JP7457638B2 - Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member - Google Patents

Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member Download PDF

Info

Publication number
JP7457638B2
JP7457638B2 JP2020201042A JP2020201042A JP7457638B2 JP 7457638 B2 JP7457638 B2 JP 7457638B2 JP 2020201042 A JP2020201042 A JP 2020201042A JP 2020201042 A JP2020201042 A JP 2020201042A JP 7457638 B2 JP7457638 B2 JP 7457638B2
Authority
JP
Japan
Prior art keywords
carbon
conductive
hardness
protective coating
contact member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020201042A
Other languages
Japanese (ja)
Other versions
JP2022088909A5 (en
JP2022088909A (en
Inventor
修二 山本
圭司 立石
Original Assignee
日本コーティングセンター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本コーティングセンター株式会社 filed Critical 日本コーティングセンター株式会社
Priority to JP2020201042A priority Critical patent/JP7457638B2/en
Publication of JP2022088909A publication Critical patent/JP2022088909A/en
Publication of JP2022088909A5 publication Critical patent/JP2022088909A5/ja
Application granted granted Critical
Publication of JP7457638B2 publication Critical patent/JP7457638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

本件発明は、半導体、電子部品、これらを用いて構成された各種電子機器及び機械部品等への電気的導通が可能な摺接部材、導電性高硬度保護被膜及び摺接部材の製造方法に関する。 The present invention relates to a sliding contact member that can be electrically connected to semiconductors, electronic parts, various electronic devices and mechanical parts constructed using these, a conductive high-hardness protective coating, and a method for manufacturing the sliding contact member.

半導体製造工程は「前工程」と称されるウェーハ処理工程と、「後工程」と称される組立工程とを有する。前工程は、ウェーハ表面に多数の半導体チップを製造するまでの工程をいい、後工程では、ウェーハから半導体チップを切り出し、最終製品としての半導体集積回路(LSI、VLSI、ULSI等)実装(パッケージ)部品を得る工程をいう。前工程ではプローブピンと称される探針を用いたウェーハ検査が行われ、欠陥を有する半導体チップが後工程に送られることのないように排除される。また、後工程においてもプローブピンを用いた実装部品検査(「パッケージ検査」等とも称される。)が行われ、製品出荷前に不良品が排除される。 A semiconductor manufacturing process includes a wafer processing process called a "pre-process" and an assembly process called a "post-process". The front-end process refers to the steps leading up to manufacturing a large number of semiconductor chips on the wafer surface, and the back-end process involves cutting out semiconductor chips from the wafer and mounting (packaging) semiconductor integrated circuits (LSI, VLSI, ULSI, etc.) as final products. Refers to the process of obtaining parts. In the pre-process, a wafer inspection is performed using a probe called a probe pin, and defective semiconductor chips are removed to prevent them from being sent to the post-process. Also, in the post-process, mounted component inspection (also referred to as "package inspection" etc.) using probe pins is performed to eliminate defective products before shipping the product.

例えば、ウェーハ検査では、検査対象に応じたプローブカードが用いられる。プローブカードにはプローブピンが取り付けられている。半導体チップにプローブピンをバネ圧により押し当てることで、プローブピンと半導体チップの電子端子材とが接触され、導通テスト、或いは動作テスト等の電気特性試験が行われる。実装部品検査においても、半導体パッケージにおいて所定の電気特性試験が行われる。このような電気特性試験により良品・不良品の判定が行われ、不良品が排除される。 For example, in wafer inspection, a probe card appropriate for the object to be inspected is used. Probe pins are attached to the probe card. The probe pins are pressed against the semiconductor chip using spring pressure, bringing them into contact with the electronic terminal material of the semiconductor chip, and electrical characteristic tests such as continuity tests or operation tests are performed. In mounted component inspection, predetermined electrical characteristic tests are also performed on semiconductor packages. Products are judged as good or bad by such electrical characteristic tests, and the defective products are rejected.

このような半導体集積回路は1つのライン又は工場で1日に数百~数千個、或いは数万個生産されている。上記電気特性試験は基本的には全数検査であるため、生産個数に応じてプローブピンが電子端子材に押し当てられる。そのため、プローブピンの端子材との接触部位には耐摩耗性が要求される。 Several hundred to several thousand, or even tens of thousands of such semiconductor integrated circuits are produced per day on one line or factory. Since the electrical property test described above is basically a 100% inspection, probe pins are pressed against the electronic terminal material depending on the number of products produced. Therefore, wear resistance is required at the contact portion of the probe pin with the terminal material.

また、通常、電子端子材の表面には酸化膜が形成されている。一方、プローブピンの先端の接点部は検査対象に応じた所定の形状を有する。そして、検査時にプローブピンが押し当てられると、電子端子材の表面の酸化膜が破られてその内側のフレッシュな電子端子材とプローブピンとが接触する。これにより検査対象の電気特性が正確に評価される。しかしながら、電子端子材としてハンダのような軟らかい材料が用いられていると、プローブピンの先端にこれらの軟らかい材料が付着することがある。以後、この現象を「転写」と称する。転写が生じると、プローブピンの接点部分のシャープさが損なわれ、次の検査対象の電子端子材の表面の酸化膜を破ることが困難になる。 Further, an oxide film is usually formed on the surface of the electronic terminal material. On the other hand, the contact portion at the tip of the probe pin has a predetermined shape depending on the object to be inspected. When the probe pin is pressed during inspection, the oxide film on the surface of the electronic terminal material is broken and the fresh electronic terminal material inside comes into contact with the probe pin. This allows the electrical characteristics of the object to be tested to be accurately evaluated. However, if soft materials such as solder are used as the electronic terminal material, these soft materials may adhere to the tip of the probe pin. Hereinafter, this phenomenon will be referred to as "transfer". When the transfer occurs, the sharpness of the contact portion of the probe pin is impaired, making it difficult to break the oxide film on the surface of the electronic terminal material to be inspected next.

このような問題を防ぐため、上記電気特性試験を行う作業者は定期的に金属ブラシ等でプローブピンの接点部分を磨くといったメンテナンス作業を行っている。しかしながらこのメンテナンス作業を行うには、検査装置を一旦停止する必要がある。一方、このメンテナンス作業を行わないと、電子端子材に対して規定以上のコンタクト圧でプローブピンが押し当てられて、検査対象の半導体チップ、或いは半導体パッケージを破損したり、あるいは正確な計測ができず、良品を不良品と判定するなど、判定ミスが生じる場合がある。その結果、歩留まりが悪化し、生産性が著しく低下するおそれがある。 In order to prevent such problems, the operator who performs the electrical characteristic test regularly performs maintenance work such as polishing the contact portion of the probe pin with a metal brush or the like. However, in order to perform this maintenance work, it is necessary to temporarily stop the inspection device. On the other hand, if this maintenance work is not performed, the probe pin will be pressed against the electronic terminal material with a contact pressure higher than specified, which may damage the semiconductor chip or semiconductor package to be tested, or prevent accurate measurement. First, judgment errors may occur, such as determining a good product as a defective product. As a result, yield may deteriorate and productivity may drop significantly.

上記転写が生じる原因として、接点部分の摩耗が挙げられる。摩耗に伴い、接点部分の表面粗さが増加すると、ハンダのような軟らかい電子端子材は容易に接点部分に付着する。また、プローブピンの接点部分には、導電性向上のため、金、金合金、ロジウムといった貴金属がメッキされている。ハンダは錫と鉛を主成分とする合金であるが、貴金属との化学結合が強く、接点部分に付着しやすい。 One of the causes of the above-mentioned transfer is wear of the contact portion. When the surface roughness of the contact portion increases with wear, soft electronic terminal materials such as solder easily adhere to the contact portion. Further, the contact portion of the probe pin is plated with a noble metal such as gold, gold alloy, or rhodium to improve conductivity. Solder is an alloy whose main ingredients are tin and lead, but it has a strong chemical bond with precious metals and easily adheres to the contact area.

そこで、プローブピンに対して貴金属メッキを行う際には、例えばグラファイト微粒子やポリテトラフルオロエチレン(PTFE)粒子等の樹脂粒子をハンダ等と化学結合を生じにくい粒子を共析させることで、転写を生じにくくすることが行われている(例えば、特許文献1及び特許文献2参照)。しかしながら、これらの方法を採用した場合、プローブピンの接触抵抗が高くなるといった課題がある。一般に、樹脂粒子は耐熱性が低い場合が多い。例えば、バーンイン試験では150℃等の高温下で行われる。そのため、耐熱性の低い樹脂粒子を含む場合、バーンイン試験の際に使用するプローブピンに対して使用することができない。また、特許文献2に開示されるようなPTFE粒子は柔らかいため、これらの方法では耐摩耗性を十分に改善することができない。 Therefore, when plating probe pins with precious metals, transfer can be achieved by eutectoiding resin particles such as graphite particles or polytetrafluoroethylene (PTFE) particles that are less likely to form chemical bonds with solder. Efforts have been made to make it less likely to occur (for example, see Patent Document 1 and Patent Document 2). However, when these methods are adopted, there is a problem that the contact resistance of the probe pin increases. Generally, resin particles often have low heat resistance. For example, a burn-in test is conducted at a high temperature such as 150°C. Therefore, if it contains resin particles with low heat resistance, it cannot be used for probe pins used during burn-in tests. Furthermore, since the PTFE particles as disclosed in Patent Document 2 are soft, the wear resistance cannot be sufficiently improved by these methods.

一方、転写性、耐摩耗性を改善するには、例えば、プローブピンの表面にグラファイトやダイヤモンドライクカーボン(Diamond-like Carbon:DLC)などの炭素系材料による薄膜を設ける方法が考えられる。グラファイトやダイヤモンドライクカーボン等炭素材料は、ハンダとの化学反応性が低いので転写が起きにくい。特にDLCは高硬度であり、摩擦係数も低いため、摺接部の保護被膜としてよく使用されている。しかしながら、DLCは高抵抗であるためプローブピンの保護被膜としては不適である。 On the other hand, in order to improve transferability and abrasion resistance, for example, a method of providing a thin film of a carbon-based material such as graphite or diamond-like carbon (DLC) on the surface of the probe pin can be considered. Carbon materials such as graphite and diamond-like carbon have low chemical reactivity with solder, so transfer is difficult to occur. In particular, DLC has high hardness and a low coefficient of friction, so it is often used as a protective coating for sliding contact parts. However, DLC has a high resistance and is therefore unsuitable as a protective coating for probe pins.

特許第4044926号Patent No. 4044926 特許第3551411号Patent No. 3551411

本発明は、上記問題点を鑑みてなされたものであり、耐摩耗性を向上させつつ、接点部材に用いた場合は転写を抑制し、高温環境下でも使用可能な摺接部材、このような摺接部材に設けられる導電性高硬度保護被膜及びこれらの摺接部材の製造方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, and provides a sliding contact member that improves wear resistance, suppresses transfer when used as a contact member, and can be used even in high-temperature environments. It is an object of the present invention to provide a conductive high-hardness protective coating provided on sliding contact members and a method for manufacturing these sliding contact members.

上記目的を達成するために、本件発明に係る摺接部材は、端子部を備え、電気的、又は、電気的及び機械的に他の部材に接する端子部を基材として、該基材の表面に、表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上であり、金属がドープされていない炭素系被膜からなる導電性高硬度保護被膜を備え、前記炭素系被膜は、sp2構造の炭素とsp3構造の炭素とを含む炭素被膜内に導電性炭素微粒子が分散されており、前記炭素系被膜の表面を観察したときに導電性炭素微粒子を面積比で1%以上80%以下含むことを特徴とする。 In order to achieve the above object, the sliding contact member according to the present invention is provided with a terminal portion, and uses the terminal portion that electrically or electrically and mechanically contacts another member as a base material, and the surface of the base material is is provided with a conductive high-hardness protective coating made of a carbon-based coating that is not doped with metal and has a surface resistance value smaller than 1×10 3 Ω and a surface hardness of 10 GPa or more, and the carbon-based coating has an sp2 Conductive carbon fine particles are dispersed in a carbon film containing carbon having a carbon structure and carbon having an sp3 structure, and when the surface of the carbon-based film is observed, the area ratio of conductive carbon fine particles is 1% or more and 80% or less. It is characterized by containing.

本件発明に係る摺接部材において、前記炭素系被膜の摩擦係数が0.5以下であることが好ましい。 In the sliding contact member according to the present invention, it is preferable that the carbon-based coating has a friction coefficient of 0.5 or less.

本件発明に係る摺接部材において、前記炭素系被膜の膜厚が20nm以上10μm以下であることが好ましい。 In the sliding contact member according to the present invention, it is preferable that the thickness of the carbon-based coating is 20 nm or more and 10 μm or less.

上記目的を達成するために、本件発明に係る導電性高硬度保護膜は、電気的及び/又は機械的に他の部材に接する接点部材の表面に設けられ、その表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上であり、金属がドープされていない炭素系被膜からなり、前記炭素系被膜は、sp2構造の炭素とsp3構造の炭素とを含む炭素被膜内に導電性炭素微粒子が分散されており、前記炭素系被膜の表面を観察したときに導電性炭素微粒子を面積比で1%以上80%以下含むことを特徴とする。 In order to achieve the above object, the conductive high-hardness protective film according to the present invention is provided on the surface of a contact member that electrically and/or mechanically contacts other members, and has a surface resistance value of 1×10 3 Ω, has a surface hardness of 10 GPa or more, and is made of a carbon-based film that is not doped with metal , and the carbon-based film contains conductive carbon within the carbon film containing sp2-structured carbon and sp3-structured carbon. Carbon fine particles are dispersed therein, and when the surface of the carbon-based coating is observed, the conductive carbon fine particles are contained in an area ratio of 1% or more and 80% or less .

上記目的を達成するために、本件発明に係る摺接部材の製造方法は、アーク放電によりカーボンプラズマを発生させる際に、電磁場の偏向作用によって炭素イオンと炭素微粒子の比率を制することで、電気的、又は、電気的及び機械的に他の部材に接する端子部を基材として、該基材の表面に導電性炭素微粒子が分散した炭素被膜を成膜して、該基材の表面に表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜であって、sp2構造の炭素とsp3構造の炭素とを含む炭素被膜内に導電性微粒子が分散されており、前記炭素系被膜の表面を観察したときに導電性微粒子を面積比で1%以上80%以下含む炭素系皮膜から成る導電性高硬度保護被膜を設けることを特徴とする。 In order to achieve the above object, the manufacturing method for a sliding contact member according to the present invention is characterized in that, when carbon plasma is generated by arc discharge, the ratio of carbon ions and carbon microparticles is controlled by the deflection action of an electromagnetic field, and a terminal portion that electrically or electrically and mechanically contacts another member is used as a substrate, and a carbon coating having conductive carbon microparticles dispersed on the surface of the substrate is formed, so that the surface of the substrate is provided with a conductive high-hardness protective coating consisting of a carbon-based coating having a surface resistance value of less than 1 x 103 Ω and a surface hardness of 10 GPa or more, the carbon coating containing sp2 carbon and sp3 carbon, the conductive microparticles being dispersed in the carbon coating, and the surface of the carbon-based coating being observed to contain conductive microparticles in an area ratio of 1% to 80% .

本件発明によれば、耐摩耗性を向上させつつ、接点部材に用いた場合は転写を抑制し、高温環境下でも使用可能な摺接部材、このような摺接部材に設けられる導電性高硬度保護被膜及びこれらの摺接部材の製造方法を提供することができる。 According to the present invention, a sliding contact member that improves wear resistance, suppresses transfer when used as a contact member, and can be used even in a high temperature environment, and a conductive high hardness provided in such a sliding contact member. A method for manufacturing a protective coating and a sliding contact member thereof can be provided.

(a)基材の表面に設けられた導電性高硬度被膜の断面を模式的に表した図である。(a) A diagram schematically showing a cross section of a conductive high-hardness coating provided on the surface of a base material. 基材の表面に金属中間層30を設けた際の、金属中間層30の表面を示すSEM写真(撮影倍率500倍)である。It is a SEM photograph (photographing magnification: 500 times) showing the surface of the metal intermediate layer 30 when the metal intermediate layer 30 is provided on the surface of the base material. (a)実施例1の導電性高硬度被膜の表面を示すSEM写真(撮影倍率2,000倍)、(b)実施例2の導電性高硬度被膜の表面を示すSEM写真(撮影倍率2,000倍)、(c)実施例3の導電性高硬度被膜の表面を示すSEM写真(撮影倍率2,000倍)である。(a) SEM photograph showing the surface of the conductive hard coating of Example 1 (magnification 2,000x), (b) SEM photograph showing the surface of the conductive hard coating of Example 2 (magnification 2, (c) is an SEM photograph (photographing magnification: 2,000 times) showing the surface of the conductive high-hardness coating of Example 3. 比較例1の導電性高硬度被膜の表面を示すSEM写真(撮影倍率300倍)である。This is a SEM photograph (photographing magnification: 300 times) showing the surface of the conductive high-hardness coating of Comparative Example 1.

以下、本発明に係る摺接部材、導電性高硬度保護被膜及びその製造方法を説明する。 Hereinafter, a sliding contact member, a conductive high-hardness protective coating, and a method for manufacturing the same according to the present invention will be explained.

1.摺接部材
本件発明に係る摺接部材は、他の部材に当接し、他の部材と接したときに他の部材と摺り合わされる蓋然性を有する部材をいう。当該摺接部材は他の部材と導通性を要求される部材であってもよいし、導通性を要求されない部材であってもよい。例えば、次に説明する接点部材のように他の部材との導通を要する部材であってもよいし、電気ドリル等に取り付けられる各種ドリル、エンドミル、フライスカッター等のフライス盤(ミリング・マシン)で使用される各種切削工具、或いは、金型、ウエハカセット等の他の部材と直接接触等される部材であって、導通性を要求されない部材であってもよい。また他の部材と当接し、他の部材に対して相対的に移動しながら摺り合わされる摺動部材であってもよい。但し、本件発明に係る導電性高硬度保護被膜は表面抵抗が小さいため、摺接部材は絶縁性が要求される部材ではないことが好ましい。本件発明に係る摺接部材は、本件発明に係る導電性高硬度保護被膜を有することで、当該導電性高硬度保護被膜がないものと比較すると耐摩耗性が向上する一方、低い抵抗値を維持することができる。そのため、電気的及び/又は機械的に他の部材に接する端子部を有する接点部材に適用すれば、接点部材と他の部材との導通性を良好に維持した状態で、他の部材との機械的接触に伴う摩耗等を抑制することができる。接点部材としては、例えば、半導体製造工程において行われるウェーハ検査、パッケージ検査等の際に検査対象物の電極等に接触して用いられるプローブピンが挙げられる。以下、接点部材を例に挙げて、本件発明に係る摺接部材及び接点部材について説明するが、本件発明に係る摺接部材はプローブピン等の接点部材の他、メカニカルリレーの端子、モータの回転子等の他の部材と電気的及び機械的に接する端子部等を有する各種端子部材の他、上述の各種工具等に適用することができる。
1. Sliding Member The sliding member according to the present invention is a member that comes into contact with another member and has a probability of sliding against the other member when it comes into contact with the other member. The sliding contact member may be a member that is required to have conductivity with other members, or may be a member that is not required to have conductivity. For example, it may be a member that requires electrical conduction with other members, such as the contact member described below, or it may be used in milling machines such as various drills, end mills, and milling cutters that are attached to electric drills. It may be a member that comes into direct contact with various cutting tools used in the manufacturing process, or other members such as a mold or a wafer cassette, and which does not require electrical conductivity. Alternatively, it may be a sliding member that comes into contact with another member and slides together while moving relative to the other member. However, since the conductive high-hardness protective coating according to the present invention has a low surface resistance, it is preferable that the sliding contact member is not a member that requires insulation. By having the conductive high-hardness protective coating according to the present invention, the sliding contact member according to the present invention has improved wear resistance and maintains a low resistance value when compared to a component without the conductive high-hardness protective coating. can do. Therefore, if applied to a contact member that has a terminal part that electrically and/or mechanically contacts other members, it is possible to maintain good electrical conductivity between the contact member and other members, and to connect the other members mechanically. wear caused by physical contact can be suppressed. Examples of contact members include probe pins used in contact with electrodes of an object to be inspected during wafer inspection, package inspection, etc. performed in a semiconductor manufacturing process. The sliding contact member and the contact member according to the present invention will be explained below by taking the contact member as an example. However, the sliding contact member according to the present invention includes contact members such as probe pins, terminals of mechanical relays, and rotation of motors. The present invention can be applied to various terminal members having terminal portions that electrically and mechanically contact other members such as children, as well as the various tools described above.

接点部材の構成を図1に模式的に示す。図1に示す例では、接点部材100は、基材10の表面に導電性高硬度保護被膜20を備え、基材10と導電性高硬度保護被膜20との間には金属中間層30が設けられている。この金属中間層30は本件発明において任意の層構成である。また、図1に示す例では、導電性高硬度保護被膜20は、母層となる炭素被膜21内に導電性炭素微粒子22を含む。また、金属中間層30において析出した金属微粒子31は導電性高硬度保護被膜20との界面に存在する。以下、基材10、導電性高硬度保護被膜20、金属中間層30の順に説明する。 The structure of the contact member is schematically shown in FIG. In the example shown in FIG. 1, the contact member 100 includes a conductive high-hardness protective coating 20 on the surface of a base material 10, and a metal intermediate layer 30 is provided between the base material 10 and the conductive high-hardness protective coating 20. It is being This metal intermediate layer 30 has an arbitrary layer configuration in the present invention. Further, in the example shown in FIG. 1, the conductive high-hardness protective coating 20 includes conductive carbon fine particles 22 within the carbon coating 21 serving as a base layer. Furthermore, the metal fine particles 31 deposited in the metal intermediate layer 30 are present at the interface with the conductive high-hardness protective coating 20 . Hereinafter, the base material 10, the conductive high-hardness protective coating 20, and the metal intermediate layer 30 will be explained in this order.

(1)基材10
接点部材100の基材10として、例えば、銅、鉄、ニッケル、アルミニウム等の各種金属又は、銅合金、鉄合金、ニッケル合金、アルミニウム合金等の各種合金製とすることができる。但し、接点部材100に要求される電気的及び機械的特性を満足することのできる材料からなれば、基材10の材料は特に限定されるものではない。また、基材10の形状についても特に限定されるものではない。例えば、当該接点部材100がプローブピンであれば、プローブピンの端子部に要求される形状等を満たしていればよく、当該接点部材100の用途に応じた任意の形状とすることができる。なお、摺接部材に関して他の部材との導電性が求められない場合、摺接部材の基材10としては、上記各種金属又はその合金の他、超硬合金製基材、セラミック製基材、樹脂製基材等としてもよい。
(1) Base material 10
The base material 10 of the contact member 100 may be made of various metals such as copper, iron, nickel, and aluminum, or various alloys such as copper alloy, iron alloy, nickel alloy, and aluminum alloy. However, the material of the base material 10 is not particularly limited as long as it is made of a material that can satisfy the electrical and mechanical properties required for the contact member 100. Further, the shape of the base material 10 is not particularly limited either. For example, if the contact member 100 is a probe pin, it is sufficient to satisfy the shape required for the terminal portion of the probe pin, and the contact member 100 may have any shape depending on the purpose of the contact member 100. In addition, when the sliding contact member is not required to have electrical conductivity with other members, the base material 10 of the sliding contact member may be a cemented carbide base material, a ceramic base material, in addition to the above-mentioned various metals or alloys thereof. It may also be a resin base material or the like.

(2)導電性高硬度保護被膜20
次に、導電性高硬度保護被膜20について説明する。導電性高硬度保護被膜20は、接点部材100(基材10)の端子部(接点部分)等の表面であって、他の部材と直接接触される部位に設けられていればよい。当該導電性高硬度保護被膜20が他の部材と直接接触される部位に設けられていれば、本件発明による効果を享受することができる。但し、当該導電性高硬度保護被膜20は、そのような部位に限らず、端子部全体に設けられていてもよいし、接点部材100の表面全体に設けられていてもよい。当該導電性高硬度保護被膜20を設けることにより、例えば、検査対象物の電極部分等にハンダ等の柔らかい金属材料が用いられていても、炭素とハンダとは化学的に結合しにくく、耐摩耗性を向上することができるため、端子部に対するこれらの転写を防ぐことができ、メンテナンス頻度を低減することができる。また、表面抵抗値が低いため、良好な導通性を維持することができる。
(2) Conductive high-hardness protective coating 20
Next, the conductive high-hardness protective coating 20 will be described. The conductive high-hardness protective coating 20 may be provided on the surface of the terminal portion (contact portion) of the contact member 100 (substrate 10) or the like, in a portion that is in direct contact with another member. If the conductive high-hardness protective coating 20 is provided on a portion that is in direct contact with another member, the effects of the present invention can be enjoyed. However, the conductive high-hardness protective coating 20 is not limited to such a portion, and may be provided on the entire terminal portion or the entire surface of the contact member 100. By providing the conductive high-hardness protective coating 20, for example, even if a soft metal material such as solder is used in the electrode portion of the test object, carbon and solder are unlikely to chemically bond, and wear resistance can be improved, so that transfer of these to the terminal portion can be prevented and the frequency of maintenance can be reduced. In addition, since the surface resistance value is low, good conductivity can be maintained.

当該導電性高硬度保護被膜20は表面抵抗値が1×10Ωより小さく、好ましくは1×10Ω以下、より好ましくは1×10Ω以下であり、且つ、表面硬度が10GPa以上の炭素系被膜からなる。ここで、炭素系材料として、グラファイトやダイヤモンドライクカーボン(DLC)が知られている。グラファイトは導電性があるため、グラファイトからなる薄膜を他の部材と直接接触される部位に設けた場合、接触部位の抵抗の上昇を防ぐことができる。しかしながら、グラファイトは軟らかい材料であるため、表面硬度は10GPaより低く、接点部位の耐摩耗性の改善効果は僅かしか得られない。一方、DLCの表面硬度は10GPa以上あり、接触部位の耐摩耗性の改善効果は高い。しかしながら、DLCの表面抵抗値は1×10Ω以上であり、接触部位の抵抗が上昇する。そのため、DLCは接点部材の保護被膜としては不適である。本発明者等の鋭意研究の末、例えば、後述する方法により、表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜が得られることを見出し、当該炭素系被膜を導電性高硬度保護被膜20として基材10の表面に設けることで、耐摩耗性を向上させつつ、転写を抑制し、高温環境下でも使用可能な接点部材(及び摺接部材)を提供可能であることを見出した。以下、導電性高硬度保護被膜20の好ましい態様について説明する。 The conductive high-hardness protective coating 20 is made of a carbon-based material having a surface resistance value of less than 1×10 3 Ω, preferably 1×10 2 Ω or less, more preferably 1×10 Ω or less, and a surface hardness of 10 GPa or more. Consists of a coating. Here, graphite and diamond-like carbon (DLC) are known as carbon-based materials. Since graphite is electrically conductive, when a thin film made of graphite is provided at a portion that comes into direct contact with another member, it is possible to prevent an increase in resistance at the contact portion. However, since graphite is a soft material, its surface hardness is lower than 10 GPa, and only a small effect of improving the wear resistance of the contact portion can be obtained. On the other hand, the surface hardness of DLC is 10 GPa or more, and the effect of improving the wear resistance of the contact area is high. However, the surface resistance value of DLC is 1×10 3 Ω or more, and the resistance of the contact portion increases. Therefore, DLC is not suitable as a protective coating for contact members. After intensive research by the present inventors, for example, it was discovered that a carbon-based coating having a surface resistance value of less than 1×10 3 Ω and a surface hardness of 10 GPa or more can be obtained by the method described below. By providing the conductive high-hardness protective coating 20 on the surface of the base material 10, it is possible to provide a contact member (and sliding contact member) that improves wear resistance, suppresses transfer, and can be used even in high-temperature environments. I found that. Hereinafter, preferred embodiments of the conductive high-hardness protective coating 20 will be described.

導電性高硬度保護被膜20は、例えば、図1に示すように、母層となる炭素被膜21内に導電性炭素微粒子22等の導電性微粒子を分散させた炭素系被膜とすることが好ましい。このような炭素系被膜とすることで、表面抵抗値を1×10Ωより小さく且つ、表面硬度が10GPa以上とすることができ、接点部材の保護被膜に好適な電気特性と、機械特性とを実現することができる。 For example, as shown in FIG. 1, the conductive high-hardness protective film 20 is preferably a carbon-based film in which conductive fine particles such as conductive carbon fine particles 22 are dispersed in a carbon film 21 serving as a base layer. By using such a carbon-based coating, the surface resistance value can be made smaller than 1×10 3 Ω and the surface hardness can be made more than 10 GPa, and it has electrical properties and mechanical properties suitable for a protective coating for contact members. can be realized.

炭素被膜21は、sp2構造の炭素とsp3構造の炭素とを含むことが好ましい。例えば、sp2構造の炭素とsp3構造の炭素とを含むsp2構造を有する炭素含有量が比較的多いアモルファス炭素被膜、或いは、sp3構造の炭素含有量が比較的多いテトラヘドラル(tetrahedral)炭素被膜などの、いわゆるDLCであることが好ましく、特にテトラヘドラル炭素被膜であることが好ましい。また、当該炭素被膜は水素を含んでいてもよいし、水素を含まなくてもよい。sp3構造の炭素含有割合を「sp2/(sp3+sp3)×100、但し、sp2及びsp3をX線光電子分光法(XPS法)により当該炭素被膜21の元素分析を行ったときのsp2構造の炭素原子数及びsp3構造の炭素原子数とする」と表したとき、sp3構造の炭素含有量が20%以上90%以下であれば、表面抵抗値を1×10Ω以上1×1012Ω以下とすることができ、10Gpa以上の表面硬度を得ることができる。 The carbon coating 21 preferably contains carbon of sp2 structure and carbon of sp3 structure. For example, it is preferably a so-called DLC such as an amorphous carbon coating having a relatively high carbon content with an sp2 structure containing carbon of sp2 structure and carbon of sp3 structure, or a tetrahedral carbon coating having a relatively high carbon content with sp3 structure, and is particularly preferably a tetrahedral carbon coating. The carbon coating may or may not contain hydrogen. When the carbon content of the sp3 structure is expressed as "sp2/(sp3+sp3)×100, where sp2 and sp3 are the numbers of carbon atoms in the sp2 structure and the sp3 structure when elemental analysis of the carbon coating 21 is performed by X-ray photoelectron spectroscopy (XPS)," if the carbon content of the sp3 structure is 20% or more and 90% or less, the surface resistivity can be made 1×10 3 Ω or more and 1×10 12 Ω or less, and a surface hardness of 10 GPa or more can be obtained.

また、炭素被膜21は、添加元素として、H、N、F、Al、Si、Cr、Ag、Ti、Cu、Ni、W、Ta、Mo、Zr、B、Fe、Pt、P、S、I、Mg、Zn及びGeからなる群から選択される一以上の元素を含んでもよい。これらの元素は、真空蒸着法によりDLC膜を成膜する際に、DLC膜内に含有させることができる。 Further, the carbon film 21 includes H, N, F, Al, Si, Cr, Ag, Ti, Cu, Ni, W, Ta, Mo, Zr, B, Fe, Pt, P, S, I as additive elements. , Mg, Zn, and Ge. These elements can be included in the DLC film when the DLC film is formed by a vacuum evaporation method.

導電性微粒子として、例えば、グラファイト(黒鉛)等の導電性炭素微粒子22を挙げることができる。グラファイトは導電性が高い。そのため、炭素被膜21内に所定の量の導電性炭素微粒子22を分散させることで、表面抵抗値が1×10Ωより小さい導電性高硬度保護被膜20を得ることができる。また、導電性微粒子として、導電性炭素微粒子22の他、後述するように基材10上に金属中間層30を介して導電性高硬度保護被膜20を設けたときに、金属中間層30を成膜する際に生じる金属微粒子31を挙げることができる。また、本発明に係る導電性高硬度保護被膜20では、導電性高硬度保護被膜20の表面観察したとき、導電性炭素微粒子22等の導電性微粒子が表面から観察し得る。このとき、導電性微粒子の大きさは、導電性高硬度保護被膜20の表面観察したときにその投影面積(以下、「微粒子断面積」と称する)が0.01μmから1mmであることが好ましい。このような大きさの導電性微粒子を炭素被膜21内に均一に分散させることが所望の電気特性を得る上で好ましい。 Examples of the conductive fine particles include conductive carbon fine particles 22 such as graphite. Graphite is highly conductive. Therefore, by dispersing a predetermined amount of conductive carbon fine particles 22 in the carbon film 21, it is possible to obtain a conductive high-hardness protective film 20 with a surface resistance value of less than 1×10 3 Ω. In addition to the conductive carbon particles 22 as conductive fine particles, when the conductive high-hardness protective coating 20 is provided on the base material 10 via the metal intermediate layer 30 as described later, the metal intermediate layer 30 is formed. Examples include metal fine particles 31 generated during film formation. Further, in the conductive high-hardness protective coating 20 according to the present invention, when the surface of the conductive high-hardness protective coating 20 is observed, conductive fine particles such as the conductive carbon fine particles 22 can be observed from the surface. At this time, the size of the conductive fine particles is such that the projected area (hereinafter referred to as "fine particle cross-sectional area") is 0.01 μm 2 to 1 mm 2 when the surface of the conductive high-hardness protective coating 20 is observed. preferable. It is preferable to uniformly disperse conductive fine particles having such a size within the carbon film 21 in order to obtain desired electrical characteristics.

また、当該導電性高硬度保護被膜20における導電性微粒子の含有割合は、当該導電性高硬度保護被膜20を走査型電子顕微鏡により表面観察をしたときに、面積比で1%以上80%以下であることが好ましい。より具体的には、走査型電子顕微鏡(例えば、日本電子株式会社製 JSM-6510A、2次電子像)により撮影倍率2,000倍で当該導電性高硬度保護被膜20の表面を撮影したSEM写真をWinROOF画像処理ソフト(三谷商事株式会社製WinROOF2018 Standard版)を使って微粒子解析を行い、観察領域における当該導電性高硬度保護被膜の表面積に対して、表面に観察された導電性微粒子の占める面積(但し、水平面における導電性微粒子の断面積に相当する面積の和(すなわち、当該粒子の投影面積の和))の割合((導電性炭素微粒子面積/当該導電性高硬度保護被膜面積)×100)を求めた値を当該導電性高硬度保護被膜20内における導電性微粒子の含有割合とすることができる。 In addition, the content of the conductive fine particles in the conductive hardness protective coating 20 is preferably 1% or more and 80% or less in terms of area ratio when the conductive hardness protective coating 20 is observed on the surface by a scanning electron microscope. More specifically, a SEM photograph of the surface of the conductive hardness protective coating 20 taken with a scanning electron microscope (e.g., JSM-6510A manufactured by JEOL Ltd., secondary electron image) at a magnification of 2,000 times is subjected to fine particle analysis using WinROOF image processing software (WinROOF2018 Standard version manufactured by Mitani Shoji Co., Ltd.), and the ratio ((conductive carbon fine particle area/conductive hardness protective coating area) x 100) of the area occupied by the conductive fine particles observed on the surface (however, the sum of the areas equivalent to the cross-sectional areas of the conductive fine particles in the horizontal plane (i.e., the sum of the projected areas of the particles)) to the surface area of the conductive hardness protective coating in the observation region can be determined as the content of the conductive fine particles in the conductive hardness protective coating 20.

炭素被膜21内における導電性炭素微粒子22の含有量が増加すると、当該導電性高硬度保護被膜20の表面抵抗値は低下する。炭素被膜21の表面抵抗値は1×10Ω以上1×1012Ω以下であるため、導電性炭素微粒子22等の導電性微粒子の含有量が少なくなりすぎると、当該導電性高硬度保護被膜20の表面抵抗値を1×10Ωより小さくすることが困難になる。一方、導電性炭素微粒子22の硬度は低い。そのため、炭素被膜21内における導電性炭素微粒子22の含有量が多くなりすぎると、当該導電性高硬度保護被膜20の表面硬度が10GPa未満になり、接点部材の耐摩耗性を向上する効果を得ることが困難になる。当該観点から、導電性高硬度保護被膜20内における導電性微粒子の含有割合は、上述のとおり面積比で1%以上80%以下であることが好ましく、3%以上70%以下であることがより好ましく、5%以上60%以下であることがさらに好ましい。なお、導電性高硬度保護被膜20内における導電性微粒子の含有割合が面積比で1%以上80%以下であるとき、表面硬度は10GPa以上であり、例えば、当該含有割合が13%のときの表面硬度は50GPa以上を達成している。導電性高硬度保護被膜20の表面硬度が10GPa以上あれば、接点部材の耐摩耗性を向上する上で十分であるが、例えば、切削工具等の上記摺接部材として用いるときも、表面硬度が10GPa以上あれば耐摩耗性を改善する効果が得られ、例えば、50GPa以上であれば耐摩耗性を改善するための十分な効果が得られる。 When the content of the conductive carbon fine particles 22 in the carbon film 21 increases, the surface resistance value of the conductive high-hardness protective film 20 decreases. Since the surface resistance value of the carbon coating 21 is 1×10 3 Ω or more and 1×10 12 Ω or less, if the content of conductive fine particles such as the conductive carbon fine particles 22 becomes too small, the conductive high-hardness protective coating It becomes difficult to reduce the surface resistance value of 20 to less than 1×10 3 Ω. On the other hand, the hardness of the conductive carbon particles 22 is low. Therefore, if the content of the conductive carbon fine particles 22 in the carbon coating 21 becomes too large, the surface hardness of the conductive high-hardness protective coating 20 becomes less than 10 GPa, resulting in the effect of improving the wear resistance of the contact member. things become difficult. From this point of view, the content ratio of the conductive fine particles in the conductive high-hardness protective coating 20 is preferably 1% or more and 80% or less in terms of area ratio, more preferably 3% or more and 70% or less. It is preferably 5% or more and 60% or less. Note that when the content ratio of conductive fine particles in the conductive high-hardness protective coating 20 is 1% or more and 80% or less in terms of area ratio, the surface hardness is 10 GPa or more, and for example, when the content ratio is 13%. A surface hardness of 50 GPa or more has been achieved. If the surface hardness of the conductive high-hardness protective coating 20 is 10 GPa or more, it is sufficient to improve the wear resistance of the contact member. If it is 10 GPa or more, an effect of improving wear resistance can be obtained, and for example, if it is 50 GPa or more, a sufficient effect of improving wear resistance can be obtained.

また、当該導電性高硬度保護被膜20の膜厚は、20nm以上10μm以下であることが好ましい。膜厚が小さすぎると、導電性炭素微粒子22を炭素被膜21に所望の量を含有させることが困難になる。すなわち、導電性炭素微粒子22の含有量を上記面積比において1%以上にすることが困難な場合がある。これと同時に当該導電性高硬度保護被膜20の表面抵抗値が高くなり、1×10Ωより小さくすることが困難になる。一方、膜厚が厚すぎると、当該導電性高硬度保護被膜20の生産性が悪くなる。これらの観点から、当該導電性高硬度保護被膜20の膜厚は50nm以上5μm以下であることがより好ましく、100nm以上2μm以下であることがさらに好ましい。 Further, the thickness of the conductive high-hardness protective film 20 is preferably 20 nm or more and 10 μm or less. If the film thickness is too small, it will be difficult to incorporate the conductive carbon fine particles 22 into the carbon film 21 in a desired amount. That is, it may be difficult to make the content of the conductive carbon fine particles 22 1% or more in the above area ratio. At the same time, the surface resistance value of the conductive high-hardness protective coating 20 increases, and it becomes difficult to reduce it to less than 1×10 3 Ω. On the other hand, if the film thickness is too thick, the productivity of the conductive high-hardness protective film 20 will deteriorate. From these viewpoints, the thickness of the conductive high-hardness protective film 20 is more preferably 50 nm or more and 5 μm or less, and even more preferably 100 nm or more and 2 μm or less.

また、当該導電性高硬度保護被膜の摩擦係数は、0.4以下であることが好ましく、0.3以下であることがより好ましい。上記のように、導電性炭素微粒子22としてグラファイトを炭素被膜21内に分散させた場合、グラファイトの摩擦係数は低いため、摩擦係数が0.4より大きくなる蓋然性は低い。 Further, the friction coefficient of the conductive high-hardness protective film is preferably 0.4 or less, more preferably 0.3 or less. As described above, when graphite is dispersed in the carbon coating 21 as the conductive carbon particles 22, the friction coefficient of graphite is low, so the probability that the friction coefficient will be larger than 0.4 is low.

また、当該導電性高硬度保護被膜20の表面粗さ(Ra)/膜厚比が2倍以下であることが好ましい。炭素被膜21内に導電性炭素微粒子22を分散させた構成とする場合、当該導電性高硬度保護被膜20の成膜中に導電性炭素微粒子22が炭素被膜21の表面から突出し、表面粗さが荒くなる場合がある。表面粗さ(Ra)/膜厚比が2倍を超えると、当該接点部材100の接点部分を他の部材に電気的及び機械的に接触させた際に、上記転写が生じやすくなる場合があるため好ましくない。なお、導電性炭素微粒子22はグラファイト等の柔らかい粒子からなる。そのため、成膜後に当該導電性高硬度保護被膜20の表面を研磨することにより、表面粗さを上記範囲内にすることは容易である。 In addition, it is preferable that the surface roughness (Ra)/film thickness ratio of the conductive high-hardness protective coating 20 is 2 times or less. When the conductive carbon fine particles 22 are dispersed in the carbon coating 21, the conductive carbon fine particles 22 may protrude from the surface of the carbon coating 21 during the formation of the conductive high-hardness protective coating 20, resulting in a rough surface roughness. If the surface roughness (Ra)/film thickness ratio exceeds 2 times, the above-mentioned transfer may occur easily when the contact portion of the contact member 100 is electrically and mechanically brought into contact with another member, which is not preferable. The conductive carbon fine particles 22 are made of soft particles such as graphite. Therefore, it is easy to bring the surface roughness within the above range by polishing the surface of the conductive high-hardness protective coating 20 after the film formation.

(3)金属中間層30
金属中間層30は、基材10と導電性高硬度保護被膜20との双方に対して化学的密着性が良好な金属又は金属化合物からなる層であり、必要に応じて設けることができる。基材10と、導電性高硬度保護被膜20との双方に対して化学的密着性が良好な金属として、例えば、Fe、Cr、Ti等を挙げることができる。これらの金属及び/又はこれらとN、O、C等の金属化合物からなる層を金属中間層30として、基材10と導電性高硬度保護被膜20との間に設けることで、基材10としての上記列挙した各材料と、導電性高硬度保護被膜20の構成材料である炭素とを良好に密着することが可能になる。但し、基材10と導電性高硬度保護被膜20との密着性が良好である場合、金属中間層30を設けずに、基材10の表面に直接導電性高硬度保護被膜20を設けることができる。
(3) Metal intermediate layer 30
The metal intermediate layer 30 is a layer made of a metal or a metal compound that has good chemical adhesion to both the base material 10 and the conductive high-hardness protective coating 20, and can be provided as necessary. Examples of metals that have good chemical adhesion to both the base material 10 and the conductive high-hardness protective coating 20 include Fe, Cr, and Ti. By providing a layer made of these metals and/or a metal compound thereof such as N, O, C, etc. as the metal intermediate layer 30 between the base material 10 and the conductive high hardness protective coating 20, the base material 10 can be formed. It becomes possible to bond each of the above-mentioned materials and carbon, which is a constituent material of the conductive high-hardness protective coating 20, well. However, if the adhesion between the base material 10 and the conductive high-hardness protective coating 20 is good, the conductive high-hardness protective coating 20 may be directly provided on the surface of the base material 10 without providing the metal intermediate layer 30. can.

金属中間層30は、例えば、後述するように真空蒸着法により基材10の表面に成膜することができる。真空蒸着法により金属中間層を形成する間に、金属イオン以外に金属微粒子31が発生し、金属中間層30の成膜表面に金属微粒子31が付着する。金属微粒子31は導電性を有するため、基材10の表面に金属中間層30を介して導電性高硬度保護被膜20を設けた場合、図1に示すように炭素被膜21内に金属微粒子31の一部が取り込まれるため、炭素被膜21内の導電性炭素微粒子22と、金属微粒子31との相互接触によって導電性高硬度保護被膜20の表面抵抗値が低下し、導電性がより向上する。 The metal intermediate layer 30 can be formed on the surface of the base material 10 by, for example, a vacuum evaporation method as described later. During the formation of the metal intermediate layer by the vacuum evaporation method, metal fine particles 31 are generated in addition to metal ions, and the metal fine particles 31 adhere to the film-forming surface of the metal intermediate layer 30 . Since the metal fine particles 31 have conductivity, when the conductive high-hardness protective coating 20 is provided on the surface of the base material 10 via the metal intermediate layer 30, the metal fine particles 31 are formed in the carbon coating 21 as shown in FIG. Since some of the carbon particles are taken in, the surface resistance value of the conductive high-hardness protective coating 20 is reduced due to mutual contact between the conductive carbon particles 22 in the carbon coating 21 and the metal particles 31, and the conductivity is further improved.

2.摺接部材及び接点部材の製造方法
次に、本発明に係る摺接部材及び接点部材100の製造方法について説明する。ここでも、摺接部材として、図1に模式的に示す接点部材100を例に挙げて説明する。接点部材100は、アーク放電によりカーボンプラズマを発生させる際に、電磁場による偏向によって炭素イオンと炭素微粒子の比率を制することで、基材10の表面に導電性炭素微粒子22が分散した炭素被膜21を成膜して、基材の表面に表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜から成る導電性高硬度保護被膜20を設けることを特徴とする。ここで、基材10の表面に上記金属中間層30を成膜した後に、導電性高硬度保護被膜20を成膜してもよい。
2. Method for manufacturing sliding contact member and contact member Next, a method for manufacturing the sliding contact member and contact member 100 according to the present invention will be described. Here, the contact member 100 schematically shown in FIG. 1 will be described as an example of the sliding contact member. The contact member 100 creates a carbon film 21 in which conductive carbon particles 22 are dispersed on the surface of the base material 10 by controlling the ratio of carbon ions and carbon particles by deflection by an electromagnetic field when carbon plasma is generated by arc discharge. A conductive high-hardness protective coating 20 made of a carbon-based coating having a surface resistance value of less than 1×10 3 Ω and a surface hardness of 10 GPa or more is provided on the surface of the base material by forming a film. Here, after forming the metal intermediate layer 30 on the surface of the base material 10, the conductive high-hardness protective coating 20 may be formed.

(1)導電性高硬度保護被膜20の成膜方法
導電性高硬度保護被膜20は、真空蒸着法により基材10の表面に成膜することができる。真空蒸着法として、例えば、カソードアーク法、スパッタ法、電子ビーム法等を採用することができる。特に、本件発明に係る導電性高硬度保護被膜20を成膜する際には、カソードアーク法を採用することが好ましい。例えば、真空中で炭素電極をカソード電極とし、アーク放電を起こさせることにより、カーボンプラズマを発生させて炭素イオン及び炭素微粒子を発生させつつ、基材10側に放射することで、炭素イオンを基材10上に堆積させつつ、炭素微粒子も基材10側に付着させることができる。当該方法により、基材10上には導電性炭素微粒子22を含む炭素被膜21を成膜することができる。
(1) Method of forming the conductive high-hardness protective film 20 The conductive high-hardness protective film 20 can be formed on the surface of the base material 10 by a vacuum evaporation method. As the vacuum evaporation method, for example, a cathode arc method, a sputtering method, an electron beam method, etc. can be adopted. In particular, when forming the conductive high-hardness protective film 20 according to the present invention, it is preferable to employ a cathode arc method. For example, by using a carbon electrode as a cathode electrode in a vacuum and causing an arc discharge, carbon plasma is generated to generate carbon ions and carbon particles, and the carbon ions are converted into a base by emitting it toward the base material 10 side. Carbon fine particles can also be attached to the base material 10 side while being deposited on the material 10. By this method, a carbon film 21 containing conductive carbon particles 22 can be formed on the base material 10.

上記カソードアーク法では、一般に、低電圧下で高電流を流すことでアーク放電を発生させる。上記のように炭素電極をカソード電極とすれば、アーク放電に伴い炭素電極から炭素イオンを放出させることができる。また、アーク放電に伴う発熱により炭素電極から炭素微粒子も放出される。例えば、DLC膜についてもカソードアーク法により成膜される。DLC膜に炭素微粒子が混入すると、炭素微粒子はグラファイトであり、軟らかい材料であるため、DLC膜の硬度が低下することが考えられる。そのため、DLC膜を成膜する際には、フィルタリングという手法により、炭素微粒子が基材10側に飛来しないようにしている。炭素イオンは電荷を有する一方、炭素微粒子は電荷を有さない。そのため、電場及び磁場のバランス及び強度等を調整することにより炭素イオンの飛来経路を曲げること等ができるが、炭素微粒子は基材10に向かって直進する。そこで、チャンバー内に炭素電極と基材10との間に遮蔽物を設置し、電場及び磁場のバランス及び強度等を調整することにより、炭素微粒子は遮蔽物により基材10に到達することを防ぐと共に、炭素イオンについては遮蔽物を回り込んで基材10に到達するように飛来させることが行われている。このようにフィルタリングを行いつつ成膜されたDLC膜は高抵抗であるため、接点部材100等の電気的導通が要求される部材の接点部位の耐摩耗性等を向上するための保護被膜として用いることはできない。 In the cathode arc method described above, arc discharge is generally generated by flowing a high current under a low voltage. If the carbon electrode is used as a cathode electrode as described above, carbon ions can be released from the carbon electrode along with arc discharge. Furthermore, carbon fine particles are also released from the carbon electrode due to the heat generated by arc discharge. For example, the DLC film is also formed by the cathode arc method. When carbon particles are mixed into the DLC film, the hardness of the DLC film may be reduced because the carbon particles are graphite, which is a soft material. Therefore, when forming a DLC film, a method called filtering is used to prevent carbon particles from flying toward the base material 10 side. Carbon ions have an electric charge, while carbon particles do not have an electric charge. Therefore, by adjusting the balance and strength of the electric field and magnetic field, it is possible to bend the flying path of the carbon ions, but the carbon fine particles continue straight toward the base material 10. Therefore, by installing a shield between the carbon electrode and the base material 10 in the chamber and adjusting the balance and strength of the electric field and magnetic field, the carbon particles can be prevented from reaching the base material 10 by the shield. At the same time, carbon ions are made to fly around the shield and reach the base material 10. Since the DLC film formed while performing filtering in this manner has a high resistance, it is used as a protective coating to improve the wear resistance of the contact portion of a member such as the contact member 100 that requires electrical continuity. It is not possible.

しかしながら、本件発明者等は鋭意研究の末、フィルタリングの手法を応用し、電場及び磁場のバランス及び強度或いは成膜時間等の成膜条件を調整することで、基材10側に飛来する炭素イオンの量と炭素微粒子の量の比率を制御し、当該導電性炭素微粒子22を上述のように当該導電性高硬度保護被膜20を表面観察したときに面積比で1%以上80%以下含むように成膜することで、上記範囲内の表面抵抗値及び表面硬度を有し、接点部材100の接点部位に好適な導電性高硬度保護被膜20が得られることを見出した。また、その際に遮蔽物をカソード電極と基材10の成膜面との間に配置する方法の他、カソード電極の電極面と基材10の成膜面とが成す角度を調整することで、遮蔽物をこれらの間に配置せずとも炭素微粒子はカソード電極の電極面から略垂直に飛来させる一方、炭素イオンの飛来経路を曲げることで炭素イオンと炭素微粒子の量の比率を制御可能であることも見出した。いずれの場合もアーク放電時の電磁場条件を制御し、炭素イオンの飛来方向を偏向させればよい。すなわち、電磁場による偏向作用により炭素イオンの飛来方向を曲げればよい。また、アーク放電時の電磁場条件を制御することで、炭素電極から放出される導電性炭素微粒子22のサイズ分布等を適宜調整することができる。このように成膜した導電性高硬度保護被膜20内には導電性炭素微粒子22が炭素被膜21内に一様に分散させることができる。また、このように成膜した導電性高硬度保護被膜20では、上述のとおり炭素被膜21の表面から導電性炭素微粒子22が突出する場合があるが、成膜後に表面を研磨することにより容易に表面粗さ(Ra)/膜厚比が2倍以下にすることができる。 However, after extensive research, the inventors of the present invention applied a filtering method and adjusted the film forming conditions such as the balance and strength of the electric field and magnetic field or the film forming time, thereby reducing the amount of carbon ions flying toward the base material 10. and the amount of carbon fine particles so that the conductive carbon fine particles 22 are contained in an area ratio of 1% to 80% when the surface of the conductive high-hardness protective coating 20 is observed as described above. It has been found that by forming a film, a conductive high-hardness protective coating 20 having a surface resistance value and surface hardness within the above range and suitable for the contact portion of the contact member 100 can be obtained. In addition to placing a shield between the cathode electrode and the film-forming surface of the base material 10, it is also possible to adjust the angle between the electrode surface of the cathode electrode and the film-forming surface of the base material 10. , the carbon particles can be flown almost perpendicularly from the electrode surface of the cathode without placing a shield between them, while the ratio of the amounts of carbon ions and carbon particles can be controlled by bending the flying path of the carbon ions. I also discovered something. In either case, the electromagnetic field conditions during arc discharge may be controlled to deflect the flying direction of carbon ions. That is, the direction in which carbon ions fly can be bent by the deflection effect of an electromagnetic field. Further, by controlling the electromagnetic field conditions during arc discharge, the size distribution and the like of the conductive carbon particles 22 emitted from the carbon electrode can be adjusted as appropriate. The conductive carbon fine particles 22 can be uniformly dispersed in the carbon film 21 in the conductive high-hardness protective film 20 formed in this manner. In addition, in the conductive high-hardness protective coating 20 formed in this manner, the conductive carbon fine particles 22 may protrude from the surface of the carbon coating 21 as described above, but this can be easily prevented by polishing the surface after the film is formed. The surface roughness (Ra)/film thickness ratio can be made twice or less.

(2)金属中間層30の成膜方法
基材10と導電性高硬度保護被膜20との金属中間層30を介在させる場合、金属中間層30は導電性高硬度保護被膜20と同様にカソードアーク法、スパッタ法、電子ビーム法等の真空蒸着法により成膜することが好ましい。これらの方法により基材10上にまず金属中間層30を成膜することで、続けて同じ真空蒸着装置を用いて、金属中間層30の表面に導電性高硬度保護被膜20を上述のようにして成膜することができる。
(2) Method of forming metal intermediate layer 30 When the metal intermediate layer 30 is interposed between the substrate 10 and the conductive high-hardness protective coating 20, the metal intermediate layer 30 is preferably formed by a vacuum deposition method such as a cathodic arc method, a sputtering method, or an electron beam method, in the same manner as the conductive high-hardness protective coating 20. By first forming the metal intermediate layer 30 on the substrate 10 by these methods, it is possible to subsequently form the conductive high-hardness protective coating 20 on the surface of the metal intermediate layer 30 as described above using the same vacuum deposition apparatus.

金属中間層30は上記各種金属又は金属化合物から形成される層である。例えば、金属中間層30として金属化合物膜を成膜するとき、例えば、窒化チタン、窒化クロム等の金属窒化物膜を成膜する際にはチャンバー内に反応ガスとして窒素を導入する等、成膜する金属化合物の種類に応じて適宜適切な反応ガスを導入すればよい。 The metal intermediate layer 30 is a layer formed from the various metals or metal compounds mentioned above. For example, when forming a metal compound film as the metal intermediate layer 30, for example, when forming a metal nitride film such as titanium nitride or chromium nitride, nitrogen may be introduced into the chamber as a reactive gas. An appropriate reaction gas may be introduced depending on the type of metal compound to be used.

金属中間層30を成膜するとき、導電性高硬度保護被膜20を成膜するときと同様に、成膜時に金属微粒子31が層内に混入する場合がある。この金属微粒子31は導電性高硬度保護被膜20内に侵入し、或いは、導電性高硬度保護被膜20内に侵入した金属微粒子31が導電性高硬度保護被膜20の表面に露出する場合がある。このような金属微粒子31は上述のとおり導電性炭素微粒子22との相互接触により当該導電性高硬度保護被膜20の導電性向上に寄与する。従って、金属中間層30を介して基材10上に導電性高硬度保護被膜20を設けたときに、金属微粒子31が表面に観察される場合、上述のように、導電性高硬度保護被膜20の表面に観察される導電性微粒子として、上記導電性炭素微粒子22に加えて金属微粒子31の面積も考慮するものとする。なお、図2に、基材10の表面に金属中間層30を設けたときの金属中間層30の表面を写したSEM写真を示す。但し、図2に示すSEM写真は導電性高硬度保護被膜20を設ける前の状態を示し、白点又は丸く、或いは楕円状等に看取される部分が金属微粒子31である。 When forming the metal intermediate layer 30, metal fine particles 31 may be mixed into the layer during film formation, as in the case of forming the conductive high-hardness protective coating 20. The metal fine particles 31 may penetrate into the conductive high-hardness protective coating 20, or the metal fine particles 31 that have penetrated into the conductive high-hardness protective coating 20 may be exposed on the surface of the conductive high-hardness protective coating 20. As described above, such metal fine particles 31 contribute to improving the conductivity of the conductive high-hardness protective coating 20 by mutual contact with the conductive carbon fine particles 22. Therefore, when the conductive high-hardness protective coating 20 is provided on the substrate 10 via the metal intermediate layer 30, if the metal fine particles 31 are observed on the surface, as described above, the area of the metal fine particles 31 in addition to the conductive carbon fine particles 22 is taken into consideration as the conductive fine particles observed on the surface of the conductive high-hardness protective coating 20. Note that FIG. 2 shows an SEM photograph of the surface of the metal intermediate layer 30 when the metal intermediate layer 30 is provided on the surface of the substrate 10. However, the SEM photograph shown in Figure 2 shows the state before the conductive high-hardness protective coating 20 is applied, and the white dots or round or elliptical parts are metal particles 31.

金属中間層30の膜厚は、導電性高硬度保護被膜20と基材10の密着力を上げるため、あるいは導電性高硬度保護被膜20の内部応力を緩和するため、5nm~10μmであることが好ましく、50nm~7μmであることがより好ましく、100nm~5μmであることがさらに好ましい。 The thickness of the metal intermediate layer 30 is preferably 5 nm to 10 μm in order to increase the adhesion between the conductive high-hardness protective coating 20 and the base material 10 or to relieve the internal stress of the conductive high-hardness protective coating 20. The thickness is preferably from 50 nm to 7 μm, even more preferably from 100 nm to 5 μm.

以上の方法により、本件発明に係る導電性高硬度保護被膜20を基材10上に、任意の層である金属中間層30を介して設けることができ、本件発明に係る摺接部材及び接点部材100を製造することができる。次に、実施例及び比較例を挙げて本件発明に係る摺接部材、接点部材100及び導電性高硬度保護被膜20についてより具体的に説明する。 By the above method, the conductive high hardness protective coating 20 according to the present invention can be provided on the base material 10 via the metal intermediate layer 30 which is an arbitrary layer, and the sliding contact member and contact member according to the present invention can be provided. 100 can be manufactured. Next, the sliding contact member, the contact member 100, and the conductive high-hardness protective coating 20 according to the present invention will be described in more detail with reference to Examples and Comparative Examples.

タングステンカーバイト(WC)製基材(20mm×20mm×0.7mm)上に導電性炭素微粒子22の含有割合の異なる3種類の炭素系被膜を成膜した。具体的な手順は次のとおりである。まず、WC製基材をアセトンとエタノールを用いてそれぞれ5分間超音波洗浄を行い、表面の脱脂及び洗浄を行った。このWC製基材を昭和真空社製の真空蒸着装置チャンバー内の所定の位置にセットした。また、カソード電極として炭素電極を用い、アノード電極にはモリブデン電極を用いた。そして、チャンバー内の所定の位置に遮蔽物をセットし、ターボモレキュラー真空ポンプでチャンバー内が4×10-4paに到達するまで真空引きした。次いで、アルゴンガスをチャンバー内に60sccm(Standard Cubic Centimeter per Minute)導入し、直流電圧500Vを印加し20分間アルゴンボンバードを行い、基材の表面をドライ洗浄した。その後、炭素陰極上に140Aの電流を付加してアーク放電を連続稼働し炭素イオン及び炭素微粒子を陽極側へ放射し、WC製基材上に膜厚が約600nmの炭素系被膜を成膜した。 Three types of carbon-based films having different content ratios of conductive carbon particles 22 were formed on a tungsten carbide (WC) base material (20 mm x 20 mm x 0.7 mm). The specific steps are as follows. First, the WC base material was subjected to ultrasonic cleaning for 5 minutes each using acetone and ethanol to degrease and clean the surface. This WC base material was set at a predetermined position in the chamber of a vacuum evaporation device manufactured by Showa Shinku Co., Ltd. Further, a carbon electrode was used as the cathode electrode, and a molybdenum electrode was used as the anode electrode. Then, a shield was set at a predetermined position inside the chamber, and the inside of the chamber was evacuated to a pressure of 4×10 −4 pa using a turbo molecular vacuum pump. Next, 60 sccm (Standard Cubic Centimeters per Minute) of argon gas was introduced into the chamber, a DC voltage of 500 V was applied, and argon bombardment was performed for 20 minutes to dry clean the surface of the substrate. Thereafter, a current of 140 A was applied to the carbon cathode, and arc discharge was continuously operated to emit carbon ions and carbon particles toward the anode to form a carbon-based film with a thickness of about 600 nm on the WC substrate. .

その際、WC基板上のバイアス電圧、炭素イオン、炭素微粒子飛来空間中の磁力、偏向率を変化させることにより、チャンバー内の電場及び磁場のバランス及び強度を調整すること等により炭素被膜21内の導電性炭素微粒子22の含有割合を後掲する表2に示すように面積比で1%、13%、80%になるようにフィルタリング率をそれぞれ99%、87%、20%になるようにして、それぞれ実施例1、実施例2、実施例3の炭素系被膜とした。より具体的には、本実施例では、上記蒸着装置を一部改造し、カソード電極の電極面と基材10の成膜面とが成す角度を調整可能となるようにした。そして、偏向率をカソード電極の電極面と基材10の成膜面とが成す角度とした。そして、表1に示すように、偏向率(°)と共に基板10に印加されるバイアス電圧(V)及び磁場(T)を調整して、フィルタリング率を上述のようにした。但し、このフィルタリング条件は、装置の構成やチャンバーの大きさ等によって異なる。また、チャンバー内の電場及び磁場等を調整する他、これらに加えて成膜時間を適宜調整してもよい。また、比較例については、偏向率が0°になるようにして、カソード電極の電極面と基板10の成膜面との間に遮蔽物を配置してもよい。 At that time, by changing the bias voltage on the WC substrate, the magnetic force in the space in which carbon ions and carbon particles fly, and the deflection rate, the balance and strength of the electric field and magnetic field in the chamber are adjusted. As shown in Table 2 below, the content ratio of the conductive carbon particles 22 is 1%, 13%, and 80% in area ratio, and the filtering rate is 99%, 87%, and 20%, respectively. , and carbon-based coatings of Example 1, Example 2, and Example 3, respectively. More specifically, in this example, the vapor deposition apparatus was partially modified so that the angle between the electrode surface of the cathode electrode and the film-forming surface of the base material 10 could be adjusted. The deflection rate was defined as the angle between the electrode surface of the cathode electrode and the film-forming surface of the base material 10. Then, as shown in Table 1, the bias voltage (V) and magnetic field (T) applied to the substrate 10 as well as the deflection rate (°) were adjusted to obtain the filtering rate as described above. However, this filtering condition varies depending on the configuration of the device, the size of the chamber, etc. Further, in addition to adjusting the electric field, magnetic field, etc. in the chamber, the film forming time may be adjusted as appropriate. Further, in the comparative example, a shield may be placed between the electrode surface of the cathode electrode and the film-forming surface of the substrate 10 so that the deflection rate is 0°.

炭素電極上のアーク放電中にH、N、F、Al、Si、Cr、Ag、Ti、Cu、Ni、W、Ta、Mo、Zr、B、Fe、Pt、P、S、I、Mg、Zn及びGeからなる群から選択されるいずれか一の元素をガス、或いは金属の場合はスパッタを同時に放電させて、実施例1と同じ条件で高硬度炭素被膜中に添加した。その結果膜厚600nmでほぼ同じフィルタリング率が得られた。 During arc discharge on the carbon electrode, H, N, F, Al, Si, Cr, Ag, Ti, Cu, Ni, W, Ta, Mo, Zr, B, Fe, Pt, P, S, I, Mg, Any one element selected from the group consisting of Zn and Ge was added to the high hardness carbon film under the same conditions as in Example 1 by simultaneously discharging gas or, in the case of metal, sputtering. As a result, almost the same filtering rate was obtained with a film thickness of 600 nm.

比較例Comparative example

導電性高硬度保護被膜20内の導電性炭素微粒子22の含有割合を面積比で0.5%になるようにフィルタリング率を99.5%とした点を除いて実施例と同様にして比較例の炭素系被膜を成膜した。 A comparative example was carried out in the same manner as in the example except that the filtering rate was set to 99.5% so that the content ratio of the conductive carbon fine particles 22 in the conductive high-hardness protective coating 20 was 0.5% in terms of area ratio. A carbon-based film was formed.

[評価]
表2に各実施例で成膜した本件発明に係る導電性高硬度保護被膜20及び比較例で成膜した炭素系被膜における導電性炭素微粒子22の含有割合、表面抵抗値及び表面硬度を示す。なお、表面抵抗値は2端子法のデジタルマルチメータ(三和電気計器株式会社製Digital Multimeter SANWA PC20)で測定した。また、表面硬度は、膜厚が薄いためナノインデンター(株式会社エリオニクス製ENT-2100)を用い、押し込み荷重5mNで10回測定し、得られた値の平均を膜の硬度とした。また、図3(a)~(c)に実施例1~実施例3の導電性高硬度保護被膜20の表面のSEM写真(撮影倍率2,000倍)を示す。また、図4に比較例の炭素系被膜の表面のSEM写真(撮影倍率300倍)を示す。図3(a)~(c)から、導電性炭素微粒子22の含有割合が高くなるにつれて、表面に表れる導電性炭素微粒子22の数も増加することが観察される。なお、各写真において白点又は丸く、或いは楕円状等に看取される部分が導電性炭素微粒子22である。また、表1から導電性炭素微粒子22の含有割合が増加すると表面硬度は低下する傾向がみられるが、導電性炭素微粒子22の含有割合が面積比で80%のときも10Gpaの表面硬度を有し、耐摩耗性向上のための十分な硬度が得られることが確認された。また、表2から導電性炭素微粒子22を面積比で1%含む実施例1は抵抗値が1×10Ωとなり、実施例2及び実施例3から導電性炭素微粒子22を面積比で13%以上含む場合抵抗値が0Ωとなり、導電性の高い炭素系被膜を得ることができることが確認された。
[evaluation]
Table 2 shows the content ratio, surface resistance value, and surface hardness of the conductive carbon fine particles 22 in the conductive high-hardness protective coating 20 according to the present invention formed in each example and the carbon-based coating formed in the comparative example. The surface resistance value was measured using a two-terminal digital multimeter (Digital Multimeter SANWA PC20 manufactured by Sanwa Electric Instruments Co., Ltd.). The surface hardness was measured 10 times with a pressing load of 5 mN using a nanoindenter (ENT-2100 manufactured by Elionix Co., Ltd.) because the film thickness was thin, and the average of the obtained values was taken as the hardness of the film. In addition, Figures 3(a) to (c) show SEM photographs (magnification 2,000 times) of the surface of the conductive high-hardness protective coating 20 of Examples 1 to 3. In addition, Figure 4 shows an SEM photograph (magnification 300 times) of the surface of the carbon-based coating of the comparative example. 3(a) to (c), it is observed that the number of conductive carbon particles 22 appearing on the surface increases as the content ratio of the conductive carbon particles 22 increases. In each photograph, the white dots or the parts that are seen as round or elliptical are the conductive carbon particles 22. In addition, from Table 1, it is seen that the surface hardness tends to decrease as the content ratio of the conductive carbon particles 22 increases, but even when the content ratio of the conductive carbon particles 22 is 80% by area ratio, it is confirmed that the surface hardness is 10 GPa, and a sufficient hardness for improving abrasion resistance can be obtained. In addition, from Table 2, it is confirmed that Example 1 containing 1% of the conductive carbon particles 22 by area ratio has a resistance value of 1×10 3 Ω, and from Examples 2 and 3, when the conductive carbon particles 22 are contained by 13% or more by area ratio, the resistance value is 0 Ω, and it is confirmed that a carbon-based coating with high conductivity can be obtained.

以上より、表2に示すように実施例1~実施例3の炭素系被膜の抵抗値は1×10Ωより小さく、10GPa以上の表面硬度を有することから、接点部材100において、他の部材と電気的及び機械的に接する部位に当該炭素系被膜を保護被膜として設けても、他の部材との導通を確保しつつ、耐摩耗性を向上することができる。よって、本件発明に係る導電性高硬度保護被膜を接点部材に用いた場合は転写を抑制することができる。また、導電性炭素微粒子22を含む炭素系被膜により転写を抑制しているため、PTFE粒子等の樹脂を用いる方法とは異なり高温環境下でも使用可能な接点部材及び摺接部材を提供することができる。 From the above, as shown in Table 2, the resistance values of the carbon-based coatings of Examples 1 to 3 are smaller than 1×10 3 Ω and have surface hardness of 10 GPa or more. Even if the carbon-based coating is provided as a protective coating on a portion that is in electrical and mechanical contact with the material, it is possible to improve wear resistance while ensuring conduction with other members. Therefore, when the conductive high-hardness protective coating according to the present invention is used in a contact member, transfer can be suppressed. Furthermore, since transfer is suppressed by a carbon-based coating containing conductive carbon fine particles 22, it is possible to provide contact members and sliding contact members that can be used even in high-temperature environments, unlike methods using resins such as PTFE particles. can.

Figure 0007457638000001
Figure 0007457638000001

Figure 0007457638000002
Figure 0007457638000002

本発明によれば、耐摩耗性を向上させつつ、接点部材に用いた場合は転写を抑制し、高温環境下でも使用可能な摺接部材、このような摺接部材に設けられる導電性高硬度保護被膜、或いは接点部材、及びこれらの摺接部材の製造方法を提供することができる。これらの部材は、各種摺動部、或いは接点部に好適に用いることができる。 The present invention provides a sliding contact member that has improved wear resistance, suppresses transfer when used as a contact member, and can be used in high-temperature environments, a conductive high-hardness protective coating that is provided on such a sliding contact member, or a contact member, and a method for manufacturing such a sliding contact member. These members can be suitably used for various sliding parts or contact parts.

10 基材
20 導電性高硬度保護被膜
21 炭素被膜
22 導電性炭素微粒子
30 金属中間層
31 金属微粒子
100 接点部材
10 Base material 20 Conductive high hardness protective coating 21 Carbon coating 22 Conductive carbon fine particles 30 Metal intermediate layer 31 Metal fine particles 100 Contact member

Claims (5)

電気的、又は、電気的及び機械的に他の部材に接する端子部を基材として、該基材の表面に、表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上であり、金属がドープされていない炭素系被膜からなる導電性高硬度保護被膜を備え、
前記炭素系被膜は、sp2構造の炭素とsp3構造の炭素とを含む炭素被膜内に導電性炭素微粒子が分散されており、前記炭素系被膜の表面を観察したときに導電性炭素微粒子を面積比で1%以上80%以下含むことを特徴とする、端子部を備える摺接部材。
The terminal portion is a substrate that electrically or electrically and mechanically contacts another member, and the substrate is provided on a surface thereof with a conductive, high-hardness protective coating having a surface resistance of less than 1×10 3 Ω and a surface hardness of 10 GPa or more , the conductive, high-hardness protective coating being made of a carbon-based coating that is not doped with a metal ;
The carbon-based coating has conductive carbon particles dispersed therein, the conductive carbon particles being included in an area ratio of 1% to 80% when the surface of the carbon-based coating is observed.
前記炭素系被膜の摩擦係数が0.5以下である請求項1に記載の摺接部材。 The sliding contact member according to claim 1, wherein the carbon-based coating has a friction coefficient of 0.5 or less. 前記炭素系被膜の膜厚が20nm以上10μm以下である請求項1又は2に記載の摺接部材。 The sliding contact member according to claim 1 or 2, wherein the carbon-based coating has a thickness of 20 nm or more and 10 μm or less. 電気的、又は、電気的及び機械的に他の部材に接する端子の表面に設けられ、その表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上であり、金属がドープされていない炭素系被膜からなり、
前記炭素系被膜は、sp2構造の炭素とsp3構造の炭素とを含む炭素被膜内に導電性炭素微粒子が分散されており、前記炭素系被膜の表面を観察したときに導電性炭素微粒子を面積比で1%以上80%以下含むことを特徴とする導電性高硬度保護被膜。
A terminal that is provided on the surface of a terminal that is electrically or electrically and mechanically in contact with other members, has a surface resistance value of less than 1×10 3 Ω, a surface hardness of 10 GPa or more , and is not doped with metal. Consisting of a carbon-based coating without
The carbon-based film has conductive carbon fine particles dispersed within the carbon film containing sp2-structure carbon and sp3-structure carbon, and when the surface of the carbon-based film is observed, the area ratio of the conductive carbon fine particles is A conductive high hardness protective coating characterized by containing 1% or more and 80% or less of.
アーク放電によりカーボンプラズマを発生させる際に、電磁場の偏向作用によって炭素イオンと炭素微粒子の比率を制することで、電気的、又は、電気的及び機械的に他の部材に接する端子部を基材として、該基材の表面に導電性炭素微粒子が分散した炭素被膜を成膜して、該基材の表面に表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜であって、sp2構造の炭素とsp3構造の炭素とを含む炭素被膜内に導電性炭素微粒子が分散されており、前記炭素系被膜の表面を観察したときに導電性炭素微粒子を面積比で1%以上80%以下含む炭素系被膜から成る導電性高硬度保護被膜を設けることを特徴とする摺接部材の製造方法。 When carbon plasma is generated by arc discharge, the ratio of carbon ions and carbon particles is controlled by the deflection effect of the electromagnetic field, so that the terminal part that comes into contact with other parts electrically or electrically and mechanically can be made into a base material. A carbon film having conductive carbon fine particles dispersed therein is formed on the surface of the base material, and a carbon-based film having a surface resistance value of less than 1×10 3 Ω and a surface hardness of 10 GPa or more is formed on the surface of the base material. Conductive carbon particles are dispersed within the carbon film containing sp2-structure carbon and sp3-structure carbon, and when the surface of the carbon-based film is observed, the area ratio of the conductive carbon particles is A method for manufacturing a sliding contact member, comprising providing a conductive high-hardness protective coating made of a carbon-based coating containing 1% or more and 80% or less.
JP2020201042A 2020-12-03 2020-12-03 Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member Active JP7457638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020201042A JP7457638B2 (en) 2020-12-03 2020-12-03 Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201042A JP7457638B2 (en) 2020-12-03 2020-12-03 Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member

Publications (3)

Publication Number Publication Date
JP2022088909A JP2022088909A (en) 2022-06-15
JP2022088909A5 JP2022088909A5 (en) 2023-03-28
JP7457638B2 true JP7457638B2 (en) 2024-03-28

Family

ID=81987886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201042A Active JP7457638B2 (en) 2020-12-03 2020-12-03 Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member

Country Status (1)

Country Link
JP (1) JP7457638B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287268A (en) 2009-06-10 2010-12-24 Fuji Electric Device Technology Co Ltd Filtered cathodic arc device and carbon protective film produced using the same
WO2011138967A1 (en) 2010-05-07 2011-11-10 株式会社ニコン Conductive sliding film, member formed from conductive sliding film, and method for producing same
JP2019116677A (en) 2017-12-27 2019-07-18 株式会社リケン Sliding member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287268A (en) 2009-06-10 2010-12-24 Fuji Electric Device Technology Co Ltd Filtered cathodic arc device and carbon protective film produced using the same
WO2011138967A1 (en) 2010-05-07 2011-11-10 株式会社ニコン Conductive sliding film, member formed from conductive sliding film, and method for producing same
JP2019116677A (en) 2017-12-27 2019-07-18 株式会社リケン Sliding member

Also Published As

Publication number Publication date
JP2022088909A (en) 2022-06-15

Similar Documents

Publication Publication Date Title
JP5036892B2 (en) Contact probe
US9625492B2 (en) Contact probe pin
JP2007024613A (en) Contact terminal and connector for semiconductor device inspection using the same
TWI411786B (en) Electric contact member
KR20030017375A (en) Carbon film-coated member
JP5695605B2 (en) Electrical contact member
JP7457638B2 (en) Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member
Kim et al. Material consideration on Ta, Mo, Ru, and Os as glue layer for ultra large scale integration Cu interconnects
JP4382547B2 (en) Semiconductor device substrate and semiconductor device
WO2012067162A1 (en) Contact probe pin and test method
US20240149340A1 (en) Joint structure
TWI429774B (en) Coils utilized in vapor deposition applications and methods of production
JP5730681B2 (en) PROBE PIN FOR SEMICONDUCTOR INSPECTION DEVICE, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR INSPECTION METHOD
KR101156865B1 (en) Contact probe pin for semiconductor test apparatus
JPH05304229A (en) Terminal for ic socket
JP3453325B2 (en) Semiconductor device and manufacturing method thereof
WO2021245893A1 (en) Semiconductor device
JP5535131B2 (en) Probe pin for semiconductor inspection apparatus and manufacturing method thereof
JP2005212076A (en) Tool for manufacturing diamond film coated semiconductor
JP2022093964A (en) Metal material
JP2022088909A5 (en)
JP2005211976A (en) Tool for manufacturing diamond film coated semiconductor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230317

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7457638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150