JP7466166B2 - Lactic acid bacteria-containing agent for preventing viral infection and method for producing same - Google Patents

Lactic acid bacteria-containing agent for preventing viral infection and method for producing same Download PDF

Info

Publication number
JP7466166B2
JP7466166B2 JP2018149553A JP2018149553A JP7466166B2 JP 7466166 B2 JP7466166 B2 JP 7466166B2 JP 2018149553 A JP2018149553 A JP 2018149553A JP 2018149553 A JP2018149553 A JP 2018149553A JP 7466166 B2 JP7466166 B2 JP 7466166B2
Authority
JP
Japan
Prior art keywords
lactic acid
acid bacteria
culture solution
mass
cell culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018149553A
Other languages
Japanese (ja)
Other versions
JP2020023459A (en
Inventor
辰彦 菅
卓巳 渡邉
京子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BIO-LAB LTD.
Original Assignee
BIO-LAB LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BIO-LAB LTD. filed Critical BIO-LAB LTD.
Priority to JP2018149553A priority Critical patent/JP7466166B2/en
Publication of JP2020023459A publication Critical patent/JP2020023459A/en
Application granted granted Critical
Publication of JP7466166B2 publication Critical patent/JP7466166B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Description

特許法第30条第2項適用 FOOD STYLE 21、第21巻、第4号、58~62頁(平成30年4月1日、株式会社食品化学新聞社)Application of Article 30, Paragraph 2 of the Patent Act FOOD STYLE 21, Vol. 21, No. 4, pp. 58-62 (April 1, 2018, Food Chemical Newspaper Co., Ltd.)

本発明は、経口摂取された乳酸菌のパイエル板への到達性を高め乳酸菌を含有する乳酸菌含有ウイルス感染防御剤及びその製造方法に関する。 The present invention relates to a lactic acid bacteria-containing agent for protecting against viral infections, which contains lactic acid bacteria that have an improved ability to reach Peyer's patches when orally ingested, and a method for producing the same .

本出願人は、IL-12産生誘導能を有する乳酸菌の菌体に分散剤又は賦形剤を添加し、これを湿式分散処理して前記菌体の粒度を1ミクロン未満に粉砕・分散することで、前記菌体を前記分散剤又は賦形剤によって再凝集防止し、その状態で粉末化することを特徴とするTh1誘導剤の製造方法を既に提案している(特許文献1参照)。 The present applicant has already proposed a method for producing a Th1 inducer, which is characterized by adding a dispersant or excipient to lactic acid bacteria cells capable of inducing IL-12 production, grinding and dispersing the cells to a particle size of less than 1 micron by wet dispersion treatment, preventing the cells from re-aggregating with the dispersant or excipient, and powdering the cells in this state (see Patent Document 1).

特許第4621218号公報Japanese Patent No. 4621218

乳酸菌はパイエル板から取り込まれ免疫細胞に渡されることが知られているが、必ずしもすべての乳酸菌が取り込まれるわけではないことも知られている。 It is known that lactic acid bacteria are taken up by Peyer's patches and passed to immune cells, but it is also known that not all lactic acid bacteria are necessarily taken up.

本発明の目的は、経口摂取された乳酸菌のパイエル板への到達性を高めた乳酸菌含有ウイルス感染防御剤及びその製造方法を提供することにある。 An object of the present invention is to provide a lactic acid bacteria-containing agent for protecting against viral infections which enhances the ability of orally ingested lactic acid bacteria to reach Peyer's patches, and a method for producing the same .

上記目的を達成するため、本発明者らは、種々研究した結果、乳酸菌の菌体培養液に可溶性賦形剤を添加して所定の調製をした後、該菌体培養液を粉砕・分散し、さらに乾燥粉末化することにより得られた乳酸菌末が、経口摂取された場合にパイエル板への到達性が高まり、優れたウイルス感染防止効果を有することを見出し、本発明を完成するに至った。 In order to achieve the above-mentioned object, the present inventors conducted various studies and found that a lactic acid bacteria powder obtained by adding a soluble excipient to a lactic acid bacteria cell culture solution to prepare a desired state, crushing and dispersing the cell culture solution, and further drying and powdering the culture solution, has high reachability to Peyer's patches when orally ingested and has an excellent effect in preventing viral infections , which led to the completion of the present invention.

すなわち、本発明の一つは、湿式によるレーザー回折散乱法により測定された菌体粒子のメジアン径が1.0μm以下である乳酸菌末を有効成分とする乳酸菌含有ウイルス感染防御剤を提供するものである。本発明のウイルス感染防御剤によれば、乳酸菌の菌体粒子のメジアン径が1.0μm以下と小さいことにより、消化管粘膜面を覆っている粘液の網目構造をすり抜けて、パイエル板に到達することができる。そして、パイエル板上のM細胞から取り込まれ、その下層に待機する樹上細胞やマクロファージに捕捉されることで、これらの細胞がサイトカインを産生し、免疫反応を活性化することができる。それによって、優れたウイルス感染防御効果が発揮される。 That is, one aspect of the present invention provides a lactic acid bacteria-containing virus infection protection agent containing, as an active ingredient, a lactic acid bacteria powder having a median particle diameter of 1.0 μm or less as measured by a wet laser diffraction scattering method. According to the virus infection protection agent of the present invention, since the median particle diameter of the lactic acid bacteria is as small as 1.0 μm or less, it can slip through the mesh structure of the mucus covering the mucous membrane surface of the digestive tract and reach Peyer's patches. Then, it is taken up by M cells on Peyer's patches and captured by dendritic cells and macrophages waiting below, and these cells produce cytokines and activate immune responses. As a result, an excellent virus infection protection effect is exerted.

本発明の乳酸菌含有ウイルス感染防御剤における前記乳酸菌末は、経口摂取によりパイエル板到達性を有することが好ましい。The lactic acid bacteria powder in the lactic acid bacteria-containing agent for protecting against viral infections of the present invention preferably has the ability to reach Peyer's patches when orally ingested.

本発明の乳酸菌含有ウイルス感染防御剤は、ノロウイルスに対するものであることが好ましい。The lactic acid bacteria-containing agent for preventing viral infection of the present invention is preferably one against norovirus.

前記乳酸菌末の乳酸菌は、ラクトバチラス・ブレビス(Lactobacillus brevis)、ラクトバチラス・プランタルム(Lactobacillus plantarum)、ラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)、ラクトバチルス・ペントーサス(Lactobacillus pentosus)、エンテロコッカス・フェカリス(Enterococcus faecalis)、及びエンテロコッカス・フェシウム(Enterococcus faecium)からなる群から選択された1種又は2種以上であることが好ましい。The lactic acid bacteria in the lactic acid bacteria powder is preferably one or more species selected from the group consisting of Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus pentosus, Enterococcus faecalis, and Enterococcus faecium.

また、本発明のもう一つは、乳酸菌の菌体培養液を乾燥菌体換算で0.01質量%以上88質量%未満となるように調製し、該菌体培養液に可溶性賦形剤を乾燥終濃度で12質量%以上となるように添加し、該可溶性賦形剤を添加した菌体培養液を粉砕・分散した後、乾燥粉末化することにより、湿式によるレーザー回折散乱法により測定された菌体粒子のメジアン径が1.0μm以下である乳酸菌末を得て、該乳酸菌末を有効成分として含有させることを特徴とする乳酸菌含有ウイルス感染防御剤の製造方法を提供するものである。Another aspect of the present invention provides a method for producing a lactic acid bacteria-containing virus infection protection agent, comprising: preparing a lactic acid bacteria cell culture solution so that the concentration is 0.01% by mass or more and less than 88% by mass in terms of dry cell content; adding a soluble excipient to the cell culture solution so that the cell culture solution has a final dry cell concentration of 12% by mass or more; pulverizing and dispersing the cell culture solution to which the soluble excipient has been added, and then drying and powdering the cell culture solution to obtain a lactic acid bacteria powder having a cell particle median diameter of 1.0 μm or less as measured by a wet laser diffraction scattering method; and incorporating the lactic acid bacteria powder as an active ingredient.
本発明において、前記粉砕・分散をミキサー又はホモゲナイザーを用いて行うことが好ましい。In the present invention, the grinding and dispersion are preferably carried out using a mixer or a homogenizer.

本発明の乳酸菌含有ウイルス感染防御剤によれば、乳酸菌の菌体粒子のメジアン径が1.0μm以下と小さいことにより、消化管粘膜面を覆っている粘液の網目構造をすり抜けて、パイエル板に到達することができる。そして、パイエル板上のM細胞から取り込まれ、その下層に待機する樹上細胞やマクロファージに捕捉されることで、これらの細胞がサイトカインを産生し、免疫反応を活性化することができる。それによって、優れたウイルス感染防御効果が発揮される。 According to the lactic acid bacteria-containing virus infection protection agent of the present invention, the median diameter of the lactic acid bacteria cell particles is as small as 1.0 μm or less, so that they can slip through the mesh structure of the mucus covering the mucous membrane surface of the digestive tract and reach Peyer's patches. They are then taken up by M cells on Peyer's patches and captured by dendritic cells and macrophages waiting below, which causes these cells to produce cytokines and activate immune responses. As a result, excellent virus infection protection effects are exhibited.

デキストリンの各添加量における、乳酸菌菌体粒子のメジアン径の測定結果を示す図表である。1 is a graph showing the results of measuring the median diameter of lactic acid bacteria cell particles at various amounts of dextrin added. デキストリンの各添加量((A)0質量%、(B)10質量%、(C)15質量%)における、乳酸菌菌体粒子の粒度分布(縦軸:相対粒子量(%)、横軸:粒子径(μm))を示す図表である。FIG. 1 is a graph showing the particle size distribution of lactic acid bacteria cell particles (vertical axis: relative particle amount (%), horizontal axis: particle diameter (μm)) for each amount of dextrin added ((A) 0 mass%, (B) 10 mass%, (C) 15 mass%). デキストリンの各添加量((D)20質量%、(E)25質量%、(F)50質量%)における、乳酸菌菌体粒子の粒度分布を示す図表である。1 is a graph showing the particle size distribution of lactic acid bacteria cell particles at various amounts of dextrin added ((D) 20% by mass, (E) 25% by mass, (F) 50% by mass). (A)乳酸菌分散型が粘液の網目構造をすり抜けてパイエル板に達している様子、(B)乳酸菌分散型がパイエル板上のM細胞に取り込まれている様子、(C)乳酸菌凝集型が粘液の網目構造をすり抜けられず、パイエル板に達していない様子を示す図表である。This is a diagram showing (A) dispersed lactobacilli passing through the mucus mesh structure to reach Peyer's patches, (B) dispersed lactobacilli being taken up by M cells on Peyer's patches, and (C) aggregated lactobacilli unable to pass through the mucus mesh structure and not reaching Peyer's patches. 免疫機能正常MNVマウスの糞便中のウイルス量の経時変化を示す図表である。1 is a graph showing the time course of viral load in feces of immunocompetent MNV mice. 免疫機能低下MNVマウスの糞便中のウイルス量の経時変化を示す図表である。1 is a graph showing the time course of viral load in feces of immunocompromised MNV mice. 免疫機能正常MNVマウス、及び免疫機能低下MNVマウスの中和抗体価を示す図表である。1 is a graph showing neutralizing antibody titers in immunocompetent MNV mice and immunocompromised MNV mice.

本発明の乳酸菌含有ウイルス感染防御剤に用いる乳酸菌末の原料となる乳酸菌としては、特に限定されないが、ラクトバチルス・ブレビス(Lactobacillus brevis)、ラクトバチルス・プランタラム(Lactobacillus plantarum)、ラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)、ラクトバチルス・ペントーサス(Lactobacillus pentosus)等のラクトバチルス属に属する微生物、ビフィドバクテリウム・ビフィダム(Bifidobacterium bifidum)、エンテロコッカス・フェカリス(Enterococcus faecalis)、エンテロコッカス・フェシウム(Enterococcus faecium)等のエンテロコッカス属に属する微生物、ラクトバチルス・ガセリ(Lactobacillus gasseri)、ストレプトコッカス・サーモフィルス(Streptcoccus thermophilus)等のストレプトコッカス属に属する微生物、ラクトコッカス・ラクチス(Lactococcus lactis)等のラクトコッカス属に属する微生物等が挙げられる。 Lactic acid bacteria as a raw material for the lactic acid bacteria powder used in the lactic acid bacteria-containing viral infection protection agent of the present invention are not particularly limited, and include microorganisms belonging to the genus Lactobacillus, such as Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus helveticus, and Lactobacillus pentosus; microorganisms belonging to the genus Enterococcus, such as Bifidobacterium bifidum, Enterococcus faecalis, and Enterococcus faecium; Lactobacillus gasseri, Streptococcus thermophilus, and the like; Examples of suitable microorganisms include those belonging to the genus Streptococcus, such as Streptomyces thermophilus, and those belonging to the genus Lactococcus, such as Lactococcus lactis.

上記乳酸菌の中でも、ラクトバチラス・ブレビス(Lactobacillus brevis)、ラクトバチラス・プランタルム(Lactobacillus plantarum)、ラクトバチルス・カゼイ(Lactobacillus casei)、ラクトバチルス・ヘルベティカス(Lactobacillus helveticus)、ラクトバチルス・ペントーサス(Lactobacillus pentosus)、エンテロコッカス・フェカリス(Enterococcus faecalis)、及びエンテロコッカス・フェシウム(Enterococcus faecium)からなる群から選択された1種又は2種以上であることが好ましい。 Among the above lactic acid bacteria, it is preferable to use one or more species selected from the group consisting of Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus casei, Lactobacillus helveticus, Lactobacillus pentosus, Enterococcus faecalis, and Enterococcus faecium.

本発明の乳酸菌含有ウイルス感染防御剤に用いる乳酸菌末は、まず、上記乳酸菌の菌体培養液を乾燥菌体換算で0.01質量%以上88質量%未満となるように、好ましくは0.1質量%以上80質量%未満となるように、より好ましくは1質量%以上50質量%未満となるように調製する。 The lactic acid bacteria powder used in the lactic acid bacteria-containing virus infection protection agent of the present invention is prepared by first preparing a cell culture solution of the lactic acid bacteria so that the cell concentration is 0.01% by mass or more and less than 88% by mass, preferably 0.1% by mass or more and less than 80% by mass, and more preferably 1% by mass or more and less than 50% by mass, calculated as dry cell content.

このように調製した菌体培養液に、可溶性賦形剤を乾燥終濃度で12質量%以上となるように、好ましくは13質量%以上となるように、より好ましくは15質量%以上となるように添加する。可溶性賦形剤を12質量%以上添加することで、後述する粉砕・分散する際の乳酸菌末の再凝集を防止することができる。 A soluble excipient is added to the bacterial culture solution thus prepared so that the final dry concentration is 12% by mass or more, preferably 13% by mass or more, and more preferably 15% by mass or more. By adding a soluble excipient at 12% by mass or more, it is possible to prevent reagglomeration of the lactic acid bacteria powder during grinding and dispersion, as described below.

用いる可溶性賦形剤としては、特に限定されず、例えば、デキストリン;マルトデキストリン;キサンタンガム;ラクチトール、マルチトール、マンニトール、ソルビトール、及びキシリトール等の糖アルコール類;デキストロース、フルクトース、グルコース、ラクトース、ショ糖等の糖類;アジピン酸、クエン酸、フマル酸、グルタル酸、リンゴ酸、コハク酸、及び酒石酸等の有機酸類等が挙げられる。 The soluble excipients used are not particularly limited, and examples thereof include dextrin; maltodextrin; xanthan gum; sugar alcohols such as lactitol, maltitol, mannitol, sorbitol, and xylitol; sugars such as dextrose, fructose, glucose, lactose, and sucrose; and organic acids such as adipic acid, citric acid, fumaric acid, glutaric acid, malic acid, succinic acid, and tartaric acid.

次に、可溶性賦形剤を添加した菌体培養液を粉砕・分散する。粉砕・分散方法としては、攪拌、ミキサー、ホモゲナイザー、ボールミル、ビーズミル、ジェットミル、ジェネレーター等を用いた公知の手法が挙げられるが、ミキサー又はホモゲナイザーを用いて行うことが好ましい。 Next, the bacterial culture solution to which the soluble excipient has been added is pulverized and dispersed. Methods for pulverization and dispersion include known methods using stirring, a mixer, a homogenizer, a ball mill, a bead mill, a jet mill, a generator, etc., but it is preferable to use a mixer or a homogenizer.

粉砕・分散した後、菌体培養液を乾燥粉末化する。乾燥粉末化方法としては、凍結乾燥、減圧噴霧乾燥等を用いた公知の手法が挙げられる。 After grinding and dispersion, the bacterial culture liquid is dried into a powder. Methods for drying into a powder include known techniques such as freeze drying and reduced pressure spray drying.

このようにして得られた乳酸菌末の、湿式のレーザー回析錯乱法により測定された菌体粒子のメジアン径は1.0μm以下であり、好ましくは0.9μm以下であり、より好ましくは0.8μm以下である。菌体粒子のメジアン径が1.0μm以下と小さいことにより、消化管粘膜面を覆っている粘液の網目構造をすり抜けて、パイエル板に到達することができる。そして、パイエル板上のM細胞から取り込まれ、その下層に待機する樹上細胞やマクロファージに捕捉されることで、これらの細胞がサイトカインを産生し、免疫反応を活性化することができる。 The median diameter of the bacterial particles of the thus obtained lactic acid bacteria powder measured by a wet laser diffraction method is 1.0 μm or less, preferably 0.9 μm or less, and more preferably 0.8 μm or less. Since the median diameter of the bacterial particles is as small as 1.0 μm or less, they can slip through the mesh structure of the mucus covering the mucous membrane surface of the digestive tract and reach Peyer's patches. They are then taken up by M cells on Peyer's patches and captured by dendritic cells and macrophages waiting below, which causes these cells to produce cytokines and activate immune responses.

なお、本明細書において、「菌体粒子のメジアン径が1.0μm以下である」とは、菌体粒子の粒径が、小さい側からの体積累積が50%に相当する粒径が1.0μm以下であることを指す。 In this specification, "the median diameter of the bacterial particles is 1.0 μm or less" means that the particle size of the bacterial particles is 1.0 μm or less, which corresponds to 50% of the cumulative volume from the small side.

菌体粒子のメジアン径は、以下に記載の条件における湿式によるレーザー回折散乱法により測定される。具体的には、(株)島津製作所製の粒度分布測定装置SALD-3100を用いて常法により、詳細には、フローセルを使用し、水を測定溶媒とし、屈折率が1.55-0.00i、測定吸光度範囲の最大値を0.2、最小値を0.02とした条件で、測定したものにより得られる。 The median size of bacterial particles is measured by a wet laser diffraction scattering method under the conditions described below. Specifically, it is obtained by measuring using a particle size distribution analyzer SALD-3100 manufactured by Shimadzu Corporation in a standard manner, specifically, using a flow cell, water as the measurement solvent, a refractive index of 1.55-0.00i, a maximum value of 0.2 in the measurement absorbance range, and a minimum value of 0.02.

本発明の方法で得られた乳酸菌は、ウイルス感染防御のために用いることができる。ウイルスは特に限定されないが、例えば、ロタウイルス、ポリオウイルス、インフルエンザウイルス、エイズウイルス、A型肝炎ウイルス、B型肝炎ウイルス、ノロウイルス、アデノウイルス、サポウイルス、アストロウイルス、アイチウイルス、パレコウイルス等が挙げられる。 The lactic acid bacteria obtained by the method of the present invention can be used to protect against viral infections, including, but not limited to, rotavirus, poliovirus, influenza virus, AIDS virus, hepatitis A virus, hepatitis B virus, norovirus, adenovirus, sapovirus, astrovirus, Aichi virus, parechovirus, etc.

また、本発明の方法により得られた乳酸菌は、免疫活性増強のために用いることができる。本発明の方法により得られた乳酸菌は、経口摂取した際のパイエル板の到達性が向上しているので、摂取することにより、樹状細胞やマクロファージが活性化され免疫活性が増強して、生体防御力が高まり種々の病気の予防が可能となる。 Furthermore, the lactic acid bacteria obtained by the method of the present invention can be used to enhance immune activity. Since the lactic acid bacteria obtained by the method of the present invention have improved accessibility to Peyer's patches when orally ingested, ingestion of the bacteria activates dendritic cells and macrophages, enhancing immune activity, and enhancing the body's defense power, making it possible to prevent various diseases.

本発明の方法により得られた乳酸菌は、そのままでも製品とすることができるが、風味を上げたり、必要な形状とする等のために種々の成分を添加、配合し、更にフレーバーを添加して最終製品とすることもできる。 The lactic acid bacteria obtained by the method of the present invention can be used as a product as it is, but various ingredients can be added or blended to improve the flavor or to give it a required shape, and flavors can also be added to make a final product.

乳酸菌に添加、配合される成分としては、各種糖質や乳化剤、甘味料、酸味料、果汁等が挙げられる。より具体的には、グルコース、シュークロース、フラクトース、蜂蜜等の糖類、ソルビトール、キシリトール、エリスリトール、ラクチトール、パラチニット等の糖アルコール、ショ糖脂肪酸エステル、グリセリン糖脂肪酸エステル、レシチン等の乳化剤、が挙げられる。この他にも、ビタミンA、ビタミンB類、ビタミンC、ビタミンE等の各種ビタミン類やハーブエキス、穀物成分、野菜成分、乳成分等が挙げられる。 Ingredients that can be added or mixed with lactic acid bacteria include various carbohydrates, emulsifiers, sweeteners, acidulants, fruit juice, etc. More specifically, these include sugars such as glucose, sucrose, fructose, honey, etc., sugar alcohols such as sorbitol, xylitol, erythritol, lactitol, palatinit, etc., and emulsifiers such as sucrose fatty acid esters, glycerin sugar fatty acid esters, and lecithin. Other examples include various vitamins such as vitamin A, vitamin B, vitamin C, and vitamin E, herbal extracts, grain ingredients, vegetable ingredients, milk ingredients, etc.

また、フレーバーとしては、ヨーグルト系、ベリー系、オレンジ系、花梨系、シソ系、シトラス系、アップル系、ミント系、グレープ系、ペア、カスタードクリーム、ピーチ、メロン、バナナ、トロピカル、ハーブ系、紅茶、コーヒー系等のフレーバーが挙げられ、これらを1種または2種以上組み合わせて用いることができる。 Flavors include yogurt, berry, orange, quince, shiso, citrus, apple, mint, grape, pear, custard cream, peach, melon, banana, tropical, herb, black tea, and coffee, and these can be used alone or in combination of two or more.

以上説明した乳酸菌は、固形状、液状等いずれの形態の製品とすることも可能である。 The lactic acid bacteria described above can be made into products in any form, such as solid or liquid.

本発明の方法によって得られた乳酸菌は、医薬的に受容な塩、賦形剤、保存剤、着色剤、矯味剤等とともに、医薬品あるいは食品の製造分野において公知の方法によって、飲料、顆粒、錠剤、カプセル剤等の種々の形態で使用することができる。 The lactic acid bacteria obtained by the method of the present invention can be used in various forms such as beverages, granules, tablets, capsules, etc., together with pharma- ceutically acceptable salts, excipients, preservatives, colorants, flavorings, etc., by methods known in the pharmaceutical or food manufacturing field.

また、上記乳酸菌は、健康食品に利用することができる。健康食品とは、通常の食品よりも積極的な意味で、保健、健康維持・増進等の目的とした食品を意味し、例えば、液体又は半固形、固形の製品、具体的には、クッキー、せんべい、ゼリー、ようかん、ヨーグルト、まんじゅう等の菓子類、清涼飲料、栄養飲料、スープ等が挙げられる。 The above lactic acid bacteria can also be used in health foods. Health foods refer to foods that are intended to promote health, maintenance, and improvement in a more positive sense than regular foods, and include, for example, liquid, semi-solid, and solid products, such as cookies, rice crackers, jellies, yokan, yogurt, manju, and other confectioneries, soft drinks, nutritional drinks, and soups.

本発明の方法によって得られた乳酸菌の服用量は、乳酸菌末の品質や、対象者の年齢、症状等によって異なる。例えば、ウイルス感染等の病気の予防や、免疫力向上のために用いるには、成人1回につき固形分換算で0.001~10g程度が挙げられ、毎日服用するのが望ましい。また、健康食品としての使用時には、食品の味や外観に悪影響を及ぼさない量、例えば、対象となる食品1kgに対し、固形分換算で0.01~100g程度の範囲で用いることが適当である。 The dosage of the lactic acid bacteria obtained by the method of the present invention varies depending on the quality of the lactic acid bacteria powder, the age and symptoms of the subject, etc. For example, when used to prevent diseases such as viral infections and to improve immunity, the dosage for an adult is about 0.001 to 10 g in solid content per dose, and it is preferable to take it daily. When used as a health food, it is appropriate to use an amount that does not adversely affect the taste or appearance of the food, for example, about 0.01 to 100 g in solid content per 1 kg of the target food.

さらに、本発明の方法によって得られた乳酸菌は、ローション(化粧水)、化粧用クリーム類、乳液、化粧水、パック剤、スキンミルク(乳剤)、ジェル剤、パウダー、リップクリーム、口紅、アンダーメークアップ、ファンデーション、サンケア、浴用剤、ボディシャンプー、ボディリンス、石鹸、クレンジングフォーム、軟膏、貼付剤、ゼリー剤、エアゾール剤等種々の製品形態で皮膚外用剤に利用することもできる。 Furthermore, the lactic acid bacteria obtained by the method of the present invention can also be used in various product forms for external skin preparations, such as lotions, cosmetic creams, milky lotions, packs, skin milks, gels, powders, lip balms, lipsticks, under-makeup, foundations, sun care, bath products, body shampoos, body rinses, soaps, cleansing foams, ointments, patches, jellies, and aerosols.

また、本発明で得られる乳酸菌には、下記に示されるような化粧品、医薬部外品、医薬品において通常用いられる各種成分や添加剤を必要に応じて適宜配合することができる。 Furthermore, the lactic acid bacteria obtained by the present invention can be appropriately blended with various ingredients and additives commonly used in cosmetics, quasi-drugs, and pharmaceuticals, as described below, if necessary.

即ち、グリセリン、ワセリン、尿素、ヒアルロン酸、ヘパリン等の保湿剤;PABA誘導体(パラアミノ安息香酸、エスカロール507等)、桂皮酸誘導体(ネオヘリオパン、パルソールMCX、サンガードB等)、サリチル酸誘導体(オクチルサリチレート等)、ベンゾフェノン誘導体(ASL-24、ASL-24S等)、ジベンゾイルメタン誘導体(パルソールA、パルソールDAM等)、複素環誘導体(チヌビン系等)、酸化チタン等の紫外線吸収剤・散乱剤;エデト酸二ナトリウム、エデト酸三ナトリウム、クエン酸、クエン酸ナトリウム、酒石酸、酒石酸ナトリウム、乳酸、リンゴ酸、ポリリン酸ナトリウム、メタリン酸ナトリウム、グルコン酸等の金属封鎖剤;サリチル酸、イオウ、カフェイン、タンニン等の皮脂抑制剤;塩化ベンザルコニウム、塩化ベンゼトニウム、グルコン酸クロルヘキシジン等の殺菌・消毒剤;塩酸ジフェンヒドラミン、トラネキサム酸、グアイアズレン、アズレン、アラントイン、ヒノキチオール、グリチルリチン酸及びその塩、グリチルリチン酸誘導体、グリチルレチン酸等の抗炎症剤;ビタミンA、ビタミンB群(B1,B2,B6,B12,B15)、葉酸、ニコチン酸類、パントテン酸類、ビオチン、ビタミンC、ビタミンD群(D2,D3)、ビタミンE、ユビキノン類、ビタミンK(K1,K2,K3,K4)等のビタミン類;アスパラギン酸、グルタミン酸、アラニン、リジン、グリシン、グルタミン、セリン、システイン、シスチン、チロシン、プロリン、アルギニン、ピロリドンカルボン酸等のアミノ酸及びその誘導体;レチノール、酢酸トコフェロール、アスコルビン酸リン酸マグネシウム、アスコルビン酸グルコシド、アルブチン、コウジ酸、エラグ酸、胎盤抽出液等の美白剤;ブチルヒドロキシトルエン、ブチルヒドロキシアニソール、没食子酸プロピル等の抗酸化剤;塩化亜鉛、硫酸亜鉛、石炭酸亜鉛、酸化亜鉛、硫酸アルミニウムカリウム等の収斂剤;グルコース、フルクトース、マルトース、ショ糖、トレハロース、エリスリトール、マンニトール、キシリトール、ラクチトール等の糖類;甘草、カミツレ、マロニエ、ユキノシタ、芍薬、カリン、オウゴン、オウバク、オウレン、ジュウヤク、イチョウ葉等の各種植物エキス等の他、油性成分、界面活性剤、増粘剤、アルコール類、粉末成分、色素等を適宜配合することができる。 That is, moisturizing agents such as glycerin, petrolatum, urea, hyaluronic acid, and heparin; PABA derivatives (para-aminobenzoic acid, Escarol 507, etc.), cinnamic acid derivatives (Neo Heliopan, Parsol MCX, Sunguard B, etc.), salicylic acid derivatives (octyl salicylate, etc.), benzophenone derivatives (ASL-24, ASL-24S, etc.), dibenzoylmethane derivatives (Parsol A, Parsol DAM, etc.), heterocyclic derivatives (Tinuvin series, etc.), and ultraviolet absorbing and scattering agents such as titanium oxide; disodium edetate, trisodium edetate, citric acid, sodium citrate, Sequestering agents such as tartaric acid, sodium tartrate, lactic acid, malic acid, sodium polyphosphate, sodium metaphosphate, gluconic acid, etc.; sebum suppressants such as salicylic acid, sulfur, caffeine, tannin, etc.; bactericides and disinfectants such as benzalkonium chloride, benzethonium chloride, chlorhexidine gluconate, etc.; anti-inflammatory agents such as diphenhydramine hydrochloride, tranexamic acid, guaiazulene, azulene, allantoin, hinokitiol, glycyrrhizic acid and its salts, glycyrrhizic acid derivatives, glycyrrhetinic acid, etc.; vitamin A, B vitamins (B1, B2, B6, B12, B15), folic acid, etc. vitamins such as nicotinic acid, pantothenic acid, biotin, vitamin C, vitamin D group (D2, D3), vitamin E, ubiquinones, and vitamin K (K1, K2, K3, K4); amino acids and derivatives thereof such as aspartic acid, glutamic acid, alanine, lysine, glycine, glutamine, serine, cysteine, cystine, tyrosine, proline, arginine, and pyrrolidone carboxylic acid; skin whitening agents such as retinol, tocopherol acetate, magnesium ascorbyl phosphate, ascorbyl glucoside, arbutin, kojic acid, ellagic acid, and placenta extract; Antioxidants such as butyl hydroxytoluene, butyl hydroxyanisole, and propyl gallate; astringents such as zinc chloride, zinc sulfate, zinc phenolate, zinc oxide, and potassium aluminum sulfate; sugars such as glucose, fructose, maltose, sucrose, trehalose, erythritol, mannitol, xylitol, and lactitol; various plant extracts such as licorice, chamomile, horse chestnut, saxifrage, peony, quince, Scutellaria root, Phellodendron bark, Coptis japonica, Jew's herb, and ginkgo leaf, as well as oily ingredients, surfactants, thickeners, alcohols, powdered ingredients, and pigments can be appropriately blended.

以下実施例を挙げて本発明を具体的に説明するが、これらの実施例は本発明の範囲を限定するものではない。 The present invention will be specifically explained below with reference to examples, but these examples are not intended to limit the scope of the present invention.

<I.乳酸菌末の調製>
1.凝集型の乳酸菌末
乳酸菌Enterococcus faecalis菌株を公知の方法で培養した。当該培養液(乾燥乳酸菌濃度5~10質量%)を、凍結乾燥させた(以下、乳酸菌凝集型という)。
<I. Preparation of lactic acid bacteria powder>
1. Flocculated lactic acid bacteria powder The lactic acid bacteria Enterococcus faecalis strain was cultured by a known method. The culture solution (dry lactic acid bacteria concentration: 5 to 10% by mass) was freeze-dried (hereinafter referred to as flocculated lactic acid bacteria powder).

2.分散型の乳酸菌末
乳酸菌Enterococcus faecalis菌株を公知の方法で培養した。当該培養液(乾燥菌体換算で5~10質量%)に10、15、20、25、50質量%(乾燥終濃度)になるようにデキストリンを添加し、ホモジナイズして菌体を十分に分散させた後、凍結乾燥させた(以下、乳酸菌分散型という)。
2. Dispersed lactic acid bacteria powder The lactic acid bacteria Enterococcus faecalis strain was cultured by a known method. Dextrin was added to the culture solution (5-10% by mass in terms of dry bacteria) to give final concentrations of 10, 15, 20, 25, and 50% by mass (final dry concentration), homogenized to thoroughly disperse the bacteria, and then freeze-dried (hereinafter referred to as "dispersed lactic acid bacteria").

<II.粒度分布の測定>
上記で得られた乳酸菌凝集型と、乳酸菌分散型を、乾燥菌体換算で10mg/mLになるように精製水に懸濁した。懸濁液中の乳酸菌末の粒度分布を、レーザー回折式粒度分布測定装置SALD-3100(株式会社島津製作所製)を用いて測定した。具体的には、フローセルを使用し、水を測定溶媒とし、屈折率が1.50-0.00i、測定回数を2、平均回数を64、測定吸光度範囲の最大値を0.2、最小値を0.02として、サンプル溶液を測定範囲に達するまで添加して測定した。メジアン径の測定結果を表1と図1に、粒度分布を図2,3に示す。
<II. Measurement of particle size distribution>
The lactic acid bacteria aggregate type and the lactic acid bacteria dispersion type obtained above were suspended in purified water to a concentration of 10 mg/mL in terms of dry bacteria. The particle size distribution of the lactic acid bacteria powder in the suspension was measured using a laser diffraction particle size distribution analyzer SALD-3100 (manufactured by Shimadzu Corporation). Specifically, a flow cell was used, water was used as the measurement solvent, the refractive index was 1.50-0.00i, the number of measurements was 2, the average number was 64, the maximum value of the measurement absorbance range was 0.2, and the minimum value was 0.02, and the sample solution was added until the measurement range was reached. The measurement results of the median size are shown in Table 1 and Figure 1, and the particle size distribution is shown in Figures 2 and 3.

Figure 0007466166000001
Figure 0007466166000001

表1に示すように、乳酸菌凝集型においては、メジアン径が29.556μmであった。また、デキストリンを10質量%添加して菌体を分散させた乳酸菌分散型においては、メジアン径が1.233μmであった。一方、デキストリンを15質量%以上添加して菌体を分散させた乳酸菌分散型においては、メジアン径が0.796μm以下であり、乳酸菌凝集型に比べて顕著に小さい値であった。 As shown in Table 1, the median diameter of the lactic acid bacteria aggregate type was 29.556 μm. The median diameter of the lactic acid bacteria dispersion type in which 10% by mass of dextrin was added to disperse the bacteria was 1.233 μm. On the other hand, the median diameter of the lactic acid bacteria dispersion type in which 15% by mass or more of dextrin was added to disperse the bacteria was 0.796 μm or less, which was significantly smaller than that of the lactic acid bacteria aggregate type.

<III.消化管内の観察>
1.方法
マウスにCy3で蛍光染色した乳酸菌凝集型(上記Iで調製)と乳酸菌分散型(上記Iで調製、デキストリン50質量%)を摂取させ、小腸パイエル板付近に存在する乳酸菌を蛍光顕微鏡で観察し、パイエル板内部は共焦点レーザー顕微鏡を用い観察した。撮影は株式会社アイカムの協力を得て実施した。
<III. Observation of the digestive tract>
1. Method Mice were given Cy3 fluorescently stained lactic acid bacteria aggregates (prepared in I above) and lactic acid bacteria dispersions (prepared in I above, dextrin 50% by mass), and the lactic acid bacteria present near the small intestinal Peyer's patches were observed using a fluorescent microscope, and the inside of the Peyer's patches was observed using a confocal laser microscope. Photographing was carried out with the cooperation of Icom Co., Ltd.

2.結果及び考察
乳酸菌分散型は、菌体が1個1個分散化し、且つ粒子径が1.0μm以下と小さいので、消化管粘膜面をすり抜けて、パイエル板に到達していることがわかった(図4(A)矢印)。そしてパイエル板上のM細胞から取り込まれ(図4(B)矢印)、その下層に待機する樹状細胞やマクロファージに捕捉され、これらの細胞がサイトカインを産生し、免疫反応を活性化することができることがわかった。
2. Results and Discussion It was found that the lactobacillus dispersion type bacteria are individually dispersed and have a small particle size of 1.0 μm or less, so they pass through the mucosal surface of the digestive tract and reach the Peyer's patches (arrow in Figure 4 (A)). They are then taken up by M cells on the Peyer's patches (arrow in Figure 4 (B)), and captured by dendritic cells and macrophages waiting below, where these cells produce cytokines and activate the immune response.

一方、乳酸菌凝集型は、菌体が大きな菌塊となっているので、粘液の網目構造をすり抜けられず(図4(C)矢印)、パイエル板に達することなく、腸管を単に通過するだけで、本来の乳酸菌の効果が低減すると考えられることがわかった。 On the other hand, it was found that the aggregated type of lactobacilli, which consists of large bacterial masses, cannot pass through the mucus mesh structure (arrow in Figure 4 (C)) and simply passes through the intestinal tract without reaching the Peyer's patches, which is thought to reduce the original effect of lactobacilli.

<IV.マウスノロウイルス(MNV)感染実験>
1.材料
ウイルス株及び宿主細胞には下記のものを用いた。
・ウイルス:マウスノロウイルス S7-PP3株
・宿主細胞:RAW264.7細胞(マウスマクロファージ様細胞)
(増殖培地=10%牛胎児血清加ダルベッコMEM培地)
<IV. Murine Norovirus (MNV) Infection Experiment>
1. Materials The following virus strains and host cells were used.
・Virus: Mouse norovirus S7-PP3 strain ・Host cells: RAW264.7 cells (mouse macrophage-like cells)
(Growth medium = Dulbecco's MEM medium with 10% fetal bovine serum)

2.方法
(1)BALB/cマウス(6週齢、雌)を、免疫機能正常群(5-fluorouracil(5-FU)非処理群)と免疫機能低下群(5-FU(0.25 mg/day/mouse)処理群)の2群に分け、1日おきにウイルス接種7日前から21日後まで皮下注射した(両群ともn=3)(表2)。
2. Methods (1) BALB/c mice (6 weeks old, female) were divided into two groups: an immunologically normal group (non-treated 5-fluorouracil (5-FU) group) and an immunologically impaired group (treated with 5-FU (0.25 mg/day/mouse)). The mice were subcutaneously injected with the virus every other day from 7 days before to 21 days after inoculation (n = 3 in both groups) (Table 2).

Figure 0007466166000002
Figure 0007466166000002

(2)MNV(1 x 106 PFU/0.2 ml/mouse)を経口接種させた。 (2) MNV (1 x 106 PFU/0.2 ml/mouse) was orally inoculated.

(3)乳酸菌凝集型(上記Iで調製)又は乳酸菌分散型(上記Iで調製、デキストリン50質量%)は、ウイルス接種7日前から21日後まで経口投与した(1日2回、9時、18時)。 (3) Lactic acid bacteria aggregate type (prepared as described in I above) or lactobacillus dispersion type (prepared as described in I above, 50% by mass dextrin) was orally administered (twice a day, 9:00 and 18:00) from 7 days before to 21 days after virus inoculation.

(4)8時間後、1、2、3、4、5、6、8、10、12、14、16、18、21日後に、1匹ずつ糞便を5mLチューブに回収した(マウスを空の飼育用ケージに15~30分間入れる)。 (4) After 8 hours, 1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, and 21 days, feces were collected from each mouse in a 5 mL tube (the mouse was placed in an empty cage for 15 to 30 minutes).

(5)糞便中のウイルス量を次の方法で測定した(プラークアッセイ法)。糞便1mg当たりPBS 10μLを加え、超音波処理して均一に分散させ、遠心後、上清をPBSで10、100、1000倍希釈した。24穴プレートに培養しておいたRAW 264.7細胞に上記の各希釈液を加え感染させた。その後、1.5%SeaPlaque agarose加DMEM培地を重層し、37℃で培養した。2日後に、ニュートラルレッド液を重層して細胞を染色後、顕微鏡下でプラーク数を測定した。 (5) The amount of virus in feces was measured by the following method (plaque assay method). 10 μL of PBS was added per 1 mg of feces, and the feces was uniformly dispersed by ultrasonic treatment. After centrifugation, the supernatant was diluted 10, 100, and 1000 times with PBS. Each of the above dilutions was added to RAW 264.7 cells cultured in a 24-well plate to infect them. Then, 1.5% SeaPlaque agarose-added DMEM medium was overlaid and cultured at 37°C. After 2 days, the cells were stained by overlaying neutral red solution, and the number of plaques was counted under a microscope.

(6)血清中の中和抗体価を次の方法で測定した。感染21日後に、全採血し遠心して血清を分離後、PBSで10、50、200、1000、5000倍希釈した。ウイルス100μLを上記希釈液100μLと混合し(対照として、血清の代わりにPBSを加える)、24穴プレートに単層状に培養したRAW 264.7細胞に加え室温で感染させた。1.5% SeaPlaque agarose加DMEM培地を重層し、37℃で培養した。2日後に、ニュートラルレッド液を重層して細胞を染色後、顕微鏡下でプラーク数を測定した。対照のプラーク数を100%とした時の各希釈液のプラーク数の%を計算し、プラーク形成を50%阻害する血清希釈倍数をグラフ上で求めそれを中和抗体価とした。 (6) The neutralizing antibody titer in the serum was measured by the following method. 21 days after infection, whole blood was collected, centrifuged to separate the serum, and then diluted 10, 50, 200, 1000, and 5000 times with PBS. 100 μL of the virus was mixed with 100 μL of the above dilution (PBS was added instead of serum as a control), and added to RAW 264.7 cells cultured in a monolayer on a 24-well plate for infection at room temperature. DMEM medium containing 1.5% SeaPlaque agarose was overlaid and cultured at 37°C. After 2 days, the cells were stained by overlaying neutral red solution, and the number of plaques was measured under a microscope. The percentage of the number of plaques for each dilution was calculated when the number of plaques for the control was set to 100%, and the serum dilution factor that inhibited plaque formation by 50% was determined on a graph and used as the neutralizing antibody titer.

3.結果及び考察
21日間の観察中、5-FUの処理を受けたマウスの一部には軽度の軟便がみられたが、マウスには体重の減少等は認められず全例生存した。
3. Results and Discussion During the 21-day observation period, some of the mice treated with 5-FU had mild loose stools, but no weight loss was observed and all mice survived.

(1)糞便中のウイルス量(図5,6)
免疫機能正常マウス(5-FU非処理)(図5):対照群では、感染1日後にウイルス量が最大となり、その後漸減し、18日後には検出されなくなった。乳酸菌分散型投与群では、1日後のウイルス量が対照群の40%にまで減少し、乳酸菌凝集型投与群では50%にまで減少し、その後も一貫して低値であった。12日後までのウイルス量は、乳酸菌分散型投与群の方が乳酸菌凝集型投与群よりも少なくなっていて、両投与群とも感染16日後に、糞便中のウイルスが消失した。
(1) Viral load in feces (Figs. 5 and 6)
Immunocompetent mice (untreated with 5-FU) (Fig. 5): In the control group, the virus load was at its maximum 1 day after infection, then gradually decreased, and was undetectable 18 days after infection. In the group administered with dispersed lactobacillus type, the virus load 1 day after infection decreased to 40% of that in the control group, and in the group administered with aggregate lactobacillus type, it decreased to 50% and remained consistently low thereafter. The virus load up to 12 days after infection was lower in the group administered with dispersed lactobacillus type than in the group administered with aggregate lactobacillus type, and the virus disappeared from feces 16 days after infection in both groups.

免疫機能低下マウス(5-FU処理)(図6):5-FU処理によって、ウイルス排泄量が多くなり、排出期間も長期化した。特に、対照群では、21日後にもまだウイルスが検出された。乳酸菌投与によってウイルス量は21日間にわたって減少した。乳酸菌分散型投与群では、乳酸菌凝集型投与群に比べて、糞便中のウイルス量が感染14日後までの期間中、少なくなっていた。両投与群とも、18日後にはウイルスは検出されなくなった。 Mice with compromised immune function (treated with 5-FU) (Figure 6): 5-FU treatment increased the amount of virus excreted and prolonged the duration of virus excretion. In particular, in the control group, virus was still detected after 21 days. Administration of lactic acid bacteria reduced the amount of virus over a 21-day period. In the group administered with dispersed lactic acid bacteria, the amount of virus in the feces was lower for up to 14 days after infection compared to the group administered with aggregated lactic acid bacteria. In both groups, virus was no longer detectable after 18 days.

従って、乳酸菌の投与によって、腸管内でのウイルス増殖が抑制され、早期にウイルス排泄が停止した。その効果は分散型の乳酸菌の方が高いと考えられる。 Therefore, administration of lactic acid bacteria suppressed viral proliferation in the intestinal tract and stopped viral excretion early. This effect is thought to be greater with dispersed lactic acid bacteria.

(2)中和抗体価
感染3週間後に、MNVの中和抗体の量を測定した(表3、図7)。
(2) Neutralizing Antibody Titer Three weeks after infection, the amount of MNV neutralizing antibody was measured (Table 3, FIG. 7).

免疫機能正常マウス(5-FU非処理):乳酸菌分散型投与群及び乳酸菌凝集型投与群では、対照群に比べて抗体価が有意に(p<0.05)に上昇した。分散型の方が、凝集型に比べて高い値となった。 Mice with normal immune function (untreated with 5-FU): Antibody titers were significantly higher (p<0.05) in the groups administered with dispersed and aggregated lactobacilli compared to the control group. The dispersed type had higher titers than the aggregated type.

免疫機能低下マウス(5-FU処理):いずれの投与群でも、対応する5-FU非処理群に比べて、抗体価は低下した。しかし、両乳酸菌投与群は、非処理対照群と同等かそれ以上の高い抗体価を維持した。乳酸菌分散型投与群と乳酸菌凝集型投与群はいずれも、対照群に比べて有意に(p<0.05)高い抗体価を示し、分散型投与群の抗体価の方が、凝集型投与群よりも高い傾向がみられた。 Mice with compromised immune function (treated with 5-FU): Antibody titers were lower in all treatment groups compared to the corresponding 5-FU untreated groups. However, both lactobacillus-treated groups maintained high antibody titers equal to or higher than those of the untreated control group. Both the lactobacillus-dispersed group and the lactobacillus-aggregated group showed significantly (p<0.05) higher antibody titers than the control group, and the dispersed group tended to have higher antibody titers than the aggregated group.

Figure 0007466166000003
Figure 0007466166000003

以上の結果から、乳酸菌投与による抗体量の増加が、腸管内でのウイルス増殖抑制をもたらしたと推察され、分散型の乳酸菌が、凝集型の乳酸菌に比べて免疫刺激効果が高いと考えられる。 These results suggest that the increase in antibody levels due to administration of lactic acid bacteria inhibits viral proliferation in the intestinal tract, and that dispersed lactic acid bacteria have a greater immunostimulatory effect than aggregated lactic acid bacteria.

Claims (5)

湿式によるレーザー回折散乱法により測定された菌体粒子のメジアン径が1.0μm以下であり、経口摂取によりパイエル板到達性を有する乳酸菌末を有効成分とする経口摂取用の乳酸菌含有ウイルス感染防御剤。 A lactic acid bacteria-containing viral infection protection agent for oral ingestion, comprising as an active ingredient a powder of lactic acid bacteria having a median particle diameter of 1.0 μm or less as measured by a wet laser diffraction scattering method and capable of reaching Peyer's patches when orally ingested . ノロウイルスに対する、請求項記載の乳酸菌含有ウイルス感染防御剤。 A virus infection prevention agent containing the lactic acid bacteria according to claim 1 against norovirus. 前記乳酸菌末の乳酸菌は、エンテロコッカス・フェカリス(Enterococcus faecalis)である、請求項1又は2に記載の乳酸菌含有ウイルス感染防御剤。 3. The lactic acid bacteria-containing agent for protection against viral infection according to claim 1 or 2 , wherein the lactic acid bacteria in the lactic acid bacteria powder is Enterococcus faecalis . 乳酸菌の菌体培養液を乾燥菌体換算で0.01質量%以上88質量%未満となるように調製し、該菌体培養液に可溶性賦形剤を乾燥終濃度で12質量%以上となるように添加し、該可溶性賦形剤を添加した菌体培養液を粉砕・分散した後、乾燥粉末化することにより、湿式によるレーザー回折散乱法により測定された菌体粒子のメジアン径が1.0μm以下であり、経口摂取によりパイエル板到達性を有する乳酸菌末を得て、該乳酸菌末を有効成分として含有させることを特徴とする経口摂取用の乳酸菌含有ウイルス感染防御剤の製造方法。 A method for producing an orally ingested lactic acid bacteria-containing virus infection protection agent, comprising: preparing a lactic acid bacteria cell culture solution so that the cell concentration is 0.01% by mass or more and less than 88% by mass in terms of dry cell; adding a soluble excipient to the cell culture solution so that the cell culture solution has a final dry concentration of 12% by mass or more; pulverizing and dispersing the cell culture solution to which the soluble excipient has been added, and then drying and powdering the cell culture solution to obtain a lactic acid bacteria powder having a cell particle median diameter of 1.0 μm or less as measured by a wet laser diffraction scattering method and capable of reaching Peyer 's patches when orally ingested; and containing the lactic acid bacteria powder as an active ingredient. 前記粉砕・分散をミキサー又はホモゲナイザーを用いて行う、請求項に記載の乳酸菌含有ウイルス感染防御剤の製造方法。
The method for producing a lactic acid bacteria-containing agent for protecting against viral infection according to claim 4 , wherein the grinding and dispersion are carried out using a mixer or a homogenizer.
JP2018149553A 2018-08-08 2018-08-08 Lactic acid bacteria-containing agent for preventing viral infection and method for producing same Active JP7466166B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018149553A JP7466166B2 (en) 2018-08-08 2018-08-08 Lactic acid bacteria-containing agent for preventing viral infection and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018149553A JP7466166B2 (en) 2018-08-08 2018-08-08 Lactic acid bacteria-containing agent for preventing viral infection and method for producing same

Publications (2)

Publication Number Publication Date
JP2020023459A JP2020023459A (en) 2020-02-13
JP7466166B2 true JP7466166B2 (en) 2024-04-12

Family

ID=69618266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018149553A Active JP7466166B2 (en) 2018-08-08 2018-08-08 Lactic acid bacteria-containing agent for preventing viral infection and method for producing same

Country Status (1)

Country Link
JP (1) JP7466166B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537866A (en) 1999-03-11 2002-11-12 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Lactic acid bacteria strain that can prevent diarrhea
WO2009157073A1 (en) 2008-06-26 2009-12-30 信和薬品株式会社 Nano-level lactic acid bacterium
JP2012072113A (en) 2010-09-02 2012-04-12 Calpis Co Ltd Preventing and/or therapeutic agent of influenza
JP2017081853A (en) 2015-10-28 2017-05-18 ビオフェルミン製薬株式会社 Virus infection prophylactic and/or therapeutic agent

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4621218B2 (en) * 2007-02-09 2011-01-26 有限会社バイオ研 Th1 inducer and method for producing the same
JP2013147458A (en) * 2012-01-19 2013-08-01 Bio Ken:Kk Th1 INDUCER AND METHOD FOR PRODUCING THE SAME
JP6442219B2 (en) * 2014-10-14 2018-12-19 株式会社ブロマ研究所 Oral immune function regulating composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002537866A (en) 1999-03-11 2002-11-12 ソシエテ デ プロデユイ ネツスル ソシエテ アノニム Lactic acid bacteria strain that can prevent diarrhea
WO2009157073A1 (en) 2008-06-26 2009-12-30 信和薬品株式会社 Nano-level lactic acid bacterium
JP2012072113A (en) 2010-09-02 2012-04-12 Calpis Co Ltd Preventing and/or therapeutic agent of influenza
JP2017081853A (en) 2015-10-28 2017-05-18 ビオフェルミン製薬株式会社 Virus infection prophylactic and/or therapeutic agent

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Nature,2014年,Vol.513,pp.382-387
岩崎未央,遺伝子発現の量と質を制御するメカニズムを明らかにする,K-CONNEX研究者紹介[online],2021年,pp.12-13,[令和4年8月31日検索]、インターネット、<URL:http://k-connex.kyoto-u.ac.jp/ja/wp-content/uploads/sites/2/2021/03/K-CONNEEX_reserachers_pamph.pdf>

Also Published As

Publication number Publication date
JP2020023459A (en) 2020-02-13

Similar Documents

Publication Publication Date Title
KR101580678B1 (en) Nano-sized lactic acid bacteria
JP4621218B2 (en) Th1 inducer and method for producing the same
JP2010187554A (en) COFFEE BEAN EXTRACT CONTAINING gamma-AMINOBUTYRIC ACID
JP2006257064A (en) Lipid absorption-suppressing composition
JP5462430B2 (en) Anti-inflammatory and analgesic
KR101975671B1 (en) Composition comprising the milk-cream fermentation product of lactic acid bacteria for preventing and improving atopic dermatitis
JP2006219467A (en) Fat accumulation inhibitor
JP2007297343A (en) Lipid metabolism improver
JP2013237629A (en) Peripheral blood circulation disorder improving agent
JP2006265219A (en) Diet composition
JP5014569B2 (en) Skin care composition
JP4849792B2 (en) Cosmetic composition
JP2014185109A (en) Immunostimulator
JP7466166B2 (en) Lactic acid bacteria-containing agent for preventing viral infection and method for producing same
JP7237204B2 (en) 5α-reductase inhibitor
JP2023040559A (en) interleukin 12 production promoter
JP7246965B2 (en) Sarcopenia obesity preventive/improving agent
JP6635615B2 (en) Filaggrin and involucrin expression promoter
JP2008007406A (en) Fat metabolism promoter
JP6433053B2 (en) Lipid accumulation promoter in sebaceous gland cells
JP7427397B2 (en) lipin1 gene expression promoter
JP2009120517A (en) Intestinal flora improver
JP2012067042A (en) Collagen production promoter and collagen gene expression promoter
JP2011068619A (en) Hyaluronidase gene expression inhibitor and ceramidase gene expression inhibitor, and skin-beautifying composition comprising the same
JP2005060229A (en) Prophylactic agent for colon cancer

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200304

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210413

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220630

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220630

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220720

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220726

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220909

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240326

R150 Certificate of patent or registration of utility model

Ref document number: 7466166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150