなく、書き込みも可能なものであっても良いことは言うまでもない。
例えば、処理部20に含まれる電流取得部21と、異常判定部22と、判定結果表示部23とは、外部記憶装置4に記憶されている所定のプログラムをメモリ3にロードしてCPU2で実行することで実現可能であり、記憶部10は、CPU2がメモリ3または外部記憶装置4を利用することにより実現可能である。
この所定のプログラムは、読取装置6を介して可搬性を有する記憶媒体5から、あるいは、通信装置9を介してネットワークから、外部記憶装置4にダウンロードされ、それから、メモリ3上にロードされてCPU2により実行されるようにしてもよい。また、読取装置6を介して可搬性を有する記憶媒体5から、あるいは、通信装置9を介してネットワークから、メモリ3上に直接ロードされ、CPU2により実行されるようにしてもよい。
図2は、異常機器判定の対象装置の電源系回路の例を示す図である。配電盤100から制御Box200内を経由して、ロボット部300内の駆動用モータである各モータに電力が供給される。ロボット部300には、複数の駆動用モータが含まれ、それぞれの駆動用モータの回転は減速機に伝えられ、さらにその先に設けられた稼働軸を動作させる。減速機は、入力された回転速度を減少させて代わりにトルクを増大させる機構である。
図2の例では、制御Box200には、電源回路210と、制御基板220と、が含まれ、配電盤100から供給される電力は電源回路210に受け渡されて制御基板220を通り、各モータに供給される。制御基板220は、複数の電力消費装置に電力を供給することができる。駆動用モータは、第一モータ321と、第二モータ322と、第三モータ323と、第四モータ324と、第五モータ325と、第六モータ326と、がロボット部300に搭載されている。
それぞれの駆動用モータには、第一減速機311と、第二減速機312と、第三減速機313と、第四減速機314と、第五減速機315と、第六減速機316と、がそれぞれ接続されている。また、それぞれの減速機には、第一稼働軸301と、第二稼働軸302と、第三稼働軸303と、第四稼働軸304と、第五稼働軸305と、第六稼働軸306と、がそれぞれ接続されている。
図3は、モータごとの一製造プロセス分の電流の波形の例を示す。本発明で示される電流波形は、交流波形から包絡線を抽出した波形を記載しているが、包絡線以外にも実効値を用いたり、交流成分から変換されたトルク電流値等を用いることもできる。ロボット部300は、所定の動作プログラムに応じて制御基板220から出力される電流の大きさや周波数によって各稼働軸につながるモータが駆動されて動作する。故に、これらの電流波形は、ロボットの各稼働軸のモータやモータにつながる機械的部品である減速機や稼働軸の劣化状態を反映する重要な物理量であることが知られている。
電流波形501は、第一稼働軸301につながる第一モータ321の電流の波形である。同様に、電流波形502、電流波形503、電流波形504、電流波形505、電流波形506は、それぞれ、第二稼働軸302につながる第二モータ322の電流の波形、第三稼働軸303につながる第三モータ323の電流の波形、第四稼働軸304につながる第四モータ324の電流の波形、第五稼働軸305につながる第五モータ325の電流の波形、第六稼働軸306につながる第六モータ326の電流の波形である。
図4は、総電流波形の例を示す図である。総電流波形601は、配電盤100から電源回路210を経由して制御基板220に流れる電流波形であり、総電流波形詳細602は、総電流波形601内の各軸の内訳を示す。
総電流波形601と総電流波形詳細602とは、等しい電流波形であり、各稼働軸の電流の総和が総電流と等しいことを示しており、下式(1)のように表される。但し、Iw(t)はある時刻tにおける総電流、Ii(t)はある時刻tにおける各稼働軸電流(以後稼働軸や減速機、モータの状態を含む物理量として個別機器電流と称す)を示し、iは稼働軸の番号を意味する。
Figure 0007477367000001
・・・(1)
ここまで、電流に関して着目しているが、電流のみに着目できる条件は各箇所で電圧が一定であり、電流と電力が比例関係にあることである。従来の例及び後述する本発明に係る第一~第三の実施例では、電圧が一定であるとの条件が前提として用いられている。
<従来技術の例>続いて、従来の技術による異常機器判定装置の構成例について対比のために図5~図8を用いて説明する。図5にて従来の技術の異常機器判定装置の処理の流れの例をフローチャート形式で示し、図6にて従来の技術の例および本発明に係る異常機器判定装置のブロック図を示す。
図6(a)は、異常機器判定装置1の学習時に関連する構成の例を示すブロック図であり、図6(b)は、異常機器判定装置1の運用時に関連する構成の例を示すブロック図である。学習時には、異常機器判定装置1の処理部20に含まれる電流取得部21は、総電流用センサ701から総電流値を取得する。総電流用センサ701は、配電盤100と電源回路210の間の配線、もしくは電源回路210と制御基板220の間の配線に設置される。
また、学習時には、電流取得部21は、軸1電流用センサ702乃至軸6電流用センサ703から各軸(個別機器)の電流値を取得する。軸1電流用センサ702乃至軸6電流用センサ703は、それぞれ、制御基板220と各モータ間の間の配線に設置される。
電流取得部21により電流値が取得されると、電流取得部21は基準波形記憶部11に全波形を基準波形として記憶させる。記憶される基準波形は、電流波形501乃至電流波形506のような波形であり、各稼働軸の電流の総和が総電流と等しいという関係も満たすことが必要である。
電流取得部21は、過去の故障記録と電流データの相関を分析し、故障(異常)と判定するための指標(異常度)とその閾値を所定のアルゴリズムを用いて演算し設定する。
運用時には、異常機器判定装置1の処理部20に含まれる電流取得部21は、学習時と同様に総電流用センサ701から総電流値を取得する。総電流用センサ701は、学習時と同様に、配電盤100と電源回路210の間の配線、もしくは電源回路210と制御基板220の間の配線に設置される。
そして、電流取得部21は、取得した総電流を異常判定部22に受け渡し、異常判定部22は基準波形記憶部11から基準波形を取得して総電流が異常に相当するか否か判定する。判定結果表示部23は、異常判定部22が異常と判定すると、その旨および異常な稼働軸を特定して表示情報を作成し、図示しない機器判定装置1のディスプレイ等に表示する。
ここで、従来の技術による運用時の処理では、異常判定部22は、取得した運用中の総電流波形から異常判定を行う対象機器の電流波形を推定することとなる。この処理では、下式(2)に示される数式を元に算出する。但し、括弧内添え字0は学習時の電流波形であることを示し、括弧内添え字tは運用時のある時刻を示している。また、下式(2)は、異常の検知対象を第一稼働軸とした場合の例である。
Figure 0007477367000002
・・・(2)
すなわち、従来技術による異常判定時には、カレントの総電流から学習時の対象以外の個別機器の電流波形を差し引くことにより、カレントの対象機器、すなわち個別機器の電流波形を算出する。
図7は、従来技術による異常判定において取得された運用時の電流波形を例示する図である。図7(a)では、取得された総電流波形611が示されており、図7(b)では、上式(2)で求められた個別機器1の電流波形612の例が示されている。
図8は、運用時のモータごとの一製造プロセス分の電流の波形の例を示す。図8に示された例は、図3において示された学習時の例と基本的に同じであるが、第一稼働軸301の電流波形511が電流波形501とは異なる。この場合に、従来技術により異常を検出するためには、第二稼働軸302~第六稼働軸306の運用時の電流波形512~516が学習時の電流波形502~506とそれぞれ同じ波形である必要がある。波形が異なる場合には、第一稼働軸301の電流波形511を正確に取得できず、異常判定も正確な判定とは言えなくなる。つまり、複数機器の異常を検出することができないといえる。
図5は、従来技術による異常判定処理の流れの例を示すフローチャートである。このフローは、ステップS001~S009により構成され、学習時の処理がステップS001~S003の処理であり、運用時の処理がステップS004~S009の処理である。
まず、電流取得部21は、総電流と各軸(個別機器)の電流を取得する(ステップS001)。具体的には、電流取得部21は、総電流用センサ701から総電流値を取得し、軸1電流用センサ702乃至軸6電流用センサ703から各軸(個別機器)の電流値を取得する。
そして、電流取得部21は、各軸の電流波形(学習時個別電流波形)を記憶させる(ステップS002)。具体的には、電流取得部21は、基準波形記憶部11に全波形を基準波形として記憶させる。
そして、電流取得部21は、異常と判定する異常度(相関係数)の閾値を設定する(ステップS003)。具体的には、電流取得部21は、過去の故障記録と電流データの相関を分析し、故障(異常)と判定するための指標(異常度)とその閾値を所定のアルゴリズムを用いて演算し設定する。ここまでが、学習時の処理フローである。
次に、電流取得部21は、1プロセス分総電流波形(運用時総電流)を取得する(ステップS004)。具体的には、電流取得部21は、総電流用センサ701から総電流値を取得する。
そして、異常判定部22は、取得した運用時総電流から、異常検知対象外の各軸の基準波形を用いて除去する(ステップS005)。具体的には、異常判定部22は、基準波形記憶部11から基準波形を取得して、総電流から差し引く。
そして、異常判定部22は、基準波形から見た抽出波形の異常度を算出する(ステップS006)。具体的には、異常判定部22は、抽出した波形と学習時の基準波形との相関係数を算出して、異常度を算出する。
そして、異常判定部22は、異常度が閾値以上であるか否か判定する(ステップS007)。具体的には、異常判定部22は、ステップS006において算出した相関係数が、ステップS003において設定した異常度の閾値以上であるか否か判定する。
異常度が閾値以上ではない場合(ステップS007にて「No」の場合)には、異常判定部22は、正常と判定して、次プロセスの異常検知に処理を進めるためにステップS004へ制御を戻す(ステップS008)。
異常度が閾値以上である場合(ステップS007にて「Yes」の場合)には、異常判定部22は異常と判定する(ステップS009)。
以上が、異常判定処理(従来技術)の処理内容の例である。
<第一の実施例>次に、図9~図11を用いて、本発明に係る第一の実施例を説明する。第一の実施例では、上記の従来技術と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。
図9は、異常判定処理(第一の実施例)の処理フローの例を示す図である。学習時の処理では、各軸の電流波形を記憶した後、電流取得部21は、異常と判定する異常度として、変化率の閾値を設定する(ステップS103)点で従来技術との相違がある。具体的には、電流取得部21は、過去の故障記録と電流データの相関を分析し、故障(異常)と判定するための指標を電流波形の変化率として、その閾値を所定のアルゴリズムを用いて演算し設定する。
そして、運用時の処理では、1プロセス分の総電流波形を取得した後、異常判定部22は、取得した運用時総電流について多変量解析、例えば重回帰分析を行い、各軸の電流波形の変化率を算出する(ステップS105)。具体的には、まずすべての稼働軸(個別機器)が、学習時から変化していると仮定し、異常判定部22は、下式(3)に示される式を構築する。但し、α~αは各個別機器の電流波形の変化した割合を示す変化率であり、この処理時点では未知数である。
Figure 0007477367000003
・・・式(3)
上式(3)では、未知数が6つ(α~α)存在する。本実施例で対象とする異常は、この未知数が一つのプロセス内で変化しない値であることを条件としている。すなわち、異常時には波形全体がα倍になるという条件である。本条件であれば、プロセス内の各時刻に上式(3)が成り立つ。そのため例えば、図3に示されるような15秒間のプロセスで、電流値が1秒毎に取得されているとすれば、上式(3)はtの値を異ならせて15個作成することが可能である。
6つの未知変化率に対して15個の式が存在するため、連立方程式の観点から変化率α~αは求解可能であると言える。このように全個別機器が変化していると仮定し、複数の未知数を求解する手法である重回帰分析を用いて処理を行うことが本実施例の特徴である。また、本実施例では、異常判定部22は、複数の電力消費装置に供給される電流と電流変化率の積の総和が制御基板に供給される電流に等しくなることを利用した重回帰分析により電流変化率を算出している。
異常度(変化率)が閾値以上である場合(ステップS007において「Yes」の場合)には、異常判定部22は、異常と判定し、判定結果表示部23は、変化率α~αを表示部に表示する(ステップS109)。
図10は、算出した変化率を用いて個別機器電流波形を推定した図である。各個別機器電流波形は下式(4)で表される。
Figure 0007477367000004
・・・式(4)
具体的には、図10で示す軸3の電流波形523は、図8に示した運用時の電流波形513に比して、α倍の変化率となっている。
図11は、判定結果表示部が表示する変化率の表示画面の例を示す図である。変化率αは初期値として「1」を取ることになり、この時の電流波形は図3に示した学習時電流波形と等しく、学習時個別機器波形と等しい。
表示画面800には、各稼働軸ごとに変化率の推移をプロセス単位で示すグラフ801が含められている。ここで、図11の各グラフ内に記載されている変化率αibは、図9に示した第一の実施例のフローチャート内のステップS103において設定された異常度の閾値を示している。図11内のグラフ801の1プロットはプロセス1つ分を示しており、フローチャートのステップS004~ステップS007の処理ごとに一つプロットが生成される。
まとめると、異常判定部22は、電流取得部21が取得した制御基板に供給される電流と、基準波形と、を用いて電力消費装置ごとの電流変化率を多変量解析により算出し、電流変化率が閾値を超過すると電力消費装置の異常であると判定する。また、判定結果表示部23は、異常判定部22が判定した結果を表示する。
本実施例では図11に示される通り、多変量解析により軸1と軸3が同時に変化している様子を捉えることができており、従来の技術では対象とできなかった、複数機器の異常判定が可能となるという効果が得られている。また、判定結果表示部23により、異常と判定されていなくとも異常に遷移していく様子を観察することも可能という効果も得られる。以上が、本発明に係る第一の実施例である。
<第二の実施例>次に、図12~図14を用いて、本発明に係る第二の実施例を説明する。第二の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。
図12は、異常判定処理(第二の実施例)の処理フローの例を示す図である。学習時の処理は、第一の実施例と同様である。運用時の処理においては、1プロセス分総電流波形を取得した後、多変量解析により変化率を算出するが、その処理において、時間窓を設定して運用時総電流波形および基準波形から所定期間の一部のデータを切り出して、複数回の多変量解析を行う点に相違がある。つまり、基準波形を所定の時間窓で複数に区切った区間ごとに電流変化率を算出して異常を判定する。
第一の実施例において説明したとおり、多変量解析(重回帰分析)で変化率α~αを算出するために構築すべき式(3)の個数は、未知数の数(α~αの場合、6個)以上であればよく、例えば15秒間のプロセスで1秒毎に電流値が記録されていれば、6秒間分のデータのみで変化率αを算出することができる。つまり、連続するサンプル数が稼働軸の数以上であれば重回帰分析が可能である。
第二の実施例では、学習時のデータが図3に示される電流波形であり、異常時の電流波形が図13に示される状態であるとする。但し、実際の処理では図13に示す電流波形群はセンサからは取得されず、ここでは説明のためにのみ記載している。
具体的には、異常判定部22は、まず、最小時間幅(時間窓)で運用時総電流波形を分割して抽出する(ステップS205)。最小時間幅は、上記の例では未知数の数のサンプルを確保できる6秒となるが、これに限られず、それ以上であってもよい。そして、異常判定部22は、ステップS205にて用いた最小時間幅(時間窓)で学習時総電流波形を分割して抽出する(ステップS206)。
そして、異常判定部22は、重回帰分析で、各軸・各時間電流の変化率を算出する(ステップS207)。具体的には、異常判定部22は、設定された時間窓内におけるサンプルから特定される変化率を算出する。
上記ステップS205~S207の処理によれば、6秒毎に変化率を重回帰分析で算出するため、図14に示される変化率のプロセス内推移を取得することができる。変化率は、1秒ごとにずらして6秒間分のデータを取得して算出するため、離散的ではあるが正弦波のようななだらかなカーブを描く。サンプル数が少ない程、よりダイナミックな変化率の反応を得られる。
図14は、判定結果表示部が表示する変化率の表示画面の例を示す図である。表示画面810には、各稼働軸ごとに変化率の推移を時間単位で示すグラフ811が含められている。グラフ811に示される通り、第一稼働軸301ではプロセス内の前半のみ、第三稼働軸303ではプロセス内の後半のみで変化率が上昇しており、局所的な異常を捉えることができている。
第二の実施例に係る発明によれば、プロセス内で一様に異常状態が発現せず、プロセス内で部分的に発現する異常状態であっても精度よく捉えることができる。特に、一プロセスにかかる時間が長い場合には、異常の検出精度を飛躍的に高めることができる。
<第三の実施例>次に、図15、図16を用いて、本発明に係る第三の実施例を説明する。第三の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。
図15は、異常判定処理(第三の実施例)の処理フローの例を示す図である。学習時の処理は、第一の実施例と基本的に同様であるが、異常と判定する異常度の閾値以外にも、学習時の電流波形のバラつきから、異常と判定すべきでない異常度の第二の閾値を算出し、判定精度の向上を達成するようにしている。つまり、制御基板に供給される電流の基準波形に応じて所定の検出可否指標となる閾値(第二の閾値)を特定し、電流変化率が第二の閾値を超えない場合には異常と判定しないことで、誤判定を防止する。
具体的には、異常度の閾値設定をステップS103にて行った後、学習時の処理として、学習時電流波形からバラつき考慮の第二の異常度閾値を設定する(ステップS304)。本発明では総電流から各個別機器電流を推定するものであるため、総電流にバラつきが発生した場合、各個別機器電流の推定精度にもバラつきが生じる懸念がある。これを回避するための条件は、各個別機器電流の変化量が、総電流のバラつきよりも大きくなるということであり、下式(5)で示すことができる。但し、SIw(0)は学習時総電流波形のバラつきを示す。
Figure 0007477367000005
・・・式(5)
上式(5)を変形し、バラつきを考慮した異常度閾値をαiaとすると、αiaは式(6)で表すことができる。
Figure 0007477367000006
・・・式(6)
式(6)によって求められたαiaは、運用時の異常度の判定処理において、異常度と第二の異常度閾値との両方の超過が検出されると異常と判定する処理(ステップS307)において用いられる。つまり、制御基板220に供給される電流の基準波形の変動量と電力消費装置に供給される電流の和を該電力消費装置に供給される電流で除した商を第二の異常度閾値として特定することができる。
図16は、判定結果表示部が表示する変化率の表示画面の例を示す図である。表示画面820には、各稼働軸ごとに変化率の推移をプロセス単位で示すグラフ821が含められている。ここで、図16の各グラフ内に記載されている変化率αibは、図15に示した第三の実施例のフローチャート内のステップS103において設定された異常度の閾値を示している。変化率αiaは、図15に示した第三の実施例のフローチャート内のステップS304において設定された第二の異常度閾値を示している。図16内のグラフ821の1プロットはプロセス1つ分を示しており、フローチャートのステップS004~ステップS307の処理ごとに一つプロットが生成される。
例えば、第一稼働軸に関して、変化率が異常度の閾値と第二の異常度閾値両方の閾値を超過しているため、異常と判定することが可能である。しかし、軸3に関して言えば、αibは超えているが、αiaはまだ超えていない状態である。もしαiaが設定されていない場合、この時点でも第三の稼働軸は異常と判定されてしまうことになるが、実際には総電流のバラつきによる誤報である可能性がある。本実施例に係る発明においては、そのような総電流のバラつき等の突発的な事象による誤報を低減する効果を有する。
また、第三の実施例に係る発明が奏するさらなる効果として、総電流バラつきに対して、個別機器電流が小さく、異常が発生してもバラつき内に埋もれていると懸念される場合、予めその個別機器だけ電流センサを設置するように対策することも可能となる。すなわち、センサ数の適正化にも用いることができる指標であり、精度を維持したまま、センサ数を適正に低減できる効果も奏するといえる。
<第四の実施例>次に、図17~図20を用いて、本発明に係る第四の実施例を説明する。第四の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。
図17は、異常判定処理(第四の実施例)の処理フローの例を示す図である。第四の実施例では、各個別機器に供給される電圧が異なる場合の対策が盛り込まれている。具体的には、電流取得部21は、学習時に、重回帰分析により各個別機器と大元の電源電圧の比である電圧比を算出(ステップS403)し、各軸の個別電圧比を記憶しておく(ステップS404)ことで、個別機器に供給される電圧が異なる場合に、電圧値を取得することなく電圧比を算出することができる。
図18は、第四の実施例にて異常を判定する対象としている総電流波形と各個別機器電流波形の関係性を示す図である。図18(a)は総電流のグラフであり、図18(b)は各個別機器電流波形を積み上げたグラフの例である。図18(a)と図18(b)とを比較すると、総電流と各個別機器電流の総和が一致していない。これは、電圧が各個別機器で異なるために、単純な電流波形の足し算では総電流を表すことができないことを意味している。
第一の実施例では、そもそも電力の総和が総電力に等しく、電圧が一定であるとの仮定から電流での関係式が成り立っていた。本実施例では本来の電力の総和が等しいという関係式を用いる。ここで、先述した電圧比を求める手法を説明する。電圧比kは下式(7)で示される物理量である。但し、Vは総電流取得箇所における電圧を示し、Vは各個別機器電流取得箇所における電圧を示している。
Figure 0007477367000007
・・・式(7)
上式(7)の関係を用いて、各個別機器電圧比と電流の関係は式(8)で示される。
Figure 0007477367000008
・・・式(8)
式(8)を学習時電流波形の各時刻で構築して、重回帰分析を行うことにより、各個別機器電圧比kを算出することが可能である。
図19は、算出した変化率を用いて個別機器の電流波形を推定した図である。算出した各個別機器電圧kを用いて各個別機器電流波形を算出すると、図19の第一稼働軸の波形541と、第二稼働軸の波形542と、第三稼働軸の波形543と、第四稼働軸の波形544と、第五稼働軸の波形545と、第六稼働軸の波形546と、が得られる。それぞれのグラフの縦軸は、電流×電圧比となっている。
図20は、総電流波形と各個別機器電流波形の関係性の例を示す図である。図20(a)は、取得された総電流波形を示し、図20(b)は、個別機器の電流×電圧比のグラフを積み上げた例を示す。図20(a)と、図20(b)とを比較すると、グラフの大きさが等しくなっている。ここで、図17のフローチャート内のS405で実施する重回帰分析で用いられる数式を、下式(9)として示す。
Figure 0007477367000009
・・・式(9)
上式(9)を用いるタイミングでは、すでに各個別機器電圧比kが算出済みのため、問題なく重回帰分析を実行することができる。
このように、第四の実施例によれば、各個別機器の電圧が等しいかどうか不明な場合でも、式(8)を用いることで電圧センサの追加無しで電圧比を算出することができるため、精度を維持したまま、個別機器の電圧が異なる装置にも適用できる。つまり、適用可能な装置の幅を広げることができるといえる。
<第五の実施例>次に、図21~図23を用いて、本発明に係る第五の実施例を説明する。第五の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。
図21は、第五の実施例に係る対象装置の電源系回路の例を示す図である。第一~第四の実施例の構成に対して、制御基板220にはさらに冷却ファン231、232や無励磁電磁ブレーキ330等のその他の機器(構成要素)が追加されている。
図22は、異常判定処理(第五の実施例)の処理フローの例を示す図である。第五の実施例では、主要な構成要素以外の個別機器や学習時等の一時的であっても測定が難しいその他の機器を集合的に纏めて扱うことにより、その他の機器単体での測定を行うことなく異常機器判定を可能としている。
基本的には、第五の実施例に係る異常判定処理の処理フローは、第四の実施例に係る異常判定処理の処理フローと同様である。ただし、学習時において、電流取得部21は、重回帰分析により軸毎に個別電圧比と定数を算出し(ステップS503)、定数(残差)をその他の機器の電流として電流波形を記憶させる(ステップS504)ものである。
すなわち、第五の実施例に係る異常判定処理では、個別電圧比kiを求める際に測定していない個別機器の電流を定数Ielse(0)で表現し、算出している。下式(10)に個別電圧比ki及びその他個別機器電流Ielse(0)の関係式を示す。
Figure 0007477367000010
・・・式(10)
ここで、Ielse(0)は、図21の冷却ファン231、232や無励磁電磁ブレーキ330の消費電流を含む値である。
無励磁電磁ブレーキ330は、ロボットに一般に適用されているブレーキである。このブレーキは電力が供給されていないときはブレーキがかかった状態であり、電力が供給されると、ブレーキを掛けないという特徴がある。ゆえに通電時は一定の電力を消費するという特徴を有するものであり、図21内の点線矢印はブレーキの作用方向のみを示したものである。上式(10)で重回帰分析に必要な連立方程式を構築し、電圧比kと、その他個別機器電流Ielse(0)を算出することができる。
図23は、総電流波形と、電圧比により換算した各個別機器の電流×電圧比のグラフを積み上げたグラフの関係性の例を示す図である。図23(a)は、学習時の総電流を示し、図23(b)は、上式(10)で求めた電圧比kを用いて換算した各個別機器電流×電圧比とその他個別機器電流Ielse(0)を積み上げたグラフを示す。図23(a)と図23(b)を比較すると、双方のグラフの大きさが等しくなっている。
ここで、図22のフローチャート内の重回帰分析で用いられる数式を式(11)として示す。
Figure 0007477367000011
・・・式(11)
式(11)を用いるタイミングではすでに各個別機器電圧比kが算出済みのため、問題なく重回帰分析を実行することができ、分解能は劣るが、その他個別機器電流変化率αelseを用いて、その他個別機器の異常も検知することが可能である。つまり、電流取得部21は、基準波形が記憶部10に記憶されておらず制御基板220から電力の供給を受ける電力消費装置について、一括して電力消費装置とみなして電圧比と変化率を算出することができる。
本実施例によれば、主要な機器以外に多数の個別機器を含む場合でも精度よく異常を判定することが可能となる効果を有する。また、その他個別機器が一つのプロセス内で変化する場合であっても、同プロセスの複数の波形を利用して平均値を用いることにより、上式(10)、(11)の使用が可能となり、同様の効果を奏することができる。
<第六の実施例>次に、図24~図26を用いて、本発明に係る第六の実施例を説明する。第六の実施例では、上記の第一の実施例と基本的に同様の構成であるが、差異がある。以下、その差異を中心に説明する。
図24は、第六の実施例に係る対象装置の概要の構成例を示す図である。第六の実施例に係る対象装置は、4軸動作(X軸431、Y軸432、Z軸433、スピンドル軸434)の数値制御金属加工機400であり、付属として工具461を交換する工具交換器(工具交換軸475)も付随しているものである。
図25は、数値制御金属加工機の電源系回路の概要の構成例を示す図である。制御装置401には、電源回路410と、第一制御基板411と、第二制御基板412と、第三制御基板413と、が含まれる。電源回路410は、配電盤100から電力の供給を受ける。各制御基板は、電源回路410から電力が供給される。そして、制御基板それぞれに個別機器が付随している。
第一制御基板411には、第一モータ451と、その回転を減速する第一減速機441と、第一減速機441により伝達された力によりX軸方向にスライド動作するテーブルX軸431と、が付随する。また、第一制御基板411には、第二モータ452と、その回転を減速する第二減速機442と、第二減速機442により伝達された力によりY軸方向にスライド動作するテーブルY軸432と、が付随する。また、第一制御基板411には、第三モータ453と、その回転を減速する第三減速機443と、第三減速機443により伝達された力によりZ軸方向にスライド動作する工具Z軸433と、が付随する。
第二制御基板412には、第四モータ454と、その回転を減速する第四減速機444と、第四減速機444より伝達された力により回転動作するスピンドル軸434と、が付随する。
第三制御基板413には、第五モータ495と、その回転を減速する第五減速機485と、第五減速機485より伝達された力により回転動作する工具交換軸475と、が付随する。
図26は、異常判定処理(第六の実施例)の処理フローの例を示す図である。第六の実施例では、電源が枝分かれして制御基板へ供給されている場合でも、各箇所で個別機器の電流推定並びに異常判定を可能としている。
基本的には、第六の実施例に係る異常判定処理の処理フローは、第一の実施例に係る異常判定処理の処理フローと同様である。ただし、学習時において、電流取得部21は、総電流と各制御基板、付随個別機器の電流を取得し(ステップS601)、各制御基板、各個別機器の電流波形を基準波形記憶部11に記憶させる(ステップS602)。そして、運用時において、異常判定部22は、1プロセス分の総電流波形取得(ステップS004)後に、重回帰分析で、各制御基板電流の変化率を算出し(ステップS605)、算出した変化率で各制御基板電流を算出、取得し(ステップS606)、重回帰分析で、各個別機器電流の変化率を算出する(ステップS607)。つまり、制御基板があると入れ子構造として再帰処理を行う。
すなわち、第六の実施例では、上記の第一~第五の実施例で示されていた制御基板と個別機器の関係性を拡張し、さらに複数の制御基板と電源回路の間でも同関係を活用して、大元の電流から制御基板を経由した個別機器の変化率を推定している。
ここで、電源回路410から第一制御基板411を経由したテーブルX軸431、テーブルY軸432、工具Z軸433の電流波形推定の流れを具体的に説明する。
図25において、配電盤100と電源回路410間の配線を流れる電流を総電流Iw(t)、電源回路410と各制御基板間の配線を流れる電流を各制御基板電流ICi(t)、第一制御基板411と第一~第三モータ間の配線を流れる電流を個別機器電流Ii(t)とする。これらについて、電流取得部21は、学習時の波形を電流センサにより取得し、それぞれIw(0)、ICi(0)、Ii(0)として基準波形記憶部11に記憶させる。
運用時は、電流取得部21は、まず総電流Iw(t)を取得し、下式(12)で示す式を用いて重回帰分析を行い、各制御基板電流変化率αCiを算出する。
Figure 0007477367000012
・・・式(12)
続いて、αC1×IC1(0)の値を用いて、第一制御基板411に付随する個別機器の電流波形を推定する。推定には総電流Iw(t)をαC1×IC1(0)で置き換えた下式(13)を用いる。
Figure 0007477367000013
・・・式(13)
上式(13)からテーブルX軸431、テーブルY軸432、工具Z軸433の電流波形の変化率α~αが算出できるため、第一制御基板411に付随する個別機器の異常度を算出することができる。
このように、第六の実施例に係る数値制御金属加工機400によれば、多層で枝分かれした電源系回路の装置であっても、対象とするラインの基準波形を取得さえできれば、運用中のセンサコスト低減を達成しつつ異常判定が実施可能であるという効果を有する。
なお、本発明は上記の実施例に限定されるものではなく、様々な変形例が含まれる。例えば、数値制御金属加工機400は、その他の多軸制御による工作機械であってもよい。また、上記の第六の実施例では制御基板が一層ある入れ子構造を例としているが、これに限られず、制御基板が複数層ある入れ子構造であってもよい。
また、多変量解析の例として重回帰分析を行っているが、これに限られず、主成分分析等、他の分析手法を行うようにしてもよい。
また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。
また、実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
また、上記の異常機器判定装置1の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD等の記録装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が通信ネットワーク、バス等により相互に接続されていると考えてもよい。
本発明に係る技術は、異常機器判定装置に限られず、異常機器判定システム、サーバー装置、コンピュータ読み取り可能なプログラム、異常機器判定サービス(方法)などの様々な態様で提供できる。
1・・・異常機器判定装置、10・・・記憶部、11・・・基準波形記憶部、20・・・処理部、21・・・電流取得部、22・・・異常判定部、23・・・判定結果表示部、100・・・配電盤、200・・・制御Box、300・・・ロボット部、301・・・第一稼働軸、302・・・第二稼働軸、303・・・第三稼働軸、304・・・第四稼働軸、305・・・第五稼働軸、306・・・第六稼働軸。

Claims (14)

  1. 正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、
    運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、
    前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、
    前記異常判定部が判定した結果を表示する判定結果表示部と、
    を備え
    前記異常判定部は、前記複数の電力消費装置に供給される電流と前記電流変化率の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電流変化率を算出する、
    とを特徴とする異常機器判定システム。
  2. 請求項1に記載の異常機器判定システムであって、
    前記異常判定部は、多変量解析により前記電流変化率を算出する、
    ことを特徴とする異常機器判定システム。
  3. 請求項に記載の異常機器判定システムであって
    記重回帰分析においては、前記基準波形を所定の時間窓で複数に区切った区間ごとに前記電流変化率を算出する、
    ことを特徴とする異常機器判定システム。
  4. 請求項1に記載の異常機器判定システムであって、
    前記異常判定部は、前記電流変化率が所定の閾値を超過すると前記電力消費装置が異常であると判定する、
    ことを特徴とする異常機器判定システム。
  5. 請求項1に記載の異常機器判定システムであって、
    前記異常判定部は、前記制御基板に供給される電流の前記基準波形に応じて所定の検出可否指標となる閾値を特定し、前記電流変化率が前記閾値を超えない場合には異常と判定しない、
    ことを特徴とする異常機器判定システム。
  6. 正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、
    運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、
    前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、
    前記異常判定部が判定した結果を表示する判定結果表示部と、
    を備え、
    前記異常判定部は、前記制御基板に供給される電流の前記基準波形の変動量と前記電力消費装置に供給される電流の和を該電力消費装置に供給される電流で除した商を閾値として特定し、前記電流変化率が前記閾値を超えない場合には異常と判定しない、
    ことを特徴とする異常機器判定システム。
  7. 請求項1に記載の異常機器判定システムであって、
    前記電流取得部は、前記制御基板に供給される電流の前記基準波形と前記電力消費装置に供給される電流の前記基準波形を用いて前記電力消費装置ごとの電圧比を算出する、
    ことを特徴とする異常機器判定システム。
  8. 正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、
    運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、
    前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、
    前記異常判定部が判定した結果を表示する判定結果表示部と、
    を備え、
    前記電流取得部は、前記電力消費装置に供給される電流の前記基準波形と前記電力消費装置ごとの電圧比との各々の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電力消費装置ごとの電圧比を算出する、
    ことを特徴とする異常機器判定システム。
  9. 正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、
    運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、
    前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、
    前記異常判定部が判定した結果を表示する判定結果表示部と、
    を備え、
    前記電流取得部は、前記電力消費装置に供給される電流の前記基準波形と前記電力消費装置ごとの電圧比との各々の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電力消費装置ごとの電圧比を算出し、
    前記異常判定部は、前記複数の電力消費装置に供給される電流と、前記電流変化率と、前記電力消費装置ごとの電圧比との積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電流変化率を算出する、
    ことを特徴とする異常機器判定システム。
  10. 正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、
    運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、
    前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、
    前記異常判定部が判定した結果を表示する判定結果表示部と、
    を備え、
    前記電流取得部は、前記基準波形が前記記憶部に記憶されておらず前記制御基板から電力の供給を受ける電力消費装置について、一括して電力消費装置とみなし、前記電力消費装置に供給される電流の前記基準波形と前記電力消費装置ごとの電圧比との各々の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電力消費装置ごとの電圧比を算出する、
    ことを特徴とする異常機器判定システム。
  11. 正常動作時に電力を消費する電力消費装置に供給される電流と、複数の前記電力消費装置に電力を供給する制御基板に供給される電流と、をそれぞれを時系列に記録した基準波形を記憶する記憶部と、
    運用時において前記制御基板に供給される電流を時系列に取得する電流取得部と、
    前記電流取得部が取得した前記制御基板に供給される電流と、前記基準波形と、を用いて前記電力消費装置ごとの電流変化率を算出し前記電力消費装置の異常を判定する異常判定部と、
    前記異常判定部が判定した結果を表示する判定結果表示部と、
    を備え、
    前記電流取得部は、前記基準波形が前記記憶部に記憶されておらず、前記制御基板から電力の供給を受ける電力消費装置について、一括して電力消費装置とみなし、前記電力消費装置に供給される電流の前記基準波形と前記電力消費装置ごとの電圧比との各々の積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電力消費装置ごとの電圧比を算出し、
    前記異常判定部は、前記複数の電力消費装置に供給される電流と、前記電流変化率と、前記電力消費装置ごとの電圧比との積の総和が前記制御基板に供給される電流に等しくなることを利用した重回帰分析により前記電流変化率を算出する、
    ことを特徴とする異常機器判定システム。
  12. 請求項1に記載の異常機器判定システムであって、
    前記電力消費装置は、ロボットの稼働軸を動作させる駆動用モータである、
    ことを特徴とする異常機器判定システム。
  13. 請求項1に記載の異常機器判定システムであって、
    前記電力消費装置は、ロボットの稼働軸を動作させる駆動用モータであり、
    前記異常は、前記駆動用モータの異常と、該駆動用モータの電流波形に影響を与える他の装置の異常も含む、
    ことを特徴とする異常機器判定システム。
  14. 請求項1に記載の異常機器判定システムであって、
    一つまたは複数の前記電力消費装置は、一つまたは複数の他の電力消費装置に電力を供給する前記制御基板を備えるものであり、
    前記記憶部は、前記他の電力消費装置に供給される電流を時系列に記録した基準波形を記憶し、
    前記異常判定部は、前記他の電力消費装置についても前記電流変化率を算出し前記電力消費装置の異常を判定する、
    ことを特徴とする異常機器判定システム。
JP2020093852A 2020-05-29 2020-05-29 異常機器判定システム Active JP7477367B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020093852A JP7477367B2 (ja) 2020-05-29 2020-05-29 異常機器判定システム
CN202180031565.4A CN115461690A (zh) 2020-05-29 2021-03-17 异常设备判断系统
PCT/JP2021/010875 WO2021240959A1 (ja) 2020-05-29 2021-03-17 異常機器判定システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020093852A JP7477367B2 (ja) 2020-05-29 2020-05-29 異常機器判定システム

Publications (2)

Publication Number Publication Date
JP2021189706A JP2021189706A (ja) 2021-12-13
JP7477367B2 true JP7477367B2 (ja) 2024-05-01

Family

ID=78723310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020093852A Active JP7477367B2 (ja) 2020-05-29 2020-05-29 異常機器判定システム

Country Status (3)

Country Link
JP (1) JP7477367B2 (ja)
CN (1) CN115461690A (ja)
WO (1) WO2021240959A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125230A (ja) 2018-01-18 2019-07-25 ファナック株式会社 異常検知パラメータ調整表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3550160B2 (ja) * 1992-11-06 2004-08-04 株式会社キューキ 電池の残存容量計
JPH10254539A (ja) * 1997-03-10 1998-09-25 Nissan Motor Co Ltd 機械装置の駆動系の異常診断方法
JP7021895B2 (ja) * 2017-10-03 2022-02-17 川崎重工業株式会社 異常の生じた部位の推定方法及び異常の生じた部位の推定を行わせるプログラム

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019125230A (ja) 2018-01-18 2019-07-25 ファナック株式会社 異常検知パラメータ調整表示装置

Also Published As

Publication number Publication date
CN115461690A (zh) 2022-12-09
WO2021240959A1 (ja) 2021-12-02
JP2021189706A (ja) 2021-12-13

Similar Documents

Publication Publication Date Title
US7495519B2 (en) System and method for monitoring reliability of a digital system
US9759774B2 (en) Anomaly diagnosis system, method, and apparatus
JP7133315B2 (ja) 故障予知システム
JP2004150439A (ja) 故障事象を判定する方法
JP5991042B2 (ja) 異常監視システムおよび異常監視方法
US20080253437A1 (en) Monitoring reliability of a digital system
JP4730451B2 (ja) 検出データ処理装置及びプログラム
JP6851558B1 (ja) 異常診断方法、異常診断装置および異常診断プログラム
JPWO2019202651A1 (ja) 電動機の診断装置
CN106256084A (zh) 电动机控制装置
JP6737277B2 (ja) 製造プロセス分析装置、製造プロセス分析方法、及び、製造プロセス分析プログラム
JP6981113B2 (ja) 情報処理装置および情報処理方法
US20080288213A1 (en) Machine condition monitoring using discontinuity detection
CN113574358B (zh) 异常检测装置及异常检测方法
CN111596612A (zh) 基于工件尺寸数据的数控机床热误差补偿方法及系统
JP7477367B2 (ja) 異常機器判定システム
US11009431B2 (en) Failure mode specifying system, failure mode specifying method, and program
KR20200010671A (ko) 기계 학습 기반의 설비 이상 진단 시스템 및 방법
JP2019140193A (ja) データ処理方法、データ処理装置、および、データ処理プログラム
US11774228B2 (en) Method and apparatus for testing workpieces
JP2018113027A (ja) プロセスの異常状態診断方法および異常状態診断装置
JP2010271997A (ja) 標準時系列データ算出方法、異常検出方法、標準時系列データ算出装置、異常検出装置、標準時系列データ算出プログラム、および異常検出プログラム
Verdonck et al. Experimental robot identification: Advantages of combining internal and external measurements and of using periodic excitation
US10756531B2 (en) Voltage differential transducer (VDT) fault detection
Ondel et al. FDI based on pattern recognition using Kalman prediction: Application to an induction machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240418