JP2007024613A - Contact terminal and connector for semiconductor device inspection using the same - Google Patents

Contact terminal and connector for semiconductor device inspection using the same Download PDF

Info

Publication number
JP2007024613A
JP2007024613A JP2005205216A JP2005205216A JP2007024613A JP 2007024613 A JP2007024613 A JP 2007024613A JP 2005205216 A JP2005205216 A JP 2005205216A JP 2005205216 A JP2005205216 A JP 2005205216A JP 2007024613 A JP2007024613 A JP 2007024613A
Authority
JP
Japan
Prior art keywords
contact
contact terminal
semiconductor device
contact portion
inspection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005205216A
Other languages
Japanese (ja)
Inventor
Susumu Takeuchi
進 竹内
Hideyuki Ichinosawa
秀幸 市野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis Technology Co Ltd
Original Assignee
Genesis Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Technology Co Ltd filed Critical Genesis Technology Co Ltd
Priority to JP2005205216A priority Critical patent/JP2007024613A/en
Publication of JP2007024613A publication Critical patent/JP2007024613A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Measuring Leads Or Probes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a contact terminal with an improved deposition prevention effect of a conductive metal on a contact part of the contact terminal, and to provide a connector for inspection on a semiconductor device. <P>SOLUTION: This contact terminal 1 makes electrical contact with an electrode of the semiconductor device. The maximum height Ry of surface roughness of the contact part 2 of the contact terminal 1 with the electrode is 10μm or less. The contact part 2 is characterized by being formed out of a carbon coating 7 containing metallic material. This connector for inspection uses this contact terminal 1. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体デバイスの電極に接触させる接触端子、およびこの接触端子を用いた検査用接続装置に関する。   The present invention relates to a contact terminal to be brought into contact with an electrode of a semiconductor device, and an inspection connection device using the contact terminal.

ICパッケージ等の半導体デバイスには多数の電極が設けられており、これらの電極の表面には、メッキ等によって金あるいは半田等の導電性金属層が形成されている。そして、半導体デバイスの電気特性等の検査は、複数の接触端子を備える検査用接続装置を用い、半導体デバイスの電極に接触端子を電気的に接触させて行なわれている。   A semiconductor device such as an IC package is provided with a large number of electrodes, and a conductive metal layer such as gold or solder is formed on the surface of these electrodes by plating or the like. Then, the inspection of the electrical characteristics or the like of the semiconductor device is performed by using a connection device for inspection having a plurality of contact terminals and bringing the contact terminals into electrical contact with the electrodes of the semiconductor device.

このような検査用接続装置では、接触端子を半導体デバイスの導電性金属層が形成された電極に繰り返し接触させるため、接触端子の前記電極との接触部に、半田等の導電性金属が付着するという現象が生じる。この付着した導電性金属が酸化されて電気抵抗が高くなると、接続検査時に接触不良が生じることがある。   In such a connection device for inspection, the contact terminal is repeatedly brought into contact with the electrode on which the conductive metal layer of the semiconductor device is formed. Therefore, a conductive metal such as solder adheres to the contact portion of the contact terminal with the electrode. The phenomenon that occurs. If the attached conductive metal is oxidized to increase the electrical resistance, contact failure may occur during connection inspection.

従来の接触端子の接触抵抗値は、一般的に初期には0.1〜50mΩであるが、繰り返し使用すると数百mΩ程度にまで悪化する例が知られている。
この対策として、従来から接触端子の定期的なクリーニングや交換が行なわれている。しかし、このような対策は半導体製造ラインの生産性と接触端子の寿命を低下させることになる。
The contact resistance value of a conventional contact terminal is generally 0.1 to 50 mΩ in the initial stage, but an example in which the contact resistance value deteriorates to about several hundred mΩ when repeatedly used is known.
As a countermeasure against this, the contact terminals have been regularly cleaned and replaced. However, such measures reduce the productivity of the semiconductor production line and the life of the contact terminals.

そこで、本願発明者らは、接触端子の先端部に低凝集性を有する被膜を形成することにより、半田等の導電性金属が付着し難い接触端子を開発し、特許文献1に開示した。特許文献1には、接触端子の先端部の表面に、炭化物を形成する性質を有する金属元素を含有させた炭素被膜を形成したことを特徴とする接触端子が開示されている。この金属元素を含有させた炭素被膜は金属に対する凝集性が低いので、接触端子への半田等の導電性金属の付着を防止することができる。
特開2002−318247号公報(段落0030〜0032、図5)
Accordingly, the inventors of the present application have developed a contact terminal to which a conductive metal such as solder is difficult to adhere by forming a coating having low cohesiveness at the tip of the contact terminal, and disclosed in Patent Document 1. Patent Document 1 discloses a contact terminal characterized in that a carbon film containing a metal element having a property of forming carbide is formed on the surface of the tip of the contact terminal. Since the carbon coating containing the metal element has low cohesiveness with respect to the metal, adhesion of conductive metal such as solder to the contact terminal can be prevented.
JP 2002-318247 A (paragraphs 0030 to 0032, FIG. 5)

しかしながら、半導体製造ラインの生産性向上のために、更に長期間安定して使用できる接触端子の要望が強い。これに加えて、環境汚染防止のためにスズ−銅−銀系の鉛フリー半田が広く使用されるようになった結果、接触端子へのスズの付着問題が顕著となり、更なる金属付着防止が求められている。   However, there is a strong demand for contact terminals that can be used stably for a longer period of time in order to improve the productivity of semiconductor manufacturing lines. In addition, tin-copper-silver-based lead-free solder has been widely used to prevent environmental pollution. As a result, the problem of tin adhesion to the contact terminals has become prominent, further preventing metal adhesion. It has been demanded.

そこで本発明では、接触端子の接触部への導電性金属の付着防止効果が改善された接触端子と、接触端子の接触部への導電性金属の付着防止効果が改善された半導体デバイスの検査用接続装置を提供することを目的とする。   Therefore, in the present invention, a contact terminal having an improved effect of preventing the conductive metal from adhering to the contact portion of the contact terminal, and a semiconductor device inspection having an improved effect of preventing the conductive metal from adhering to the contact portion of the contact terminal. An object is to provide a connection device.

前記課題を解決するため本発明では、接触端子の電極との接触部が平滑面となるよう表面粗さにおける最大高さRyを10μm以下とするとともに、接触部に金属元素を含有する炭素被膜を形成することを特徴とする構成の接触端子を採用した。
また、接触端子の電極との接触部の表面粗さにおける最大高さRyが10μm以下で、接触部に金属元素を含有する炭素被膜が形成されている接触端子を複数備えることを特徴とする構成の半導体デバイスの検査用接続装置を採用した。
In order to solve the above problems, in the present invention, the maximum height Ry in the surface roughness is set to 10 μm or less so that the contact portion with the electrode of the contact terminal becomes a smooth surface, and a carbon coating containing a metal element is formed in the contact portion. A contact terminal having a structure characterized by being formed is employed.
In addition, the structure includes a plurality of contact terminals having a maximum height Ry in a surface roughness of a contact portion with an electrode of the contact terminal of 10 μm or less, and a carbon coating containing a metal element formed on the contact portion. The connection device for inspection of semiconductor devices was adopted.

このような接触端子によれば、接触端子の接触部への導電性金属の付着防止効果を改善することができる。
また、このような接触端子を用いれば、接触端子の接触部への導電性金属の付着防止効果が改善された半導体デバイスの検査用接続装置を提供することができる。
According to such a contact terminal, the effect of preventing the conductive metal from adhering to the contact portion of the contact terminal can be improved.
Moreover, if such a contact terminal is used, the connection device for test | inspection of the semiconductor device by which the adhesion prevention effect of the electroconductive metal to the contact part of a contact terminal was improved can be provided.

次に、本発明の実施形態について、適宜図面を参照しながら詳細に説明する。図1は、本実施形態に係る接触端子1を複数備える検査用接続装置10の一例を示す斜視図である。図1では半導体デバイス11がQFP(Quad Flat Package)で、検査用接続装置10がICソケットの場合を想定している。半導体デバイス11の四辺の外周には、多数の電極12が所定の間隔で配設されており、各電極12の表面には導電性金属層である半田被膜が形成されている。   Next, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. FIG. 1 is a perspective view illustrating an example of an inspection connection device 10 including a plurality of contact terminals 1 according to the present embodiment. In FIG. 1, it is assumed that the semiconductor device 11 is a QFP (Quad Flat Package) and the inspection connection device 10 is an IC socket. A large number of electrodes 12 are arranged at predetermined intervals on the outer periphery of the four sides of the semiconductor device 11, and a solder film that is a conductive metal layer is formed on the surface of each electrode 12.

検査用接続装置10の複数の接触端子1は、樹脂等の絶縁性材料で形成されたハウジング20に埋め込まれ、各接触端子1の接触部2が半導体デバイス11の各電極12と対応する位置に整列して露出している。さらに、整列した接触部2の外側には、後述するアーム5の一部が露出している。   The plurality of contact terminals 1 of the inspection connection device 10 are embedded in a housing 20 formed of an insulating material such as a resin, and the contact portions 2 of the contact terminals 1 are located at positions corresponding to the electrodes 12 of the semiconductor device 11. Lined up and exposed. Furthermore, a part of an arm 5 to be described later is exposed outside the aligned contact portions 2.

半導体デバイス11を検査するときには、まずハウジング20から突出する4本の位置決めピン21で半導体デバイス11を所定の位置に合わせ、次に半導体デバイス11を図1の矢印のように上方から押圧して電極12を接触端子1の接触部2に電気的に接触させる。なお、押圧は手動でも行なってもよいし、エアシリンダ等を用いて自動的に行なってもよい。   When inspecting the semiconductor device 11, first, the semiconductor device 11 is aligned with a predetermined position by the four positioning pins 21 protruding from the housing 20, and then the semiconductor device 11 is pressed from above as indicated by an arrow in FIG. 12 is brought into electrical contact with the contact portion 2 of the contact terminal 1. Note that the pressing may be performed manually or automatically using an air cylinder or the like.

図2は本実施形態に係る接触端子1と電極12の接触の様子を表す斜視図である。
接触端子1には、電極12と接触しうる面には接触部2が形成されると共に、外部の計測器(図示せず)に接続するためのピン3が設けられている。また、接触端子1は、たわみを利用したバネ付勢により接触部2を電極12に押し当てることができる形状に形成される。本実施形態では、支持部4から片持ち梁状に延出するアーム5のたわみを利用してバネ付勢する形状になっている。
FIG. 2 is a perspective view illustrating a state of contact between the contact terminal 1 and the electrode 12 according to the present embodiment.
The contact terminal 1 is provided with a contact portion 2 on a surface that can come into contact with the electrode 12 and a pin 3 for connecting to an external measuring instrument (not shown). Further, the contact terminal 1 is formed in a shape capable of pressing the contact portion 2 against the electrode 12 by a spring bias utilizing deflection. In the present embodiment, the spring is biased by using the deflection of the arm 5 extending from the support portion 4 in a cantilever shape.

前記したように半導体デバイス11を押圧して、半導体デバイス11の各電極12と、対応する接触端子1の接触部2を電気的に接触させた後、電気的検査を行なう。このとき、通電による発熱で電極12の半田被膜の一部が融解し、また、バネ付勢された接触部2は電極12を擦るようにして接触・離脱する。従来、接触部2の表面に半田が付着する原因はこれら2点が主な原因と考えられている。さらに、接触部2に付着した半田等の金属が酸化されて酸化被膜になると、接触抵抗が増大する結果、電気的検査の信頼性が低下することとなる。   As described above, the semiconductor device 11 is pressed to electrically contact each electrode 12 of the semiconductor device 11 and the contact portion 2 of the corresponding contact terminal 1, and then an electrical inspection is performed. At this time, a part of the solder film of the electrode 12 is melted by heat generated by energization, and the contact portion 2 that is spring-biased contacts and separates while rubbing the electrode 12. Conventionally, it is considered that these two points are the main causes of the solder adhering to the surface of the contact portion 2. Furthermore, when a metal such as solder attached to the contact portion 2 is oxidized to form an oxide film, the contact resistance increases, resulting in a decrease in the reliability of the electrical inspection.

図3は、本実施形態に係る接触端子1の接触部2の断面構造を模式的に表す要部拡大図である。本実施形態に係る接触端子1の接触部2は、金属元素を含有するアモルファス構造の炭素被膜7で形成されている。アモルファス構造の炭素被膜7は、表面の凝集性が低いので、融解した半田等の金属の付着が抑制される。   FIG. 3 is an essential part enlarged view schematically showing a cross-sectional structure of the contact portion 2 of the contact terminal 1 according to the present embodiment. The contact portion 2 of the contact terminal 1 according to the present embodiment is formed of an amorphous carbon film 7 containing a metal element. The carbon film 7 having an amorphous structure has a low surface cohesiveness, and therefore adhesion of a molten metal such as solder is suppressed.

さらに、炭素被膜7の表面の全面が表面粗さにおける最大高さRyが10μm以下の平滑な面で形成されているので、接触部2が電極12を擦るようにして接触・離脱しても、半田等の金属が掻き取られ難い。このため、接触部2を形成する炭素被膜7への半田等の付着を防止できる。このようにして、電極12と接触しうる面である接触部2の全面について、半田等の金属の付着を有効に防止することができる。   Further, since the entire surface of the carbon coating 7 is formed with a smooth surface having a maximum height Ry of 10 μm or less in the surface roughness, even if the contact portion 2 makes contact or detachment by rubbing the electrode 12, Metals such as solder are difficult to be scraped off. For this reason, adhesion of solder or the like to the carbon film 7 forming the contact portion 2 can be prevented. In this way, it is possible to effectively prevent adhesion of metal such as solder on the entire surface of the contact portion 2 that can be in contact with the electrode 12.

以下に、本実施形態に係る接触端子1について更に詳しく説明する。接触端子1は、母材にCu、Ni等の金属、若しくはこれら金属元素のいずれかを主体として含む合金、例えばベリリウム銅、リン青銅、ニッケル合金を用いて所定の形状に加工し、接触部2が形成される部分を所定の表面粗さに研磨した後に炭素被膜7を形成して得ることができる。   Below, the contact terminal 1 which concerns on this embodiment is demonstrated in more detail. The contact terminal 1 is processed into a predetermined shape using a metal such as Cu or Ni as a base material or an alloy mainly containing any of these metal elements, for example, beryllium copper, phosphor bronze, or nickel alloy, and the contact portion 2 Can be obtained by forming the carbon film 7 after polishing the portion where the film is formed to a predetermined surface roughness.

本実施形態に係る検査用接続装置10は、多数の電極12を有する半導体デバイス11の検査を目的としているので、母材から同一形状の接触端子1を大量に加工する必要がある。これに適した加工方法として、プレス切断、レーザー溶断、放電切断、ルータによる切断等を用いることができる。しかし、このような加工方法を用いた場合、接触端子1の切断面は非常に粗い状態、もしくは不均一な状態になる。   Since the inspection connecting apparatus 10 according to this embodiment is intended for inspection of the semiconductor device 11 having a large number of electrodes 12, it is necessary to process a large amount of contact terminals 1 having the same shape from the base material. As a processing method suitable for this, press cutting, laser cutting, electric discharge cutting, cutting with a router, or the like can be used. However, when such a processing method is used, the cut surface of the contact terminal 1 is in a very rough state or a non-uniform state.

そこで本実施形態では接触端子1を加工した後、接触部2が形成される部分の表面粗さにおける最大高さRyが10μm以下となるように予め研磨しておく。この研磨段階で最大高さRyを10μm以下にしておくことで、接触部2の表面の最大高さRyを10μm以下にすることができる。   Therefore, in this embodiment, after the contact terminal 1 is processed, it is polished in advance so that the maximum height Ry in the surface roughness of the portion where the contact portion 2 is formed is 10 μm or less. By setting the maximum height Ry to 10 μm or less in this polishing step, the maximum height Ry of the surface of the contact portion 2 can be set to 10 μm or less.

接触部2の研磨は、酸化アルミニウム等の研磨剤を樹脂、ゴム、不織布に含有させた研磨材や砥石用いるドライ研磨、あるいはコロイダルシリカスラリー等を用いるメカニカル・ケミカル研磨など、公知の研磨方法により、Ryが10μm以下となる研磨材を適宜選択して行なうことができる。また、最大高さRyの値は小さいほど半田等の金属の付着を防止する上で好ましい。但し、最大高さRyを0.5μm未満にするためには清浄な環境を保つための設備が必要となり、製造コストの増加を招く。   Polishing of the contact portion 2 is performed by a known polishing method such as dry polishing using a polishing material or a grindstone containing an abrasive such as aluminum oxide in resin, rubber or nonwoven fabric, or mechanical / chemical polishing using a colloidal silica slurry. An abrasive with Ry of 10 μm or less can be selected as appropriate. Further, the smaller the maximum height Ry is, the more preferable it is to prevent adhesion of metal such as solder. However, in order to make the maximum height Ry less than 0.5 μm, a facility for maintaining a clean environment is required, resulting in an increase in manufacturing cost.

接触部2を形成する炭素被膜は、化学気相蒸着法(CVD法)、スパッタリング法およびアークイオンプレーティング法(AIP法)等、様々な方法で形成することができる。電気抵抗の低い炭素被膜を形成し易いことや、炭素被膜に金属元素を導入し易いことから、スパッタリング法やAIP法を適用することが好ましい。特に、スパッタリング法は、良質な炭素被膜7を形成できることから好ましい。   The carbon film forming the contact portion 2 can be formed by various methods such as chemical vapor deposition (CVD), sputtering, and arc ion plating (AIP). It is preferable to apply a sputtering method or an AIP method because it is easy to form a carbon film with low electrical resistance or to easily introduce a metal element into the carbon film. In particular, the sputtering method is preferable because a high-quality carbon film 7 can be formed.

すなわち、炭素被膜の構造には、ダイヤモンド構造やグラファイト構造があり、充分な硬度と低い電気伝導を得るためには両者の中間的な構造であるアモルファス構造が望ましい。スパッタリング法によれば、このような構造を容易に形成することができ、また電気伝導を阻害する水素の混入もほとんど生じることはない。   That is, the structure of the carbon coating includes a diamond structure and a graphite structure, and in order to obtain sufficient hardness and low electrical conduction, an amorphous structure which is an intermediate structure between the two is desirable. According to the sputtering method, such a structure can be easily formed, and the mixing of hydrogen that inhibits electric conduction hardly occurs.

また、接触部2を形成する炭素被膜には、電気抵抗を小さくするために金属元素を含有させることができる。このような金属元素は、Ti、V、Nb、Zr、Mo、W、Ta、Hf、Cr、Mn、Fe、CoおよびNi等の内の1種以上を適宜選択して用いることができる。特に、少なくともWを10〜30原子%含有する炭素被膜は、半田等の金属の付着を防止する効果が優れている。   Further, the carbon film forming the contact portion 2 can contain a metal element in order to reduce the electric resistance. As such a metal element, one or more of Ti, V, Nb, Zr, Mo, W, Ta, Hf, Cr, Mn, Fe, Co, and Ni can be appropriately selected and used. In particular, a carbon film containing at least 10 to 30 atomic% of W is excellent in preventing adhesion of metal such as solder.

Wの含有量が10原子%未満では、接触部2への半田等の金属の付着防止効果が不十分であり、Wの含有量が30原子%を超えるとWの酸化物が生じやすくなり電気的試験の信頼性が低下する。更に炭素被膜中のWの含有量を14〜20原子%にすれば、半田等の金属の付着防止効果をより高め、かつWの酸化物の生成をより効果的に抑制することができる。   If the W content is less than 10 atomic%, the effect of preventing the adhesion of metal such as solder to the contact portion 2 is insufficient, and if the W content exceeds 30 atomic%, W oxide is likely to be generated. The reliability of the physical test is reduced. Furthermore, if the content of W in the carbon coating is 14 to 20 atomic%, the effect of preventing the adhesion of metals such as solder can be further enhanced, and the generation of W oxide can be more effectively suppressed.

炭素被膜に金属元素を含有させるには、前記のスパッタリング法を用いることができる。具体的には、一つのカーボンターゲットと、炭素被膜に含有させる各金属元素の個々のターゲット、またはこれら金属元素とカーボンを混合した複合ターゲットを使用することによって、意図する金属元素を含有した炭素被膜を容易に形成できる。ここで、複合ターゲットとは、カーボンとその他の金属元素をモザイク状に配設し、若しくはマトリックス内に含有させるような形態で混合させたものである。   In order to contain a metal element in the carbon coating, the above sputtering method can be used. Specifically, a carbon film containing an intended metal element by using one carbon target and individual targets of each metal element to be contained in the carbon film, or a composite target in which these metal elements and carbon are mixed. Can be easily formed. Here, the composite target is one in which carbon and other metal elements are arranged in a mosaic or mixed in a form that is contained in a matrix.

また、本実施形態の変形例として、炭素被膜7の母材への密着性を高めるために、炭素被膜7と母材の間に炭素と金属元素の比率が徐々に変化する傾斜組成の中間層を設けることもできる。傾斜組成の中間層を設ける場合も、スパッタリング法で複数のターゲットを準備しておき、それぞれヘの投入電力を調整することで容易に傾斜組成の中間層を形成することができる。   Further, as a modification of the present embodiment, in order to improve the adhesion of the carbon coating 7 to the base material, an intermediate layer having a gradient composition in which the ratio of carbon and metal element gradually changes between the carbon coating 7 and the base material. Can also be provided. Also in the case of providing the gradient composition intermediate layer, it is possible to easily form the gradient composition intermediate layer by preparing a plurality of targets by sputtering and adjusting the input power to each.

なお、炭素被膜7の厚みは、0.5〜1.0μmとすることが好ましい。炭素被膜7の厚みが0.5μm未満では炭素被膜7の剥離が生じやすく、1.0μmを超えると接触部2の電気抵抗が高くなるので好ましくない。また、接触部2を形成する炭素被膜7は、接触端子1が半導体デバイス11の電極12と接触する可能性がある部分にのみ形成すれば足りる。
以上説明した接触端子1を用いた検査用接続装置10は、図1に示したように樹脂製のハウジング20の所定の位置に接触端子1を配設し、ピン3に導電線を半田付け等により取り付けて製造することができる。
In addition, it is preferable that the thickness of the carbon film 7 shall be 0.5-1.0 micrometer. If the thickness of the carbon coating 7 is less than 0.5 μm, the carbon coating 7 is likely to be peeled off, and if it exceeds 1.0 μm, the electrical resistance of the contact portion 2 becomes high, which is not preferable. In addition, the carbon coating 7 that forms the contact portion 2 only needs to be formed only in a portion where the contact terminal 1 may come into contact with the electrode 12 of the semiconductor device 11.
In the inspection connecting device 10 using the contact terminal 1 described above, the contact terminal 1 is disposed at a predetermined position of the resin housing 20 as shown in FIG. Can be attached and manufactured.

以下、本発明を実施例によってより具体的に説明するが、下記実施例は本発明を限定する性質のものではなく、発明の実施形態および実施例の趣旨に徴して設計変更することはいずれも本発明の技術的範囲に含まれるものである。また、実施形態では検査用接続装置10がICソケットである場合を例に説明したが、プローブカード、スプリングプローブに本発明の接触端子1を適用することもできる。   Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are not of a nature limiting the present invention, and any design changes may be made in accordance with the spirit of the embodiments and examples of the invention. It is included in the technical scope of the present invention. In the embodiment, the case where the inspection connecting device 10 is an IC socket has been described as an example. However, the contact terminal 1 of the present invention can also be applied to a probe card and a spring probe.

<実施例1>
ニッケルの薄板からプレス切断で所定の形状の接触端子1を打ち抜き、接触部2を形成する部分を酸化アルミニウムの微粉を含む研磨材(住友スリーエム社製:商品名<3M>ラッピングフィルムシート3μAO)で粗研磨して表面の最大高さRyを15μmとし、次いで更に目の細かい研磨材(住友スリーエム社製:商品名<3M>ラッピングフィルムシート0.3μAO:粒度0.3μmの酸化アルミニウムを用いた研磨材)でRyが10μm以下の平滑面に加工したのち、Wを含有する炭素被膜7を以下の手順で形成した。
<Example 1>
A contact terminal 1 having a predetermined shape is punched out from a thin nickel plate, and the contact portion 2 is formed with an abrasive containing fine aluminum oxide powder (manufactured by Sumitomo 3M: trade name <3M> lapping film sheet 3 μAO). Roughly polished to a maximum surface height Ry of 15 μm, then finer polishing material (manufactured by Sumitomo 3M: trade name <3M> lapping film sheet 0.3 μAO: polishing with aluminum oxide having a particle size of 0.3 μm After the material was processed into a smooth surface with Ry of 10 μm or less, a carbon coating 7 containing W was formed by the following procedure.

まず、市販のマグネトロンスパッタ装置内にグラファイトターゲットとクロムターゲットを配置し、これらに対向するように接触端子1を設置し、1×10-4Pa以下まで真空排気した後、Arガスを圧力2mmTorrとなるまでチャンバー内に導入し、高周波電圧を印加することでArプラズマを生成させ、Arイオンによる接触部2のスパッタエッチングをRfパワー:500ワットにて3分間行なった。なお、接触端子1の接触部2以外の部分はマスキングしておいた。また、グラファイトターゲットにWのチップを少量置き複合ターゲットとしておき、形成された炭素被膜7が約14原子%のWを含有するように調整した。これにより、母材のニッケル上に、クロム膜/クロムとグラファイトとWを含有する傾斜組成の中間層/グラファイトとWを含有する炭素被膜7の順に積層された構造の接触端子1を製造した。 First, a graphite target and a chromium target are placed in a commercially available magnetron sputtering apparatus, the contact terminal 1 is placed so as to face them, and after evacuating to 1 × 10 −4 Pa or less, the Ar gas is set at a pressure of 2 mmTorr. The plasma was introduced into the chamber until it was, and Ar plasma was generated by applying a high frequency voltage, and sputter etching of the contact portion 2 by Ar ions was performed at Rf power: 500 watts for 3 minutes. Note that portions other than the contact portion 2 of the contact terminal 1 were masked. Further, a small amount of W chip was placed on the graphite target to form a composite target, and the formed carbon film 7 was adjusted to contain about 14 atomic% of W. As a result, a contact terminal 1 having a structure in which a chromium film / an intermediate layer having a gradient composition containing chromium, graphite, and W / a carbon film 7 containing W and a carbon film 7 containing W was laminated on the base material nickel was manufactured.

そして、接触部2の表面粗さにおける最大高さRyと、算術平均粗さRaを測定した。以下、実施例1に係る接触端子1を研磨品ということがある。なお、炭素被膜7中のW含量はエネルギ分散型X線分析(EDX)で確認した。   And the maximum height Ry in the surface roughness of the contact part 2 and arithmetic mean roughness Ra were measured. Hereinafter, the contact terminal 1 according to the first embodiment may be referred to as a polished product. The W content in the carbon coating 7 was confirmed by energy dispersive X-ray analysis (EDX).

次に、接触端子1を荷重30g〜200g、ストローク0.2mm〜0.9mm、電流1A以下の条件で、表面にスズメッキが施された通電可能なプレート(以下、試験プレートと記す)と2000回コンタクトさせた後、接触部2の表面の異物の付着状況を走査型電子顕微鏡(SEM)で観察し、スズ付着量をEDXで評価した。なお、SEMは日立製作所製SEMEDXIII型TypeN、EDXは堀場製作所製EMAXEX−2000で測定した。   Next, the contact terminal 1 is subjected to 2000 times with an energizable plate (hereinafter referred to as a test plate) whose surface is tin-plated under the conditions of a load of 30 g to 200 g, a stroke of 0.2 mm to 0.9 mm, and a current of 1 A or less. After contacting, the adhesion state of the foreign material on the surface of the contact part 2 was observed with a scanning electron microscope (SEM), and the tin adhesion amount was evaluated by EDX. The SEM was measured with SEMEDXIII Type N manufactured by Hitachi, and the EDX was measured with EMAXEX-2000 manufactured by Horiba.

なお、最大高さRyと算術平均粗さRaは、キーエンス社製のVK8550型超深度形状測定顕微鏡で20倍の対物レンズを使用し、目視で傷と見なされるような並はずれて高い山および低い谷が無い部分から、100×200μmの範囲を抜き取って自動測定した。Ryは、平均線から最も高い山頂までの高さYpと最も低い谷底までの深さYvとの和を演算して求めた。また、Raは平均面から測定曲面までの偏差の絶対値を合計した後、平均値を演算することにより求めた。なお、上記の顕微鏡はレーザ光の反射を利用しており、100×200μmの範囲を139×277ピクセルで測定して全ドットのデータを用いてRyとRaを演算するものである。   Note that the maximum height Ry and arithmetic mean roughness Ra are exceptionally high and low and are regarded as scratches visually by using a 20x objective lens with a VK85550 ultra-deep shape measurement microscope manufactured by Keyence. A range of 100 × 200 μm was extracted from a portion having no valley and automatically measured. Ry was obtained by calculating the sum of the height Yp from the average line to the highest peak and the depth Yv to the lowest valley. Ra was obtained by calculating the average value after summing the absolute values of deviations from the average surface to the measurement curved surface. Note that the above-described microscope uses reflection of laser light, and measures Ry and Ra using data of all dots by measuring a 100 × 200 μm range with 139 × 277 pixels.

<比較例1>
実施例1の研磨を行なわなかった点を除き、実施例1と同じ方法で接触端子1を製造した。そして、実施例1と同一の方法・装置で同一の分析・測定を行なった。(以下、比較例1の接触端子1を非研磨品ということがある。)
<Comparative Example 1>
A contact terminal 1 was manufactured in the same manner as in Example 1 except that the polishing in Example 1 was not performed. Then, the same analysis and measurement were performed by the same method and apparatus as in Example 1. (Hereinafter, the contact terminal 1 of Comparative Example 1 may be referred to as an unpolished product.)

<比較例2>
実施例1において研磨を行なわず、かつ、Wを含有する炭素被膜7の代わりに電解メッキによる金メッキで接触部2を形成した接触端子1を製造した。そして、実施例1と同一の方法・装置で同一の分析・測定を行なった。(以下、比較例2の接触端子1を金メッキ品ということがある。)
<Comparative Example 2>
The contact terminal 1 in which the contact portion 2 was formed by gold plating by electrolytic plating instead of the carbon coating 7 containing W was not manufactured in Example 1. Then, the same analysis and measurement were performed by the same method and apparatus as in Example 1. (Hereinafter, the contact terminal 1 of Comparative Example 2 may be referred to as a gold-plated product.)

図4a〜図4cに、試験プレートとコンタクトさせる前後の、実施例1および比較例1〜2に係る各接触端子1の接触部2のSEM写真を示す。また、表1に、試験プレートとのコンタクト前の実施例1および各比較例に係る各接触端子1の接触部2の最大高さRy、算術平均粗さRaと、コンタクト後付着していたスズの質量濃度を示す。ここで、スズの質量濃度とは、EDXで検出されたカーボン、W、Ar、スズの総質量を100としたときのスズの含有率(%)のことを言う。   The SEM photograph of the contact part 2 of each contact terminal 1 which concerns on Example 1 and Comparative Examples 1-2 before and after making it contact with a test plate to FIG. Table 1 shows the maximum height Ry, arithmetic average roughness Ra of the contact portion 2 of each contact terminal 1 according to Example 1 and each comparative example before contact with the test plate, and tin adhered after contact. The mass concentration of is shown. Here, the mass concentration of tin means the content (%) of tin when the total mass of carbon, W, Ar, and tin detected by EDX is 100.

実施例1の研磨品の表面(図4a)のSEM写真には、コンタクト前後で大きな変化は認められず、表面の全面にわたって異物の顕著な付着は認められなかった。
これに対し、比較例1の非研磨品(図4b)のコンタクト後のSEM写真では、左上付近に異物の付着が認められ、比較例2(図4c)の金メッキ品のSEM写真では、左上から左下にかけて更に顕著な異物の付着が認められた。EDX分析により、これらの異物はスズであることが確認できた。
In the SEM photograph of the surface of the polished product of Example 1 (FIG. 4a), no significant change was observed before and after the contact, and no significant foreign matter was observed over the entire surface.
On the other hand, in the SEM photograph after contact of the non-polished product of Comparative Example 1 (FIG. 4b), the adhesion of foreign matter was observed near the upper left, and from the upper left in the SEM photograph of the gold-plated product of Comparative Example 2 (FIG. 4c). Further noticeable adhesion of foreign matter was observed from the lower left. By EDX analysis, it was confirmed that these foreign substances were tin.

さらに、EDXで測定したスズの付着量を比較すると、実施例1の研磨品への付着量は、比較例1(非研磨品)の2%以下、比較例2の1000分の1以下であった。このことから、本発明に係る接触端子1へのスズの付着量は、従来のものと比較して極めて微量であることが明白に示された。   Furthermore, when the adhesion amount of tin measured by EDX was compared, the adhesion amount to the polished product of Example 1 was 2% or less of Comparative Example 1 (non-polished product) and 1 / 1,000 or less of Comparative Example 2. It was. From this, it was clearly shown that the amount of tin attached to the contact terminal 1 according to the present invention is extremely small compared to the conventional one.

以上から、接触部2を、表面の最大高さRyが10μm以下でWを含有する炭素被膜7で形成することにより、表面への異物(スズ)の付着を有効に防止できるという顕著な効果が得られることが明らかとなった。
また、別な見方をすれば、接触部2を、表面の算術平均粗さRaが0.50μm以下でWを含有する炭素被膜7で形成することにより、表面への異物(スズ)の付着を有効に防止できるといえる。
From the above, by forming the contact portion 2 with the carbon coating 7 containing W having a maximum surface height Ry of 10 μm or less, there is a remarkable effect that adhesion of foreign matter (tin) to the surface can be effectively prevented. It became clear that it was obtained.
From another point of view, the contact portion 2 is formed of the carbon coating 7 containing W having an arithmetic average roughness Ra of 0.50 μm or less on the surface, so that foreign matter (tin) adheres to the surface. It can be said that it can be effectively prevented.

なお、比較例1と比較例2の比較により、金メッキよりもWを含有する炭素被膜7で接触部2を形成する方が高い付着防止効果を得られることが分かる。   In addition, it turns out by the comparison of the comparative example 1 and the comparative example 2 that the higher adhesion prevention effect is acquired by forming the contact part 2 with the carbon film 7 containing W rather than gold plating.

本実施形態に係る接触端子を複数備える検査用接続装置の一例を示す斜視図である。It is a perspective view which shows an example of the connection apparatus for a test | inspection provided with two or more contact terminals which concern on this embodiment. 本実施形態に係る接触端子と電極の接触の様子を表す斜視図である。It is a perspective view showing a mode of contact of a contact terminal and an electrode concerning this embodiment. 本実施形態に係る接触端子の接触部の断面構造を模式的に表す要部拡大図である。It is a principal part enlarged view which represents typically the cross-section of the contact part of the contact terminal which concerns on this embodiment. (a)は実施例1、(b)は比較例1、(c)は比較例2に係る各接触端子の接触部2の コンタクト前後の表面SEM写真を示す。(A) is a surface SEM photograph before and after contact of the contact portion 2 of each contact terminal according to Comparative Example 1 and (c) of Comparative Example 2;

符号の説明Explanation of symbols

1 接触端子
2 接触部
7 炭素被膜
10 検査用接続装置
11 半導体デバイス
12 電極
DESCRIPTION OF SYMBOLS 1 Contact terminal 2 Contact part 7 Carbon film 10 Connection apparatus 11 for inspection 11 Semiconductor device 12 Electrode

Claims (3)

半導体デバイスの電極と接触する接触端子であって、
前記接触端子の、前記電極との接触部の表面粗さにおける最大高さRyが10μm以下であり、
前記接触部は、金属元素を含有する炭素被膜で形成されていることを特徴とする接触端子。
A contact terminal in contact with an electrode of a semiconductor device,
The maximum height Ry in the surface roughness of the contact portion of the contact terminal with the electrode is 10 μm or less,
The contact terminal is formed of a carbon film containing a metal element.
前記接触部の表面は、メカニカル・ケミカル研磨またはドライ研磨により形成されていることを特徴とする請求項1に記載の接触端子。   2. The contact terminal according to claim 1, wherein the surface of the contact portion is formed by mechanical chemical polishing or dry polishing. 請求項1または請求項2に記載の接触端子を複数備えることを特徴とする半導体デバイスの検査用接続装置。   A connection device for inspection of a semiconductor device, comprising a plurality of contact terminals according to claim 1.
JP2005205216A 2005-07-14 2005-07-14 Contact terminal and connector for semiconductor device inspection using the same Pending JP2007024613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005205216A JP2007024613A (en) 2005-07-14 2005-07-14 Contact terminal and connector for semiconductor device inspection using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005205216A JP2007024613A (en) 2005-07-14 2005-07-14 Contact terminal and connector for semiconductor device inspection using the same

Publications (1)

Publication Number Publication Date
JP2007024613A true JP2007024613A (en) 2007-02-01

Family

ID=37785582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005205216A Pending JP2007024613A (en) 2005-07-14 2005-07-14 Contact terminal and connector for semiconductor device inspection using the same

Country Status (1)

Country Link
JP (1) JP2007024613A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2295990A1 (en) 2009-09-15 2011-03-16 Kabushiki Kaisha Kobe Seiko Sho Contact probe pin for semiconductor test apparatus
US7934962B2 (en) 2009-08-07 2011-05-03 Kobe Steel, Ltd. Contact probe pin
WO2011089858A1 (en) * 2010-01-25 2011-07-28 株式会社神戸製鋼所 Method for producing tungsten-containing diamond-like carbon film on base of contact probe pin for semiconductor inspection device
WO2011142366A1 (en) * 2010-05-10 2011-11-17 株式会社神戸製鋼所 Contact probe
WO2012067161A1 (en) * 2010-11-19 2012-05-24 株式会社神戸製鋼所 Contact probe pin
WO2012067162A1 (en) * 2010-11-19 2012-05-24 株式会社神戸製鋼所 Contact probe pin and test method
JP4940362B1 (en) * 2011-02-21 2012-05-30 日本蓄電器工業株式会社 Electrode foil for solid electrolytic capacitors
JP2013019891A (en) * 2011-06-15 2013-01-31 Kobe Steel Ltd Electrical contact member
US8410367B2 (en) 2009-09-30 2013-04-02 Kobe Steel, Ltd. Electric contact member
JP2014145772A (en) * 2014-03-28 2014-08-14 Kobe Steel Ltd Contact probe pin
US9418796B2 (en) 2011-02-21 2016-08-16 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
EP2985614A4 (en) * 2013-04-11 2016-12-21 Renesas Electronics Corp Production method for semiconductor device
CN110277352A (en) * 2018-03-15 2019-09-24 富士电机株式会社 Semiconductor device
WO2021149668A1 (en) * 2020-01-24 2021-07-29 ミネベアミツミ株式会社 Probe, measuring device, and measuring method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166407A (en) * 1994-10-14 1996-06-25 Kobe Steel Ltd Probe card for semiconductor element check
JP2000147004A (en) * 1998-08-31 2000-05-26 Mitsubishi Electric Corp Probe needle for wafer test and its production method and semiconductor device tested with the probe needle
JP2001004698A (en) * 1999-06-18 2001-01-12 Mitsubishi Electric Corp Socket for test, manufacture of its contact terminal, and electronic apparatus or semiconductor package
JP2001289874A (en) * 2000-04-07 2001-10-19 Japan Electronic Materials Corp Probe and probe card using the probe
JP2002071748A (en) * 2000-08-28 2002-03-12 Mitsubishi Electric Corp Testing socket, test method using the same and member to be tested
JP2002318247A (en) * 2001-04-20 2002-10-31 Kobe Steel Ltd Connection device
JP2005291912A (en) * 2004-03-31 2005-10-20 Hoya Corp Contact probe sheet for inspecting display panel, and contact probe unit for inspecting display panel fitted with the sheet
JP2006292466A (en) * 2005-04-07 2006-10-26 Renesas Technology Corp Method for testing semiconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08166407A (en) * 1994-10-14 1996-06-25 Kobe Steel Ltd Probe card for semiconductor element check
JP2000147004A (en) * 1998-08-31 2000-05-26 Mitsubishi Electric Corp Probe needle for wafer test and its production method and semiconductor device tested with the probe needle
JP2001004698A (en) * 1999-06-18 2001-01-12 Mitsubishi Electric Corp Socket for test, manufacture of its contact terminal, and electronic apparatus or semiconductor package
JP2001289874A (en) * 2000-04-07 2001-10-19 Japan Electronic Materials Corp Probe and probe card using the probe
JP2002071748A (en) * 2000-08-28 2002-03-12 Mitsubishi Electric Corp Testing socket, test method using the same and member to be tested
JP2002318247A (en) * 2001-04-20 2002-10-31 Kobe Steel Ltd Connection device
JP2005291912A (en) * 2004-03-31 2005-10-20 Hoya Corp Contact probe sheet for inspecting display panel, and contact probe unit for inspecting display panel fitted with the sheet
JP2006292466A (en) * 2005-04-07 2006-10-26 Renesas Technology Corp Method for testing semiconductor device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7934962B2 (en) 2009-08-07 2011-05-03 Kobe Steel, Ltd. Contact probe pin
US8166568B2 (en) 2009-09-15 2012-04-24 Kobe Steel, Ltd. Contact probe pin for semiconductor test apparatus
JP2011064497A (en) * 2009-09-15 2011-03-31 Kobe Steel Ltd Contact probe pin for semiconductor inspection apparatus
EP2295990A1 (en) 2009-09-15 2011-03-16 Kabushiki Kaisha Kobe Seiko Sho Contact probe pin for semiconductor test apparatus
US8410367B2 (en) 2009-09-30 2013-04-02 Kobe Steel, Ltd. Electric contact member
JP2011149897A (en) * 2010-01-25 2011-08-04 Kobe Steel Ltd Method for manufacture tungsten-containing diamond-like carbon coating on base material of contact probe pin for semiconductor inspection device
DE112011100331B4 (en) * 2010-01-25 2020-10-08 Kabushiki Kaisha Kobe Seiko Sho A method of manufacturing a tungsten-containing diamond-like carbon film on a base material of a contact probe pin for a semiconductor test apparatus
WO2011089858A1 (en) * 2010-01-25 2011-07-28 株式会社神戸製鋼所 Method for producing tungsten-containing diamond-like carbon film on base of contact probe pin for semiconductor inspection device
CN102884437A (en) * 2010-05-10 2013-01-16 株式会社神户制钢所 Contact probe
JP2011257385A (en) * 2010-05-10 2011-12-22 Kobe Steel Ltd Contact probe
JP2012068269A (en) * 2010-05-10 2012-04-05 Kobe Steel Ltd Contact probe
US9116173B2 (en) 2010-05-10 2015-08-25 Kobe Steel, Ltd. Contact probe having carbon film on surface thereof
KR101427506B1 (en) * 2010-05-10 2014-08-07 가부시키가이샤 고베 세이코쇼 Contact probe
WO2011142366A1 (en) * 2010-05-10 2011-11-17 株式会社神戸製鋼所 Contact probe
JP2012112681A (en) * 2010-11-19 2012-06-14 Kobe Steel Ltd Contact probe pin and inspection method
US9625492B2 (en) 2010-11-19 2017-04-18 Kobe Steel, Ltd. Contact probe pin
JP2012112680A (en) * 2010-11-19 2012-06-14 Kobe Steel Ltd Contact probe pin
CN103210314A (en) * 2010-11-19 2013-07-17 株式会社神户制钢所 Contact probe pin
KR20130102081A (en) 2010-11-19 2013-09-16 가부시키가이샤 고베 세이코쇼 Contact probe pin
WO2012067161A1 (en) * 2010-11-19 2012-05-24 株式会社神戸製鋼所 Contact probe pin
KR101586886B1 (en) * 2010-11-19 2016-01-19 가부시키가이샤 고베 세이코쇼 Contact probe pin
TWI451092B (en) * 2010-11-19 2014-09-01 Kobe Steel Ltd Contact probe pin
WO2012067162A1 (en) * 2010-11-19 2012-05-24 株式会社神戸製鋼所 Contact probe pin and test method
US9418796B2 (en) 2011-02-21 2016-08-16 Japan Capacitor Industrial Co., Ltd. Electrode foil, current collector, electrode, and electric energy storage element using same
JP4940362B1 (en) * 2011-02-21 2012-05-30 日本蓄電器工業株式会社 Electrode foil for solid electrolytic capacitors
US9459282B2 (en) 2011-06-15 2016-10-04 Kobe Steel, Ltd. Electrical contact member
JP2013019891A (en) * 2011-06-15 2013-01-31 Kobe Steel Ltd Electrical contact member
KR101781312B1 (en) 2011-06-15 2017-09-22 가부시키가이샤 고베 세이코쇼 Electrical contact member
EP2985614A4 (en) * 2013-04-11 2016-12-21 Renesas Electronics Corp Production method for semiconductor device
US9761501B2 (en) 2013-04-11 2017-09-12 Renesas Electronics Corporation Method of manufacturing a semiconductor device and inspecting an electrical characteristic thereof using socket terminals
US9905482B2 (en) 2013-04-11 2018-02-27 Renesas Electronics Corporation Method of manufacturing a semiconductor device and inspecting an electrical characteristic thereof using test socket terminals
JP2014145772A (en) * 2014-03-28 2014-08-14 Kobe Steel Ltd Contact probe pin
CN110277352A (en) * 2018-03-15 2019-09-24 富士电机株式会社 Semiconductor device
WO2021149668A1 (en) * 2020-01-24 2021-07-29 ミネベアミツミ株式会社 Probe, measuring device, and measuring method

Similar Documents

Publication Publication Date Title
JP2007024613A (en) Contact terminal and connector for semiconductor device inspection using the same
KR100469881B1 (en) Carbon film-coated member
JP5036892B2 (en) Contact probe
TWI496922B (en) A sputtering target for reducing particle generation, and a method for manufacturing the same
JP3279294B2 (en) Semiconductor device test method, semiconductor device test probe needle, method of manufacturing the same, and probe card provided with the probe needle
TWI411786B (en) Electric contact member
TWI444624B (en) Contact probe pin
JP2008160093A (en) Electrostatic chuck and manufacturing method thereof, and substrate-treating device
US20130222005A1 (en) Contact probe pin
JP2011195927A (en) Copper alloy for electronic material and method for producing the same
KR102073454B1 (en) Gold-plate-coated stainless steel material and production method for gold-plate-coated stainless steel material
US20220111488A1 (en) Polishing pad conditioner and manufacturing method thereof
WO2014092171A1 (en) Electrical contact member and inspection connection device
WO2012067162A1 (en) Contact probe pin and test method
WO2020183701A1 (en) Bonded substrate
JP5966506B2 (en) Manufacturing method of electrical contacts
JPH11214115A (en) Electric contact and its manufacture
KR101156865B1 (en) Contact probe pin for semiconductor test apparatus
WO2024111484A1 (en) Bonded body and power module
JP7510582B1 (en) Joint and power module
JP2015178424A (en) Method of producing ceramic circuit board
WO2012008128A1 (en) Probe pin for semiconductor inspection devices, method for producing same, and semiconductor inspection method
JP2022093964A (en) Metal material
JP4173878B2 (en) Barrel plating method
JP2007256088A (en) Probe pin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070515

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120306

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20120622