JP5182922B2 - Water stop grout method and system under high water pressure - Google Patents

Water stop grout method and system under high water pressure Download PDF

Info

Publication number
JP5182922B2
JP5182922B2 JP2008013145A JP2008013145A JP5182922B2 JP 5182922 B2 JP5182922 B2 JP 5182922B2 JP 2008013145 A JP2008013145 A JP 2008013145A JP 2008013145 A JP2008013145 A JP 2008013145A JP 5182922 B2 JP5182922 B2 JP 5182922B2
Authority
JP
Japan
Prior art keywords
grout
pressure
water
hole
drainage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008013145A
Other languages
Japanese (ja)
Other versions
JP2009174171A (en
Inventor
泰宏 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2008013145A priority Critical patent/JP5182922B2/en
Publication of JP2009174171A publication Critical patent/JP2009174171A/en
Application granted granted Critical
Publication of JP5182922B2 publication Critical patent/JP5182922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

本発明は高水圧下の止水グラウト工法及びシステムに関し、とくに地下深部に坑道を構築する際に発生しうる高水圧の湧水に対応するための止水グラウト工法及びシステムに関する。   The present invention relates to a still water grout construction method and system under high water pressure, and more particularly to a still water grout construction method and system for dealing with high water pressure spring water that can be generated when a tunnel is constructed deep underground.

地下深部の地層は難透水性・低透気性といった遮蔽性能を有しており、そのような遮蔽性能を利用して地上の不要な物質等を地下深部の地層内に貯留・処分する技術の開発が進められている。例えば原子力発電所から生じる放射性廃棄物(放射性核種を含む)を人間の生活環境から隔離して処分するため、図4(A)に示すように、地下深度300〜1000m程度の地層(以下、深地層という)の安定した岩盤内に構築した処分坑道6bに放射性廃棄物を閉じ込める地層処分施設の建設が計画されている(非特許文献1参照)。   The deep underground layer has shielding performance such as poor permeability and low air permeability, and the development of technology to store and dispose of unnecessary substances on the ground in the underground layer using such shielding performance. Is underway. For example, in order to isolate and dispose of radioactive waste (including radionuclides) generated from nuclear power plants from the human living environment, as shown in FIG. The construction of a geological disposal facility for confining radioactive waste in a disposal mine 6b constructed in a stable rock bed (referred to as Non-Patent Document 1) is planned.

図4(A)の地層処分施設は地表2上の地上設備3と地下施設とからなり、地下施設は、深地層1に構築した複数の処分坑道6b及びそれらを相互に連絡する主要坑道6aと、作業員等が地表2から処分坑道6bに出入りするためのアクセス立坑4と、放射性廃棄物を地表2から処分坑道6bへ搬入するためのアクセス斜坑5とで構成されている。放射性廃棄物を地下施設の処分坑道6b内に搬入・集積したのち、処分坑道6bの内側をベントナイト等の緩衝材で充填して埋め戻し、深地層1の遮蔽性能を損なわない状態に復帰させる。放射性廃棄物中の核種は長期にわたり減衰しつつも存在し続けるが、遮蔽性能を有する深地層1と緩衝材等とを組み合わせた多重バリアによって閉じ込めることにより、人間の生活環境への放射性核種の移行を長期にわたり確実に抑止することが期待できる。   The geological disposal facility in FIG. 4 (A) is composed of a ground facility 3 and an underground facility on the surface 2, and the underground facility is composed of a plurality of disposal tunnels 6b constructed in the deep underground layer 1 and main tunnels 6a interconnecting them. The access shaft 4 is used for workers to enter and exit the disposal tunnel 6b from the surface 2, and the access inclined shaft 5 is used to carry radioactive waste from the surface 2 to the disposal tunnel 6b. After the radioactive waste is carried and accumulated in the disposal mine 6b of the underground facility, the inside of the disposal mine 6b is filled with a buffer material such as bentonite to be backfilled, so that the shielding performance of the deep underground layer 1 is restored. Radionuclides in radioactive waste continue to exist while decaying over a long period of time, but radionuclides are transferred to the human living environment by being confined by multiple barriers combining the deep underground layer 1 with shielding performance and buffer materials Can be expected to be reliably deterred over a long period of time.

図4(A)のような地層処分施設を構築する場合は、同図(B)に示すように、先ず深地層1にアクセスするための立坑4や斜坑5を掘削し、その後に深地層1の主要坑道6aや処分坑道6b(以下、両者をまとめて坑道6ということがある)を水平方向に展開して掘削する。坑道6の掘削に際しては、放射性核種の卓越した移行通路となりうる水みち等を作らないことが重要である。また、深地層1には湧水の原因となる未固結層、水みちとなる亀裂、断層破砕部、透水性の高い割れ目等の地層(以下、湧水発生地層という)が存在すると想定されるが、掘削する坑道6(大気圧状態)と地上近傍の地下水位との間にはかなりの高差圧(例えば地下300mの坑道の場合は3MPa、1000mの場合10MPaの圧力差)を生じる可能性があり、同図(B)のように坑道6の掘削時に湧水発生地層8が存在すると突発的に大量・高圧の湧水9が発生して施工の安全性や工程に多大な影響を与えるので、坑道6の掘削に際しては湧水9に対する対策工が不可欠である。   When constructing a geological disposal facility as shown in FIG. 4 (A), as shown in FIG. 4 (B), first, a shaft 4 or an inclined shaft 5 for accessing the deep ground 1 is excavated, and then the deep ground 1 The main tunnel 6a and the disposal tunnel 6b (hereinafter, both may be collectively referred to as the tunnel 6) are developed in the horizontal direction and excavated. When excavating the tunnel 6, it is important not to create a water channel or the like that can be an excellent transition path for radionuclides. In addition, it is assumed that there are unconsolidated layers that cause spring water, cracks that become water channels, fault fractures, and highly permeable fractures (hereinafter referred to as spring formation layers) in the deep underground layer 1 However, a considerably high differential pressure can be generated between the excavated tunnel 6 (atmospheric pressure) and the groundwater level near the ground (for example, a pressure difference of 3 MPa for a tunnel of 300 m underground and 10 MPa for a 1000 m underground). If there is a spring formation layer 8 when excavating the tunnel 6 as shown in Fig. 5 (B), a large amount of high-pressure spring 9 is suddenly generated, which has a great impact on the safety and process of construction. Therefore, when excavating the mine 6, countermeasures against the spring 9 are indispensable.

従来から湧水9に対する代表的な対策工として、湧水発生地層8に水抜きボーリング孔を設ける水抜き工法、湧水発生地層8にグラウト材(セメント系材料、粘土系材料等)を注入する止水グラウト工法等が知られている。通常の山岳トンネル等の掘削作業では、一般的に排水が容易であることから先ず水抜き工法が適用され、それでも不十分な場合に止水グラウト工法が適用されている。これに対して地層処分施設を構築する場合は、水抜き工法によって地下水を坑道6に集水すると周辺の地下水位が低下すると共に坑道6の地質的・化学的環境が乱されて深地層1の遮蔽性能を損なうおそれがあるため、周辺の地下水位をできるだけ低下させない止水グラウト工法を用いることが好ましいとされている(非特許文献2参照)。また、深地層1での水抜き工法は、地上までの揚水距離が長くなるので、通常の山岳トンネル等の水抜き工法に比してコスト高となる問題もある。   Conventionally, as a typical countermeasure work for the spring water 9, a water draining method in which a water draining boring hole is provided in the spring water generating ground 8, and a grout material (cement-based material, clay-based material, etc.) is injected into the spring water generating ground 8. The still water grout method is known. In general excavation work such as a mountain tunnel, the drainage method is first applied because drainage is generally easy, and the water stop grout method is applied when it is still insufficient. On the other hand, when constructing a geological disposal facility, if groundwater is collected in the tunnel 6 by the drainage method, the groundwater level in the surrounding area is lowered and the geological and chemical environment of the tunnel 6 is disturbed. Since there is a possibility of impairing the shielding performance, it is considered preferable to use a water-stopping grout method that does not lower the surrounding groundwater level as much as possible (see Non-Patent Document 2). Further, the water drainage method in the deep ground layer 1 has a problem that the pumping distance to the ground becomes long, so that the cost is higher than that of a normal water drainage method such as a mountain tunnel.

地下に構造物(坑道等)を構築する際の止水グラウト工法として、特許文献1は、構造物から周囲の透水性岩盤に複数の孔を形成し、何れかの孔にセメントミルク(グラウト材)を3〜10MPaで圧力注入すると共に他の孔から余剰水を排水する工程を複数の孔に対して順次繰り返し、各工程において低濃度(セメント/水が1/30〜1/500の割合)のセメントミルクを用いると共にセメントミルクの注入の進行に応じて注入圧力を徐々に大きくすることにより、岩盤内の亀裂(湧水発生地層)の深部又は細部までセメントミルクが充填された止水領域を形成するグラウト工法を開示している。また特許文献2は、止水対象の岩盤内に浸透水流(地下水の流れ)が存在する場合に、水流の上流側に形成したグラウト流入孔(ボーリング孔)から粘土懸濁液(グラウト材)を供給し、水流の下流部に形成した空間(坑道等)に粘土懸濁液を水流により自然流下させることにより、岩盤内の亀裂(湧水発生地層)を均一で高い密度で充填するグラウト工法を開示している。   As a waterproofing grouting method for constructing a structure (such as a tunnel) in the basement, Patent Document 1 forms a plurality of holes from the structure to the surrounding permeable rock, and cement milk (grouting material) in any of the holes. ) Is injected at a pressure of 3 to 10 MPa, and the process of draining excess water from other holes is sequentially repeated for a plurality of holes, and in each step, the concentration is low (ratio of cement / water is 1/30 to 1/500) By using the cement milk and gradually increasing the injection pressure as the cement milk is injected, the water stop area filled with the cement milk up to the depth or detail of the crack (spring formation layer) in the bedrock The grout method to be formed is disclosed. In addition, Patent Document 2 discloses that when a seepage water flow (groundwater flow) exists in the rock mass to be stopped, a clay suspension (grouting material) is removed from a grout inflow hole (boring hole) formed on the upstream side of the water flow. A grout method that fills cracks (spring formations) in the bedrock with a uniform and high density by allowing the clay suspension to naturally flow down into the space (tunnels, etc.) formed downstream of the water flow. Disclosure.

特開2006−299741号公報JP 2006-299741 A 特許第2691252号公報Japanese Patent No. 2691252 電気事業連合会・核燃料サイクル開発機構「TRU廃棄物処分技術検討書第3章、地層処分の工学技術」、2005年9月、インターネット<URL:http://www.fepc−atomic.jp/nuclear/waste/tru/001.html>Japan Federation of Electric Power Companies / Nuclear Fuel Cycle Development Organization “TRU Waste Disposal Technology Review Chapter 3; Engineering Technology for Geologic Disposal”, September 2005, Internet <URL: http: // www. fepc-atomic. jp / nuclear / waste / tru / 001. html> 佐藤稔紀ほか「地下1,000mに向けて・瑞浪超深地層研究所の建設計画」サイクル機構技法、第20号、2003年9月、インターネット<URL:http://jolisfukyu.tokai−sc.jaea.go.jp/fukyu/gihou/pdf2/n20−04.pdf>Yuki Sato et al. “Toward 1,000m underground: Construction plan of Mizunami Underground Research Laboratory” Cycle Organization Technique, No. 20, September 2003, Internet <URL: http: // jolisfukyu. tokai-sc. jaea. go. jp / fukyu / gihou / pdf2 / n20-04. pdf>

しかし、特許文献1のように湧水発生地層にグラウト材を圧力注入する止水グラウト工法は、深地層1のような高水圧下でグラウト材を注入できる適当な装置(ポンプ等)が存在しない問題点がある。一般に止水グラウト工法では湧水圧(外水圧)の2〜3倍の圧力でグラウト材を注入する必要があり、通常の山岳トンネル等では最大でも注入圧力を7〜8MPa程度とすればグラウト材の注入が可能であるが、例えば地下深度1000m程度の深地層1では湧水圧も10MPa程度の高圧となるため、既存の注入装置ではグラウト材を注入することができない。また、たとえ深地層1でグラウト材を注入する適当な注入装置が開発できたとしても、注入圧力を非常に大きくする必要があるため、周辺岩盤の種類や状態によっては高い注入圧により割裂破壊(亀裂)等が発生しうるという問題点もある。深地層1の岩盤に破壊(亀裂)が発生すると、放射性核種の移行通路となる水みちになりうると共に深地層1の遮蔽性能が損なわれる。高水圧の深地層において岩盤を破壊することなく施工できる止水グラウト工法の開発が望まれている。   However, as in Patent Document 1, the still water grouting method for injecting the grouting material into the spring water generating layer does not have an appropriate device (such as a pump) that can inject the grouting material under high water pressure as in the deep layer 1. There is a problem. In general, it is necessary to inject the grout material at a pressure two to three times the spring pressure (external water pressure) in the still water grout method, and in normal mountain tunnels, etc., if the injection pressure is about 7-8 MPa at the maximum, Although injection is possible, for example, in the deep underground layer 1 with a depth of about 1000 m, the spring pressure is also about 10 MPa, so the existing injection device cannot inject the grout material. Even if an appropriate injection device for injecting grout material in the deep ground layer 1 can be developed, it is necessary to increase the injection pressure very much. Therefore, depending on the type and condition of the surrounding rock mass, splitting fracture ( There is also a problem that cracks and the like may occur. When a fracture (crack) occurs in the bedrock of the deep underground layer 1, it can become a water channel serving as a radionuclide migration path, and the shielding performance of the deep underground layer 1 is impaired. There is a demand for the development of a still water grout method that can be constructed without destroying the bedrock in deep layers of high water pressure.

これに対し、特許文献2が開示するような地下水の流れが深地層1内に存在する場合は、その流れを利用してグラウト材を注入することが期待できる。しかし、実際の深地層1の地下水は停止しているか、流動していても極めて低流速であり、深地層1には特許文献2の工法を適用できないことが多い。また、特許文献2の工法では地下水の流動方向にグラウト材を自然流下させるので、グラウト材が湧水発生地層以外の場所にも浸透してしまう問題点もある。深地層1の地質的・化学的環境を保持するためには、グラウト材Gの注入範囲をできる限り湧水発生地層に限定し、想定外の場所への浸透は避けることが望ましい。更に、特許文献2の工法では、水流の上流側から供給されたグラウト材が亀裂(湧水発生地層)に充填されるに応じて流れが止まる可能性があり、そのような流れの停止に抗して上流側にグラウト材を供給するためには注入圧力を大きくする必要があるため、やはり深地層1の岩盤に破壊(亀裂)を発生させる可能性が残る。   On the other hand, when the flow of groundwater as disclosed in Patent Document 2 is present in the deep ground layer 1, it can be expected to inject the grout material using the flow. However, even if the actual underground water in the deep ground layer 1 is stopped or flowing, the flow rate is extremely low, and the method of Patent Document 2 is often not applicable to the deep ground layer 1. Moreover, in the construction method of Patent Document 2, since the grout material naturally flows down in the direction of groundwater flow, there is also a problem that the grout material penetrates into places other than the spring water formation layer. In order to maintain the geological and chemical environment of the deep layer 1, it is desirable to limit the injection range of the grout material G to the spring generation layer as much as possible and avoid infiltration into unexpected locations. Furthermore, in the construction method of Patent Document 2, there is a possibility that the flow stops when the grout material supplied from the upstream side of the water flow is filled in the crack (spring formation layer). Thus, in order to supply the grout material upstream, it is necessary to increase the injection pressure. Therefore, there is still a possibility that fracture (crack) occurs in the bedrock of the deep underground layer 1.

そこで本発明の目的は、高水圧の深地層において岩盤を破壊することなく施工できる止水グラウト工法及びシステムを提供することにある。   Therefore, an object of the present invention is to provide a still water grouting method and system that can be constructed in a deep layer of high water pressure without destroying the rock mass.

図1の実施例を参照するに、本発明による高水圧下の止水グラウト工法は、地下深部の坑道6(図4(A)の坑道6a、6b参照)の構築時に生じうる高水圧の湧水9(図4(B)参照)を抑える止水グラウト工法において、坑道6から周囲の湧水発生地質8(図4(B)も参照)にグラウト孔11及び水抜き孔21を穿ち、グラウト孔11に圧力計13及びグラウト材注入装置15を接続すると共に水抜き孔21に制御バルブ22及び排水装置25を接続し、水抜き孔21の制御バルブ22を徐々に拡げてグラウト孔11の圧力計13が湧水圧より低い所定圧力P以下となる初期開度に調節したうえで注入装置15を駆動してグラウト材Gを注入し、グラウト材Gの注入進行によるグラウト孔11の圧力計13の圧力上昇に応じて制御バルブ22の開度を拡げて圧力計13を前記所定圧力P以下に維持してなるものである。 Referring to the embodiment of FIG. 1, the high water pressure still water grouting method according to the present invention is a high water pressure spring that can be generated when a deep underground tunnel 6 (see the tunnels 6a and 6b in FIG. 4A) is constructed. In the still water grouting method for suppressing water 9 (see FIG. 4 (B)), a grouting hole 11 and a draining hole 21 are drilled from the tunnel 6 to the surrounding spring generation geology 8 (see also FIG. 4 (B)). The pressure gauge 13 and the grout injection device 15 are connected to the hole 11, the control valve 22 and the drainage device 25 are connected to the drain hole 21, and the control valve 22 of the drain hole 21 is gradually expanded to increase the pressure in the grout hole 11. meter 13 drives the injection device 15 after having adjusted the initial opening degree equal to or less than a predetermined pressure P is lower than seepage water pressure injected grout G, the grout G injection proceeds by pressure gauge 13 of the grout holes 11 Control valve according to pressure rise By expanding the 22 opening of those formed by maintaining the pressure gauge 13 below the predetermined pressure P.

また図1のブロック図を参照するに、本発明による高水圧下の止水グラウトシステムは、地下深部の坑道6(図4の坑道6a、6b参照)の構築時に生じうる高水圧の湧水9(図4(B)を抑える止水グラウトシステムにおいて、坑道6から周囲の湧水発生地質8(図4(B)も参照)に穿ったグラウト孔11に接続する圧力計13及びグラウト材注入装置15、その湧水発生地質8に坑道6から穿った水抜き孔21に接続する制御バルブ22及び排水装置25、並びに水抜き孔21の制御バルブ22を徐々に拡げてグラウト孔11の圧力計13が湧水圧より低い所定圧力P以下となる初期開度に調節したうえでグラウト材注入装置15を駆動し且つグラウト材Gの注入進行によるグラウト孔11の圧力計13の圧力上昇に応じて制御バルブ22の開度を拡げて圧力計13を前記所定圧力P以下に維持する制御装置26を備えてなるものである。 Referring also to the block diagram of FIG. 1, the high water pressure still water grout system according to the present invention is a high water pressure spring 9 that can be generated when a deep underground tunnel 6 (see the tunnels 6a and 6b in FIG. 4) is constructed. (In the still water grouting system for suppressing FIG. 4 (B), a pressure gauge 13 and a grouting material injection device connected to the grouting hole 11 bored from the tunnel 6 to the surrounding spring generation geology 8 (see also FIG. 4 (B)). 15. The control valve 22 and drainage device 25 connected to the drain hole 21 drilled from the tunnel 6 in the spring generation geology 8 and the control valve 22 of the drain hole 21 are gradually expanded to increase the pressure gauge 13 of the grout hole 11. control valve according to the pressure gauge 13 pressure rise of the grout holes 11 but by infusion progression Spring drives the grout injection device 15 after having adjusted the lower predetermined pressure P hereinafter become initial opening than the water pressure and grout G And expanding the second opening in which a pressure gauge 13 comprising a control device 26 for maintaining below the predetermined pressure P.

好ましくは、水抜き孔21に排水流量計24を設け、圧力計13の圧力上昇に代えて又は加えて、排水流量計24の排水流量の減少に応じて制御バルブ22の開度を拡げる。更に好ましくは、水抜き孔21の制御バルブ22が全開となり且つ排水流量計24の排水流量が所定流量W以下となるまでグラウト孔11へのグラウト材Gの注入を継続する。望ましくは、図1に示すように、グラウト材注入装置15にグラウト材Gの粘度又は硬化速度を調整する調整装置16を含め、グラウト孔11へのグラウト材Gの注入時に排水流量計24の排水流量が低減しない場合にグラウト材Gの粘度又は硬化速度を高める。   Preferably, a drainage flow meter 24 is provided in the drain hole 21, and the opening degree of the control valve 22 is increased in accordance with a decrease in the drainage flow rate of the drainage flowmeter 24 instead of or in addition to the pressure increase of the pressure gauge 13. More preferably, the injection of the grout material G into the grout hole 11 is continued until the control valve 22 of the drain hole 21 is fully opened and the drainage flow rate of the drainage flow meter 24 becomes a predetermined flow rate W or less. Desirably, as shown in FIG. 1, the grout material injection device 15 includes an adjusting device 16 that adjusts the viscosity or curing speed of the grout material G, and the drainage of the drainage flow meter 24 when the grout material G is injected into the grout hole 11. When the flow rate is not reduced, the viscosity or curing rate of the grout material G is increased.

本発明による高水圧下の止水グラウト工法及びシステムは、地下深部の坑道6から周囲の湧水発生地質8に穿ったグラウト孔11に圧力計13及びグラウト材注入装置15を接続すると共に、その湧水発生地質8に坑道6から穿った水抜き孔21に制御バルブ22及び排水装置25を接続し、水抜き孔21の制御バルブ22を徐々に拡げてグラウト孔11の圧力計13が湧水圧より低い所定圧力P以下となる初期開度に調節したうえでグラウト材注入装置15を駆動してグラウト材Gの注入を開始し、グラウト材Gの注入進行によるグラウト孔11の圧力計13の圧力上昇に応じて制御バルブ22の開度を拡げて圧力計13を前記所定圧力P以下に維持しながらグラウト材Gの注入を継続するので、次の顕著な効果を奏する。 The water pressure grouting method and system according to the present invention connects a pressure gauge 13 and a grouting material injection device 15 to a grouting hole 11 drilled in a surrounding spring water generating geology 8 from a deep underground tunnel 6 and the spring water generated geologic 8 connects the control valve 22 and the drainage device 25 to drain hole 21 bored from the tunnel 6, a pressure gauge 13 of the grout holes 11 spread gradually control valve 22 of the drainage holes 21 Spring pressure The grout material injection device 15 is driven after adjusting the initial opening to be lower than the lower predetermined pressure P, the injection of the grout material G is started, and the pressure of the pressure gauge 13 in the grout hole 11 by the progress of the injection of the grout material G since continued injection of grout G while maintaining the pressure gauge 13 below the predetermined pressure P by expanding the opening of the control valve 22 in response to an increase offers the following remarkable effects.

(イ)水抜き孔21の制御バルブ22の開度の調節によりグラウト孔11と水抜き孔21との間に人工的な動水勾配Uを形成するので、地下深部の岩盤強度が弱い場合でも、グラウト孔11が岩盤に破壊(亀裂)を生じさせない所定圧力P以下となるように制御バルブ22の開度を調節してグラウト材Gを注入することができる。
(ロ)グラウト材Gの注入の進行に応じて人工的な動水勾配Uは徐々に小さくなりうるが、水抜き孔21の制御バルブ22の調節により動水勾配Uを回復させてグラウト孔11を所定圧力P以下に維持するので、岩盤破壊(亀裂)の原因となりうるグラウト材Gの注入圧力の増大を避けることができる。
(ハ)また、グラウト孔11を所定圧力P以下に維持するので、例えば10MPa程度の高水圧下の深地層においても、比較的低圧の既存のグラウト材注入装置15を利用してグラウト材Gを注入することができる。
(A) Since an artificial hydrodynamic gradient U is formed between the grout hole 11 and the drain hole 21 by adjusting the opening degree of the control valve 22 of the drain hole 21, even if the bedrock strength in the deep underground is weak The grout material G can be injected by adjusting the opening of the control valve 22 so that the grout hole 11 becomes a predetermined pressure P or less that does not cause fracture (crack) in the rock.
(B) Although the artificial hydrodynamic gradient U can be gradually reduced as the injection of the grout material G progresses, the hydrodynamic gradient U is recovered by adjusting the control valve 22 of the drain hole 21 and the grout hole 11. Is kept below the predetermined pressure P, it is possible to avoid an increase in the injection pressure of the grout material G that may cause rock mass destruction (cracking).
(C) Since the grout hole 11 is maintained at a predetermined pressure P or less, the grout material G is also used in a deep layer under a high water pressure of, for example, about 10 MPa using the existing grout material injection device 15 having a relatively low pressure. Can be injected.

(ニ)グラウト孔11及び水抜き孔21の穿設位置は湧水発生地質8の形状に合わせて任意に選択し、その形状に応じた人工的な動水勾配Uを形成してグラウト材Gを浸透させることができる。すなわち、グラウト材Gの浸透向きの制御が可能であり、グラウト材Gの想定外の場所への浸透を防ぐことができる。
(ホ)また、人工的な動水勾配Uによるグラウト材Gの浸透過程における目詰まり又は硬化を利用して湧水発生地質8の湧水を低下させるので、通常の止水グラウト工法で使用されるセメント系のグラウト材Gだけでなく、硬化速度の遅い低アルカリセメント系や粘土系のグラウト材Gも利用できる。
(D) The drilling positions of the grout hole 11 and the drain hole 21 are arbitrarily selected according to the shape of the spring generating geology 8, and an artificial hydrodynamic gradient U corresponding to the shape is formed to form the grout material G. Can penetrate. That is, the penetration direction of the grout material G can be controlled, and the grout material G can be prevented from penetrating to an unexpected place.
(E) Moreover, since the spring water of the spring water generation geology 8 is lowered by using clogging or hardening in the infiltration process of the grout material G due to the artificial hydraulic gradient U, it is used in the normal still water grout method. In addition to the cement-based grout material G, a low-alkali cement-based or clay-based grout material G having a slow curing rate can be used.

図1(A)は、本発明の止水グラウトシステムを図4(A)に示すような放射性廃棄物の地層処分施設の坑道6を深地層1に掘削する際に適用した実施例を示し、図4(B)の線I−Iにおける深地層1の坑道6を含む水平断面図を表している。図示例では、地表2から深地層1に立坑4又は斜坑5を掘削したのち、その立坑4又は斜坑5の下端から異なる水平方向に、想定される湧水発生地層8を前方探査しながら2本の主要坑道6a及び処分坑道6bを同時に掘削している。例えば坑道6bの掘削時の前方探査(例えば物理探査や探りボーリング探査等)により湧水発生地層8の存在が検出された場合に、本発明の止水グラウト工法をプレグラウト工法として用いて湧水発生地層8にグラウト材Gを注入し、坑道6bの計画位置(掘削計画位置)に止水ゾーン19を形成することで高水圧の湧水9の発生を未然に防止する(図1(B)参照)。   FIG. 1A shows an embodiment in which the still water grout system of the present invention is applied when excavating a mine 6 of a geological disposal facility for radioactive waste as shown in FIG. The horizontal sectional view containing the mine shaft 6 of the deep ground layer 1 in the line II of FIG. 4 (B) is represented. In the illustrated example, after excavating the vertical shaft 4 or the inclined shaft 5 from the ground surface 2 to the deep ground layer 1, two of them are searched forward from the lower end of the vertical shaft 4 or the inclined shaft 5 in different horizontal directions while searching for the expected spring water generation layer 8. The main tunnel 6a and the disposal tunnel 6b are excavated simultaneously. For example, when the presence of the spring formation layer 8 is detected by forward exploration (for example, geophysical exploration, exploration drilling exploration, etc.) during excavation of the mine shaft 6b, spring water is generated by using the still water grouting method of the present invention as a pre-grouting method. By injecting the grout material G into the formation 8 and forming the water stop zone 19 at the planned position (excavation planned position) of the mine shaft 6b, the generation of the high-pressure spring 9 is prevented in advance (see FIG. 1B). ).

以下、図1の実施例を参照して本発明の止水グラウト工法及びシステムを説明するが、本発明の適用範囲は地層処分施設のような深地層1に限定されるものではなく、高水圧の湧水9が発生しうる通常の山岳トンネルや地下備蓄基地等の構築時にも広く適用可能である。また、本発明の止水グラウト工法は、プレグラウト工法として用いるだけでなく、坑道6の掘削時に湧水9が発生した後に周囲の湧水発生地質8に対してグラウト材Gを注入するポストグラウト工法として用いることもできる。   Hereinafter, the still water grouting method and system of the present invention will be described with reference to the embodiment of FIG. 1, but the scope of the present invention is not limited to the deep underground layer 1 such as a geological disposal facility, but a high water pressure It can be widely applied to the construction of ordinary mountain tunnels and underground storage bases where spring water 9 can be generated. In addition, the still water grouting method of the present invention is not only used as a pre-grouting method, but also a post grouting method in which a grouting material G is injected into the surrounding spring water generating geology 8 after the spring water 9 is generated during excavation of the tunnel 6. Can also be used.

先ず、深地層1の坑道6から周囲の湧水発生地質8まで少なくとも一対のボーリング孔11、21を削孔し、一方のボーリング孔21を排水装置25と接続して水抜き孔とし、他のボーリング孔11をグラウト材注入装置15と接続してグラウト孔とする。グラウト孔11及び水抜き孔21の削孔位置(削孔方向、削孔深さを含む。以下同じ)は、止水対象の湧水発生地質8の形状(例えば亀裂の走向や傾斜等)に合わせて任意に選択することができる。後述するように、本発明ではグラウト孔11と水抜き孔21との間に人工的な動水勾配Uを形成してグラウト材Gを浸透させるが、湧水発生地質8の形状に位置合わせてグラウト孔11及び水抜き孔21の削孔位置を定めることにより、例えば亀裂の走行や傾斜に沿ってグラウト材Gを浸透させて止水ゾーン19を形成することができ、グラウト材Gが湧水発生地質8外の場所へ浸透するのを防ぐことができる。   First, at least a pair of boring holes 11 and 21 are drilled from the tunnel 6 of the deep ground layer 1 to the surrounding spring water generation geology 8, and one of the boring holes 21 is connected to a drainage device 25 to form a drain hole. The boring hole 11 is connected to the grout material injection device 15 to form a grout hole. The drilling positions (including the drilling direction and drilling depth; the same applies hereinafter) of the grout hole 11 and the drain hole 21 are the same as the shape of the spring generation geology 8 (for example, the strike direction and inclination of the crack). Any combination can be selected. As will be described later, in the present invention, an artificial hydrodynamic gradient U is formed between the grout hole 11 and the drain hole 21 to infiltrate the grout material G. By determining the drilling positions of the grout hole 11 and the drain hole 21, for example, the water stop zone 19 can be formed by infiltrating the grout material G along the traveling and inclination of the crack, and the grout material G is spring water. It is possible to prevent penetration into a place outside the generated geology 8.

グラウト孔11及び水抜き孔21は、図1に示すように、将来的に坑道6の掘削が計画されている坑道計画位置7と重なるように削孔することが望ましい。深地層1に地層処分施設を構築する場合は、ボーリング孔等が将来的に放射性核種の水みち等となる可能性があり、岩盤中にボーリング孔が残存することが望ましくない。グラウト孔11及び水抜き孔21を坑道計画位置7と重ねて削孔すれば、その後の坑道6の掘削によってグラウト孔11及び水抜き孔21が残存しなくなり、水みちとなるおそれがなくなる。図示例では、処分坑道6bから前方の坑道計画位置7に沿って水抜き孔21を削孔し、その処分坑道6bと平行な坑道計画位置7に沿って主要坑道6aからグラウト孔11を削孔している。グラウト孔11及び水抜き孔21を坑道計画位置7と重なるように削孔できない場合は、止水グラウト完了後にボーリング孔11、21の埋め戻しが必要となる。   As shown in FIG. 1, the grout hole 11 and the drain hole 21 are preferably drilled so as to overlap with the planned tunnel position 7 where the tunnel 6 is planned to be excavated in the future. When constructing a geological disposal facility in the deep underground 1, there is a possibility that the borehole will become a radionuclide waterway in the future, and it is not desirable that the borehole remains in the rock. If the grout hole 11 and the drainage hole 21 are overlapped with the mine planned position 7 and drilled, the grouting hole 11 and the drainage hole 21 do not remain by excavation of the subsequent mineway 6, and there is no possibility of becoming a water channel. In the illustrated example, a drain hole 21 is drilled from the disposal tunnel 6b along the planned tunnel path 7 ahead, and a grout hole 11 is drilled from the main tunnel 6a along the tunnel planning position 7 parallel to the disposal tunnel 6b. doing. When the grout hole 11 and the drain hole 21 cannot be drilled so as to overlap the planned tunnel position 7, the backfilling of the bore holes 11 and 21 is necessary after the water stop grout is completed.

なお、図1の実施例では説明簡単化のためにグラウト孔11及び水抜き孔21をそれぞれ1本ずつ設けているが、坑道6から湧水発生地質8に向けて複数本のグラウト孔11及び/又は水抜き孔21を設けてもよい。例えば1本の水抜き孔21の両側にそれぞれグラウト孔11を削孔し、両側の2本のグラウト孔11と中央の水抜き孔21との間にそれぞれ人工的な動水勾配Uを形成しながらグラウト材Gを同時に浸透させることにより、湧水発生地質8の形状に合わせて水抜き孔21の両側に広がる止水ゾーン19を形成することができる。逆に、1本のグラウト孔11の両側に2本の水抜き孔21を削孔し、中央のグラウト孔11と両側の水抜き孔21との間にそれぞれ人工的な動水勾配Uを形成しながら、中央のグラウト孔11に注入したグラウト材Gを湧水発生地質8の形状に合わせて異なる方向へ同時に浸透させることも可能である。   In the embodiment of FIG. 1, one grout hole 11 and one drain hole 21 are provided for simplification of explanation, but a plurality of grout holes 11 from the tunnel 6 to the spring water generation geology 8 are provided. A water drain hole 21 may be provided. For example, grout holes 11 are drilled on both sides of one drain hole 21, and an artificial hydrodynamic gradient U is formed between the two grout holes 11 on both sides and the central drain hole 21. However, by allowing the grout material G to permeate at the same time, it is possible to form the water stop zones 19 that spread on both sides of the drain hole 21 in accordance with the shape of the spring water generation geology 8. Conversely, two drain holes 21 are drilled on both sides of one grout hole 11 to form artificial hydrodynamic gradients U between the central grout hole 11 and the drain holes 21 on both sides. However, it is also possible to simultaneously infiltrate the grout material G injected into the central grout hole 11 in different directions according to the shape of the spring water generation geology 8.

図示例の止水グラウトシステムは、グラウト孔11に接続するグラウト材注入装置15及び圧力計13と、水抜き孔21に接続する排水装置25及び制御バルブ22と、注入装置15、圧力計13、及び制御バルブ22に接続された制御装置26とを有している。図示例のシステムは、注入装置15にグラウト孔11の開閉バルブ(又は制御バルブ)12及び流量計14を含め、そのパルブ12及び流量計14を制御装置26と接続しているが、バルブ12及び流量計14を注入装置15から分離して制御装置2と接続してもよい。また、水抜き孔21の制御バルブ22は排水装置25に含めることができ、その場合は制御装置26を排水装置25と接続すればよい。なお、図示例では水抜き孔21にも深地層1の圧力を確認するための圧力計23を設けているが、水抜き孔21の圧力計23は本発明に必須のものではない。   The water stop grout system of the illustrated example includes a grout material injection device 15 and a pressure gauge 13 connected to the grout hole 11, a drainage device 25 and a control valve 22 connected to the drain hole 21, an injection device 15, a pressure gauge 13, And a control device 26 connected to the control valve 22. The system of the illustrated example includes an opening / closing valve (or control valve) 12 and a flow meter 14 for the grout hole 11 in the injection device 15, and the valve 12 and the flow meter 14 are connected to the control device 26. The flow meter 14 may be separated from the injection device 15 and connected to the control device 2. Further, the control valve 22 of the drain hole 21 can be included in the drainage device 25, and in this case, the control device 26 may be connected to the drainage device 25. In the illustrated example, the drainage hole 21 is also provided with a pressure gauge 23 for confirming the pressure of the deep ground layer 1, but the pressure gauge 23 of the drainage hole 21 is not essential to the present invention.

図3は、グラウト孔11のバルブ12を閉鎖しつつ水抜き孔21の制御バルブ22を徐々に拡げた場合に、グラウト孔11と水抜き孔21との間に生じる圧力水頭差(動水勾配U)の変化の一例を示す。この例では、グラウト孔11のバルブ12と水抜き孔21の制御バルブ22とが共に閉鎖された定常状態においてグラウト孔11と水抜き孔21との間に圧力水頭差が存在していない(初期水頭)。しかし、制御バルブ22の開度を徐々に拡げることにより、グラウト孔11の水頭が水頭2、水頭3、水頭4と徐々に低下すると共に、グラウト孔11と水抜き孔21との間に動水勾配Uを形成することができる。上述したように湧水圧が10MPa程度にもなる深地層1の高水圧下でグラウト材Gを注入することは困難であるが、図3のように水抜き孔21の制御バルブ22を拡げてグラウト孔11の水頭を低下させれば、比較的低圧の既存の注入装置15を利用してグラウト材Gを注入することができる。   FIG. 3 shows the difference in pressure head (dynamic gradient) generated between the grout hole 11 and the drain hole 21 when the control valve 22 of the drain hole 21 is gradually expanded while the valve 12 of the grout hole 11 is closed. An example of the change of U) is shown. In this example, there is no pressure head difference between the grout hole 11 and the drain hole 21 in a steady state where both the valve 12 of the grout hole 11 and the control valve 22 of the drain hole 21 are closed (initial stage). Head). However, by gradually increasing the opening degree of the control valve 22, the water head of the grout hole 11 is gradually lowered to the head 2, the water head 3, and the water head 4, and the moving water is between the grout hole 11 and the water drain hole 21. A gradient U can be formed. As described above, it is difficult to inject the grout material G under the high water pressure of the deep underground layer 1 where the spring water pressure is about 10 MPa, but the control valve 22 of the drain hole 21 is expanded as shown in FIG. If the head of the hole 11 is lowered, the grout material G can be injected using the existing injection device 15 having a relatively low pressure.

例えば、排水装置25により水抜き孔21から排水しながら、制御装置26によりグラウト孔11の圧力計13がグラウト材Gの注入可能な所定圧力(グラウト可能圧)Pより若干低い圧力(例えば図3の水頭3)となるように水抜き孔21の制御バルブ22を初期開度に調節したのち、注入装置15を駆動してグラウト孔11からグラウト材Gの注入を開始する。或いは、排水装置25の処理可能排水量に余裕がある場合は、グラウト孔11の圧力計13が所定圧力Pより十分低い圧力(例えば図3の水頭4)となるように水抜き孔21の制御バルブ22を初期開度に調節してグラウト材Gを開始してもよい。制御バルブ22の初期開度は、グラウト孔11の圧力計13がグラウト材Gの注入可能な所定圧力P以下となる範囲内において、排水装置25の処理可能排水量等を考慮して決めることができる。   For example, the pressure gauge 13 in the grout hole 11 is drained from the drain hole 21 by the drainage device 25 and the pressure slightly lower than a predetermined pressure (groutable pressure) P at which the grout material G can be injected by the control device 26 (for example, FIG. 3). After adjusting the control valve 22 of the drain hole 21 to the initial opening so as to become the water head 3), the injection device 15 is driven and the injection of the grout material G from the grout hole 11 is started. Alternatively, when there is a surplus in the amount of wastewater that can be treated by the drainage device 25, the control valve for the drainage hole 21 so that the pressure gauge 13 in the grout hole 11 is sufficiently lower than the predetermined pressure P (for example, the water head 4 in FIG. 3). The grout material G may be started by adjusting 22 to the initial opening. The initial opening degree of the control valve 22 can be determined in consideration of the amount of wastewater that can be treated by the drainage device 25 within a range where the pressure gauge 13 of the grout hole 11 is below a predetermined pressure P at which the grout material G can be injected. .

グラウト孔11における所定圧力Pは、グラウト材注入装置15の注入圧力に応じてグラウト材Gが注入できる圧力とすればよい。例えば、グラウト孔11の所定圧力Pが注入装置15の注入圧力の1/2〜1/3となるように水抜き孔21の制御バルブ22の初期開度を調節する。ただし、本発明ではグラウト孔11に注入されたグラウト材Gが人工的に形成された動水勾配Uにより流すことができるので、グラウト材Gを外水圧の2〜3倍の圧力で押し込む必要はなく、外水圧と同程度の圧力でグラウト孔11内に送り込めば、動水勾配Uによりグラウト材Gを湧水発生地質8に浸透させることが期待できる。この場合は、グラウト孔11の所定圧力Pが注入装置15の注入圧力と同程度となるように水抜き孔21の制御バルブ22の初期開度を調節すればよい。   The predetermined pressure P in the grout hole 11 may be a pressure at which the grout material G can be injected according to the injection pressure of the grout material injection device 15. For example, the initial opening degree of the control valve 22 of the drain hole 21 is adjusted so that the predetermined pressure P of the grout hole 11 becomes 1/2 to 1/3 of the injection pressure of the injection device 15. However, in the present invention, the grout material G injected into the grout hole 11 can be caused to flow by the artificially formed hydrodynamic gradient U. Therefore, it is necessary to push the grout material G at a pressure 2 to 3 times the external water pressure. If the pressure is about the same as the external water pressure, the grout material G can be expected to permeate into the spring generation geology 8 by the hydrodynamic gradient U. In this case, what is necessary is just to adjust the initial opening degree of the control valve 22 of the drain hole 21 so that the predetermined pressure P of the grout hole 11 becomes comparable to the injection pressure of the injection apparatus 15.

グラウト孔11から注入されたグラウト材Gは、動水勾配Uにより湧水発生地質8を浸透して水抜き孔21側へ送られる。その浸透の過程において、グラウト材Gの目詰まり効果又はグラウト材Gの硬化作用によって湧水発生地質8に止水ゾーン19が徐々に形成される。グラウト材Gの目詰まり又は硬化の進行に応じて地下水が流れにくくなり、動水勾配Uが徐々に小さくなってグラウト孔11の圧力が(例えば水頭3から水頭2へと)上昇しうるが、そのような圧力計13の圧力上昇は制御装置26により検出することができる。図示例の制御装置26は、圧力計13の圧力上昇に応じて水抜き孔21の制御バルブ22の開度を拡げて動水勾配Uを回復させることにより、グラウト孔11を所定圧力P以下に維持してグラウト材Gの注入を継続する。すなわち、従来のグラウト工法では湧水発生地層8の充填に応じてグラウト材Gの注入圧力を大きくしていたが、本発明のグラウト工法では、グラウト材Gの注入圧力を大きくするのではなく水抜き孔21からの排水量を増やすることによりグラウト材Gの注入を継続するので、岩盤破壊(亀裂)の原因となりうるグラウト材Gの注入圧力の増大を避けることができる。   The grout material G injected from the grout hole 11 penetrates the spring water generation geology 8 by the dynamic water gradient U and is sent to the drain hole 21 side. In the infiltration process, the water stop zone 19 is gradually formed in the spring water generation geology 8 due to the clogging effect of the grout material G or the hardening action of the grout material G. As the grout material G becomes clogged or hardens, the groundwater becomes difficult to flow, the hydrodynamic gradient U gradually decreases, and the pressure of the grout hole 11 can increase (for example, from the head 3 to the head 2). Such a pressure increase in the pressure gauge 13 can be detected by the control device 26. The control device 26 of the illustrated example expands the opening degree of the control valve 22 of the drain hole 21 in accordance with the pressure increase of the pressure gauge 13 and recovers the hydraulic gradient U, thereby reducing the grout hole 11 to a predetermined pressure P or less. Maintain and continue injection of grout material G. That is, in the conventional grouting method, the injection pressure of the grouting material G is increased according to the filling of the spring formation layer 8, but in the grouting method of the present invention, the injection pressure of the grouting material G is not increased. Since the injection of the grout material G is continued by increasing the amount of drainage from the hole 21, it is possible to avoid an increase in the injection pressure of the grout material G that can cause rock mass destruction (cracking).

或いは、図示例のように水抜き孔21の制御バルブ22に排水流量計24を設け、制御装置26によりグラウト孔11の圧力計13の圧力上昇に代えて排水流量計24の排水流量の減少を検出し、その排水流量の減少に応じて水抜き孔21の制御バルブ22の開度を拡げて動水勾配Uを回復させることも可能である。例えば、制御バルブ22を初期開度の排水流量より減少したときは、制御バルブ22の開度を拡げて初期開度の排水流量に維持することにより、グラウト孔11の圧力を低下させる。制御装置26により圧力計13の圧力と排水流量計24の排水流量とを共に監視し、その圧力と排水流量との両者に基づいて制御バルブ22の開度を調節することも有効である。   Alternatively, a drainage flow meter 24 is provided in the control valve 22 of the drain hole 21 as in the illustrated example, and the control device 26 reduces the drainage flow rate of the drainage flow meter 24 instead of the pressure increase of the pressure gauge 13 in the grout hole 11. It is also possible to recover the hydraulic gradient U by detecting and expanding the opening of the control valve 22 of the drain hole 21 according to the decrease in the drainage flow rate. For example, when the control valve 22 is reduced from the drainage flow rate at the initial opening degree, the pressure of the grout hole 11 is lowered by expanding the opening degree of the control valve 22 and maintaining the drainage flow rate at the initial opening degree. It is also effective to monitor both the pressure of the pressure gauge 13 and the drainage flow rate of the drainage flow meter 24 by the control device 26 and adjust the opening of the control valve 22 based on both the pressure and the drainage flow rate.

グラウト孔11からグラウト材Gを注入しているにも拘わらず、グラウト孔11の圧力計13の圧力上昇又は水抜き孔21の排水流量計24の流量減少が生じない場合は、グラウト材Gの動水勾配Uが大きすぎると考えられる。この場合は、グラウト孔11の圧力計13が所定圧力P以下となる範囲内において、制御バルブ22の初期開度を縮小して動水勾配Uを小さくすることができる。また、制御バルブ22の開度を縮小することが難しい場合は、図示例のようにグラウト材注入装置15にグラウト材Gの粘度又は硬化速度を調整する調整装置16を設け、グラウト材Gの粘度又は硬化速度を高める。例えば調整装置16によってグラウト材Gの粉体の割合を調整し、又はグラウト材Gに適当な粘度調整剤を添加する。或いはグラウト材Gに適当な硬化速度調整剤添加してもよい。   When the grout material G is injected from the grout hole 11 but the pressure of the pressure gauge 13 in the grout hole 11 does not increase or the flow rate of the drainage flow meter 24 in the drain hole 21 does not decrease, the grout material G It is considered that the hydrodynamic gradient U is too large. In this case, the hydrodynamic gradient U can be reduced by reducing the initial opening of the control valve 22 within a range in which the pressure gauge 13 in the grout hole 11 is equal to or lower than the predetermined pressure P. Further, when it is difficult to reduce the opening degree of the control valve 22, as shown in the illustrated example, the grout material injection device 15 is provided with an adjusting device 16 that adjusts the viscosity or curing speed of the grout material G, and the viscosity of the grout material G Or increase the curing rate. For example, the proportion of the powder of the grout material G is adjusted by the adjusting device 16, or an appropriate viscosity adjusting agent is added to the grout material G. Alternatively, an appropriate curing rate adjusting agent may be added to the grout material G.

グラウト孔11からのグラウト材Gの注入は、水抜き孔21の制御バルブ22が全開となり、且つ、水抜き孔21の排水流量計24の排水流量が所定流量W以下となるまで継続する。グラウト材Gの目詰まり又は硬化により止水ゾーン19の浸透特性が低下すると水抜き孔21の排水流量も低下するが、水抜き孔21の排水流量により止水ゾーン19の浸透特性をある程度推定することができる。例えば、止水ゾーン19が所望の浸透特性となったときの所定流量Wを予め求め、水抜き孔21の制御バルブ22を全開にしても排水流量がその所定流量W以下であることから、所望の浸透特性の止水ゾーン19が形成できたことを確認することができる。   The injection of the grout material G from the grout hole 11 is continued until the control valve 22 of the drain hole 21 is fully opened and the drain flow rate of the drain flow meter 24 of the drain hole 21 becomes a predetermined flow rate W or less. If the permeation characteristics of the water stop zone 19 decrease due to clogging or hardening of the grout material G, the drainage flow rate of the drainage hole 21 also decreases, but the permeation characteristics of the waterstop zone 19 are estimated to some extent from the drainage flow rate of the drainage hole 21. be able to. For example, the predetermined flow rate W when the water stop zone 19 has a desired permeation characteristic is obtained in advance, and the drainage flow rate is equal to or lower than the predetermined flow rate W even if the control valve 22 of the drain hole 21 is fully opened. It can be confirmed that the water-stopping zone 19 having the permeation characteristics can be formed.

こうして本発明の目的である「高水圧の深地層において岩盤を破壊することなく施工できる止水グラウト工法及びシステム」の提供を達成できる。   In this manner, the object of the present invention can be provided as “a still water grouting method and system capable of being constructed without destroying a rock in a deep layer of high water pressure”.

図2は、坑道6aの所定部位から湧水発生地質8に向けて水抜き孔21を削孔すると共に、その水抜き孔21の周囲に湧水発生地質8に向けて複数本のグラウト孔11a、11bをファン形状に削孔し、周囲の複数本のグラウト孔11a、11bと中央の水抜き孔21との間にそれぞれ人工的な動水勾配Uを形成しながらグラウト材Gを同時に浸透させる本発明の止水グラウト工法及びシステムを示す。このようなグラウト工法によれば、例えば湧水発生地質8が面的に広がっている場合に、その形状に合わせて面的な止水ゾーン19を迅速且つ効率的に形成することができる。ただし、水抜き孔21は坑道計画位置7と重なるよう削孔しているが、坑道計画位置7と重ならないグラウト孔11a、11bは、将来的に水みちとなりうるので止水ゾーン19の完成後に埋め戻す必要がある。なお、図示例では水抜き孔21を1本としているが、水抜き孔21を複数本設けることも可能である。   In FIG. 2, a drain hole 21 is drilled from a predetermined part of the tunnel 6 a toward the spring generation geology 8, and a plurality of grout holes 11 a are formed around the drain hole 21 toward the spring generation geology 8. , 11b are drilled into a fan shape, and the grout material G is simultaneously permeated while forming an artificial hydrodynamic gradient U between the plurality of surrounding grout holes 11a, 11b and the central drain hole 21, respectively. The water stop grout construction method and system of the present invention are shown. According to such a grouting method, for example, when the spring water generation geology 8 is spread in a plane, the planar water stop zone 19 can be quickly and efficiently formed according to the shape. However, although the drain hole 21 is drilled so as to overlap with the planned tunnel position 7, the grout holes 11 a and 11 b that do not overlap with the planned tunnel position 7 can become water drains in the future. Need to backfill. In the illustrated example, one drain hole 21 is provided, but a plurality of drain holes 21 may be provided.

図示例のシステムにおいても、図1の場合と同様に、水抜き孔21を排水装置25及び制御バルブ22と接続し、複数のグラウト孔11a、11bをそれぞれグラウト材注入装置15及び圧力計13a、13bと接続している。排水装置25により水抜き孔21から排水しながら、制御装置26により各グラウト孔11a、11bの圧力計13a、13bがグラウト材Gの注入可能な所定圧力P以下となるように水抜き孔21の制御バルブ22を初期開度に調節したのち、注入装置15を駆動して各グラウト孔11a、11bからグラウト材Gを注入する。また、各グラウト孔11a、11bの圧力計13a、13bの圧力上昇を制御装置26により検出し、その圧力上昇に応じて水抜き孔21の制御バルブ22の開度を拡げることにより各グラウト孔11a、11bを所定圧力P以下に維持してグラウト材Gの注入を継続する。図1の場合と同様に、水抜き孔21の制御バルブ22が全開となり、排水流量計24の排水流量が所定流量W以下となるまでグラウト材Gの注入を継続することにより、周辺の湧水発生地質8に所望の浸透特性の止水ゾーン19を形成することができる。   Also in the illustrated system, as in the case of FIG. 1, the drain hole 21 is connected to the drainage device 25 and the control valve 22, and the plurality of grout holes 11a and 11b are connected to the grout material injection device 15 and the pressure gauge 13a, respectively. 13b. While draining from the drain hole 21 by the drainage device 25, the control device 26 allows the pressure gauges 13a, 13b of the grout holes 11a, 11b to be equal to or lower than a predetermined pressure P at which the grout material G can be injected. After adjusting the control valve 22 to the initial opening, the injection device 15 is driven to inject the grout material G from the grout holes 11a and 11b. Further, the control device 26 detects a pressure increase of the pressure gauges 13a and 13b in each of the grout holes 11a and 11b, and expands the opening of the control valve 22 of the drain hole 21 in accordance with the pressure increase, thereby each grout hole 11a. , 11b is maintained at a predetermined pressure P or lower and the injection of the grout material G is continued. As in the case of FIG. 1, the control valve 22 of the drain hole 21 is fully opened, and the injection of the grout material G is continued until the drainage flow rate of the drainage flow meter 24 is equal to or lower than the predetermined flow rate W. A water stop zone 19 having desired permeation characteristics can be formed in the generated geology 8.

本発明による止水グラウト工法の一実施例の説明図である。It is explanatory drawing of one Example of the still water grout construction method by this invention. 本発明による止水グラウト工法の他の実施例の説明図である。It is explanatory drawing of the other Example of the still water grout construction method by this invention. 水抜き孔のバルブ開度に応じたグラウト孔の水圧変化の一例を示すグラフである。It is a graph which shows an example of the water pressure change of the grout hole according to the valve opening degree of the drain hole. 放射性廃棄物の地層処分施設の説明図である。It is explanatory drawing of the geological disposal facility of radioactive waste.

符号の説明Explanation of symbols

1…深地層(岩盤) 2…地表
3…地上施設 4…アクセス立坑
5…アクセス斜道 6…坑道
7…坑道計画位置 8…湧水発生地質
9…湧水 11…グラウト孔
12…バルブ 13…圧力計
14…流量計 15…グラウト注入装置
16…グラウト調整装置 19…止水ゾーン(改良ゾーン)
21…水抜き孔 22…制御バルブ
23…圧力計 24…流量計
25…排水装置 30…制御装置
DESCRIPTION OF SYMBOLS 1 ... Deep underground layer (bedrock) 2 ... Surface 3 ... Ground facilities 4 ... Access shaft 5 ... Access slope 6 ... Tunnel 7 ... Tunnel planned position 8 ... Spring water generation geology 9 ... Spring water 11 ... Grout hole 12 ... Valve 13 ... Pressure gauge 14 ... Flow meter 15 ... Grout injection device 16 ... Grout adjustment device 19 ... Water stop zone (improved zone)
21 ... Drain hole 22 ... Control valve 23 ... Pressure gauge 24 ... Flow meter 25 ... Drainage device 30 ... Control device

Claims (8)

地下深部の坑道構築時に生じうる高水圧の湧水を抑える止水グラウト工法において、前記坑道から周囲の湧水発生地質にグラウト孔及び水抜き孔を穿ち、前記グラウト孔に圧力計及びグラウト材注入装置を接続すると共に前記水抜き孔に制御バルブ及び排水装置を接続し、前記水抜き孔の制御バルブを徐々に拡げてグラウト孔の圧力計が湧水圧より低い所定圧力以下となる初期開度に調節したうえで注入装置を駆動してグラウト材を注入し、前記グラウト材の注入進行によるグラウト孔の圧力計の圧力上昇に応じて制御バルブの開度を拡げて圧力計を前記所定圧力以下に維持してなる高水圧下の止水グラウト工法。 In the still water grouting method, which suppresses high water pressure springs that can occur during the construction of deep underground pits, grouting holes and drainage holes are drilled in the surrounding spring generation geology from the mine tunnel, and a pressure gauge and grouting material are injected into the grouting holes Connect the control valve and drainage device to the drain hole and connect the device, and gradually expand the control valve of the drain hole so that the pressure gauge of the grout hole is below the predetermined pressure lower than the spring water pressure. by driving the injection device after having adjusted injected grout, the pressure gauge by expanding the opening of the control valve according to the pressure rise in the pressure gauge grout holes by injection progression of the grout below the predetermined pressure Maintained water stop grout method under high water pressure. 請求項1の止水グラウト工法において、前記水抜き孔に排水流量計を設け、前記圧力計の圧力上昇に代えて又は加えて、前記排水流量計の排水流量の減少に応じて制御バルブの開度を拡げてなる高水圧下の止水グラウト工法。 The water stop grout method according to claim 1, wherein a drainage flow meter is provided in the drain hole, and the control valve is opened according to a decrease in the drainage flow rate of the drainage flowmeter instead of or in addition to the pressure increase of the pressure gauge. Water stop grout method under high water pressure. 請求項2の止水グラウト工法において、前記水抜き孔の制御バルブが全開となり且つ排水流量が所定流量以下となるまでグラウト孔へのグラウト材の注入を継続してなる高水圧下の止水グラウト工法。 3. The still water grout method according to claim 2, wherein the control valve of the drain hole is fully opened and the injection of the grout material into the grout hole is continued until the drainage flow rate becomes a predetermined flow rate or less. Construction method. 請求項2又は3の止水グラウト工法において、前記グラウト孔へのグラウト材の注入時に排水流量計の排水流量が低減しない場合に、前記グラウト材の粘度又は硬化速度を高めてなる高水圧下の止水グラウト工法。 In the still water grouting method according to claim 2 or 3, when the effluent flow rate of the effluent flow meter is not reduced at the time of pouring the grouting material into the grouting hole, the viscosity or the curing rate of the grouting material is increased under high water pressure. Still water grout method. 地下深部の坑道構築時に生じうる高水圧の湧水を抑える止水グラウトシステムにおいて、前記坑道から周囲の湧水発生地質に穿ったグラウト孔に接続する圧力計及びグラウト材注入装置、その湧水発生地質に前記坑道から穿った水抜き孔に接続する制御バルブ及び排水装置、並びに前記水抜き孔の制御バルブを徐々に拡げてグラウト孔の圧力計が湧水圧より低い所定圧力以下となる初期開度に調節したうえでグラウト材注入装置を駆動し且つ前記グラウト材の注入進行によるグラウト孔の圧力計の圧力上昇に応じて制御バルブの開度を拡げて圧力計を前記所定圧力以下に維持する制御装置を備えてなる高水圧下の止水グラウトシステム。 In a still water grouting system that suppresses high water pressure springs that can occur during the construction of deep underground tunnels, a pressure gauge and a grouting material injection device connected to the grouting holes drilled in the surrounding spring generation geology from the tunnels, and the generation of the springs The control valve and drainage device connected to the drainage hole drilled from the tunnel in the geology, and the initial opening degree where the control valve of the drainage hole is gradually expanded so that the pressure gauge of the grout hole is below a predetermined pressure lower than the spring pressure by expanding the opening of the control valve according to the pressure rise in the pressure gauge grout holes by injection progression drives the grout injection apparatus and said grout after having adjusted the control for maintaining the pressure gauge below the predetermined pressure A water stop grout system under high water pressure equipped with a device. 請求項5の止水グラウトシステムにおいて、前記水抜き孔に排水流量計を設け、前記制御装置により、前記圧力計の圧力上昇に代えて又は加えて、前記排水流量計の排水流量の減少に応じて制御バルブの開度を拡げてなる高水圧下の止水グラウトシステム。 6. The water stop grout system according to claim 5, wherein a drainage flow meter is provided in the drain hole, and the control device is adapted to respond to a decrease in the drainage flow rate of the drainage flowmeter instead of or in addition to the pressure increase of the pressure gauge. A water stop grout system under high water pressure with the control valve opening widened. 請求項6の止水グラウトシステムにおいて、前記制御装置により、前記水抜き孔の制御バルブが全開となり且つ排水流量が所定流量以下となるまでグラウト孔へのグラウト材の注入を継続してなる高水圧下の止水グラウトシステム。 7. The water stop grout system according to claim 6, wherein the control device continues to inject the grout material into the grout hole until the control valve of the drain hole is fully opened and the drainage flow rate becomes a predetermined flow rate or less. Lower still grout system. 請求項6又は7の何れかの止水グラウトシステムにおいて、前記グラウト材注入装置にグラウト材の粘度又は硬化速度を調整する調整装置を含めてなる高水圧下の止水グラウトシステム。 8. The still water grout system according to claim 6, wherein the grout material injection device includes an adjusting device for adjusting a viscosity or a curing rate of the grout material.
JP2008013145A 2008-01-23 2008-01-23 Water stop grout method and system under high water pressure Expired - Fee Related JP5182922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008013145A JP5182922B2 (en) 2008-01-23 2008-01-23 Water stop grout method and system under high water pressure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008013145A JP5182922B2 (en) 2008-01-23 2008-01-23 Water stop grout method and system under high water pressure

Publications (2)

Publication Number Publication Date
JP2009174171A JP2009174171A (en) 2009-08-06
JP5182922B2 true JP5182922B2 (en) 2013-04-17

Family

ID=41029542

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008013145A Expired - Fee Related JP5182922B2 (en) 2008-01-23 2008-01-23 Water stop grout method and system under high water pressure

Country Status (1)

Country Link
JP (1) JP5182922B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895525A (en) * 2015-06-17 2015-09-09 中国地质大学(北京) Gas drive type grouting method
CN111691398A (en) * 2020-06-23 2020-09-22 中铁隧道局集团有限公司 Automatic pressure-stabilizing grouting auxiliary system and working method thereof

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102092891B1 (en) * 2012-05-23 2020-03-25 렐본 피티와이 엘티디 Method of limiting permeability of a matrix to limit liquid and gas inflow
JP6552278B2 (en) * 2015-05-29 2019-07-31 大成建設株式会社 Tunnel construction method
JP7067779B2 (en) * 2018-02-14 2022-05-16 株式会社カテックス Drainer
CN108999636A (en) * 2018-07-20 2018-12-14 中铁十九局集团矿业投资有限公司 A kind of pressure break and the softening hard difficulty of underground coal mine collapse the constructing device and method of top plate
JP6917604B1 (en) * 2020-10-12 2021-08-11 株式会社カテックス Ground reinforcement method
CN113216123B (en) * 2021-04-30 2024-03-22 中国葛洲坝集团第一工程有限公司 Gate chamber side wall karst water gushing treatment method
CN113699973A (en) * 2021-09-07 2021-11-26 中国矿业大学 Surface crack area develops slip casting shutoff and prevents fixed pipe that sinks
CN113898379B (en) * 2021-09-29 2023-08-11 中铁二局第二工程有限公司 Device and method for optimizing actual grouting consolidation stratum pressure and parameters
CN114232653B (en) * 2021-12-09 2023-10-27 中国葛洲坝集团第一工程有限公司 Fracturing grouting anchoring grading construction device and method
CN117431985B (en) * 2023-12-21 2024-03-15 上海建工二建集团有限公司 Underground diaphragm wall door type emergency plugging device and method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174489A (en) * 1982-04-08 1983-10-13 Osaka Soda Co Ltd Stabilization method of soil
JP3698467B2 (en) * 1995-10-16 2005-09-21 日本基礎技術株式会社 Injection control device
JP3972260B2 (en) * 2005-04-25 2007-09-05 有限会社 ドリームドーム・ラボ Low concentration grout method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104895525A (en) * 2015-06-17 2015-09-09 中国地质大学(北京) Gas drive type grouting method
CN111691398A (en) * 2020-06-23 2020-09-22 中铁隧道局集团有限公司 Automatic pressure-stabilizing grouting auxiliary system and working method thereof
CN111691398B (en) * 2020-06-23 2022-02-01 中铁隧道局集团有限公司 Automatic pressure-stabilizing grouting auxiliary system and working method thereof

Also Published As

Publication number Publication date
JP2009174171A (en) 2009-08-06

Similar Documents

Publication Publication Date Title
JP5182922B2 (en) Water stop grout method and system under high water pressure
Karol Chemical grouting and soil stabilization, revised and expanded
CN107288657B (en) The weak cementing rock mass seepage failure area slip casting integrated control method of top of underground
Mair Tunnelling and deep excavations: Ground movements and their effects
US9879401B2 (en) Oil and gas well and field integrity protection system
Fu et al. Practices in constructing high rockfill dams on thick overburden layers
JP2006299741A (en) Low concentration grout method
Calin et al. Dewatering system of a deep of excavation in urban area–Bucharest case study
Ni et al. Field response of high speed rail box tunnel during horizontal grouting
Manne et al. Application of jet grouting for geotechnical challenges
Packer et al. Permeation grouting and excavation at Victoria station, London
Milanovic Prevention and remediation in karst engineering
Preene et al. Groundwater control for construction projects in chalk
Canoğlu Selection of suitable dam axis location considering permeability and grout curtain optimization
Preene Conceptual modelling for the design of groundwater control systems
Bruce The Basics of Drilling for Specialty Geotechnical Construction Processes
Daraei et al. Study on the rapid drawdown and its effect on portal subsidence of Heybat Sultan twin tunnels in Kurdistan-Iraq
KR100956316B1 (en) Grouting method using composite drawdown well for confined aquifer
Yim et al. Is 1 l/s/km ingress limit appropriate for Sydney Sandstone
Tan One North Station excavation in 30m of Jurong residual soils in Singapore
Sarker et al. A review on ground improvement techniques to improve soil stability against liquefaction
Bruce et al. New developments in ground reinforcement and treatment for tunnelling
Gajbhiye Construction of deep plastic concrete cut off wall in upstream coffer dam of Punatsangchhu-I Hydropower Project, Bhutan
Starcevich et al. Construction of the SR-99 recovery shaft.
Stark et al. Jet grouting and safety of Tuttle Creek Dam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130111

R150 Certificate of patent or registration of utility model

Ref document number: 5182922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees