JP7468570B2 - Steam condensate recovery method - Google Patents

Steam condensate recovery method Download PDF

Info

Publication number
JP7468570B2
JP7468570B2 JP2022087007A JP2022087007A JP7468570B2 JP 7468570 B2 JP7468570 B2 JP 7468570B2 JP 2022087007 A JP2022087007 A JP 2022087007A JP 2022087007 A JP2022087007 A JP 2022087007A JP 7468570 B2 JP7468570 B2 JP 7468570B2
Authority
JP
Japan
Prior art keywords
drain
water
turbidity
steam
metal concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022087007A
Other languages
Japanese (ja)
Other versions
JP2023174258A (en
Inventor
瑞之 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2022087007A priority Critical patent/JP7468570B2/en
Priority to PCT/JP2023/011418 priority patent/WO2023228536A1/en
Priority to TW112114104A priority patent/TW202346755A/en
Publication of JP2023174258A publication Critical patent/JP2023174258A/en
Application granted granted Critical
Publication of JP7468570B2 publication Critical patent/JP7468570B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/38Determining or indicating operating conditions in steam boilers, e.g. monitoring direction or rate of water flow through water tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/48Devices for removing water, salt, or sludge from boilers; Arrangements of cleaning apparatus in boilers; Combinations thereof with boilers
    • F22B37/52Washing-out devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/56Boiler cleaning control devices, e.g. for ascertaining proper duration of boiler blow-down
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22DPREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
    • F22D11/00Feed-water supply not provided for in other main groups

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、ボイラ等の蒸気発生設備において蒸気復水(ドレン)を回収する方法に関する。 The present invention relates to a method for recovering steam condensate (drain) in steam generating equipment such as a boiler.

蒸気による熱エネルギーは工業的に最も多く使用されているエネルギー源である。蒸気の全熱量のうち有効に利用されているのは約80%の蒸発潜熱分で、残りの顕熱量はドレンとして廃棄されていることが多い。ドレンを回収してボイラ給水に有効利用すればボイラの燃料削減、CO削減、節水に貢献できる。 Thermal energy from steam is the most widely used energy source in industry. Approximately 80% of the total heat of steam is effectively utilized, the latent heat of vaporization, and the remaining sensible heat is often discarded as drain. If drain is recovered and effectively used as boiler feed water, it can contribute to reducing boiler fuel, reducing CO2 emissions, and saving water.

しかし、ドレン水質が悪く回収されていないケースは少なくない。例えば、蒸気配管や熱交換器の腐食によってドレン水中に鉄や銅、亜鉛などの金属イオンや金属酸化物が多く含まれると、これらがボイラ内に持ち込まれて、ボイラ下部に堆積し、二次腐食を引き起こしたり、蒸発管にスケールとして付着して伝熱障害等を引き起こすことが知られている。このためにドレン回収を断念せざるを得ない場合があった。 However, there are many cases where drain water quality is poor and it is not recovered. For example, if the drain water contains a large amount of metal ions and oxides of iron, copper, zinc, etc. due to corrosion of the steam pipes or heat exchanger, these are known to be carried into the boiler and accumulate at the bottom of the boiler, causing secondary corrosion, or to adhere as scale to the evaporator tubes, causing heat transfer problems, etc. For this reason, there have been cases where drain recovery had to be abandoned.

特許文献1には、ドレンの水質および水温を一定時間毎に測定し、ドレンの回収可否を判定するというボイラ装置の復水供給方法及び給水装置が開示されている。特許文献1では、ドレンの水質または水温が基準を満たさないと判定された場合はドレンは廃棄される。 Patent Document 1 discloses a condensate supply method and water supply device for a boiler system that measures the drain water quality and water temperature at regular intervals and determines whether the drain can be recovered. In Patent Document 1, if it is determined that the drain water quality or water temperature does not meet the standards, the drain is discarded.

特開2003-343807号公報JP 2003-343807 A

特許文献1では、水質および水温の基準を外れたドレンは回収されないので、ドレン回収による節水、熱の回収およびボイラのブロー水の削減が不十分である。 In Patent Document 1, drain that does not meet the standards for water quality and water temperature is not recovered, so water savings, heat recovery, and reduction in boiler blow water through drain recovery are insufficient.

また、特許文献1では、ドレンの鉄イオン濃度や銅イオン濃度を測定するが、現場で金属濃度を連続的に測定できるような安価な装置がない。そのため、鉄イオン濃度や銅イオン濃度の測定を行うには、現場から復水試料を持ち帰り、分析所でそれぞれの金属イオンを分析する必要がある。そのため、特許文献1では、ドレンの水質変動に迅速に対応したドレン回収を行うことができない。 In addition, in Patent Document 1, the iron ion concentration and copper ion concentration in the drain are measured, but there is no inexpensive device that can continuously measure metal concentration on-site. Therefore, to measure the iron ion concentration and copper ion concentration, it is necessary to bring a condensate sample back from the site and analyze the respective metal ions at an analysis laboratory. Therefore, in Patent Document 1, drain recovery cannot be performed in response to changes in the drain water quality quickly.

本発明は、蒸気復水(ドレン)を適切に回収することができる蒸気復水の回収方法を提供することを課題とする。 The objective of the present invention is to provide a method for recovering steam condensate (drain) that can be appropriately recovered.

上記課題を解決するために、本発明は以下を要旨とする。 In order to solve the above problems, the present invention provides the following:

[1] ドレンを回収する蒸気発生設備において、ドレンの濁度を測定し、濁度に基づいて蒸気発生設備への給水にスケール防止剤を添加する蒸気復水の回収方法。 [1] A method for recovering steam condensate in a steam generating facility that recovers drainage, measuring the turbidity of the drainage and adding a scale inhibitor to the water supply to the steam generating facility based on the turbidity.

[2] ドレンを回収する蒸気発生設備において、ドレンの濁度とドレン中の鉄、銅及び亜鉛のうち少なくとも1種の金属濃度との正の相関の近似式を求めておき、
濁度測定値と該近似式より該ドレン中の金属濃度を求め、この金属濃度に基づいて該蒸気発生設備への給水にスケール防止剤を添加する蒸気復水の回収方法。
[2] In a steam generating facility that recovers drain, an approximation equation of a positive correlation between the turbidity of the drain and a concentration of at least one metal selected from iron, copper, and zinc in the drain is obtained,
A method for recovering steam condensate, comprising determining a metal concentration in the drain from a turbidity measurement value and the approximation formula, and adding a scale inhibitor to the water supplied to the steam generating facility based on the metal concentration.

[3] 前記スケール防止剤が、重量平均分子量0.1万~10万のポリメタクリル酸塩である[1]の蒸気復水の回収方法。 [3] The method for recovering steam condensate according to [1], in which the scale inhibitor is a polymethacrylate having a weight-average molecular weight of 1,000 to 100,000.

[4] 前記スケール防止剤が、重量平均分子量0.1万~10万のポリメタクリル酸塩であり、濁度測定値と前記近似式とから求めた金属濃度に対するスケール防止剤の添加量を0.5~10倍量とする[2]の蒸気復水の回収方法。 [4] The method for recovering steam condensate according to [2], in which the scale inhibitor is a polymethacrylate having a weight-average molecular weight of 1,000 to 100,000, and the amount of scale inhibitor added is 0.5 to 10 times the metal concentration calculated from the turbidity measurement value and the approximation formula.

[5] ドレンを回収する蒸気発生設備において、ドレンの濁度を測定し、濁度に基づいてドレン回収の可否を判断する蒸気復水の回収方法。 [5] A method for recovering steam condensate in a steam generation facility that recovers drainage, measuring the turbidity of the drainage and determining whether or not the drainage can be recovered based on the turbidity.

[6] ドレンを回収する蒸気発生設備において、ドレンの濁度を測定し、濁度が所定値aよりも低い場合にドレンをそのまま回収し、濁度が所定範囲a~b(ただし、b>a)の場合に、ドレンを水質改善装置で水質改善してから回収する蒸気復水の回収方法。 [6] A method for recovering steam condensate in a steam generating facility that recovers drainage, measuring the turbidity of the drainage, recovering the drainage as is if the turbidity is lower than a predetermined value a, and recovering the drainage after improving its quality using a water quality improvement device if the turbidity is within a predetermined range a to b (where b > a).

[7] 前記蒸気発生設備は、原水を軟化処理した軟化水を貯める給水タンクを備えており、前記ドレンを該給水タンクに回収する[6]の蒸気復水の回収方法。 [7] The steam generating equipment is equipped with a water supply tank that stores softened water obtained by softening raw water, and the drain is collected in the water supply tank. [6] A method for recovering steam condensate.

[8] 前記蒸気発生設備は、蒸気発生設備給水の原水を貯める原水槽を備えており、
前記濁度が前記bよりも高い場合に、ドレンを該原水槽に回収する[6]の蒸気復水の回収方法。
[8] The steam generating facility includes a raw water tank for storing raw water for supplying the steam generating facility,
The method for recovering steam condensate according to [6], wherein drain is recovered in the raw water tank when the turbidity is higher than b.

[9] ドレンを回収する蒸気発生設備において、ドレンの濁度と、ドレン中の鉄、銅及び亜鉛のうち少なくとも1種の金属濃度との正の相関の近似式を求めておき、
濁度測定値と該近似式よりドレン中の金属濃度を求め、この金属濃度に応じてドレン回収可否を判断する蒸気復水の回収方法。
[9] In a steam generating facility that recovers drain, an approximation equation of a positive correlation between the turbidity of the drain and a concentration of at least one metal selected from iron, copper, and zinc in the drain is obtained,
A steam condensate recovery method in which the metal concentration in the drain is calculated from the turbidity measurement value and the approximation formula, and whether or not the drain can be recovered is determined based on this metal concentration.

[10] ドレンを回収する蒸気発生設備において、ドレンの濁度と、ドレン中の鉄、銅及び亜鉛のうち少なくとも1種の金属濃度との正の相関の近似式を求めておき、
濁度測定値と該近似式よりドレン中の金属濃度を求め、この金属濃度が所定値cよりも低い場合にドレンをそのまま回収し、金属濃度が所定範囲c~d(ただし、d>c)の場合に、ドレンを水質改善装置で水質改善してから回収する蒸気復水の回収方法。
[10] In a steam generating facility that recovers drain, an approximation equation of a positive correlation between the turbidity of the drain and a concentration of at least one metal selected from iron, copper, and zinc in the drain is obtained,
This steam condensate recovery method determines the metal concentration in the drain from the turbidity measurement value and the approximation formula, and if the metal concentration is lower than a predetermined value c, recovers the drain as is, and if the metal concentration is within a predetermined range c to d (where d > c), improves the quality of the drain using a water quality improvement device before recovering it.

[11] 前記蒸気発生設備は、原水を軟化処理した軟化水を貯める給水タンクを備えており、前記ドレンを該給水タンクに回収する[10]の蒸気復水の回収方法。 [11] The steam generation facility is equipped with a water supply tank that stores softened water obtained by softening raw water, and the drain is collected in the water supply tank. [10] A method for recovering steam condensate.

[12] 前記蒸気発生設備は、蒸気発生設備に供給される原水を貯める原水槽を備えており、
前記金属濃度が前記dよりも高い場合に、ドレンを該原水槽に回収する[10]の蒸気復水の回収方法。
[12] The steam generating facility includes a raw water tank for storing raw water to be supplied to the steam generating facility,
The method for recovering steam condensate according to [10], wherein when the metal concentration is higher than d, drain is recovered in the raw water tank.

[13] 前記水質改善装置は、金属酸化物又は金属イオンを除去する装置である[6]又は[10]の蒸気復水の回収方法。 [13] The method for recovering steam condensate according to [6] or [10], wherein the water quality improvement device is a device for removing metal oxides or metal ions.

本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、ドレン中に含まれる金属濃度と濁度との間に正の相関があることを見出した。濁度を連続監視しながら、濁度の値に応じてドレンを回収したり、スケール防止剤を添加することにより、ボイラ内に持込まれる金属のスケール化を効果的に抑制することができる。また、スケールがボイラの伝熱面に付着することによるエネルギーロスを防止すると共に、ドレンの水と熱回収によるエネルギーコストの削減を図ることができる。 As a result of extensive research conducted by the inventors to achieve the above-mentioned objective, they discovered that there is a positive correlation between the concentration of metals in drain and turbidity. By continuously monitoring the turbidity and recovering drain or adding a scale inhibitor according to the turbidity value, it is possible to effectively suppress the formation of scale on the metals brought into the boiler. It is also possible to prevent energy loss caused by the adhesion of scale to the boiler's heat transfer surfaces, and to reduce energy costs by recovering the water and heat from the drain.

ボイラ設備のフロー図である。FIG. 2 is a flow diagram of the boiler facility. 実施例の結果を示すグラフである。1 is a graph showing the results of an example. 実施例の結果を示すグラフである。1 is a graph showing the results of an example. 実施例の結果を示すグラフである。1 is a graph showing the results of an example. 実施例の結果を示すグラフである。1 is a graph showing the results of an example.

前述の通り、ドレン中に含まれる金属濃度(金属酸化物及び金属イオンの全ての形態を含む)と濁度との間に正の相関がある。例えば、後述の実施例の通り、ドレンの濁度と、鉄、銅、亜鉛の各濃度との間に正の相関関係がある。特に、ドレン中に多く含まれる鉄濃度と濁度との間には強い相関関係がある。また、鉄、銅及び亜鉛の合計濃度と濁度との間にも強い相関関係がある。具体的には、濃度Yと濁度Xとの間には、Y=α・X(α:定数)の関係がある。 As mentioned above, there is a positive correlation between the concentration of metals contained in drain (including all forms of metal oxides and metal ions) and turbidity. For example, as shown in the examples below, there is a positive correlation between the turbidity of drain and the concentrations of iron, copper, and zinc. In particular, there is a strong correlation between the concentration of iron, which is found in large amounts in drain, and turbidity. There is also a strong correlation between the total concentration of iron, copper, and zinc and turbidity. Specifically, there is a relationship between concentration Y and turbidity X: Y = α·X (α: constant).

本発明は、かかる知見に基づくものであり、本発明の一態様では、ドレンを回収するボイラ等の蒸気発生設備において、ドレンの濁度を測定し、濁度に応じて蒸気発生設備への給水にスケール防止剤を添加する、あるいはドレンの水質改善を行う、ドレン回収の可否を判断する等の対応を行う。 The present invention is based on such findings, and in one aspect of the present invention, in a steam generating facility such as a boiler that recovers drainage, the turbidity of the drainage is measured, and depending on the turbidity, measures are taken such as adding a scale inhibitor to the water supply to the steam generating facility, improving the water quality of the drainage, or determining whether or not the drainage can be recovered.

ドレンの濁度測定値に基づいて対応する場合には、例えば、ドレンの濁度が50以下ならドレン回収を実施し、濁度50超、例えば51以上なら廃棄または水質を改善し回収する。 When taking action based on the drain turbidity measurement, for example, if the drain turbidity is 50 or less, drain recovery is performed, and if the turbidity is over 50, for example 51 or more, the drain is discarded or the water quality is improved and the drain is recovered.

本発明の別の一態様では、ドレンの濁度と金属濃度の正の相関の近似式(相関式)よりドレン中の金属濃度を求め、その金属濃度に応じてスケール防止剤を添加する、あるいはドレンの水質改善を行う、ドレン回収の可否を判断する等の対応を行う。 In another aspect of the present invention, the metal concentration in the drain is calculated from an approximation (correlation equation) of the positive correlation between drain turbidity and metal concentration, and measures such as adding a scale inhibitor, improving the drain water quality, or determining whether or not to recover the drain are taken depending on the metal concentration.

本発明において、濁度の測定装置は、ドレン中の濁度を判定することができるものであれば、特に限定されるものではない。例えば、JIS K0101:2017に規定されている透過光濁度、散乱光濁度、積分球濁度の試験等を採用することができる。 In the present invention, the turbidity measuring device is not particularly limited as long as it can determine the turbidity in the drain. For example, the transmitted light turbidity, scattered light turbidity, and integrating sphere turbidity tests specified in JIS K0101:2017 can be used.

本発明において、水質改善する場合は、ドレン回収ラインに水質改善装置を設けるか、あるいは原水槽へ戻し水質改善処理してもよい。水質改善のための装置としては、金属酸化物や金属イオンを除去する装置が好適に用いられる。この装置としては、例えば、イオン交換樹脂や中空糸膜、RO膜、濾材、糸巻きフィルター、金属フィルターのいずれか、または組み合わせたものが用いられる。 In the present invention, when water quality is improved, a water quality improvement device can be provided in the drain recovery line, or the water can be returned to the raw water tank and treated for water quality improvement. As a device for improving water quality, a device that removes metal oxides and metal ions is preferably used. As this device, for example, ion exchange resin, hollow fiber membrane, RO membrane, filter material, thread-wound filter, metal filter, or a combination thereof can be used.

本発明で用いられるスケール防止剤としては、ポリメタクリル酸及び/又はその塩、ポリアクリル酸及び/又はその塩、ポリマレイン酸及び/又はその塩、ポリイタコン酸及び/又はその塩、又はこれらホモポリマーを構成するモノマー成分の少なくとも2種を共重合してなるコポリマーやタポリマー等が挙げられる。 The scale inhibitors used in the present invention include polymethacrylic acid and/or its salts, polyacrylic acid and/or its salts, polymaleic acid and/or its salts, polyitaconic acid and/or its salts, and copolymers and terpolymers obtained by copolymerizing at least two of the monomer components constituting these homopolymers.

また、前記ホモポリマーを構成するモノマー成分(アクリル酸(AA)、マレイン酸(MA)等)の少なくとも1種と3-アリロキシ-2-ヒドロキシプロパンスルホン酸ナトリウム(HAPS)又は2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム(AMPS)とのコポリマー(AA-HAPS、AA-AMPS等)、ビス(ポリ-2-カルボキシエチル)ホスフィン酸及び/又はその塩、セルロースの骨格を構成するグルコピラノースモノマーのヒドロキシ基の一部にカルボキシメチル基を結合させたカルボキシメチルセルロース(CMC)、1-ヒドロキシエチリデン-1,1-ジホスホン酸(以下、HEDPと略称する。)等を用いることもできる。 In addition, copolymers (AA-HAPS, AA-AMPS, etc.) of at least one of the monomer components (acrylic acid (AA), maleic acid (MA), etc.) constituting the homopolymer with sodium 3-allyloxy-2-hydroxypropanesulfonate (HAPS) or sodium 2-acrylamido-2-methylpropanesulfonate (AMPS), bis(poly-2-carboxyethyl)phosphinic acid and/or its salts, carboxymethylcellulose (CMC) in which carboxymethyl groups are bonded to some of the hydroxy groups of the glucopyranose monomers constituting the cellulose backbone, 1-hydroxyethylidene-1,1-diphosphonic acid (hereinafter abbreviated as HEDP), etc. can also be used.

上記のスケール防止剤は、一種単独で又は二種以上を組み合わせて用いることができる。 The above scale inhibitors can be used alone or in combination of two or more.

これらの中では、当該ボイラ類の水側缶内の鉄スケール防止効果の観点から、ポリアクリル酸及び/又はその塩、ポリメタクリル酸及び/又はその塩などのポリ(メタ)アクリル酸化合物が好ましく、ポリメタクリル酸及び/又はその塩がより好ましい。ポリアクリル酸及び/又はその塩の重量平均分子量は、例えば0.1万~10万であってよく、0.1万~4万が好ましく、0.1万~2万がより好ましい。ポリメタクリル酸及び/又はその塩の重量平均分子量は、例えば0.1万~10万であってよく、0.1万~5万が好ましく、0.5万~5万がより好ましく、0.5万~2万が特に好ましい。 Among these, from the viewpoint of the effect of preventing iron scale in the water-side can of the boiler, poly(meth)acrylic acid compounds such as polyacrylic acid and/or its salts, polymethacrylic acid and/or its salts are preferred, with polymethacrylic acid and/or its salts being more preferred. The weight-average molecular weight of polyacrylic acid and/or its salts may be, for example, 1,000 to 100,000, preferably 1,000 to 40,000, and more preferably 1,000 to 20,000. The weight-average molecular weight of polymethacrylic acid and/or its salts may be, for example, 1,000 to 100,000, preferably 1,000 to 50,000, more preferably 5,000 to 50,000, and particularly preferably 5,000 to 20,000.

本発明の一態様では、前記スケール防止剤の添加量を、上記相関関係の近似式より求めた金属濃度に基づいて定める。例えば、予め適用する現場で濁度及び鉄、銅、亜鉛の金属濃度(金属酸化物及び金属イオンの全ての形態を含む)を分析し近似式を求め、該近似式からドレン水中の金属濃度を求める。そして、スケール防止剤の添加量を、求めた金属濃度(鉄、銅、亜鉛の金属濃度の合計値)の規定倍量、例えば0.1~20倍量であってよく、好ましくは0.5~10倍量、より好ましくは1~10倍量、さらに好ましくは3~10倍量、特に好ましくは5~10倍量とする。 In one aspect of the present invention, the amount of scale inhibitor added is determined based on the metal concentration calculated from the approximation formula of the above correlation. For example, the turbidity and the metal concentrations of iron, copper, and zinc (including all forms of metal oxides and metal ions) are analyzed at the site where the scale inhibitor is to be applied in advance to calculate an approximation formula, and the metal concentration in the drain water is calculated from the approximation formula. The amount of scale inhibitor added may be a specified multiple of the calculated metal concentration (total value of the metal concentrations of iron, copper, and zinc), for example, 0.1 to 20 times, preferably 0.5 to 10 times, more preferably 1 to 10 times, even more preferably 3 to 10 times, and particularly preferably 5 to 10 times.

なお、濁度と金属濃度との関係をモニタリングして、近似式を更新するのが好ましい。 It is preferable to monitor the relationship between turbidity and metal concentration and update the approximation formula.

前記スケール防止をより効果的に実施するには、ドレンの濁度に応じた回収制御を行うことが好ましい。例えば、工場の休み期間明けのボイラの立ち上がり時のドレン配管から溶出した金属による汚れが酷い場合を想定する。この場合、濁度に閾値を設けてドレンの回収可否を設定する。ドレンの濁度が50以下なら前記のドレン回収を実施し、濁度が51以上なら廃棄または水質を改善してから回収する。水質を改善する場合は、水質改善装置へ通して処理するか、あるいは原水槽へ戻し処理してもよい。 To more effectively prevent the above-mentioned scale, it is preferable to control the recovery according to the turbidity of the drain. For example, consider a case where the drain piping is heavily contaminated with metals that have eluted during start-up of the boiler after a factory holiday. In this case, a threshold value is set for the turbidity to determine whether or not the drain can be recovered. If the turbidity of the drain is 50 or less, the above-mentioned drain recovery is performed, and if the turbidity is 51 or more, the drain is discarded or the water quality is improved before recovery. If the water quality is to be improved, it can be treated by passing it through a water quality improvement device, or returned to the raw water tank for treatment.

本発明の効果を損なわない範囲であれば、スケール防止剤以外に、アルカリ剤や脱酸素剤、防食剤、復水処理剤等の従来のボイラのスケール防止剤や防食剤に用いられている添加剤成分を、必要に応じて添加含有させてもよい。例えば、脱酸素剤や復水処理剤を添加することにより、蒸気発生設備における蒸気およびドレン配管での防食効果が高まり、ドレン水中の金属濃度を抑制することができる。 In addition to the scale inhibitor, additive components used in conventional boiler scale inhibitors and anticorrosive agents, such as alkaline agents, oxygen scavengers, anticorrosive agents, and condensate treatment agents, may be added as necessary, provided that the effects of the present invention are not impaired. For example, the addition of oxygen scavengers and condensate treatment agents can increase the anticorrosive effect in the steam and drain piping in the steam generation equipment and suppress the metal concentration in the drain water.

本発明では、ドレンの濁度、水温、流量、ボイラ補給水及び/又は給水の水温、流量を連続測定し、web上でモニタリングしてもよい。また、これらの各情報からドレンの回収率と、燃料削減効果およびCO削減効果、節水効果を試算し、各工場から収集されたデータを工場の規模や、業種別で任意に比較できるよう、web上でベンチマーク表示してもよい。 In the present invention, the turbidity, temperature, and flow rate of drain, and the temperature and flow rate of boiler make-up water and/or feed water may be continuously measured and monitored on the web. Also, the drain recovery rate, fuel reduction effect, CO2 reduction effect, and water saving effect may be estimated from each of these pieces of information, and the data collected from each factory may be benchmarked and displayed on the web so that it can be arbitrarily compared by factory size or type of industry.

本発明が適用されるボイラ設備の一例を図1に示す。 An example of a boiler facility to which the present invention can be applied is shown in Figure 1.

ボイラ給水の原水は、原水槽1、除鉄装置2及び軟化器3を経て軟水となり、給水タンク4に導入される。給水タンク4内の水は、脱気器5から給水配管6を介してボイラ7に給水される。給水配管6には、スケール防止剤の薬注装置19が設けられている。 The raw water for the boiler feed is softened through the raw water tank 1, iron removal device 2, and softener 3, and then introduced into the feed water tank 4. The water in the feed water tank 4 is fed from the deaerator 5 through the feed water piping 6 to the boiler 7. The feed water piping 6 is provided with a chemical injection device 19 for a scale inhibitor.

ボイラ7で生じた蒸気は、蒸気ヘッダー8を経て蒸気使用設備9に供給される。蒸気使用設備9で生じたドレンは、配管10に流出する。配管10は、切替弁11を介して配管12,13,14に分岐している。配管12は給水タンク4に連なっている。配管13は水質改善装置15に連なっており、水質改善装置15からの水は給水タンク4に導入される。配管14は原水槽1に連なっている。 The steam generated in the boiler 7 is supplied to the steam-using equipment 9 via the steam header 8. The drain generated in the steam-using equipment 9 flows out into the pipe 10. The pipe 10 branches into pipes 12, 13, and 14 via a switching valve 11. The pipe 12 is connected to the water supply tank 4. The pipe 13 is connected to the water quality improvement device 15, and the water from the water quality improvement device 15 is introduced into the water supply tank 4. The pipe 14 is connected to the raw water tank 1.

配管10には、温度計21、流量計22、濁度計23が設けられている。これらの検出信号は、制御装置24に入力される。制御装置24は、濁度や、近似式から求められる金属濃度に基づいて切替弁11と、スケール防止剤の薬注装置19とを制御する。 The piping 10 is provided with a thermometer 21, a flowmeter 22, and a turbidity meter 23. These detection signals are input to a control device 24. The control device 24 controls the switching valve 11 and the scale inhibitor dosing device 19 based on the turbidity and the metal concentration calculated from the approximation formula.

制御装置24による切替弁11や薬注装置19の制御内容は前述の通りである。 The control of the switching valve 11 and the chemical injection device 19 by the control device 24 is as described above.

例えば、ドレンの濁度が所定値a以下であれば、ドレンを給水タンク4に送水し、a以上b(a<b)以下の場合は、ドレンを水質改善装置15に送水し、b超の場合は原水槽1に送水する。また、濁度に応じて、薬注装置19からの薬注量(例えば薬注ポンプ回転数)を制御する。 For example, if the turbidity of the drain is equal to or lower than a predetermined value a, the drain is sent to the water supply tank 4, if it is equal to or higher than a but equal to or lower than b (a<b), the drain is sent to the water quality improvement device 15, and if it exceeds b, the drain is sent to the raw water tank 1. Also, the amount of chemicals to be injected from the chemical injection device 19 (e.g., the number of revolutions of the chemical injection pump) is controlled according to the turbidity.

同様に、ドレンの濁度から求めた金属濃度が所定値c以下であれば、ドレンを給水タンク4に送水し、c以上d(c<d)以下の場合は、ドレンを水質改善装置15に送水し、d超の場合は原水槽1に送水する。また、濁度から求めた金属濃度に応じて、薬注装置19からの薬注量を制御する。 Similarly, if the metal concentration calculated from the turbidity of the drain is equal to or lower than a predetermined value c, the drain is sent to the water supply tank 4, if it is equal to or higher than c but equal to or lower than d (c<d), the drain is sent to the water quality improvement device 15, and if it exceeds d, the drain is sent to the raw water tank 1. Also, the amount of chemicals injected from the chemical injection device 19 is controlled according to the metal concentration calculated from the turbidity.

[実験例1]
軟水給水で低圧の小型貫流ボイラを使用している工場で、ドレン水を連続的に採水し、鉄濃度と濁度の分析を行い、相関性があるかを検証した。
<実験条件>
軟水給水:Mアルカリ度30mg as CaCO/L
ボイラ圧力:0.6MPa
蒸気ドレン流量:5L/min
蒸気配管及びドレン配管の材質:鋼材が使用され、銅や亜鉛材質は使用していない。
蒸気使用設備の材質:鋼材のみ
採水タイミング:ボイラ運転停止後2日間後にボイラを立ち上げ、給水タンクへ延び
るドレン回収配管からドレン水が出始めた時から、2分置きにドレ
ン水を採水した。
鉄濃度:ドレン水中の鉄酸化物及び鉄イオンの全てを含む鉄濃度を分析した。採水し
たドレン水中には酸化鉄および鉄イオンが含まれるため、採水したドレン水
に塩酸を加え加熱し、必要に応じて希釈し、前処理した後、フレーム原子吸
光法で分析した。
濁度:透過光式の濁度計を用いて分析した。
ドレン水の検体数:60検体
[Experimental Example 1]
At a factory that uses a low-pressure small-scale once-through boiler for soft water supply, drain water was continuously sampled and analyzed for iron concentration and turbidity to verify whether there was a correlation.
<Experimental conditions>
Soft water supply: M alkalinity 30 mg as CaCO 3 /L
Boiler pressure: 0.6 MPa
Steam drain flow rate: 5 L/min
Steam and drain piping materials: Steel is used; copper and zinc are not used.
Material of steam equipment: Steel only Timing of water collection: Start the boiler two days after the boiler operation is stopped, and then run the water to the feedwater tank.
Once drain water starts coming out of the drain collection pipe,
Water was collected from the area.
Iron concentration: The iron concentration in the drain water, including both iron oxides and iron ions, was analyzed.
The collected drain water contains iron oxide and iron ions.
Add hydrochloric acid to the mixture, heat it, dilute it if necessary, pretreat it, and then use a flame atomic absorption spectrometer.
It was analyzed by spectrophotometry.
Turbidity: Analyzed using a transmitted light type turbidimeter.
Number of drainage samples: 60 samples

<結果・考察>
濁度と鉄濃度(酸化鉄及び鉄イオンを含む全ての鉄濃度。以下、同様)との関係を図2に示す。
<Results and Discussion>
The relationship between turbidity and iron concentration (total iron concentration including iron oxide and iron ions; the same applies below) is shown in FIG.

図2の通り、濁度0.1~501、鉄濃度0.01~135mg/Lの範囲において、濁度と鉄濃度に正の相関性があることが確認された。
近似値Y(鉄濃度)=0.2469X(濁度)、相関係数R=0.9592
As shown in FIG. 2, it was confirmed that there is a positive correlation between turbidity and iron concentration in the turbidity range of 0.1 to 501 and the iron concentration range of 0.01 to 135 mg/L.
Approximation Y (iron concentration) = 0.2469X (turbidity), correlation coefficient R2 = 0.9592

また、濁度及び鉄濃度の経時変化を図3に示す。図3から、ボイラ立ち上げ直後は、ドレン水中の濁度及び鉄濃度が急上昇し、時間の経過とともに徐々に低下することが確認された。この結果より、ボイラの稼働とドレン回収のタイミングによっては鉄の汚れが多い時間帯もあるため、ボイラ内へのスケール防止の観点で対策が必要となることが分かった。 Figure 3 shows the change in turbidity and iron concentration over time. It can be seen from Figure 3 that the turbidity and iron concentration in the drain water rise sharply immediately after the boiler is started up, and then gradually decrease over time. This shows that, depending on the timing of boiler operation and drain recovery, there are times when there is a lot of iron contamination, and therefore measures are needed to prevent scale formation inside the boiler.

[実験例2]
軟水給水で低圧の小型貫流ボイラを使用している別の各工場で、ドレンを複数回採水し、各金属濃度と濁度の分析を行い、相関性があるかを検証した。
<実験条件>
軟水給水:Mアルカリ度10~60mg as CaCO/L
ボイラ圧力:0.7MPa
蒸気ドレン流量:100L/min
蒸気配管及びドレン配管の材質:鋼材がメインに使用され、一部に亜鉛材質を使用
蒸気使用設備の材質:鋼材及び銅材質
採水タイミング:1工場につき1時間置きに5回の採水を行った。
金属濃度:ドレン水中の各金属酸化物及び各金属イオンの全てを含む金属濃度を分析
した。採水したドレン水に塩酸を加え加熱し、必要に応じて希釈し、前処
理した後、フレーム原子吸光法で分析した。
濁度:透過光式の濁度計を用いて分析した。
工場数:14工場
ドレン水の検体数:70検体
[Experimental Example 2]
At other factories that use low-pressure small-scale flow-through boilers for soft water supply, drain samples were taken multiple times and the metal concentrations and turbidity were analyzed to verify whether there was a correlation.
<Experimental conditions>
Soft water supply: M alkalinity 10-60 mg as CaCO 3 /L
Boiler pressure: 0.7 MPa
Steam drain flow rate: 100 L/min
Steam and drain pipe materials: Steel was mainly used, with some zinc used. Steam equipment materials: Steel and copper. Water sampling timing: Water was sampled five times at hourly intervals for each factory.
Metal concentration: Analyzes the metal concentration in drain water, including all metal oxides and metal ions
Hydrochloric acid was added to the collected drainage water, heated, and diluted as necessary.
After treatment, the mixture was analyzed by flame atomic absorption spectrometry.
Turbidity: Analyzed using a transmitted light type turbidimeter.
Number of factories: 14 Number of drainage samples: 70

<結果・考察>
結果を図4,5及び表1に示す。図4および表1より、金属単体で見ると濁度と鉄の相関性が最も高く、次に濁度と銅との相関性がよく、濁度と亜鉛との相関性が最も低かった。
<Results and Discussion>
The results are shown in Figures 4 and 5 and Table 1. From Figure 4 and Table 1, looking at the individual metals, the correlation between turbidity and iron was the highest, followed by the correlation between turbidity and copper, and the correlation between turbidity and zinc was the lowest.

また、図4,5及び表1より、濁度は、それぞれの金属単体の濃度との相関性よりも、合計の金属濃度との相関性の方が高いことが分かった。 Furthermore, Figures 4 and 5 and Table 1 show that turbidity is more strongly correlated with the total metal concentration than with the concentration of each individual metal.

Figure 0007468570000001
Figure 0007468570000001

[比較例1~13、実施例1~17]
<概要>
軟水給水で低圧の小型貫流ボイラを備えた図1の構成のボイラ設備(ただし、ボイラは2台並列に設置されている。)を用いて、スケール防止剤を添加しない場合(比較例1)、スケール防止剤を常に一定量薬注した場合(比較例2~13)、及びドレン水の濁度を連続測定し、その値に応じてスケール防止剤を薬注制御した場合(実施例1~17)のスケール防止効果を判定した。
[Comparative Examples 1 to 13, Examples 1 to 17]
<Overview>
Using a boiler facility having the configuration shown in FIG. 1 and equipped with a low-pressure small-scale once-through boiler with a soft water supply (however, two boilers are installed in parallel), the scale prevention effect was evaluated in the following cases: when no scale inhibitor was added (Comparative Example 1), when a fixed amount of scale inhibitor was constantly injected (Comparative Examples 2 to 13), and when the turbidity of drain water was continuously measured and the injection of scale inhibitor was controlled in accordance with the value (Examples 1 to 17).

ドレン水中の鉄、銅、亜鉛濃度の値は、実機を模擬してドレン回収直後に急上昇し、1時間後に通常濃度まで下がるように水質を調整した。 The iron, copper, and zinc concentrations in the drain water rose sharply immediately after drain collection to simulate the actual equipment, and the water quality was adjusted so that they dropped to normal concentrations after one hour.

スケール防止の効果の判定には、スラッジリカバリーバランス(SRB)を用いた。SRBとはボイラの給水中の金属がボイラのブロー水中にどれだけ排出されたかを示す指標であり、数値が高いほどスケール防止の観点で良いと判断される。表2の平均SRB%は、5回の採水の値をそれぞれ下記SRB%の式から求め、それらの平均値を算出した。 Sludge recovery balance (SRB) was used to determine the effectiveness of scale prevention. SRB is an index that shows how much of the metals in the boiler's feed water are discharged into the boiler's blow water, and the higher the value, the better the scale prevention is considered to be. The average SRB% in Table 2 was calculated by finding the values for five water samples using the SRB% formula below, and then averaging them.

<実験条件>
軟水給水:Mアルカリ度30mg as CaCO/L、シリカ15mg/L、硬度1mg as CaCO/L未満
ボイラ圧力:0.6MPa
ボイラ給水量:250L/h-ボイラ1台
ドレン回収率:99%
ボイラ濃縮倍数:10倍
蒸気使用設備の材質:ステンレス材質を使用し、ドレン水を汚さないようにした。
採水タイミング:金属濃度測定のため、ドレン回収後から15分置きに5回、給水及
びボイラ水の採水を行った。
金属濃度:ドレン水中の各金属酸化物及び各金属イオンの全てを含む金属濃度を分析
した。採水したドレン水に塩酸を加え加熱し、必要に応じて希釈し、前処
理した後、フレーム原子吸光法で分析した。
濁度:透過光式の濁度計を用いてドレン水の濁度を連続測定した。
各金属濃度の調整:鉄濃度の調整は酸化鉄および塩化鉄を用いた。銅濃度の調整は、
酸化銅および塩化銅を用いた。亜鉛濃度の調整は、塩化亜鉛を用
いた。
ドレン水の鉄濃度:0.05~15mg/Lの範囲で調整した。15mg/Lから薬
注をスタートし、5分間毎に1.25mg/L低下するように調
整した。
ドレン水の銅濃度:0.01~2.0mg/Lの範囲で調整した。2.0mg/Lか
ら薬注をスタートし、5分間毎に0.17mg/L低下するよう
に調整した。
ドレン水の亜鉛濃度:0.01~1.0mg/Lの範囲で調整した。1.0mg/L
から薬注をスタートし、5分間毎に0.08mg/L低下する
ように調整した。
スケール防止剤:表2に示すものを用いた。
スケール防止剤の添加量:比較例では濁度に関係なく各スケール防止剤を5mg/L
一定量で連続注入した。一方、実施例では連続測定した濁
度の値から[実施例2]の近似式(y=0.3375x、
yは金属濃度、xは濁度)より求めた金属濃度の0.5~
10倍量を表のとおり添加した。
SRB%:SRB%={ボイラ金属濃度/(給水金属濃度×濃縮倍数)}×100
ボイラ水のpH調整剤:NaOHおよびKOHにてボイラ水のpHが11.5となる
ように調整した。
<Experimental conditions>
Soft water supply: M alkalinity 30 mg as CaCO 3 /L, silica 15 mg/L, hardness less than 1 mg as CaCO 3 /L Boiler pressure: 0.6 MPa
Boiler water supply: 250L/h - 1 boiler Drain recovery rate: 99%
Boiler concentration ratio: 10 times. Materials of steam-using equipment: Stainless steel material was used to prevent the drain water from becoming dirty.
Timing of water sampling: For metal concentration measurement, water was collected from the drain and collected 5 times at 15-minute intervals.
The boiler water was also sampled.
Metal concentration: Analyzes the metal concentration in drain water, including all metal oxides and metal ions
Hydrochloric acid was added to the collected drainage water, heated, and diluted as necessary.
After treatment, the mixture was analyzed by flame atomic absorption spectrometry.
Turbidity: The turbidity of the drain water was continuously measured using a transmitted light turbidity meter.
Adjustment of each metal concentration: Iron concentration was adjusted using iron oxide and iron chloride. Copper concentration was adjusted using
Copper oxide and copper chloride were used. The zinc concentration was adjusted using zinc chloride.
there was.
Iron concentration in drain water: Adjusted in the range of 0.05 to 15 mg/L.
Start the injection and adjust so that the concentration decreases by 1.25 mg/L every 5 minutes.
Adjusted.
Copper concentration in drain water: Adjusted in the range of 0.01 to 2.0 mg/L.
The drug administration was started so that the concentration decreased by 0.17 mg/L every 5 minutes.
was adjusted to.
Zinc concentration in drain water: Adjusted in the range of 0.01 to 1.0 mg/L.
The drug administration started at 0.08 mg/L every 5 minutes.
It was adjusted as follows.
Scale inhibitor: The ones shown in Table 2 were used.
Amount of scale inhibitor added: In the comparative example, each scale inhibitor was added at 5 mg/L regardless of turbidity.
A constant amount was continuously injected.
From the value of the degree, the approximate formula of [Example 2] (y = 0.3375x,
y is the metal concentration, x is the turbidity)
Ten-fold amounts were added as shown in the table.
SRB%: SRB% = {boiler metal concentration / (feedwater metal concentration x concentration factor)} x 100
Boiler water pH adjuster: NaOH and KOH make the boiler water pH 11.5
It was adjusted as follows.

<結果・考察>
結果を表2に示す。表2から、濁度の値から求めた金属濃度に応じてスケール防止剤を添加した場合に、高い金属スケール防止効果が得られることが認められた。特に、スケール防止剤として重量平均分子量が0.5万~5万のポリメタクリル酸ナトリウムを用い、かつその添加量が金属濃度の0.5~10倍量の場合に、優れた金属スケール防止効果があることが認められた。
<Results and Discussion>
The results are shown in Table 2. It was found from Table 2 that a high metal scale inhibition effect can be obtained when a scale inhibitor is added according to the metal concentration calculated from the turbidity value. In particular, it was found that an excellent metal scale inhibition effect can be obtained when sodium polymethacrylate having a weight average molecular weight of 5,000 to 50,000 is used as the scale inhibitor and the amount added is 0.5 to 10 times the metal concentration.

また、ドレン回収率の変化や停止期間明けのドレンの回収によりドレン水中の金属濃度が変化し、高濃度の金属がボイラへ給水される場合でも、濁度を連続監視することでドレン中の金属濃度を想定し、その濃度に応じたスケール防止剤を添加することで優れた金属スケール防止効果を発揮し、ドレンを回収することができる。 In addition, even if the metal concentration in the drain water changes due to changes in the drain recovery rate or recovery of drain after a shutdown period, and high concentrations of metals are fed to the boiler, the metal concentration in the drain can be estimated by continuously monitoring the turbidity, and a scale inhibitor can be added according to that concentration, providing excellent metal scale prevention effects and allowing the drain to be recovered.

Figure 0007468570000002
Figure 0007468570000002

表2中の記号は次のとおりである。
PAA:ポリアクリル酸ナトリウム
PMA:ポリメタクリル酸ナトリウム
AA-HAPS:アクリル酸-3-アリロキシ-2-ヒドロキシプロパンスルホン酸ナトリウム
AA-AMPS:アクリル酸-2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム
CMC:カルボキシメチルセルロース
HEDP:1-ヒドロキシエチリデン-1,1-ジホスホン酸
The symbols in Table 2 are as follows:
PAA: Sodium polyacrylate
PMA: Sodium polymethacrylate
AA-HAPS: Sodium 3-allyloxy-2-hydroxypropanesulfonate of acrylic acid
AA-AMPS: Sodium acrylic acid-2-acrylamido-2-methylpropanesulfonate
CMC: Carboxymethyl cellulose
HEDP: 1-hydroxyethylidene-1,1-diphosphonic acid

1 原水槽
4 給水タンク
7 ボイラ
11 切替弁
15 水質改善装置
19 薬注装置
21 温度計
22 流量計
23 濁度計
REFERENCE SIGNS LIST 1 raw water tank 4 feed water tank 7 boiler 11 changeover valve 15 water quality improvement device 19 chemical injection device 21 thermometer 22 flowmeter 23 turbidity meter

Claims (4)

ドレンを回収する蒸気発生設備において、ドレンの濁度とドレン中の鉄、銅及び亜鉛の合計の金属濃度との正の相関の近似式を求めておき、
濁度測定値と該近似式より該ドレン中の鉄、銅及び亜鉛の合計の金属濃度を求め、この金属濃度に基づいて該蒸気発生設備への給水にスケール防止剤を添加する蒸気復水の回収方法であって、
前記スケール防止剤が、重量平均分子量0.1万~10万のポリメタクリル酸塩であり、濁度測定値と前記近似式とから求めた金属濃度に対するスケール防止剤の添加量を0.5~10倍量とし、
濁度測定値と前記近似式とから求めた金属濃度が所定値cよりも低い場合にドレンをそのまま回収し、金属濃度が所定範囲c~d(ただし、d>c)の場合に、ドレンを水質改善装置で水質改善してから回収する蒸気復水の回収方法。
In a steam generating facility that recovers drain, an approximate equation for a positive correlation between the turbidity of the drain and the total metal concentration of iron, copper, and zinc in the drain is obtained,
A method for recovering steam condensate, comprising the steps of: determining a total metal concentration of iron, copper and zinc in the drain from a turbidity measurement value and the approximation formula; and adding a scale inhibitor to the water supplied to the steam generating facility based on the total metal concentration;
The scale inhibitor is a polymethacrylate having a weight average molecular weight of 1,000 to 100,000, and the amount of the scale inhibitor added is 0.5 to 10 times the metal concentration calculated from the turbidity measurement value and the approximation formula,
A steam condensate recovery method in which, when the metal concentration calculated from the turbidity measurement value and the approximation formula is lower than a predetermined value c, the drain is recovered as is, and, when the metal concentration is within a predetermined range c to d (where d > c), the drain is recovered after its quality is improved using a water quality improvement device.
前記蒸気発生設備は、原水を軟化処理した軟化水を貯める給水タンクを備えており、前記ドレンを該給水タンクに回収する請求項1の蒸気復水の回収方法。 The steam generation facility is provided with a water supply tank that stores softened water obtained by softening raw water, and the drain is collected in the water supply tank. The steam condensate recovery method of claim 1. 前記蒸気発生設備は、蒸気発生設備に供給される原水を貯める原水槽を備えており、
前記金属濃度が前記dよりも高い場合に、ドレンを該原水槽に回収する請求項1の蒸気復水の回収方法。
The steam generating facility includes a raw water tank that stores raw water to be supplied to the steam generating facility,
2. The method for recovering steam condensate according to claim 1, further comprising recovering drain in said raw water tank when said metal concentration is higher than said d.
前記水質改善装置は、金属酸化物又は金属イオンを除去する装置である請求項1~3のいずれかの蒸気復水の回収方法。 The steam condensate recovery method according to any one of claims 1 to 3, wherein the water quality improvement device is a device for removing metal oxides or metal ions.
JP2022087007A 2022-05-27 2022-05-27 Steam condensate recovery method Active JP7468570B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022087007A JP7468570B2 (en) 2022-05-27 2022-05-27 Steam condensate recovery method
PCT/JP2023/011418 WO2023228536A1 (en) 2022-05-27 2023-03-23 Method for recovering vapor condensation
TW112114104A TW202346755A (en) 2022-05-27 2023-04-14 Method for recovering vapor condensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022087007A JP7468570B2 (en) 2022-05-27 2022-05-27 Steam condensate recovery method

Publications (2)

Publication Number Publication Date
JP2023174258A JP2023174258A (en) 2023-12-07
JP7468570B2 true JP7468570B2 (en) 2024-04-16

Family

ID=88918994

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022087007A Active JP7468570B2 (en) 2022-05-27 2022-05-27 Steam condensate recovery method

Country Status (3)

Country Link
JP (1) JP7468570B2 (en)
TW (1) TW202346755A (en)
WO (1) WO2023228536A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231197A (en) 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Water quality control method based on heater drain iron concentration
JP2013076520A (en) 2011-09-30 2013-04-25 Mitsubishi Heavy Ind Ltd Method of eliminating iron component in heater drain water in power generating plant
JP2013169530A (en) 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Water treatment system for power plant and water treatment method
JP2015013252A (en) 2013-07-04 2015-01-22 栗田工業株式会社 Iron scale prevention agent, and method for preventing iron scale in vapor generation equipment using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006231197A (en) 2005-02-24 2006-09-07 Mitsubishi Heavy Ind Ltd Water quality control method based on heater drain iron concentration
JP2013076520A (en) 2011-09-30 2013-04-25 Mitsubishi Heavy Ind Ltd Method of eliminating iron component in heater drain water in power generating plant
JP2013169530A (en) 2012-02-22 2013-09-02 Mitsubishi Heavy Ind Ltd Water treatment system for power plant and water treatment method
JP2015013252A (en) 2013-07-04 2015-01-22 栗田工業株式会社 Iron scale prevention agent, and method for preventing iron scale in vapor generation equipment using the same

Also Published As

Publication number Publication date
TW202346755A (en) 2023-12-01
JP2023174258A (en) 2023-12-07
WO2023228536A1 (en) 2023-11-30

Similar Documents

Publication Publication Date Title
US5024783A (en) Boiler and boiler water treatment system
US4175100A (en) Preparation of anionic polymers for use as scale inhibitors and anti-precipitants
KR102040143B1 (en) Method for preventing scale deposition and scale inhibitor
JP2006274427A (en) Water treating agent and water treatment method
TWI613396B (en) Method of removing scale for steam generation equipment
TWI642636B (en) Method for removing scale from steam generating equipment and scale removing agent
CN106521519A (en) Cleaning agent for oxide skin of overheater and cleaning method thereof
JP7468570B2 (en) Steam condensate recovery method
US6645384B1 (en) Method for inhibiting scale in high-cycle aqueous systems
KR960001398B1 (en) Scale removing method
WO2006104181A1 (en) Boiler apparatus
JPS59189998A (en) Scale removing method
CN107244753A (en) The special special efficacy environment-friendly type organic anti-scale corrosion inhibiter of heat supply network of steam power plant
JP2008055336A (en) Operation method of permeation flux in membrane filtration device
US7862727B2 (en) Desalination scale inhibitors
JP6532494B2 (en) Reverse osmosis processing method and apparatus
Rahman et al. 14 Scale Formation and Control in Thermal Desalination Systems
JP5862193B2 (en) Method for preventing iron scale in water side can of steam generator
Bhatt Effect of water side deposits on the energy performance of coal fired thermal power plants
JP5085962B2 (en) Silica-based antifouling agent and silica-based antifouling method
CN104773848A (en) Organic-phosphonate-based organic energy-saving and emission-reduction agent for industrial boiler
JP2008088475A (en) Corrosion preventive and corrosion prevention method
Lin et al. Highly Effective Polymers Developed for Scale Prevention and Removal in Low-Pressure Boiler Systems
JP2012107819A (en) Steam boiler apparatus
CA2280586A1 (en) Method for removing scale of boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318