JP7475208B2 - How to build a water barrier - Google Patents

How to build a water barrier Download PDF

Info

Publication number
JP7475208B2
JP7475208B2 JP2020102953A JP2020102953A JP7475208B2 JP 7475208 B2 JP7475208 B2 JP 7475208B2 JP 2020102953 A JP2020102953 A JP 2020102953A JP 2020102953 A JP2020102953 A JP 2020102953A JP 7475208 B2 JP7475208 B2 JP 7475208B2
Authority
JP
Japan
Prior art keywords
drilling
pressure value
water supply
supply pressure
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020102953A
Other languages
Japanese (ja)
Other versions
JP2021195784A (en
Inventor
朋宏 中島
美樹 北原
宏太 捻金
幸弘 濱田
直宏 大西
和男 簗瀬
宰 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2020102953A priority Critical patent/JP7475208B2/en
Publication of JP2021195784A publication Critical patent/JP2021195784A/en
Application granted granted Critical
Publication of JP7475208B2 publication Critical patent/JP7475208B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、遮水壁の構築方法に関する。 The present invention relates to a method for constructing a waterproof wall.

地層を判別する地層の判別方法が知られている(例えば、特許文献1,2参照) Methods for identifying strata are known (see, for example, Patent Documents 1 and 2)

特開2020-007815号公報JP 2020-007815 A 特開2017-115457号公報JP 2017-115457 A

ところで、地盤に遮水壁を施工する場合、遮水壁の下端部を地盤の難透水層に根入れするために、ボーリング調査から得られた難透水層の深度(深度情報)に基づいて遮水壁の深度が設定される。 When constructing a waterproof wall on the ground, the depth of the waterproof wall is set based on the depth of the impermeable layer (depth information) obtained from a boring survey, so that the lower end of the waterproof wall is embedded in the impermeable layer of the ground.

しかしながら、難透水層の表面に不陸がある場合、遮水壁の施工領域での難透水層の深度が、ボーリング調査から得られた難透水層の深度よりも深くなる可能性がある。この場合、遮水壁の下端部が難透水層に到達せず、遮水壁の下端部が難透水層に根入れされない虞がある。 However, if there are unevenness on the surface of the impermeable layer, the depth of the impermeable layer in the construction area of the impermeable wall may be deeper than the depth of the impermeable layer obtained from the boring survey. In this case, there is a risk that the lower end of the impermeable wall will not reach the impermeable layer and will not be embedded in it.

本発明は、上記の事実を考慮し、遮水壁の下端部を難透水層により確実に根入れすることを目的とする。 Taking the above facts into consideration, the present invention aims to ensure that the lower end of a water barrier is firmly embedded in a low-permeability layer.

第1態様に係る遮水壁の構築方法は、削孔機を用いて削孔水を送水しながら地盤を削孔し、削孔中に取得する削孔データに基づいて前記地盤の難透水層に削孔を到達させる削孔工程と、前記削孔に注入材を注入し、前記地盤に地盤改良体を形成する注入材注入工程と、を備え、前記削孔工程と前記注入材注入工程とを繰り返し、前記地盤改良体を壁状に連続させることで遮水壁を形成する。 The method for constructing a watertight wall in the first embodiment comprises a hole drilling step of using a drilling machine to drill holes in the ground while pumping drilling water, and causing the holes to reach a low-permeability layer in the ground based on drilling data acquired during drilling, and an injection material injection step of injecting injection material into the drilled holes to form a ground improvement body in the ground.The hole drilling step and the injection material injection step are repeated to form a watertight wall by connecting the ground improvement body in a wall shape.

第1態様に係る遮水壁の構築方法によれば、削孔工程では、削孔機を用いて削孔水を送水しながら地盤を削孔し、削孔中に取得する削孔データに基づいて地盤の難透水層に削孔を到達させる。また、注入材注入工程では、削孔に注入材を注入し、地盤に地盤改良体を形成する。これらの削孔工程と注入材注入工程とを繰り返して地盤改良体を壁状に連続させることで遮水壁を形成する。 According to the method for constructing a water impermeable wall according to the first aspect , in the hole drilling step, a drilling machine is used to drill holes in the ground while supplying drilling water, and the drilled holes are made to reach a low-permeability layer in the ground based on drilling data acquired during drilling. In addition, in the grouting material injection step, grouting material is injected into the drilled holes to form a ground improvement body in the ground. The hole drilling step and the grouting material injection step are repeated to form a wall-like continuous ground improvement body, thereby forming a water impermeable wall.

ここで、削孔工程では、前述したように、削孔中に取得する削孔データに基づいて地盤の難透水層に削孔を到達させる。これにより、難透水層の表面に不陸があったとしても、削孔を難透水層に到達させることができる。この削孔に注入材を注入することにより、地盤改良体の下端部、すなわち遮水壁の下端部を難透水層により確実に根入れすることができる。 As described above, in the hole drilling process, the holes are drilled to reach the impermeable layer of the ground based on the drilling data acquired during drilling. This allows the holes to reach the impermeable layer even if there are unevenness on the surface of the impermeable layer. By injecting injection material into the drilled holes, the bottom end of the ground improvement body, i.e., the bottom end of the water shielding wall, can be firmly embedded in the impermeable layer.

第2態様に係る遮水壁の構築方法は、第1態様に係る遮水壁の構築方法において、前記難透水層の深度が取得されている位置の地盤を、削孔機を用いて削孔水を送水しながら削孔し、削孔が前記難透水層に到達したときの削孔送水圧力値を基準削孔送水圧力値とし、前記削孔データは、削孔中に前記削孔に送水する削孔水の削孔送水圧力値を含み、前記削孔工程では、前記削孔送水圧力値が前記基準削孔送水圧力値に達したときに、前記削孔が前記難透水層に到達したと判断する。 The method for constructing a watertight wall according to the second aspect is the method for constructing a watertight wall according to the first aspect , wherein the ground at a position where the depth of the impermeable layer has been obtained is drilled using a drilling machine while supplying drilling water, and a reference drilling water pressure value is set as the drilling water pressure value when the drilling reaches the impermeable layer, the drilling data includes a drilling water pressure value of drilling water to be supplied to the drilling hole during drilling, and in the drilling process, it is determined that the drilling has reached the impermeable layer when the drilling water pressure value reaches the reference drilling water pressure value.

第2態様に係る遮水壁の構築方法によれば、難透水層の深度が取得されている位置の地盤を、削孔機を用いて削孔水を送水しながら削孔し、削孔が難透水層に到達したときの削孔送水圧力値を基準削孔送水圧力値とする。また、削孔データは、削孔中に削孔に送水する削孔水の削孔送水圧力値を含む。そして、削孔工程では、削孔送水圧力値が基準削孔送水圧力値に達したときに、削孔が難透水層に到達したと判断する。 According to the method for constructing a water impermeable wall of the second aspect , a drilling machine is used to drill a hole in the ground at a position where the depth of the impermeable layer has been acquired while supplying drilling water, and the drilling water supply pressure value when the drilling reaches the impermeable layer is set as a reference drilling water supply pressure value. The drilling data includes a drilling water supply pressure value of the drilling water supplied to the hole during drilling. Then, in the drilling process, it is determined that the drilling has reached the impermeable layer when the drilling water supply pressure value reaches the reference drilling water supply pressure value.

ここで、難透水層の透水係数は、例えば、透水層の透水係数よりも小さい。そのため、削孔中の削孔送水圧力値は、難透水層の方が透水層よりも高くなる。したがって、削孔中の削孔送水圧力値を監視することにより、削孔が難透水層に到達したか否か判断することができる。 Here, the permeability coefficient of the impermeable layer is, for example, smaller than the permeable layer. Therefore, the drilling water supply pressure value during drilling is higher for the impermeable layer than for the permeable layer. Therefore, by monitoring the drilling water supply pressure value during drilling, it is possible to determine whether or not drilling has reached the impermeable layer.

また、本発明では、前述したように、地盤調査等から難透水層の深度が得られた位置の地盤を掘削し、削孔が難透水層に到達したときの削孔送水圧力値を基準削孔送水圧力値とする。そして、削孔工程において、削孔中に取得する削孔送水圧力値と基準削孔送水圧力値とを比較することにより、削孔が難透水層に到達したか否かの判断精度を高めることができる。 As described above, in the present invention, the ground is excavated at a position where the depth of the impermeable layer has been obtained from a ground survey or the like, and the drilling water supply pressure value when the drilling reaches the impermeable layer is set as the reference drilling water supply pressure value. Then, in the drilling process, the drilling water supply pressure value obtained during drilling is compared with the reference drilling water supply pressure value, thereby improving the accuracy of determining whether or not the drilling has reached the impermeable layer.

第3態様に係る遮水壁の構築方法は、第2態様に係る遮水壁の構築方法において、前記削孔工程では、前記削孔送水圧力値が、前記基準削孔送水圧力値に達し、かつ、前記基準削孔送水圧力値以上を所定時間維持したときに、前記削孔が前記難透水層に到達したと判断する。 A third aspect of the watertight wall construction method is the watertight wall construction method of the second aspect , in which, in the hole-drilling process, it is determined that the hole-drilling has reached the impermeable layer when the hole-drilling water supply pressure value reaches the standard hole-drilling water supply pressure value and is maintained at or above the standard hole-drilling water supply pressure value for a predetermined period of time.

第3態様に係る遮水壁の構築方法によれば、削孔工程では、削孔送水圧力値が、基準削孔送水圧力値に到達し、かつ、基準削孔送水圧力値以上を所定時間維持したときに、削孔が難透水層に到達したと判断する。 According to the method for constructing a watertight wall relating to the third aspect , in the drilling process, it is determined that the drilling has reached the impermeable layer when the drilling water supply pressure value reaches the standard drilling water supply pressure value and is maintained at or above the standard drilling water supply pressure value for a predetermined period of time.

ここで、地盤に岩等が埋設されている場合、削孔が難透水層に到達する前であっても、削孔送水圧力値が一時的に高くなる可能性がある。この対策として本発明では、削孔送水圧力値が基準削孔送水圧力値に達しただけでなく、削孔送水圧力値が基準削孔送水圧力値以上を所定時間維持したときに、削孔が難透水層に到達したと判断する。これにより、削孔が難透水層に達したか否かの判断精度をさらに高めることができる。 Here, if rocks or the like are buried in the ground, the drilling water supply pressure value may temporarily become high even before the drilling reaches the impermeable layer. To address this issue, the present invention determines that drilling has reached the impermeable layer not only when the drilling water supply pressure value reaches the standard drilling water supply pressure value, but also when the drilling water supply pressure value remains equal to or higher than the standard drilling water supply pressure value for a predetermined period of time. This further improves the accuracy of determining whether drilling has reached the impermeable layer.

以上説明したように、本発明によれば、遮水壁の下端部を難透水層により確実に根入れすることができる。 As explained above, according to the present invention, the lower end of the water shielding wall can be securely embedded in the impermeable layer.

一実施形態に係る遮水壁の構築方法によって施工された遮水壁を示す断面図である。1 is a cross-sectional view showing a watertight wall constructed by a watertight wall construction method according to one embodiment. FIG. (A)は、一実施形態に係る掘削試験の試験過程を示す図1の拡大断面図であり、(B)は、掘削試験から得られた削孔送水圧力値の一例を示すグラフである。2A is an enlarged cross-sectional view of FIG. 1 showing a test process of a drilling test according to one embodiment, and FIG. 2B is a graph showing an example of a drilling water supply pressure value obtained from the drilling test. (A)~(D)は、一実施形態に係る遮水壁施工工程の施工過程を示す断面図である。1A to 1D are cross-sectional views showing a construction process of a water shield wall construction step according to one embodiment. 一実施形態に係る削孔工程において、取得された削孔送水圧力値の一例を示すグラフである。13 is a graph showing an example of a drilling water supply pressure value acquired in a drilling process according to one embodiment. 比較例に係る遮水壁の構築方法によって施工された遮水壁を示す断面図である。FIG. 2 is a cross-sectional view showing a water impermeable wall constructed by a water impermeable wall construction method according to a comparative example. 比較例に係る遮水壁の構築方法によって施工された遮水壁を示す断面図である。FIG. 2 is a cross-sectional view showing a water impermeable wall constructed by a water impermeable wall construction method according to a comparative example. 一実施形態に係る遮水壁の構築方法によって施工された遮水壁を示す断面図である。1 is a cross-sectional view showing a watertight wall constructed by a watertight wall construction method according to one embodiment. FIG.

以下、図面を参照しながら、一実施形態に係る遮水壁の構築方法について説明する。 Below, we will explain a method for constructing a waterproof wall according to one embodiment, with reference to the drawings.

(遮水壁の構築方法)
本実施形態に係る遮水壁の構築方法は、削孔試験工程と、遮水壁施工工程とを備え、図1に示されるように、地盤10の所定領域(以下、「施工領域R2」という)に遮水壁40を形成する。遮水壁40は、地下水を遮水するものであり、その下端部42Lが地盤10の難透水層10Xに根入れされている。
(Method of constructing water impermeable walls)
The method for constructing a water impermeable wall according to this embodiment includes a hole drilling test step and a water impermeable wall construction step, and forms a water impermeable wall 40 in a predetermined region (hereinafter referred to as "construction region R2") of ground 10, as shown in Fig. 1. The water impermeable wall 40 is for blocking groundwater, and has a lower end 42L embedded in a low permeability layer 10X of the ground 10.

ここで、難透水層10Xとは、水が浸透し難い地層であって、透水係数k(m/s)が小さい地層を意味する。この難透水層10Xには、例えば、透水係数kが10-5以下の地層が含まれる。また、難透水層10Xには、例えば、粘性土層、微細砂層、及びシルト層等が含まれる。 Here, the impermeable layer 10X refers to a layer through which water does not easily permeate and has a small permeability coefficient k (m/s). The impermeable layer 10X includes, for example, a layer having a permeability coefficient k of 10-5 or less. The impermeable layer 10X also includes, for example, a clayey soil layer, a fine sand layer, and a silt layer.

一方、透水層とは、水が浸透し易い地層であって、透水係数k(m/s)が大きい地層を意味する。この透水層には、例えば、透水係数kが10-5よりも大きい地層が含まれる。また、透水層には、例えば、砂層、及び礫層等が含まれる。また、透水係数kが10-5よりも大きい微細砂層、及びシルト層等も透水層に含まれる。 On the other hand, a permeable layer means a layer through which water easily permeates and has a large permeability coefficient k (m/s). For example, the permeable layer includes a layer having a permeability coefficient k of more than 10-5 . In addition, the permeable layer includes, for example, a sand layer and a gravel layer. In addition, a fine sand layer and a silt layer having a permeability coefficient k of more than 10-5 are also included in the permeable layer.

前述したように、難透水層10Xの透水係数kは、透水層の透水係数kよりも小さい。そのため、削孔水を送水しながら地盤10を削孔する場合、削孔水の送水圧力値(以下、「削孔送水圧力値」という)は、難透水層10Xの方が透水層よりも高くなる。 As mentioned above, the permeability coefficient k of the impermeable layer 10X is smaller than the permeability coefficient k of the permeable layer. Therefore, when drilling the ground 10 while pumping drilling water, the water supply pressure value of the drilling water (hereinafter referred to as the "drilling water supply pressure value") is higher for the impermeable layer 10X than for the permeable layer.

そこで、本実施形態では、先ず、図2(A)及び図2(B)に示されるように、削孔試験工程において、削孔30(ロッド24の先端部24T)が難透水層10Xに到達したときの送水圧力値(削孔送水圧力値P)を予め計測し、計測した削孔送水圧力値を基準削孔送水圧力値Pとする。次に、図3(A)及び図4に示されるように、遮水壁施工工程において、基準削孔送水圧力値に基づいて地盤10の削孔深度を決定し、遮水壁40の下端部42Lを難透水層10Xに根入れさせる。以下、削孔試験工程及び遮水壁施工工程の各工程について具体的に説明する。 Therefore, in this embodiment, first, as shown in Figures 2(A) and 2(B), in the hole drilling test process, the water supply pressure value (hole drilling water supply pressure value P1 ) when the hole drilling 30 (tip 24T of the rod 24) reaches the impermeable layer 10X is measured in advance, and the measured hole drilling water supply pressure value is set as the reference hole drilling water supply pressure value PX . Next, as shown in Figures 3(A) and 4, in the waterproof wall construction process, the drilling depth in the ground 10 is determined based on the reference hole drilling water supply pressure value, and the lower end 42L of the waterproof wall 40 is embedded in the impermeable layer 10X. Each step of the hole drilling test process and the waterproof wall construction process will be specifically described below.

(削孔試験工程)
図1に示されるように、削孔試験工程では、地盤10の施工領域R2、又はその周囲の領域であって、地盤調査(地層調査)を実施済みの領域(以下、「試験領域R1」という)で削孔試験を行う。
(Drilling test process)
As shown in Figure 1, in the drilling test process, a drilling test is performed in a construction area R2 of the ground 10 or in a surrounding area where a ground investigation (stratum investigation) has been carried out (hereinafter referred to as the "test area R1").

図2(A)に示されるように、本実施形態では、地盤調査として、例えば、ボーリング調査を行う。ボーリング調査では、地盤10の所定の位置(調査位置)Vを削孔し、所定深度毎に標準貫入試験を行うことにより地盤の強度(硬さ)を計測する。また、採取した掘削土から地質及び地層(地層境界)の深度等を調査する。このボーリング調査によって、地盤10における難透水層10Xの表面10X1の深度(深度情報等)、より具体的には、難透水層10Xと難透水層10Xの直上の地層との地層境界の深度が得られる。 As shown in FIG. 2(A), in this embodiment, a boring survey is performed as a ground survey, for example. In the boring survey, a hole is drilled at a predetermined position (survey position) V in the ground 10, and a standard penetration test is performed at each predetermined depth to measure the strength (hardness) of the ground. In addition, the geology and depth of the strata (strata boundary) are surveyed from the collected excavated soil. This boring survey provides the depth (depth information, etc.) of the surface 10X1 of the impermeable layer 10X in the ground 10, and more specifically, the depth of the strata boundary between the impermeable layer 10X and the strata directly above the impermeable layer 10X.

なお、試験領域R1は、地盤10の位置V、及び位置Vの周囲を含む概念である。また、ボーリング調査の結果は、例えば、地盤調査報告書にまとめられる。 The test area R1 is a concept that includes position V of the ground 10 and the surroundings of position V. The results of the boring survey are summarized, for example, in a ground survey report.

削孔試験では、削孔機20を用いて地盤10の試験領域R1を削孔する。本実施形態では、後述するように、二重管ストレーナ工法等によって地盤10の施工領域R2に遮水壁40(図1参照)を施工する。そのため、削孔試験においても、二重管ストレーナ工法等に用いられる削孔機20を用いる。 In the drilling test, a drilling machine 20 is used to drill a test area R1 of the ground 10. In this embodiment, as described below, a water shielding wall 40 (see FIG. 1) is constructed in the construction area R2 of the ground 10 using a double pipe strainer construction method or the like. Therefore, the drilling test also uses a drilling machine 20 that is used for the double pipe strainer construction method or the like.

削孔機20は、削孔機本体22と、削孔機本体22に支持され、地盤10を削孔するロッド24と、ロッド24に送水管等を介して削孔水を送水する送水ポンプ26と、送水管等に設けられ、削孔水の送水圧力値を計測する送水圧力計28とを有している。ロッド(注入ロッド)24は、例えば、先端部(下端部)24Tに先端装置が装着された二重管とされる。 The drilling machine 20 has a drilling machine body 22, a rod 24 supported by the drilling machine body 22 and drilling a hole in the ground 10, a water pump 26 that delivers drilling water to the rod 24 via a water supply pipe or the like, and a water pressure gauge 28 that is attached to the water supply pipe or the like and measures the water supply pressure value of the drilling water. The rod (injection rod) 24 is, for example, a double pipe with a tip device attached to the tip (lower end) 24T.

削孔機20は、ロッド24の先端部24Tから削孔水を噴射しながら、ロッド24の先端部24Tが難透水層10Xに到達するまで地盤10を削孔する。この際、送水圧力計28によって削孔水の送水圧力値(以下、「削孔送水圧力値P」という)を計測する。そして、ロッド24の先端部24Tが難透水層10Xに到達した状態の削孔送水圧力値Pを基準削孔送水圧力値Pとする。 The drilling machine 20 drills the ground 10 while spraying drilling water from the tip 24T of the rod 24 until the tip 24T of the rod 24 reaches the impermeable layer 10X. At this time, the water pressure value of the drilling water (hereinafter referred to as the "drilling water pressure value P 1 ") is measured by the water pressure gauge 28. The drilling water pressure value P 1 when the tip 24T of the rod 24 reaches the impermeable layer 10X is set as the reference drilling water pressure value P X.

図2(B)には、ボーリング調査から得られた試験領域R1の地層、及び削孔試験から得られた削孔送水圧力値Pの一例が示されている。図2(B)から分かるように、地盤10は、地表から順に、埋め土層10A、粘土層10B、砂層10C、及び難透水層10Xを含んでいる。 Fig. 2(B) shows an example of the stratum of the test area R1 obtained from the boring survey and the drilling water supply pressure value P1 obtained from the drilling test. As can be seen from Fig. 2(B), the ground 10 includes, from the surface, a fill soil layer 10A, a clay layer 10B, a sand layer 10C, and a low-permeability layer 10X.

また、図2(B)から分かるように、ロッド24の先端部24Tが粘土層10Bに到達すると、削孔送水圧力値Pが上昇する。次に、ロッド24の先端部24Tが砂層10Cに到達すると、削孔送水圧力値Pが減少する。次に、ロッド24の先端部24Tが難透水層10Xに接近するに従って削孔送水圧力値Pが上昇し、ロッド24の先端部24Tが難透水層10Xに到達すると、削孔送水圧力値Pが最大となる。このように削孔送水圧力値Pは、地層によって変動するため、削孔送水圧力値Pによって難透水層10Xを判別することができる。 2B, when the tip 24T of the rod 24 reaches the clay layer 10B, the drilling water supply pressure value P1 increases. Next, when the tip 24T of the rod 24 reaches the sand layer 10C, the drilling water supply pressure value P1 decreases. Next, as the tip 24T of the rod 24 approaches the impermeable layer 10X, the drilling water supply pressure value P1 increases, and when the tip 24T of the rod 24 reaches the impermeable layer 10X, the drilling water supply pressure value P1 becomes maximum. In this way, the drilling water supply pressure value P1 varies depending on the stratum, so the impermeable layer 10X can be identified by the drilling water supply pressure value P1 .

本実施形態では、例えば、難透水層10Xを所定深度で削孔し、難透水層10Xを削孔しながら計測した複数の削孔送水圧力値の平均値を基準削孔送水圧力値とする。 In this embodiment, for example, the impermeable layer 10X is drilled to a predetermined depth, and the average value of multiple drilling water supply pressure values measured while drilling the impermeable layer 10X is set as the reference drilling water supply pressure value.

なお、基準削孔送水圧力値Pは、上記のような複数の削孔送水圧力値の平均値に限らず、例えば、難透水層10Xを削孔しながら計測した複数の削孔送水圧力値の最大値としても良いし、最小値としても良い。 In addition, the reference drilling water supply pressure value P X is not limited to the average value of multiple drilling water supply pressure values as described above, but may be, for example, the maximum or minimum value of multiple drilling water supply pressure values measured while drilling the impermeable layer 10X.

送水圧力計28には、例えば、高精度圧力計を用いることが望ましい。高精度圧力計とは、例えば、計測精度が0.000MPa以上、計測ピッチが10Hz以上の圧力計を含む。また、送水圧力計28によって計測した送水圧力値は、例えば、データロガー等の記録装置によって記録する。また、ロッド24の先端部24Tが難透水層10Xに到達した状態の削孔送水圧力値を計測する工程は、基準削孔送水圧力値取得工程と捉えられる。 For example, it is desirable to use a high-precision pressure gauge for the water supply pressure gauge 28. A high-precision pressure gauge includes, for example, a pressure gauge with a measurement accuracy of 0.000 MPa or more and a measurement pitch of 10 Hz or more. The water supply pressure value measured by the water supply pressure gauge 28 is recorded by a recording device such as a data logger. The process of measuring the drilling water supply pressure value when the tip 24T of the rod 24 has reached the impermeable layer 10X can be considered as a reference drilling water supply pressure value acquisition process.

(遮水壁施工工程)
図1に示されるように、遮水壁施工工程では、地盤10の施工領域R2に、下端部42Lが難透水層10Xに根入れされた遮水壁40を施工する。本実施形態では、薬液注入工法のうち、例えば二重管ストレーナ工法によって施工領域R2に遮水壁40を施工する。この遮水壁施工工程は、削孔工程と、注入材注入工程とを有し、これらの削孔工程と注入材注入工程とを繰り返すことにより地盤10の施工領域R2に遮水壁40を形成する。
(Waterproof wall construction process)
1 , in the impermeable wall construction process, a water impermeable wall 40 having a lower end 42L embedded in a low permeability layer 10X is constructed in a construction region R2 of the ground 10. In this embodiment, the water impermeable wall 40 is constructed in the construction region R2 by, for example, a double pipe strainer method among chemical injection methods. This water impermeable wall construction process includes a hole drilling step and a grouting material injection step, and the water impermeable wall 40 is formed in the construction region R2 of the ground 10 by repeating these hole drilling step and grouting material injection step.

(削孔工程)
図3(A)に示されるように、削孔工程では、前述した削孔機20を用いて地盤10の施工領域R2を削孔する。削孔機20は、掘削試験工程と同様に、ロッド24の先端部24Tから削孔水を噴射しながら地盤10の施工領域R2を削孔し、施工領域R2に削孔30を形成する。この際、送水圧力計28によって削孔水の削孔送水圧力値を計測する。そして、例えば、図4に示されるように、削孔送水圧力値Pが、基準削孔送水圧力値Pに達したときに削孔30が難透水層10Xに達したと判断し、削孔機20による削孔を停止する。
(Drilling process)
As shown in Fig. 3(A), in the drilling step, the drilling machine 20 described above is used to drill the construction area R2 of the ground 10. As in the excavation test step, the drilling machine 20 drills the construction area R2 of the ground 10 while injecting drilling water from the tip 24T of the rod 24, and forms a drilling hole 30 in the construction area R2. At this time, the drilling water supply pressure value of the drilling water is measured by the water supply pressure gauge 28. Then, for example, as shown in Fig. 4, when the drilling water supply pressure value P2 reaches the reference drilling water supply pressure value PX , it is determined that the drilling hole 30 has reached the impermeable layer 10X, and the drilling by the drilling machine 20 is stopped.

なお、例えば、難透水層10Xに対する削孔30の根入れ深さを確保するために、削孔送水圧力値が基準削孔送水圧力値Pに達した後に、難透水層10Xをさらに削孔しても良い。また、削孔送水圧力値は、削孔中に取得する削孔データの一例である。 For example, in order to ensure the embedment depth of the drilling 30 into the impermeable layer 10X, the impermeable layer 10X may be further drilled after the drilling water supply pressure value reaches the reference drilling water supply pressure value P X. The drilling water supply pressure value is an example of drilling data acquired during drilling.

(注入材注入工程)
次に、注入材注入工程では、図3(B)に示されるように、ロッド24の先端部24Tを難透水層10Xに到達させた状態で、ロッド24の先端部24Tから径方向に注入材32を噴射し、当該先端部24Tの周囲の土に注入材32を注入する。この注入材32は、ロッド24の先端部24Tの周囲の土粒子間の間隙に浸透し、土粒子同士を接着する。これにより、ロッド24の先端部24Tの周囲の土が固化し、円柱状の地盤改良部42Sが形成される。なお、注入材32は、例えば、水ガラスを含む溶材(溶液)とされる。
(Injection process)
Next, in the injection step, as shown in Fig. 3B, the injection material 32 is jetted from the tip 24T of the rod 24 in the radial direction with the tip 24T of the rod 24 reaching the impermeable layer 10X, and the injection material 32 is injected into the soil around the tip 24T. The injection material 32 penetrates into the gaps between the soil particles around the tip 24T of the rod 24, and bonds the soil particles together. As a result, the soil around the tip 24T of the rod 24 solidifies, and a cylindrical ground improvement portion 42S is formed. The injection material 32 is, for example, a solvent (solution) containing water glass.

次に、図3(C)に示されるように、ロッド24を所定量引き上げた状態で、ロッド24の先端部24Tから径方向に注入材32を噴射し、当該先端部24Tの周囲の土に注入材32を注入する。これにより、ロッド24の先端部24Tの周囲の土が固化し、円柱状の地盤改良部42Sが形成される。この際、上下に隣り合う地盤改良部42Sが連続するように、ロッド24の引き上げ量が調整される。 Next, as shown in FIG. 3(C), with the rod 24 raised a predetermined amount, the injection material 32 is sprayed radially from the tip 24T of the rod 24, and the injection material 32 is injected into the soil around the tip 24T. This causes the soil around the tip 24T of the rod 24 to solidify, forming a cylindrical ground improvement section 42S. At this time, the amount by which the rod 24 is raised is adjusted so that the vertically adjacent ground improvement sections 42S are continuous.

このようにロッド24を所定量ずつ引き上げながら地盤10の施工領域R2に注入材32を注入することより、図3(D)に示されるように、複数の地盤改良部42Sを上下方向(深度方向)に連続させる。これにより、難透水層10Xから地表に亘るとともに、下端部42Lが難透水層10Xに根入れされた円柱状の地盤改良体42を形成する。 In this way, by injecting the injection material 32 into the construction area R2 of the ground 10 while pulling up the rod 24 by a predetermined amount at a time, multiple ground improvement sections 42S are made continuous in the vertical direction (depth direction) as shown in FIG. 3(D). This forms a cylindrical ground improvement body 42 that extends from the impermeable layer 10X to the ground surface and has its lower end 42L embedded in the impermeable layer 10X.

そして、前述した削孔工程と注入材注入工程とを繰り返し、図1に示されるように隣り合う地盤改良体42を平面視にてラップさせることにより、壁状の遮水壁40(図1参照)を形成する。 Then, the above-mentioned hole drilling process and injection material injection process are repeated to overlap adjacent ground improvement bodies 42 in a plan view as shown in Figure 1, thereby forming a wall-shaped water shielding wall 40 (see Figure 1).

(効果)
次に、本実施形態の効果について説明する。
(effect)
Next, the effects of this embodiment will be described.

先ず、比較例に係る遮水壁の構築方法について説明する。図5には、比較例に係る遮水壁の構築方法によって施工された遮水壁100が示されている。この比較例に係る遮水壁の構築方法では、地盤10の施工領域R2を削孔する際に、ボーリング調査から得られた難透水層10Xの表面10X1の深度に基づいて、削孔30が難透水層10Xに到達したか否かを判断する。 First, a method for constructing a water-impermeable wall according to a comparative example will be described. FIG. 5 shows a water-impermeable wall 100 constructed by the method for constructing a water-impermeable wall according to a comparative example. In the method for constructing a water-impermeable wall according to the comparative example, when drilling a construction area R2 of the ground 10, it is determined whether or not the drilling 30 has reached the impermeable layer 10X based on the depth of the surface 10X1 of the impermeable layer 10X obtained from a boring survey.

ここで、図5では、難透水層10Xの表面10X1に不陸があり、施工領域R2の難透水層10Xの表面10X1の深度が、ボーリング調査を実施した試験領域R1の難透水層10Xの表面10X1の深度よりも深くなっている。この場合、比較例に係る遮水壁の構築方法のように、施工領域R2に遮水壁100を施工する際に、ボーリング調査から得られた難透水層10Xの表面10X1の深度に基づいて、削孔30が難透水層10Xに到達したか否かを判断すると、遮水壁100の下端部100Lが難透水層10Xに到達せず、遮水壁100の下端部100Lが難透水層10Xに根入れされないことになる。 5, the surface 10X1 of the impermeable layer 10X is uneven, and the depth of the surface 10X1 of the impermeable layer 10X in the construction area R2 is deeper than the depth of the surface 10X1 of the impermeable layer 10X in the test area R1 where the boring survey was conducted. In this case, as in the construction method of the impermeable wall according to the comparative example, when constructing the impermeable wall 100 in the construction area R2, if it is determined whether the drilling 30 has reached the impermeable layer 10X based on the depth of the surface 10X1 of the impermeable layer 10X obtained from the boring survey, the lower end 100L of the impermeable wall 100 will not reach the impermeable layer 10X, and the lower end 100L of the impermeable wall 100 will not be embedded in the impermeable layer 10X.

これに対して本実施形態に係る遮水壁の構築方法によれば、図2(A)に示されるように、削孔試験工程において、ボーリング調査によって難透水層10Xの深度が得られた地盤10の試験領域R1を、削孔機20を用いて削孔する。この際、ロッド24の先端部24Tから削孔水を送水しながら試験領域R1を削孔し、削孔30が難透水層10Xに到達したときの削孔送水圧力値を基準削孔送水圧力値Pとする。そして、図3(A)に示されるように、削孔工程において、削孔中に取得する削孔送水圧力値Pが基準削孔送水圧力値Pに達したときに、削孔30が難透水層10Xに到達したと判断する。 In contrast, according to the construction method of a water impermeable wall according to the present embodiment, in a drilling test step, as shown in Fig. 2(A), a test area R1 of the ground 10, in which the depth of the impermeable layer 10X has been obtained by a boring survey, is drilled using a drilling machine 20. At this time, the test area R1 is drilled while drilling water is fed from the tip 24T of the rod 24, and the drilling water supply pressure value when the drilling hole 30 reaches the impermeable layer 10X is set as a reference drilling water supply pressure value P X. Then, as shown in Fig. 3(A), in the drilling step, it is determined that the drilling hole 30 has reached the impermeable layer 10X when the drilling water supply pressure value P 2 obtained during drilling reaches the reference drilling water supply pressure value P X.

これにより、図1に示されるように、難透水層10Xの表面(地層境界)10X1に不陸があったとしても、削孔30を難透水層10Xに到達させることができる。また、注入材注入工程において、削孔30に注入材32を注入することにより、地盤改良体42の下端部を難透水層10Xに根入れすることができる。したがって、遮水壁40の下端部42Lを難透水層10Xにより確実に根入れすることができる。 As a result, as shown in FIG. 1, even if there are unevenness on the surface (layer boundary) 10X1 of the impermeable layer 10X, the drilled hole 30 can reach the impermeable layer 10X. In addition, in the injection material injection process, the injection material 32 is injected into the drilled hole 30, so that the lower end of the ground improvement body 42 can be embedded in the impermeable layer 10X. Therefore, the lower end 42L of the water shielding wall 40 can be embedded more reliably in the impermeable layer 10X.

また、例えば、図6に示される比較例のように、遮水壁100の下端部100Lが難透水層10Xに到達していない場合、矢印aで示されるように、遮水壁100の下端部100Lと難透水層10Xとの間から遮水壁100の内側に地下水が流入し、矢印bで示されるように、揚水井戸50からの揚水量が増加する可能性がある。 In addition, for example, as in the comparative example shown in Figure 6, if the lower end 100L of the water shielding wall 100 does not reach the impermeable layer 10X, groundwater may flow into the inside of the water shielding wall 100 between the lower end 100L of the water shielding wall 100 and the impermeable layer 10X, as shown by arrow a, and the amount of water pumped from the pumping well 50 may increase, as shown by arrow b.

これに対して本実施形態では、図7に示されるように、遮水壁40の下端部42Lが難透水層10Xに根入れされるため、遮水壁40の下端部42Lと難透水層10Xとの間から遮水壁40の内側に地下水が流入することが抑制される。したがって、本実施形態では、比較例に係る遮水壁40と比較して、揚水井戸50からの揚水量(矢印b)を低減することができる。 In contrast, in this embodiment, as shown in FIG. 7, the lower end 42L of the impermeable wall 40 is embedded in the impermeable layer 10X, so that groundwater is prevented from flowing into the inside of the impermeable wall 40 from between the lower end 42L of the impermeable wall 40 and the impermeable layer 10X. Therefore, in this embodiment, the amount of water pumped from the pumping well 50 (arrow b) can be reduced compared to the impermeable wall 40 in the comparative example.

なお、図6及び図7に示される符号WLは、自然地下水位の一例であり、符号WLは、揚水後の地下水位の一例である。 In addition, the symbol WL0 shown in Figs. 6 and 7 is an example of a natural groundwater level, and the symbol WL1 is an example of a groundwater level after pumping.

また、本実施形態では、薬液注入工法によって遮水壁40を施工する。そのため、本実施形態では、ソイルセメント柱列壁工法(SMW工法)と比較して、小型の重機(削孔機20)によって遮水壁40を施工することができる。また、本実施形態では、例えば、図7に示されるように、既存耐圧版52の上から遮水壁40を施工する場合、ソイルセメント柱列壁工法と比較して、既存耐圧版52に形成する作業孔54の直径を小さくすることができる。したがって、施工コストを削減することができる。 In addition, in this embodiment, the waterproof wall 40 is constructed using a chemical injection method. Therefore, in this embodiment, compared to the soil cement column wall method (SMW method), the waterproof wall 40 can be constructed using small heavy machinery (hole drilling machine 20). In addition, in this embodiment, for example, as shown in FIG. 7, when the waterproof wall 40 is constructed from above the existing pressure plate 52, the diameter of the working hole 54 formed in the existing pressure plate 52 can be made smaller than in the soil cement column wall method. Therefore, construction costs can be reduced.

(変形例)
次に、上記実施形態の変形例について説明する。
(Modification)
Next, a modification of the above embodiment will be described.

上記実施形態では、削孔工程において、削孔送水圧力値Pが基準削孔送水圧力値Pに達したときに、削孔30が施工領域R2の難透水層10Xに到達したと判断した。しかし、例えば、削孔送水圧力値Pが基準削孔送水圧力値Pに達しただけでなく、削孔送水圧力値Pが基準削孔送水圧力値P以上を所定時間維持したときに、削孔30が施工領域R2の難透水層10Xに到達したと判断しても良い。 In the above embodiment, in the drilling process, it is determined that the drilling 30 has reached the impermeable layer 10X of the construction area R2 when the drilling water supply pressure value P2 reaches the reference drilling water supply pressure value P X. However, for example, it may be determined that the drilling 30 has reached the impermeable layer 10X of the construction area R2 not only when the drilling water supply pressure value P2 reaches the reference drilling water supply pressure value P X , but also when the drilling water supply pressure value P2 is maintained at or above the reference drilling water supply pressure value P X for a predetermined time.

ここで、地盤10に岩等が埋設されている場合、削孔30が難透水層10Xに到達する前であっても、削孔送水圧力値Pが一時的に高くなる可能性がある。この場合、前述したように、削孔送水圧力値Pが基準削孔送水圧力値Pに達しただけでなく、削孔送水圧力値Pが基準削孔送水圧力値P以上を所定時間維持したときに、削孔30が難透水層10Xに到達したと判断することにより、削孔30が難透水層10Xに達したか否かの判断精度を高めることができる。 Here, when rocks or the like are buried in the ground 10, there is a possibility that the drilling water supply pressure value P2 may become temporarily high even before the drilling 30 reaches the impermeable layer 10X. In this case, as described above, by determining that the drilling 30 has reached the impermeable layer 10X not only when the drilling water supply pressure value P2 reaches the reference drilling water supply pressure value PX, but also when the drilling water supply pressure value P2 maintains the reference drilling water supply pressure value PX or more for a predetermined time, it is possible to improve the accuracy of determining whether the drilling 30 has reached the impermeable layer 10X.

また、上記実施形態では、削孔試験工程及び削孔工程において、同じ削孔機20用いた。しかし、削孔試験工程及び削孔工程では、異なる削孔機を用いても良い。 In addition, in the above embodiment, the same drilling machine 20 was used in the drilling test process and the drilling process. However, different drilling machines may be used in the drilling test process and the drilling process.

また、上記実施形態では、二重管ストレーナ工法によって遮水壁40を施工した。しかし、例えば、二重管ダブルパッカー工法によって遮水壁40を施工することも可能である。 In the above embodiment, the water shielding wall 40 was constructed using the double-pipe strainer method. However, it is also possible to construct the water shielding wall 40 using, for example, the double-pipe double packer method.

また、上記実施形態では、薬液注入工法によって遮水壁40を施工した。しかし、遮水壁は、例えば、ソイルセメント柱列壁工法(SMW工法)によって施工しても良い。この場合、例えば、削孔工程において、ソイルセメント柱の削孔中に取得する削孔送水圧力値が基準削孔送水圧力値に達したときに、各ソイルセメント柱の削孔が難透水層に到達したと判断すれば良い。 In the above embodiment, the water impermeable wall 40 was constructed using a chemical injection method. However, the water impermeable wall may also be constructed using, for example, a soil cement column wall method (SMW method). In this case, for example, in the drilling process, when the drilling water supply pressure value obtained during drilling of the soil cement column reaches the reference drilling water supply pressure value, it may be determined that the drilling of each soil cement column has reached the low permeability layer.

また、上記実施形態では、削孔中に削孔30に送水する削孔水の削孔送水圧力値Pを削孔データとした。しかし、削孔データは、削孔送水圧力値に限らず、例えば、地盤を掘削するビットの回転トルク又は削孔速度としても良いし、これらの削孔送水圧力値、ビットの回転トルク、及び削孔速度を組み合わせても良い。 In the above embodiment, the drilling data is the drilling water supply pressure value P2 of the drilling water supplied to the drilling hole 30 during drilling. However, the drilling data is not limited to the drilling water supply pressure value, and may be, for example, the rotation torque or drilling speed of the bit that excavates the ground, or a combination of the drilling water supply pressure value, the rotation torque of the bit, and the drilling speed.

以上、本発明の一実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、一実施形態及び各種の変形例を適宜組み合わせて用いても良いし、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。 Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment, and one embodiment and various modified examples may be used in appropriate combination, and the present invention may of course be embodied in various forms without departing from the spirit of the present invention.

10 地盤
10X 難透水層
20 削孔機
30 削孔
32 注入材
40 遮水壁
42 地盤改良体
V 地盤の位置
10 Ground 10X Impermeable layer 20 Drilling machine 30 Drilling hole 32 Injection material 40 Impermeable wall 42 Ground improvement body V Position of ground

Claims (2)

削孔機を用いて削孔水を送水しながら地盤を削孔し、削孔中に取得する削孔データに基づいて前記地盤の難透水層に削孔を到達させる削孔工程と、
前記削孔に注入材を注入し、前記地盤に地盤改良体を形成する注入材注入工程と、
を備え、
前記削孔データは、削孔中に前記削孔に送水する削孔水の削孔送水圧力値を含み、
前記難透水層の深度が取得されている位置の地盤を、削孔機を用いて削孔水を送水しながら削孔し、削孔が前記難透水層に到達したときの削孔送水圧力値を基準削孔送水圧力値とし、
前記削孔工程では、前記削孔送水圧力値が前記基準削孔送水圧力値に達したときに、前記削孔が前記難透水層に到達したと判断し、
前記削孔工程と前記注入材注入工程とを繰り返し、前記地盤改良体を壁状に連続させることで遮水壁を形成する、
遮水壁の構築方法。
a drilling step of drilling a hole in the ground while feeding drilling water using a drilling machine and causing the hole to reach a low-permeability layer of the ground based on drilling data acquired during the drilling;
A grout injection process for injecting grout into the drilled hole to form a ground improvement body in the ground;
Equipped with
The drilling data includes a drilling water supply pressure value of drilling water supplied to the drilling hole during drilling,
A drilling machine is used to drill a hole in the ground at a position where the depth of the impermeable layer has been obtained, while supplying drilling water, and the drilling water supply pressure value when the drilling reaches the impermeable layer is set as a reference drilling water supply pressure value;
In the drilling step, when the drilling water supply pressure value reaches the reference drilling water supply pressure value, it is determined that the drilling has reached the impermeable layer;
The drilling step and the injection step are repeated to form a water impermeable wall by connecting the ground improvement body in a wall shape.
How to build a watertight wall.
前記削孔工程では、前記削孔送水圧力値が、前記基準削孔送水圧力値に達し、かつ、前記基準削孔送水圧力値以上を所定時間維持したときに、前記削孔が前記難透水層に到達したと判断する、In the drilling step, when the drilling water supply pressure value reaches the reference drilling water supply pressure value and is maintained at or above the reference drilling water supply pressure value for a predetermined period of time, it is determined that the drilling has reached the impermeable layer.
請求項1に記載の遮水壁の構築方法。A method for constructing a water impermeable wall according to claim 1.
JP2020102953A 2020-06-15 2020-06-15 How to build a water barrier Active JP7475208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020102953A JP7475208B2 (en) 2020-06-15 2020-06-15 How to build a water barrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020102953A JP7475208B2 (en) 2020-06-15 2020-06-15 How to build a water barrier

Publications (2)

Publication Number Publication Date
JP2021195784A JP2021195784A (en) 2021-12-27
JP7475208B2 true JP7475208B2 (en) 2024-04-26

Family

ID=79197427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020102953A Active JP7475208B2 (en) 2020-06-15 2020-06-15 How to build a water barrier

Country Status (1)

Country Link
JP (1) JP7475208B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160550A (en) 1998-11-27 2000-06-13 Takenaka Doboku Co Ltd Landing judging control method for ground improvement processing machine
JP2008101388A (en) 2006-10-19 2008-05-01 Takenaka Doboku Co Ltd Construction work management method for soil improving construction method and processing machine for soil improvement
JP2017115457A (en) 2015-12-25 2017-06-29 山下工業株式会社 Ground investigation method and ground investigation device
US20190291153A1 (en) 2018-03-23 2019-09-26 Injectis Bvba Method and device for treating soil
JP2019167751A (en) 2018-03-23 2019-10-03 ライト工業株式会社 Survey method of ground property
JP2020007815A (en) 2018-07-10 2020-01-16 株式会社熊谷組 Determination method of stratum

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117637B2 (en) * 1996-03-06 2000-12-18 ライト工業株式会社 Ground survey device and ground survey method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160550A (en) 1998-11-27 2000-06-13 Takenaka Doboku Co Ltd Landing judging control method for ground improvement processing machine
JP2008101388A (en) 2006-10-19 2008-05-01 Takenaka Doboku Co Ltd Construction work management method for soil improving construction method and processing machine for soil improvement
JP2017115457A (en) 2015-12-25 2017-06-29 山下工業株式会社 Ground investigation method and ground investigation device
US20190291153A1 (en) 2018-03-23 2019-09-26 Injectis Bvba Method and device for treating soil
JP2019167751A (en) 2018-03-23 2019-10-03 ライト工業株式会社 Survey method of ground property
JP2020007815A (en) 2018-07-10 2020-01-16 株式会社熊谷組 Determination method of stratum

Also Published As

Publication number Publication date
JP2021195784A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
CN106400782B (en) A kind of construction method for going along with sb. to guard him hole-drilling interlocking pile using rotary drilling rig construction foundation pit
JP5182922B2 (en) Water stop grout method and system under high water pressure
AU2015202948B2 (en) Oil and Gas Well and Field Integrity Protection System
CN106192971A (en) A kind of artesian water water-level observation well construction and the method for multilamellar water-level observation
CN108842802A (en) Piles in Karst Region base construction method
Lande et al. Effects of drilling for tieback anchors on surrounding ground: Results from field tests
CN108331595A (en) One kind is soft to mould the body Karst Tunnel reinforcement process that caves in
JP7475208B2 (en) How to build a water barrier
Heath Drilled pile foundations in porous, pinnacled carbonate rock
CN101158159A (en) Whole-course hole-preguiding hammering entering-rock PHC pile tube construction process
JP6857566B2 (en) Ground purification method
JP7076100B2 (en) How to identify the stratum
JP2951654B1 (en) In situ sampling in thick sedimentary rock formations.
JP5890566B1 (en) Marked boring rod and boring hole trajectory correction method using this
JP6236306B2 (en) Drilling method
JP2005083002A (en) Ground grouting method and method of anchoring injection pipe to ground
Bruce The Basics of Drilling for Specialty Geotechnical Construction Processes
CN112610181A (en) Underwater tunnel engineering exploration hole plugging structure and plugging method thereof
JP2955170B2 (en) On-site permeability test equipment
Walker An example of the use of jet grouting to permit tunneling in chemically weathered limestone
KR101003018B1 (en) Measuring system and measuring method for water presure
Chuaqui et al. A case study: Two-fluid jet grouting for Tunneling Application-Soil stabilization and permeability reduction
JPH0348963B2 (en)
CN109183815A (en) The shield-tube embedment method of major diameter rotary digging bored concrete pile
CN105887800B (en) Large equipment base sinking New Method for Processing in deep backfill

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240416

R150 Certificate of patent or registration of utility model

Ref document number: 7475208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150