JP2022088909A - Slide contact member, conductive high hardness protective film and method for manufacturing slide contact member - Google Patents

Slide contact member, conductive high hardness protective film and method for manufacturing slide contact member Download PDF

Info

Publication number
JP2022088909A
JP2022088909A JP2020201042A JP2020201042A JP2022088909A JP 2022088909 A JP2022088909 A JP 2022088909A JP 2020201042 A JP2020201042 A JP 2020201042A JP 2020201042 A JP2020201042 A JP 2020201042A JP 2022088909 A JP2022088909 A JP 2022088909A
Authority
JP
Japan
Prior art keywords
carbon
contact member
conductive
film
high hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020201042A
Other languages
Japanese (ja)
Other versions
JP2022088909A5 (en
JP7457638B2 (en
Inventor
修二 山本
Shuji Yamamoto
圭司 立石
Keiji Tateishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON COATING CENTER KK
Original Assignee
NIPPON COATING CENTER KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON COATING CENTER KK filed Critical NIPPON COATING CENTER KK
Priority to JP2020201042A priority Critical patent/JP7457638B2/en
Publication of JP2022088909A publication Critical patent/JP2022088909A/en
Publication of JP2022088909A5 publication Critical patent/JP2022088909A5/ja
Application granted granted Critical
Publication of JP7457638B2 publication Critical patent/JP7457638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide: a slide contact member capable of suppressing transfer when used for a contact member while improving wear resistance and used even in a high temperature environment; a conductive high hardness protective film provided in such a slide contact member, or a contact member; and a method for manufacturing the slide contact members thereof.SOLUTION: A slide contact member includes a conductive high hardness protective film 20 consisting of a carbon based film having a surface resistance value of less than 1×103 Ω and a surface hardness of 10 GPa or more on the surface of a base material 10. Such a slide contact member is obtained by depositing a carbon film having conductive carbon fine particles dispersed on the surface of the base material by controlling the ratio of carbon ions to carbon fine particles by the deflection action of an electromagnetic field when generating carbon plasma by arc discharge to provide a conductive high hardness protective film consisting of a carbon based film having a surface resistance value of less than 1×103 Ω and a surface hardness of 10 GPa or more on the surface of the base material.SELECTED DRAWING: Figure 1

Description

本件発明は、半導体、電子部品、これらを用いて構成された各種電子機器及び機械部品等への電気的導通が可能な摺接部材、導電性高硬度保護被膜及び摺接部材の製造方法に関する。 The present invention relates to a sliding contact member capable of electrically conducting electrical conduction to a semiconductor, an electronic component, various electronic devices and mechanical parts configured by using the semiconductor, a conductive high hardness protective film, and a method for manufacturing the sliding contact member.

半導体製造工程は「前工程」と称されるウェーハ処理工程と、「後工程」と称される組立工程とを有する。前工程は、ウェーハ表面に多数の半導体チップを製造するまでの工程をいい、後工程では、ウェーハから半導体チップを切り出し、最終製品としての半導体集積回路(LSI、VLSI、ULSI等)実装(パッケージ)部品を得る工程をいう。前工程ではプローブピンと称される探針を用いたウェーハ検査が行われ、欠陥を有する半導体チップが後工程に送られることのないように排除される。また、後工程においてもプローブピンを用いた実装部品検査(「パッケージ検査」等とも称される。)が行われ、製品出荷前に不良品が排除される。 The semiconductor manufacturing process includes a wafer processing process called a "pre-process" and an assembly process called a "post-process". The pre-process refers to the process of manufacturing a large number of semiconductor chips on the surface of the wafer, and the post-process is to cut out the semiconductor chips from the wafer and mount the semiconductor integrated circuit (LSI, VLSI, ULSI, etc.) as the final product (package). The process of obtaining parts. In the pre-process, a wafer inspection using a probe called a probe pin is performed, and the defective semiconductor chip is eliminated so as not to be sent to the post-process. Further, in the post-process, the mounted parts are inspected using the probe pins (also referred to as “package inspection” or the like), and defective products are eliminated before the product is shipped.

例えば、ウェーハ検査では、検査対象に応じたプローブカードが用いられる。プローブカードにはプローブピンが取り付けられている。半導体チップにプローブピンをバネ圧により押し当てることで、プローブピンと半導体チップの電子端子材とが接触され、導通テスト、或いは動作テスト等の電気特性試験が行われる。実装部品検査においても、半導体パッケージにおいて所定の電気特性試験が行われる。このような電気特性試験により良品・不良品の判定が行われ、不良品が排除される。 For example, in wafer inspection, a probe card corresponding to the inspection target is used. A probe pin is attached to the probe card. By pressing the probe pin against the semiconductor chip by spring pressure, the probe pin and the electronic terminal material of the semiconductor chip are brought into contact with each other, and an electrical characteristic test such as a continuity test or an operation test is performed. Also in the mounted component inspection, a predetermined electrical property test is performed on the semiconductor package. By such an electrical characteristic test, a non-defective product or a defective product is determined, and the defective product is excluded.

このような半導体集積回路は1つのライン又は工場で1日に数百~数千個、或いは数万個生産されている。上記電気特性試験は基本的には全数検査であるため、生産個数に応じてプローブピンが電子端子材に押し当てられる。そのため、プローブピンの端子材との接触部位には耐摩耗性が要求される。 Hundreds to thousands or even tens of thousands of such semiconductor integrated circuits are produced in one line or factory per day. Since the above electrical property test is basically an 100% inspection, probe pins are pressed against the electronic terminal material according to the number of products produced. Therefore, wear resistance is required for the contact portion of the probe pin with the terminal material.

また、通常、電子端子材の表面には酸化膜が形成されている。一方、プローブピンの先端の接点部は検査対象に応じた所定の形状を有する。そして、検査時にプローブピンが押し当てられると、電子端子材の表面の酸化膜が破られてその内側のフレッシュな電子端子材とプローブピンとが接触する。これにより検査対象の電気特性が正確に評価される。しかしながら、電子端子材としてハンダのような軟らかい材料が用いられていると、プローブピンの先端にこれらの軟らかい材料が付着することがある。以後、この現象を「転写」と称する。転写が生じると、プローブピンの接点部分のシャープさが損なわれ、次の検査対象の電子端子材の表面の酸化膜を破ることが困難になる。 Further, usually, an oxide film is formed on the surface of the electronic terminal material. On the other hand, the contact portion at the tip of the probe pin has a predetermined shape according to the inspection target. When the probe pin is pressed against the probe pin during inspection, the oxide film on the surface of the electronic terminal material is broken and the fresh electronic terminal material inside the probe pin comes into contact with the probe pin. As a result, the electrical characteristics of the inspection target are accurately evaluated. However, if a soft material such as solder is used as the electronic terminal material, these soft materials may adhere to the tip of the probe pin. Hereinafter, this phenomenon is referred to as "transcription". When transfer occurs, the sharpness of the contact portion of the probe pin is impaired, and it becomes difficult to break the oxide film on the surface of the electronic terminal material to be inspected next.

このような問題を防ぐため、上記電気特性試験を行う作業者は定期的に金属ブラシ等でプローブピンの接点部分を磨くといったメンテナンス作業を行っている。しかしながらこのメンテナンス作業を行うには、検査装置を一旦停止する必要がある。一方、このメンテナンス作業を行わないと、電子端子材に対して規定以上のコンタクト圧でプローブピンが押し当てられて、検査対象の半導体チップ、或いは半導体パッケージを破損したり、あるいは正確な計測ができず、良品を不良品と判定するなど、判定ミスが生じる場合がある。その結果、歩留まりが悪化し、生産性が著しく低下するおそれがある。 In order to prevent such a problem, the worker performing the above electrical property test regularly performs maintenance work such as polishing the contact portion of the probe pin with a metal brush or the like. However, in order to perform this maintenance work, it is necessary to temporarily stop the inspection device. On the other hand, if this maintenance work is not performed, the probe pin is pressed against the electronic terminal material with a contact pressure higher than the specified value, and the semiconductor chip to be inspected or the semiconductor package is damaged, or accurate measurement can be performed. However, a judgment error may occur, such as judging a non-defective product as a defective product. As a result, the yield may deteriorate and the productivity may be significantly reduced.

上記転写が生じる原因として、接点部分の摩耗が挙げられる。摩耗に伴い、接点部分の表面粗さが増加すると、ハンダのような軟らかい電子端子材は容易に接点部分に付着する。また、プローブピンの接点部分には、導電性向上のため、金、金合金、ロジウムといった貴金属がメッキされている。ハンダは錫と鉛を主成分とする合金であるが、貴金属との化学結合が強く、接点部分に付着しやすい。 The cause of the transfer is wear of the contact portion. When the surface roughness of the contact portion increases with wear, a soft electronic terminal material such as solder easily adheres to the contact portion. Further, the contact portion of the probe pin is plated with a precious metal such as gold, a gold alloy, or rhodium in order to improve conductivity. Solder is an alloy whose main components are tin and lead, but it has a strong chemical bond with precious metals and easily adheres to the contact points.

そこで、プローブピンに対して貴金属メッキを行う際には、例えばグラファイト微粒子やポリテトラフルオロエチレン(PTFE)粒子等の樹脂粒子をハンダ等と化学結合を生じにくい粒子を共析させることで、転写を生じにくくすることが行われている。しかしながら、これらの方法を採用した場合、プローブピンの接触抵抗が高くなるといった課題がある。一般に、樹脂粒子は耐熱性が低い場合が多い。例えば、バーンイン試験では150℃等の高温下で行われる。そのため、耐熱性の低い樹脂粒子を含む場合、バーンイン試験の際に使用するプローブピンに対して使用することができない。また、特許文献2に開示されるようなPTFE粒子は柔らかいため、これらの方法では耐摩耗性を十分に改善することができない。 Therefore, when plating the probe pin with a noble metal, transfer is performed by co-depositing resin particles such as graphite fine particles and polytetrafluoroethylene (PTFE) particles with particles that do not easily form a chemical bond with solder or the like. It is made less likely to occur. However, when these methods are adopted, there is a problem that the contact resistance of the probe pin becomes high. In general, resin particles often have low heat resistance. For example, the burn-in test is performed at a high temperature such as 150 ° C. Therefore, when it contains resin particles having low heat resistance, it cannot be used for the probe pin used in the burn-in test. Further, since the PTFE particles as disclosed in Patent Document 2 are soft, the wear resistance cannot be sufficiently improved by these methods.

一方、転写性、耐摩耗性を改善するには、例えば、プローブピンの表面にグラファイトやダイヤモンドライクカーボン(Diamond-like Carbon:DLC)などの炭素系材料による薄膜を設ける方法が考えられる。グラファイトやダイヤモンドライクカーボン等炭素材料は、ハンダとの化学反応性が低いので転写が起きにくい。特にDLCは高硬度であり、摩擦係数も低いため、摺接部の保護被膜としてよく使用されている。しかしながら、DLCは高抵抗であるためプローブピンの保護被膜としては不適である。 On the other hand, in order to improve transferability and abrasion resistance, for example, a method of providing a thin film made of a carbon-based material such as graphite or diamond-like carbon (DLC) on the surface of the probe pin can be considered. Carbon materials such as graphite and diamond-like carbon have low chemical reactivity with solder, so transfer is unlikely to occur. In particular, DLC has a high hardness and a low coefficient of friction, and is therefore often used as a protective film for a sliding contact portion. However, DLC has high resistance and is not suitable as a protective film for probe pins.

特許第4044926号Patent No. 4044926 特許第3551411号Patent No. 3551411

本発明は、上記問題点を鑑みてなされたものであり、耐摩耗性を向上させつつ、接点部材に用いた場合は転写を抑制し、高温環境下でも使用可能な摺接部材、このような摺接部材に設けられる導電性高硬度保護被膜及びこれらの摺接部材の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and is a sliding contact member that can be used even in a high temperature environment by suppressing transfer when used as a contact member while improving wear resistance. It is an object of the present invention to provide a conductive high hardness protective film provided on a sliding contact member and a method for manufacturing these sliding contact members.

上記目的を達成するために、本件発明に係る摺接部材は、基材の表面に、表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜からなる導電性高硬度保護被膜を備えたことを特徴とする。 In order to achieve the above object, the sliding contact member according to the present invention has a high conductivity made of a carbon-based coating having a surface resistance value of less than 1 × 10 3 Ω and a surface hardness of 10 GPa or more on the surface of the base material. It is characterized by having a hardness protective film.

本件発明に係る摺接部材において、前記炭素系被膜は、sp2構造の炭素とsp3構造の炭素とを含む炭素被膜内に導電性微粒子が分散されており、前記炭素系被膜の表面を観察したときに導電性微粒子を面積比で1%以上80%以下含むことが好ましい。 In the sliding contact member according to the present invention, in the carbon-based coating, conductive fine particles are dispersed in a carbon coating containing carbon having a sp2 structure and carbon having a sp3 structure, and when the surface of the carbon-based coating is observed. It is preferable to contain conductive fine particles in an area ratio of 1% or more and 80% or less.

本件発明に係る摺接部材において、前記炭素系被膜は、添加元素として、H、N、F、Al、Si、Cr、Ag、Ti、Cu、Ni、W、Ta、Mo、Zr、B、Fe、Pt、P、S、I、Mg、Zn及びGeからなる群から選択される一以上の元素を含んでもよい。 In the sliding contact member according to the present invention, the carbon-based coating has H, N, F, Al, Si, Cr, Ag, Ti, Cu, Ni, W, Ta, Mo, Zr, B, Fe as additive elements. , Pt, P, S, I, Mg, Zn and Ge may contain one or more elements selected from the group.

本件発明に係る摺接部材において、前記炭素系被膜の摩擦係数が0.5以下であることが好ましい。 In the sliding contact member according to the present invention, the friction coefficient of the carbon-based coating is preferably 0.5 or less.

本件発明に係る摺接部材において、前記炭素系被膜の膜厚が20nm以上10μm以下であることが好ましい。 In the sliding contact member according to the present invention, the film thickness of the carbon-based coating is preferably 20 nm or more and 10 μm or less.

本件発明に係る摺接部材において、前記導電性高硬度保護被膜は、前記基材の電気的及び/又は機械的に他の部材に接する端子部の表面に少なくとも設けられることが好ましい。 In the sliding contact member according to the present invention, it is preferable that the conductive high hardness protective film is provided at least on the surface of the terminal portion that is electrically and / or mechanically in contact with another member of the base material.

上記目的を達成するために、本件発明に係る導電性高硬度保護膜は、電気的及び/又は機械的に他の部材に接する接点部材の表面に設けられ、その表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜からなることを特徴とする。 In order to achieve the above object, the conductive high hardness protective film according to the present invention is provided on the surface of a contact member that is electrically and / or mechanically in contact with another member, and its surface resistance value is 1 × 10 3 . It is characterized by being composed of a carbon-based coating having a surface hardness of 10 GPa or more and smaller than Ω.

上記目的を達成するために、本件発明に係る摺接部材の製造方法は、アーク放電によりカーボンプラズマを発生させる際に、電磁場の偏向作用によって炭素イオンと炭素微粒子の比率を制することで、基材の表面に導電性炭素微粒子が分散した炭素被膜を成膜して、基材の表面に表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜から成る導電性高硬度保護被膜を設けることを特徴とする。 In order to achieve the above object, the method for manufacturing a sliding contact member according to the present invention is based on controlling the ratio of carbon ions and carbon fine particles by the deflection action of an electromagnetic field when carbon plasma is generated by arc discharge. A carbon film in which conductive carbon fine particles are dispersed is formed on the surface of the material, and the surface resistance value is smaller than 1 × 10 3 Ω and the surface hardness is 10 GPa or more. It is characterized by providing a high hardness protective film.

本件発明によれば、耐摩耗性を向上させつつ、接点部材に用いた場合は転写を抑制し、高温環境下でも使用可能な摺接部材、このような摺接部材に設けられる導電性高硬度保護被膜及びこれらの摺接部材の製造方法を提供することができる。 According to the present invention, a sliding contact member that can be used even in a high temperature environment by suppressing transfer when used for a contact member while improving wear resistance, and a high conductive hardness provided in such a sliding contact member. It is possible to provide a method for manufacturing a protective film and a sliding contact member thereof.

(a)基材の表面に設けられた導電性高硬度被膜の断面を模式的に表した図である。(A) It is a figure which represented the cross section of the conductive high hardness film provided on the surface of a base material schematically. 基材の表面に金属中間層30を設けた際の、金属中間層30の表面を示すSEM写真(撮影倍率500倍)である。6 is an SEM photograph (photographing magnification 500 times) showing the surface of the metal intermediate layer 30 when the metal intermediate layer 30 is provided on the surface of the base material. (a)実施例1の導電性高硬度被膜の表面を示すSEM写真(撮影倍率2,000倍)、(b)実施例2の導電性高硬度被膜の表面を示すSEM写真(撮影倍率2,000倍)、(c)実施例3の導電性高硬度被膜の表面を示すSEM写真(撮影倍率2,000倍)である。(A) SEM photograph showing the surface of the conductive high-hardness film of Example 1 (photographing magnification 2,000 times), (b) SEM photograph showing the surface of the conductive high-hardness film of Example 2 (photographing magnification 2,). 000 times), (c) SEM photograph (photographing magnification 2,000 times) showing the surface of the conductive high hardness coating of Example 3. 比較例1の導電性高硬度被膜の表面を示すSEM写真(撮影倍率300倍)である。6 is an SEM photograph (photographing magnification 300 times) showing the surface of the conductive high hardness film of Comparative Example 1.

以下、本発明に係る摺接部材、導電性高硬度保護被膜及びその製造方法を説明する。 Hereinafter, a sliding contact member, a conductive high hardness protective coating, and a method for manufacturing the same will be described.

1.摺接部材
本件発明に係る摺接部材は、他の部材に当接し、他の部材と接したときに他の部材と摺り合わされる蓋然性を有する部材をいう。当該摺接部材は他の部材と導通性を要求される部材であってもよいし、導通性を要求されない部材であってもよい。例えば、次に説明する接点部材のように他の部材との導通を要する部材であってもよいし、電気ドリル等に取り付けられる各種ドリル、エンドミル、フライスカッター等のフライス盤(ミリング・マシン)で使用される各種切削工具、或いは、金型、ウエハカセット等の他の部材と直接接触等される部材であって、導通性を要求されない部材であってもよい。また他の部材と当接し、他の部材に対して相対的に移動しながら摺り合わされる摺動部材であってもよい。但し、本件発明に係る導電性高硬度保護被膜は表面抵抗が小さいため、摺接部材は絶縁性が要求される部材ではないことが好ましい。本件発明に係る摺接部材は、本件発明に係る導電性高硬度保護被膜を有することで、当該導電性高硬度保護被膜がないものと比較すると耐摩耗性が向上する一方、低い抵抗値を維持することができる。そのため、電気的及び/又は機械的に他の部材に接する端子部を有する接点部材に適用すれば、接点部材と他の部材との導通性を良好に維持した状態で、他の部材との機械的接触に伴う摩耗等を抑制することができる。接点部材としては、例えば、半導体製造工程において行われるウェーハ検査、パッケージ検査等の際に検査対象物の電極等に接触して用いられるプローブピンが挙げられる。以下、接点部材を例に挙げて、本件発明に係る摺接部材及び接点部材について説明するが、本件発明に係る摺接部材はプローブピン等の接点部材の他、メカニカルリレーの端子、モータの回転子等の他の部材と電気的及び機械的に接する端子部等を有する各種端子部材の他、上述の各種工具等に適用することができる。
1. 1. Sliding contact member The sliding contact member according to the present invention refers to a member having a probability of being in contact with another member and being rubbed against the other member when in contact with the other member. The sliding contact member may be a member that is required to have continuity with another member, or may be a member that is not required to have continuity. For example, it may be a member that requires continuity with other members such as the contact member described below, or it may be used in a milling machine (milling machine) such as various drills, end mills, and milling cutters attached to electric drills and the like. It may be a member that is in direct contact with other members such as a mold and a wafer cassette, and is not required to have continuity. Further, it may be a sliding member that comes into contact with another member and is slid while moving relative to the other member. However, since the conductive high hardness protective film according to the present invention has a small surface resistance, it is preferable that the sliding contact member is not a member that requires insulation. Since the sliding contact member according to the present invention has the conductive high hardness protective film according to the present invention, the wear resistance is improved as compared with the one without the conductive high hardness protective film, while the low resistance value is maintained. can do. Therefore, when applied to a contact member having a terminal portion that electrically and / or mechanically contacts another member, the machine with the other member while maintaining good continuity between the contact member and the other member. It is possible to suppress wear and the like due to contact with the target. Examples of the contact member include a probe pin used in contact with an electrode or the like of an inspection target in a wafer inspection, a package inspection, or the like performed in a semiconductor manufacturing process. Hereinafter, the sliding contact member and the contact member according to the present invention will be described by taking a contact member as an example. The sliding contact member according to the present invention includes contact members such as probe pins, mechanical relay terminals, and motor rotation. It can be applied to various terminal members having terminal portions that are in electrical and mechanical contact with other members such as children, as well as the above-mentioned various tools and the like.

接点部材の構成を図1に模式的に示す。図1に示す例では、接点部材100は、基材10の表面に導電性高硬度保護被膜20を備え、基材10と導電性高硬度保護被膜20との間には金属中間層30が設けられている。この金属中間層30は本件発明において任意の層構成である。また、図1に示す例では、導電性高硬度保護被膜20は、母層となる炭素被膜21内に導電性炭素微粒子22を含む。また、金属中間層30において析出した金属微粒子31は導電性高硬度保護被膜20との界面に存在する。以下、基材10、導電性高硬度保護被膜20、金属中間層30の順に説明する。 The configuration of the contact member is schematically shown in FIG. In the example shown in FIG. 1, the contact member 100 is provided with a conductive high hardness protective coating 20 on the surface of the base material 10, and a metal intermediate layer 30 is provided between the base material 10 and the conductive high hardness protective coating 20. Has been done. The metal intermediate layer 30 has an arbitrary layer structure in the present invention. Further, in the example shown in FIG. 1, the conductive high hardness protective coating 20 contains the conductive carbon fine particles 22 in the carbon coating 21 serving as the base layer. Further, the metal fine particles 31 precipitated in the metal intermediate layer 30 are present at the interface with the conductive high hardness protective film 20. Hereinafter, the base material 10, the conductive high hardness protective coating 20, and the metal intermediate layer 30 will be described in this order.

(1)基材10
接点部材100の基材10として、例えば、銅、鉄、ニッケル、アルミニウム等の各種金属又は、銅合金、鉄合金、ニッケル合金、アルミニウム合金等の各種合金製とすることができる。但し、接点部材100に要求される電気的及び機械的特性を満足することのできる材料からなれば、基材10の材料は特に限定されるものではない。また、基材10の形状についても特に限定されるものではない。例えば、当該接点部材100がプローブピンであれば、プローブピンの端子部に要求される形状等を満たしていればよく、当該接点部材100の用途に応じた任意の形状とすることができる。なお、摺接部材に関して他の部材との導電性が求められない場合、摺接部材の基材10としては、上記各種金属又はその合金の他、超硬合金製基材、セラミック製基材、樹脂製基材等としてもよい。
(1) Base material 10
The base material 10 of the contact member 100 may be made of, for example, various metals such as copper, iron, nickel, and aluminum, or various alloys such as copper alloys, iron alloys, nickel alloys, and aluminum alloys. However, the material of the base material 10 is not particularly limited as long as it is made of a material that can satisfy the electrical and mechanical properties required for the contact member 100. Further, the shape of the base material 10 is not particularly limited. For example, if the contact member 100 is a probe pin, the shape or the like required for the terminal portion of the probe pin may be satisfied, and the contact member 100 may have an arbitrary shape according to the intended use. When conductivity with other members is not required for the sliding contact member, the base material 10 of the sliding contact member may be a cemented carbide base material, a ceramic base material, in addition to the above-mentioned various metals or alloys thereof. It may be a resin base material or the like.

(2)導電性高硬度保護被膜20
次に、導電性高硬度保護被膜20について説明する。導電性高硬度保護被膜20は、接点部材100(基材10)の端子部(接点部分)等の表面であって、他の部材と直接接触される部位に設けられていればよい。当該導電性高硬度保護被膜20が他の部材と直接接触される部位に設けられていれば、本件発明による効果を享受することができる。但し、当該導電性高硬度保護被膜20は、そのような部位に限らず、端子部全体に設けられていてもよいし、接点部材100の表面全体に設けられていてもよい。当該導電性高硬度保護被膜20を設けることにより、例えば、検査対象物の電極部分等にハンダ等の柔らかい金属材料が用いられていても、炭素とハンダとは化学的に結合しにくく、耐摩耗性を向上することができるため、端子部に対するこれらの転写を防ぐことができ、メンテナンス頻度を低減することができる。また、表面抵抗値が低いため、良好な導通性を維持することができる。
(2) Conductive high hardness protective film 20
Next, the conductive high hardness protective film 20 will be described. The conductive high hardness protective film 20 may be provided on the surface of the terminal portion (contact portion) of the contact member 100 (base material 10) and the like, and may be provided at a portion that is in direct contact with another member. If the conductive high hardness protective film 20 is provided at a portion that is in direct contact with another member, the effect of the present invention can be enjoyed. However, the conductive high hardness protective film 20 is not limited to such a portion, and may be provided on the entire terminal portion or may be provided on the entire surface of the contact member 100. By providing the conductive high hardness protective film 20, for example, even if a soft metal material such as solder is used for the electrode portion of the object to be inspected, carbon and solder are difficult to chemically bond and wear resistance. Since the properties can be improved, these transfers to the terminal portion can be prevented, and the maintenance frequency can be reduced. Further, since the surface resistance value is low, good conductivity can be maintained.

当該導電性高硬度保護被膜20は表面抵抗値が1×10Ωより小さく、好ましくは1×10Ω以下、より好ましくは1×10Ω以下であり、且つ、表面硬度が10GPa以上の炭素系被膜からなる。ここで、炭素系材料として、グラファイトやダイヤモンドライクカーボン(DLC)が知られている。グラファイトは導電性があるため、グラファイトからなる薄膜を他の部材と直接接触される部位に設けた場合、接触部位の抵抗の上昇を防ぐことができる。しかしながら、グラファイトは軟らかい材料であるため、表面硬度は10GPaより低く、接点部位の耐摩耗性の改善効果は僅かしか得られない。一方、DLCの表面硬度は10GPa以上あり、接触部位の耐摩耗性の改善効果は高い。しかしながら、DLCの表面抵抗値は1×10Ω以上であり、接触部位の抵抗が上昇する。そのため、DLCは接点部材の保護被膜としては不適である。本発明者等の鋭意研究の末、例えば、後述する方法により、表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜が得られることを見出し、当該炭素系被膜を導電性高硬度保護被膜20として基材10の表面に設けることで、耐摩耗性を向上させつつ、転写を抑制し、高温環境下でも使用可能な接点部材(及び摺接部材)を提供可能であることを見出した。以下、導電性高硬度保護被膜20の好ましい態様について説明する。 The conductive high hardness protective film 20 is a carbon-based material having a surface resistance value smaller than 1 × 10 3 Ω, preferably 1 × 10 2 Ω or less, more preferably 1 × 10 Ω or less, and a surface hardness of 10 GPa or more. It consists of a coating. Here, graphite and diamond-like carbon (DLC) are known as carbon-based materials. Since graphite is conductive, when a thin film made of graphite is provided at a portion that is in direct contact with another member, it is possible to prevent an increase in resistance at the contact portion. However, since graphite is a soft material, the surface hardness is lower than 10 GPa, and the effect of improving the wear resistance of the contact portion can be obtained only slightly. On the other hand, the surface hardness of DLC is 10 GPa or more, and the effect of improving the wear resistance of the contact portion is high. However, the surface resistance value of DLC is 1 × 10 3 Ω or more, and the resistance at the contact portion increases. Therefore, DLC is not suitable as a protective film for contact members. After diligent research by the present inventors, for example, it was found that a carbon-based film having a surface resistance value of less than 1 × 10 3 Ω and a surface hardness of 10 GPa or more can be obtained by a method described later. Can be provided on the surface of the base material 10 as a conductive high hardness protective film 20 to suppress transfer and provide a contact member (and a sliding contact member) that can be used even in a high temperature environment while improving wear resistance. I found that. Hereinafter, preferred embodiments of the conductive high hardness protective coating 20 will be described.

導電性高硬度保護被膜20は、例えば、図1に示すように、母層となる炭素被膜21内に導電性炭素微粒子22等の導電性微粒子を分散させた炭素系被膜とすることが好ましい。このような炭素系被膜とすることで、表面抵抗値を1×10Ωより小さく且つ、表面硬度が10GPa以上とすることができ、接点部材の保護被膜に好適な電気特性と、機械特性とを実現することができる。 As shown in FIG. 1, the conductive high hardness protective coating 20 is preferably a carbon-based coating in which conductive fine particles such as conductive carbon fine particles 22 are dispersed in a carbon coating 21 as a base layer. By using such a carbon-based coating, the surface resistance value can be smaller than 1 × 10 and the surface hardness can be 10 GPa or more, and the electrical characteristics and mechanical characteristics suitable for the protective coating of the contact member can be obtained. Can be realized.

炭素被膜21は、sp2構造の炭素とsp3構造の炭素とを含むことが好ましい。例えば、sp2構造の炭素とsp3構造の炭素とを含むsp2構造を有する炭素含有量が比較的多いアモルファス炭素被膜、或いは、sp3構造の炭素含有量が比較的多いテトラヘドラル(tetrahedral)炭素被膜などの、いわゆるDLCであることが好ましく、特にテトラヘドラル炭素被膜であることが好ましい。また、当該炭素被膜は水素を含んでいてもよいし、水素を含まなくてもよい。sp3構造の炭素含有割合を「sp2/(sp3+sp3)×100、但し、sp2及びsp3をX線光電子分光法(XPS法)により当該炭素被膜21の元素分析を行ったときのsp2構造の炭素原子数及びsp3構造の炭素原子数とする」と表したとき、sp3構造の炭素含有量が20%以上90%以下であれば、表面抵抗値を1×10Ω以上1×1012Ω以下とすることができ、10Gpa以上の表面硬度を得ることができる。 The carbon film 21 preferably contains carbon having a sp2 structure and carbon having a sp3 structure. For example, an amorphous carbon film having a relatively high carbon content having a sp2 structure containing carbon having a sp2 structure and a carbon having a sp3 structure, or a tetrahedral carbon film having a relatively high carbon content in the sp3 structure. A so-called DLC is preferable, and a tetrahedral carbon film is particularly preferable. Further, the carbon film may or may not contain hydrogen. The carbon content ratio of the sp3 structure is "sp2 / (sp3 + sp3) × 100, but the number of carbon atoms of the sp2 structure when sp2 and sp3 are subjected to elemental analysis of the carbon film 21 by X-ray photoelectron spectroscopy (XPS method)". And the number of carbon atoms in the sp3 structure ”, if the carbon content of the sp3 structure is 20% or more and 90% or less, the surface resistance value shall be 1 × 10 3 Ω or more and 1 × 10 12 Ω or less. It is possible to obtain a surface hardness of 10 Gpa or more.

また、炭素被膜21は、添加元素として、H、N、F、Al、Si、Cr、Ag、Ti、Cu、Ni、W、Ta、Mo、Zr、B、Fe、Pt、P、S、I、Mg、Zn及びGeからなる群から選択される一以上の元素を含んでもよい。これらの元素は、真空蒸着法によりDLC膜を成膜する際に、DLC膜内に含有させることができる。 Further, the carbon film 21 has H, N, F, Al, Si, Cr, Ag, Ti, Cu, Ni, W, Ta, Mo, Zr, B, Fe, Pt, P, S and I as additive elements. , Mg, Zn and Ge may contain one or more elements selected from the group. These elements can be contained in the DLC film when the DLC film is formed by the vacuum vapor deposition method.

導電性微粒子として、例えば、グラファイト(黒鉛)等の導電性炭素微粒子22を挙げることができる。グラファイトは導電性が高い。そのため、炭素被膜21内に所定の量の導電性炭素微粒子22を分散させることで、表面抵抗値が1×10Ωより小さい導電性高硬度保護被膜20を得ることができる。また、導電性微粒子として、導電性炭素微粒子22の他、後述するように基材10上に金属中間層30を介して導電性高硬度保護被膜20を設けたときに、金属中間層30を成膜する際に生じる金属微粒子31を挙げることができる。また、本発明に係る導電性高硬度保護被膜20では、導電性高硬度保護被膜20の表面観察したとき、導電性炭素微粒子22等の導電性微粒子が表面から観察し得る。このとき、導電性微粒子の大きさは、導電性高硬度保護被膜20の表面観察したときにその投影面積(以下、「微粒子断面積」と称する)が0.01μmから1mmであることが好ましい。このような大きさの導電性微粒子を炭素被膜21内に均一に分散させることが所望の電気特性を得る上で好ましい。 Examples of the conductive fine particles include conductive carbon fine particles 22 such as graphite. Graphite has high conductivity. Therefore, by dispersing a predetermined amount of the conductive carbon fine particles 22 in the carbon film 21, it is possible to obtain the conductive high hardness protective film 20 having a surface resistance value smaller than 1 × 10 3 Ω. Further, as the conductive fine particles, in addition to the conductive carbon fine particles 22, the metal intermediate layer 30 is formed when the conductive high hardness protective film 20 is provided on the base material 10 via the metal intermediate layer 30 as described later. Examples thereof include the metal fine particles 31 generated when the film is formed. Further, in the conductive high hardness protective coating 20 according to the present invention, when the surface of the conductive high hardness protective coating 20 is observed, conductive fine particles such as the conductive carbon fine particles 22 can be observed from the surface. At this time, the size of the conductive fine particles is such that the projected area (hereinafter referred to as “fine particle cross section”) of the conductive high hardness protective coating 20 when observed on the surface is 0.01 μm 2 to 1 mm 2 . preferable. It is preferable to uniformly disperse the conductive fine particles of such a size in the carbon film 21 in order to obtain desired electrical characteristics.

また、当該導電性高硬度保護被膜20における導電性微粒子の含有割合は、当該導電性高硬度保護被膜20を走査型電子顕微鏡により表面観察をしたときに、面積比で1%以上80%以下であることが好ましい。より具体的には、走査型電子顕微鏡(例えば、日本電子株式会社製 JSM-6510A、2次電子像)により撮影倍率2,000倍で当該導電性高硬度保護被膜20の表面を撮影したSEM写真をWinROOF画像処理ソフト(三谷商事株式会社製WinROOF2018 Standard版)を使って微粒子解析を行い、観察領域における当該導電性高硬度保護被膜の表面積に対して、表面に観察された導電性微粒子の占める面積(但し、水平面における導電性微粒子の断面積に相当する面積の和(すなわち、当該粒子の投影面積の和))の割合((導電性炭素微粒子面積/当該導電性高硬度保護被膜面積)×100)を求めた値を当該導電性高硬度保護被膜20内における導電性微粒子の含有割合とすることができる。 Further, the content ratio of the conductive fine particles in the conductive high hardness protective film 20 is 1% or more and 80% or less in terms of area ratio when the surface of the conductive high hardness protective film 20 is observed by a scanning electron microscope. It is preferable to have. More specifically, an SEM photograph of the surface of the conductive high-hardness protective film 20 taken with a scanning electron microscope (for example, JSM-6510A manufactured by Nippon Denshi Co., Ltd.) at a photographing magnification of 2,000 times. Was analyzed using WinROOF image processing software (WinROOF 2018 Standard version manufactured by Mitani Shoji Co., Ltd.), and the area occupied by the conductive fine particles observed on the surface with respect to the surface surface of the conductive high hardness protective film in the observation area. (However, the sum of the areas corresponding to the cross-sectional areas of the conductive fine particles in the horizontal plane (that is, the sum of the projected areas of the particles)) ((the area of the conductive carbon fine particles / the area of the conductive high hardness protective film) × 100 ) Can be used as the content ratio of the conductive fine particles in the conductive high hardness protective film 20.

炭素被膜21内における導電性炭素微粒子22の含有量が増加すると、当該導電性高硬度保護被膜20の表面抵抗値は低下する。炭素被膜21の表面抵抗値は1×10Ω以上1×1012Ω以下であるため、導電性炭素微粒子22等の導電性微粒子の含有量が少なくなりすぎると、当該導電性高硬度保護被膜20の表面抵抗値を1×10Ωより小さくすることが困難になる。一方、導電性炭素微粒子22の硬度は低い。そのため、炭素被膜21内における導電性炭素微粒子22の含有量が多くなりすぎると、当該導電性高硬度保護被膜20の表面硬度が10GPa未満になり、接点部材の耐摩耗性を向上する効果を得ることが困難になる。当該観点から、導電性高硬度保護被膜20内における導電性微粒子の含有割合は、上述のとおり面積比で1%以上80%以下であることが好ましく、3%以上70%以下であることがより好ましく、5%以上60%以下であることがさらに好ましい。なお、導電性高硬度保護被膜20内における導電性微粒子の含有割合が面積比で1%以上80%以下であるとき、表面硬度は10GPa以上であり、例えば、当該含有割合が13%のときの表面硬度は50GPa以上を達成している。導電性高硬度保護被膜20の表面硬度が10GPa以上あれば、接点部材の耐摩耗性を向上する上で十分であるが、例えば、切削工具等の上記摺接部材として用いるときも、表面硬度が10GPa以上あれば耐摩耗性を改善する効果が得られ、例えば、50GPa以上であれば耐摩耗性を改善するための十分な効果が得られる。 As the content of the conductive carbon fine particles 22 in the carbon film 21 increases, the surface resistance value of the conductive high hardness protective film 20 decreases. Since the surface resistance value of the carbon film 21 is 1 × 10 3 Ω or more and 1 × 10 12 Ω or less, if the content of the conductive fine particles such as the conductive carbon fine particles 22 becomes too small, the conductive high hardness protective film is concerned. It becomes difficult to make the surface resistance value of 20 smaller than 1 × 10 3 Ω. On the other hand, the hardness of the conductive carbon fine particles 22 is low. Therefore, if the content of the conductive carbon fine particles 22 in the carbon film 21 becomes too large, the surface hardness of the conductive high hardness protective film 20 becomes less than 10 GPa, and the effect of improving the wear resistance of the contact member is obtained. Will be difficult. From this point of view, the content ratio of the conductive fine particles in the conductive high hardness protective film 20 is preferably 1% or more and 80% or less, and more preferably 3% or more and 70% or less in terms of area ratio as described above. It is preferable, and it is more preferably 5% or more and 60% or less. When the content ratio of the conductive fine particles in the conductive high hardness protective film 20 is 1% or more and 80% or less in terms of area ratio, the surface hardness is 10 GPa or more, for example, when the content ratio is 13%. The surface hardness has achieved 50 GPa or more. If the surface hardness of the conductive high hardness protective film 20 is 10 GPa or more, it is sufficient to improve the wear resistance of the contact member, but the surface hardness is also high when used as the above-mentioned sliding contact member such as a cutting tool. If it is 10 GPa or more, the effect of improving the wear resistance can be obtained. For example, if it is 50 GPa or more, a sufficient effect for improving the wear resistance can be obtained.

また、当該導電性高硬度保護被膜20の膜厚は、20nm以上10μm以下であることが好ましい。膜厚が小さすぎると、導電性炭素微粒子22を炭素被膜21に所望の量を含有させることが困難になる。すなわち、導電性炭素微粒子22の含有量を上記面積比において1%以上にすることが困難な場合がある。これと同時に当該導電性高硬度保護被膜20の表面抵抗値が高くなり、1×10Ωより小さくすることが困難になる。一方、膜厚が厚すぎると、当該導電性高硬度保護被膜20の生産性が悪くなる。これらの観点から、当該導電性高硬度保護被膜20の膜厚は50nm以上5μm以下であることがより好ましく、100nm以上2μm以下であることがさらに好ましい。 Further, the film thickness of the conductive high hardness protective film 20 is preferably 20 nm or more and 10 μm or less. If the film thickness is too small, it becomes difficult to contain the conductive carbon fine particles 22 in the carbon film 21 in a desired amount. That is, it may be difficult to make the content of the conductive carbon fine particles 22 1% or more in the above area ratio. At the same time, the surface resistance value of the conductive high hardness protective film 20 becomes high, and it becomes difficult to make it smaller than 1 × 10 3 Ω. On the other hand, if the film thickness is too thick, the productivity of the conductive high hardness protective film 20 deteriorates. From these viewpoints, the film thickness of the conductive high hardness protective film 20 is more preferably 50 nm or more and 5 μm or less, and further preferably 100 nm or more and 2 μm or less.

また、当該導電性高硬度保護被膜の摩擦係数は、0.4以下であることが好ましく、0.3以下であることがより好ましい。上記のように、導電性炭素微粒子22としてグラファイトを炭素被膜21内に分散させた場合、グラファイトの摩擦係数は低いため、摩擦係数が0.4より大きくなる蓋然性は低い。 Further, the friction coefficient of the conductive high hardness protective film is preferably 0.4 or less, and more preferably 0.3 or less. As described above, when graphite is dispersed in the carbon film 21 as the conductive carbon fine particles 22, the friction coefficient of graphite is low, so that the probability that the friction coefficient becomes larger than 0.4 is low.

また、当該導電性高硬度保護被膜20の表面粗さ(Ra)/膜厚比が2倍以下であることが好ましい。炭素被膜21内に導電性炭素微粒子22を分散させた構成とする場合、当該導電性高硬度保護被膜20の成膜中に導電性炭素微粒子22が炭素被膜21の表面から突出し、表面粗さが荒くなる場合がある。表面粗さ(Ra)/膜厚比が2倍を超えると、当該接点部材100の接点部分を他の部材に電気的及び機械的に接触させた際に、上記転写が生じやすくなる場合があるため好ましくない。なお、導電性炭素微粒子22はグラファイト等の柔らかい粒子からなる。そのため、成膜後に当該導電性高硬度保護被膜20の表面を研磨することにより、表面粗さを上記範囲内にすることは容易である。 Further, it is preferable that the surface roughness (Ra) / film thickness ratio of the conductive high hardness protective film 20 is 2 times or less. When the conductive carbon fine particles 22 are dispersed in the carbon film 21, the conductive carbon fine particles 22 protrude from the surface of the carbon film 21 during the film formation of the conductive high hardness protective film 20, and the surface roughness becomes rough. It may get rough. If the surface roughness (Ra) / film film ratio exceeds 2 times, the transfer may easily occur when the contact portion of the contact member 100 is electrically and mechanically brought into contact with another member. Therefore, it is not preferable. The conductive carbon fine particles 22 are made of soft particles such as graphite. Therefore, it is easy to keep the surface roughness within the above range by polishing the surface of the conductive high hardness protective film 20 after the film formation.

(3)金属中間層30
金属中間層30は、基材10と導電性高硬度保護被膜20との双方に対して化学的密着性が良好な金属又は金属化合物からなる層であり、必要に応じて設けることができる。基材10と、導電性高硬度保護被膜20との双方に対して化学的密着性が良好な金属として、例えば、Fe、Cr、Ti等を挙げることができる。これらの金属及び/又はこれらとN、O、C等の金属化合物からなる層を金属中間層30として、基材10と導電性高硬度保護被膜20との間に設けることで、基材10としての上記列挙した各材料と、導電性高硬度保護被膜20の構成材料である炭素とを良好に密着することが可能になる。但し、基材10と導電性高硬度保護被膜20との密着性が良好である場合、金属中間層30を設けずに、基材10の表面に直接導電性高硬度保護被膜20を設けることができる。
(3) Metal intermediate layer 30
The metal intermediate layer 30 is a layer made of a metal or a metal compound having good chemical adhesion to both the base material 10 and the conductive high hardness protective coating 20, and can be provided as needed. Examples of the metal having good chemical adhesion to both the base material 10 and the conductive high hardness protective film 20 include Fe, Cr, Ti and the like. By providing a layer made of these metals and / or these and a metal compound such as N, O, C as a metal intermediate layer 30 between the base material 10 and the conductive high hardness protective film 20, the base material 10 can be used. It is possible to make good adhesion between each of the materials listed above and carbon, which is a constituent material of the conductive high hardness protective film 20. However, when the adhesion between the base material 10 and the conductive high hardness protective coating 20 is good, the conductive high hardness protective coating 20 may be provided directly on the surface of the base material 10 without providing the metal intermediate layer 30. can.

金属中間層30は、例えば、後述するように真空蒸着法により基材10の表面に成膜することができる。真空蒸着法により金属中間層を形成する間に、金属イオン以外に金属微粒子31が発生し、金属中間層30の成膜表面に金属微粒子31が付着する。金属微粒子31は導電性を有するため、基材10の表面に金属中間層30を介して導電性高硬度保護被膜20を設けた場合、図1に示すように炭素被膜21内に金属微粒子31の一部が取り込まれるため、炭素被膜21内の導電性炭素微粒子22と、金属微粒子31との相互接触によって導電性高硬度保護被膜20の表面抵抗値が低下し、導電性がより向上する。 The metal intermediate layer 30 can be formed on the surface of the base material 10 by, for example, a vacuum vapor deposition method as described later. While the metal intermediate layer is formed by the vacuum vapor deposition method, metal fine particles 31 are generated in addition to the metal ions, and the metal fine particles 31 adhere to the film forming surface of the metal intermediate layer 30. Since the metal fine particles 31 have conductivity, when the conductive high hardness protective film 20 is provided on the surface of the base material 10 via the metal intermediate layer 30, as shown in FIG. 1, the metal fine particles 31 are contained in the carbon film 21. Since a part of the film is taken in, the surface resistance value of the conductive high hardness protective film 20 is lowered by the mutual contact between the conductive carbon fine particles 22 in the carbon film 21 and the metal fine particles 31, and the conductivity is further improved.

2.摺接部材及び接点部材の製造方法
次に、本発明に係る摺接部材及び接点部材100の製造方法について説明する。ここでも、摺接部材として、図1に模式的に示す接点部材100を例に挙げて説明する。接点部材100は、アーク放電によりカーボンプラズマを発生させる際に、電磁場による偏向によって炭素イオンと炭素微粒子の比率を制することで、基材10の表面に導電性炭素微粒子22が分散した炭素被膜21を成膜して、基材の表面に表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜から成る導電性高硬度保護被膜20を設けることを特徴とする。ここで、基材10の表面に上記金属中間層30を成膜した後に、導電性高硬度保護被膜20を成膜してもよい。
2. 2. Method for Manufacturing Sliding Contact Member and Contact Member Next, a method for manufacturing the sliding contact member and contact member 100 according to the present invention will be described. Here, as the sliding contact member, the contact member 100 schematically shown in FIG. 1 will be described as an example. When the contact member 100 generates carbon plasma by arc discharge, the carbon film 21 in which the conductive carbon fine particles 22 are dispersed on the surface of the base material 10 by controlling the ratio of carbon ions and carbon fine particles by deflection due to an electromagnetic field. Is characterized in that a conductive high hardness protective film 20 made of a carbon-based film having a surface resistance value of less than 1 × 10 3 Ω and a surface hardness of 10 GPa or more is provided on the surface of the base material. Here, after the metal intermediate layer 30 is formed on the surface of the base material 10, the conductive high hardness protective film 20 may be formed.

(1)導電性高硬度保護被膜20の成膜方法
導電性高硬度保護被膜20は、真空蒸着法により基材10の表面に成膜することができる。真空蒸着法として、例えば、カソードアーク法、スパッタ法、電子ビーム法等を採用することができる。特に、本件発明に係る導電性高硬度保護被膜20を成膜する際には、カソードアーク法を採用することが好ましい。例えば、真空中で炭素電極をカソード電極とし、アーク放電を起こさせることにより、カーボンプラズマを発生させて炭素イオン及び炭素微粒子を発生させつつ、基材10側に放射することで、炭素イオンを基材10上に堆積させつつ、炭素微粒子も基材10側に付着させることができる。当該方法により、基材10上には導電性炭素微粒子22を含む炭素被膜21を成膜することができる。
(1) Method for forming a film of the conductive high hardness protective film 20 The conductive high hardness protective film 20 can be formed on the surface of the base material 10 by a vacuum vapor deposition method. As the vacuum vapor deposition method, for example, a cathode arc method, a sputtering method, an electron beam method, or the like can be adopted. In particular, when forming the conductive high hardness protective film 20 according to the present invention, it is preferable to adopt the cathode arc method. For example, by using a carbon electrode as a cathode electrode in a vacuum and causing an arc discharge, carbon plasma is generated to generate carbon ions and carbon fine particles, and the carbon ions are radiated to the base material 10 side. Carbon fine particles can also be attached to the base material 10 side while being deposited on the material 10. By this method, a carbon film 21 containing the conductive carbon fine particles 22 can be formed on the base material 10.

上記カソードアーク法では、一般に、低電圧下で高電流を流すことでアーク放電を発生させる。上記のように炭素電極をカソード電極とすれば、アーク放電に伴い炭素電極から炭素イオンを放出させることができる。また、アーク放電に伴う発熱により炭素電極から炭素微粒子も放出される。例えば、DLC膜についてもカソードアーク法により成膜される。DLC膜に炭素微粒子が混入すると、炭素微粒子はグラファイトであり、軟らかい材料であるため、DLC膜の硬度が低下することが考えられる。そのため、DLC膜を成膜する際には、フィルタリングという手法により、炭素微粒子が基材10側に飛来しないようにしている。炭素イオンは電荷を有する一方、炭素微粒子は電荷を有さない。そのため、電場及び磁場のバランス及び強度等を調整することにより炭素イオンの飛来経路を曲げること等ができるが、炭素微粒子は基材10に向かって直進する。そこで、チャンバー内に炭素電極と基材10との間に遮蔽物を設置し、電場及び磁場のバランス及び強度等を調整することにより、炭素微粒子は遮蔽物により基材10に到達することを防ぐと共に、炭素イオンについては遮蔽物を回り込んで基材10に到達するように飛来させることが行われている。このようにフィルタリングを行いつつ成膜されたDLC膜は高抵抗であるため、接点部材100等の電気的導通が要求される部材の接点部位の耐摩耗性等を向上するための保護被膜として用いることはできない。 In the cathode arc method, an arc discharge is generally generated by passing a high current under a low voltage. If the carbon electrode is used as the cathode electrode as described above, carbon ions can be emitted from the carbon electrode with the arc discharge. In addition, carbon fine particles are also released from the carbon electrode due to heat generated by the arc discharge. For example, the DLC film is also formed by the cathode arc method. When carbon fine particles are mixed in the DLC film, the carbon fine particles are graphite and are a soft material, so that it is considered that the hardness of the DLC film is lowered. Therefore, when the DLC film is formed, carbon fine particles are prevented from flying to the base material 10 side by a method called filtering. Carbon ions have an electric charge, while carbon fine particles have no electric charge. Therefore, the flight path of carbon ions can be bent by adjusting the balance and strength of the electric field and the magnetic field, but the carbon fine particles go straight toward the base material 10. Therefore, by installing a shield between the carbon electrode and the base material 10 in the chamber and adjusting the balance and strength of the electric and magnetic fields, the carbon fine particles are prevented from reaching the base material 10 by the shield. At the same time, the carbon ions are made to fly around the shield so as to reach the base material 10. Since the DLC film formed while filtering in this way has high resistance, it is used as a protective film for improving the wear resistance of the contact portion of a member such as the contact member 100 that requires electrical conduction. It is not possible.

しかしながら、本件発明者等は鋭意研究の末、フィルタリングの手法を応用し、電場及び磁場のバランス及び強度或いは成膜時間等の成膜条件を調整することで、基材10側に飛来する炭素イオンの量と炭素微粒子の量の比率を制御し、当該導電性炭素微粒子22を上述のように当該導電性高硬度保護被膜20を表面観察したときに面積比で1%以上80%以下含むように成膜することで、上記範囲内の表面抵抗値及び表面硬度を有し、接点部材100の接点部位に好適な導電性高硬度保護被膜20が得られることを見出した。また、その際に遮蔽物をカソード電極と基材10の成膜面との間に配置する方法の他、カソード電極の電極面と基材10の成膜面とが成す角度を調整することで、遮蔽物をこれらの間に配置せずとも炭素微粒子はカソード電極の電極面から略垂直に飛来させる一方、炭素イオンの飛来経路を曲げることで炭素イオンと炭素微粒子の量の比率を制御可能であることも見出した。いずれの場合もアーク放電時の電磁場条件を制御し、炭素イオンの飛来方向を偏向させればよい。すなわち、電磁場による偏向作用により炭素イオンの飛来方向を曲げればよい。また、アーク放電時の電磁場条件を制御することで、炭素電極から放出される導電性炭素微粒子22のサイズ分布等を適宜調整することができる。このように成膜した導電性高硬度保護被膜20内には導電性炭素微粒子22が炭素被膜21内に一様に分散させることができる。また、このように成膜した導電性高硬度保護被膜20では、上述のとおり炭素被膜21の表面から導電性炭素微粒子22が突出する場合があるが、成膜後に表面を研磨することにより容易に表面粗さ(Ra)/膜厚比が2倍以下にすることができる。 However, after diligent research, the inventors of the present invention applied the filtering method and adjusted the film forming conditions such as the balance and strength of the electric and magnetic fields or the film forming time, so that the carbon ions flying to the base material 10 side could be obtained. The ratio of the amount of carbon fine particles to the amount of carbon fine particles is controlled so that the conductive carbon fine particles 22 are contained in an area ratio of 1% or more and 80% or less when the conductive high hardness protective coating 20 is surface-observed as described above. It has been found that by forming a film, a conductive high hardness protective film 20 having a surface resistance value and a surface hardness within the above ranges and suitable for a contact portion of the contact member 100 can be obtained. Further, at that time, in addition to the method of arranging the shield between the cathode electrode and the film-forming surface of the base material 10, the angle formed by the electrode surface of the cathode electrode and the film-forming surface of the base material 10 can be adjusted. The carbon fine particles fly almost vertically from the electrode surface of the cathode electrode without placing a shield between them, while the ratio of the amount of carbon ions and carbon fine particles can be controlled by bending the flight path of carbon ions. I also found that there was. In either case, the electromagnetic field conditions at the time of arc discharge may be controlled to deflect the direction of carbon ion arrival. That is, the direction of arrival of carbon ions may be bent by the deflection action of the electromagnetic field. Further, by controlling the electromagnetic field conditions at the time of arc discharge, the size distribution of the conductive carbon fine particles 22 emitted from the carbon electrode can be appropriately adjusted. In the conductive high hardness protective film 20 formed in this way, the conductive carbon fine particles 22 can be uniformly dispersed in the carbon film 21. Further, in the conductive high hardness protective film 20 formed in this way, the conductive carbon fine particles 22 may protrude from the surface of the carbon film 21 as described above, but the surface can be easily polished after the film formation. The surface roughness (Ra) / film thickness ratio can be doubled or less.

(2)金属中間層30の成膜方法
基材10と導電性高硬度保護被膜20との金属中間層30を介在させる場合、金属中間層30は導電性高硬度保護被膜20と同様にカソードアーク法、スパッタ法、電子ビーム法等の真空蒸着法により成膜することが好ましい。これらの方法により基材10上にまず金属中間層30を成膜することで、続けて同じ真空蒸着装置を用いて、金属中間層30の表面に導電性高硬度保護被膜20を上述のようにして成膜することができる。
(2) Film formation method of the metal intermediate layer 30 When the metal intermediate layer 30 between the base material 10 and the conductive high hardness protective film 20 is interposed, the metal intermediate layer 30 has a cathode arc similar to the conductive high hardness protective film 20. It is preferable to form a film by a vacuum vapor deposition method such as a method, a sputtering method, or an electron beam method. By first forming a metal intermediate layer 30 on the base material 10 by these methods, the conductive high hardness protective film 20 is subsequently formed on the surface of the metal intermediate layer 30 by using the same vacuum vapor deposition apparatus as described above. Can be formed into a film.

金属中間層30は上記各種金属又は金属化合物から形成される層である。例えば、金属中間層30として金属化合物膜を成膜するとき、例えば、窒化チタン、窒化クロム等の金属窒化物膜を成膜する際にはチャンバー内に反応ガスとして窒素を導入する等、成膜する金属化合物の種類に応じて適宜適切な反応ガスを導入すればよい。 The metal intermediate layer 30 is a layer formed of the above-mentioned various metals or metal compounds. For example, when forming a metal compound film as the metal intermediate layer 30, for example, when forming a metal nitride film such as titanium nitride or chromium nitride, nitrogen is introduced into the chamber as a reaction gas. An appropriate reaction gas may be appropriately introduced according to the type of metal compound to be used.

金属中間層30を成膜するとき、導電性高硬度保護被膜20を成膜するときと同様に、成膜時に金属微粒子31が層内に混入する場合がある。この金属微粒子31は導電性高硬度保護被膜20内に侵入し、或いは、導電性高硬度保護被膜20内に侵入した金属微粒子31が導電性高硬度保護被膜20の表面に露出する場合がある。このような金属微粒子31は上述のとおり導電性炭素微粒子22との相互接触により当該導電性高硬度保護被膜20の導電性向上に寄与する。従って、金属中間層30を介して基材10上に導電性高硬度保護被膜20を設けたときに、金属微粒子31が表面に観察される場合、上述のように、導電性高硬度保護被膜20の表面に観察される導電性微粒子として、上記導電性炭素微粒子22に加えて金属微粒子31の面積も考慮するものとする。なお、図2に、基材10の表面に金属中間層30を設けたときの金属中間層30の表面を写したSEM写真を示す。但し、図2に示すSEM写真は導電性高硬度保護被膜20を設ける前の状態を示し、白点又は丸く、或いは楕円状等に看取される部分が金属微粒子31である。 When the metal intermediate layer 30 is formed, the metal fine particles 31 may be mixed in the layer at the time of forming the film, as in the case of forming the conductive high hardness protective film 20. The metal fine particles 31 may penetrate into the conductive high hardness protective film 20, or the metal fine particles 31 that have penetrated into the conductive high hardness protective film 20 may be exposed on the surface of the conductive high hardness protective film 20. As described above, such metal fine particles 31 contribute to improving the conductivity of the conductive high hardness protective coating 20 by mutual contact with the conductive carbon fine particles 22. Therefore, when the metal fine particles 31 are observed on the surface when the conductive high hardness protective film 20 is provided on the base material 10 via the metal intermediate layer 30, as described above, the conductive high hardness protective film 20 As the conductive fine particles observed on the surface of the above, the area of the metal fine particles 31 is taken into consideration in addition to the conductive carbon fine particles 22. Note that FIG. 2 shows an SEM photograph showing the surface of the metal intermediate layer 30 when the metal intermediate layer 30 is provided on the surface of the base material 10. However, the SEM photograph shown in FIG. 2 shows the state before the conductive high hardness protective film 20 is provided, and the portion seen as a white spot, a round shape, an elliptical shape, or the like is the metal fine particle 31.

金属中間層30の膜厚は、導電性高硬度保護被膜20と基材10の密着力を上げるため、あるいは導電性高硬度保護被膜20の内部応力を緩和するため、5nm~10μmであることが好ましく、50nm~7μmであることがより好ましく、100nm~5μmであることがさらに好ましい。 The film thickness of the metal intermediate layer 30 may be 5 nm to 10 μm in order to increase the adhesion between the conductive high hardness protective film 20 and the base material 10 or to relieve the internal stress of the conductive high hardness protective film 20. It is more preferably 50 nm to 7 μm, and even more preferably 100 nm to 5 μm.

以上の方法により、本件発明に係る導電性高硬度保護被膜20を基材10上に、任意の層である金属中間層30を介して設けることができ、本件発明に係る摺接部材及び接点部材100を製造することができる。次に、実施例及び比較例を挙げて本件発明に係る摺接部材、接点部材100及び導電性高硬度保護被膜20についてより具体的に説明する。 By the above method, the conductive high hardness protective film 20 according to the present invention can be provided on the base material 10 via the metal intermediate layer 30 which is an arbitrary layer, and the sliding contact member and the contact member according to the present invention can be provided. 100 can be manufactured. Next, the sliding contact member, the contact member 100, and the conductive high hardness protective coating 20 according to the present invention will be described more specifically with reference to Examples and Comparative Examples.

タングステンカーバイト(WC)製基材(20mm×20mm×0.7mm)上に導電性炭素微粒子22の含有割合の異なる3種類の炭素系被膜を成膜した。具体的な手順は次のとおりである。まず、WC製基材をアセトンとエタノールを用いてそれぞれ5分間超音波洗浄を行い、表面の脱脂及び洗浄を行った。このWC製基材を昭和真空社製の真空蒸着装置チャンバー内の所定の位置にセットした。また、カソード電極として炭素電極を用い、アノード電極にはモリブデン電極を用いた。そして、チャンバー内の所定の位置に遮蔽物をセットし、ターボモレキュラー真空ポンプでチャンバー内が4×10-4paに到達するまで真空引きした。次いで、アルゴンガスをチャンバー内に60sccm(Standard Cubic Centimeter per Minute)導入し、直流電圧500Vを印加し20分間アルゴンボンバードを行い、基材の表面をドライ洗浄した。その後、炭素陰極上に140Aの電流を付加してアーク放電を連続稼働し炭素イオン及び炭素微粒子を陽極側へ放射し、WC製基材上に膜厚が約600nmの炭素系被膜を成膜した。 Three types of carbon-based coating films having different contents of the conductive carbon fine particles 22 were formed on a tungsten carbide (WC) substrate (20 mm × 20 mm × 0.7 mm). The specific procedure is as follows. First, the WC substrate was ultrasonically cleaned with acetone and ethanol for 5 minutes, respectively, and the surface was degreased and washed. This WC substrate was set at a predetermined position in the chamber of the vacuum vapor deposition apparatus manufactured by Showa Vacuum Co., Ltd. A carbon electrode was used as the cathode electrode, and a molybdenum electrode was used as the anode electrode. Then, a shield was set at a predetermined position in the chamber, and the inside of the chamber was evacuated with a turbomolecular vacuum pump until the inside of the chamber reached 4 × 10 -4 pa. Next, 60 sccm (Standard Cubic Centimeter per Minute) of argon gas was introduced into the chamber, a DC voltage of 500 V was applied, argon bombarding was performed for 20 minutes, and the surface of the substrate was dry-cleaned. After that, a current of 140 A was applied on the carbon cathode to continuously operate the arc discharge to radiate carbon ions and carbon fine particles toward the anode side, and a carbon-based film having a film thickness of about 600 nm was formed on the WC substrate. ..

その際、WC基板上のバイアス電圧、炭素イオン、炭素微粒子飛来空間中の磁力、偏向率を変化させることにより、チャンバー内の電場及び磁場のバランス及び強度を調整すること等により炭素被膜21内の導電性炭素微粒子22の含有割合を後掲する表2に示すように面積比で1%、13%、80%になるようにフィルタリング率をそれぞれ99%、87%、20%になるようにして、それぞれ実施例1、実施例2、実施例3の炭素系被膜とした。より具体的には、本実施例では、上記蒸着装置を一部改造し、カソード電極の電極面と基材10の成膜面とが成す角度を調整可能となるようにした。そして、偏向率をカソード電極の電極面と基材10の成膜面とが成す角度とした。そして、表1に示すように、偏向率(°)と共に基板10に印加されるバイアス電圧(V)及び磁場(T)を調整して、フィルタリング率を上述のようにした。但し、このフィルタリング条件は、装置の構成やチャンバーの大きさ等によって異なる。また、チャンバー内の電場及び磁場等を調整する他、これらに加えて成膜時間を適宜調整してもよい。また、比較例については、偏向率が0°になるようにして、カソード電極の電極面と基板10の成膜面との間に遮蔽物を配置してもよい。 At that time, by changing the bias voltage on the WC substrate, carbon ions, the magnetic force in the carbon fine particle flying space, and the deflection rate, the balance and strength of the electric and magnetic fields in the chamber can be adjusted to adjust the balance and strength in the carbon film 21. As shown in Table 2 below, the content ratios of the conductive carbon fine particles 22 are set to 99%, 87%, and 20%, respectively, so that the area ratios are 1%, 13%, and 80%. , The carbon-based coatings of Example 1, Example 2, and Example 3, respectively. More specifically, in this embodiment, the vapor deposition apparatus is partially modified so that the angle formed by the electrode surface of the cathode electrode and the film formation surface of the base material 10 can be adjusted. Then, the deflection factor was set as the angle formed by the electrode surface of the cathode electrode and the film-forming surface of the base material 10. Then, as shown in Table 1, the bias voltage (V) and the magnetic field (T) applied to the substrate 10 were adjusted together with the deflection rate (°) to set the filtering rate as described above. However, this filtering condition differs depending on the configuration of the device, the size of the chamber, and the like. In addition to adjusting the electric and magnetic fields in the chamber, the film formation time may be adjusted as appropriate. Further, in the comparative example, a shield may be arranged between the electrode surface of the cathode electrode and the film-forming surface of the substrate 10 so that the deflection rate becomes 0 °.

炭素電極上のアーク放電中にH、N、F、Al、Si、Cr、Ag、Ti、Cu、Ni、W、Ta、Mo、Zr、B、Fe、Pt、P、S、I、Mg、Zn及びGeからなる群から選択されるいずれか一の元素をガス、或いは金属の場合はスパッタを同時に放電させて、実施例1と同じ条件で高硬度炭素被膜中に添加した。その結果膜厚600nmでほぼ同じフィルタリング率が得られた。 H, N, F, Al, Si, Cr, Ag, Ti, Cu, Ni, W, Ta, Mo, Zr, B, Fe, Pt, P, S, I, Mg, during arc discharge on the carbon electrode. Any one element selected from the group consisting of Zn and Ge was simultaneously discharged by sputtering in the case of gas or metal, and added to the high-hardness carbon film under the same conditions as in Example 1. As a result, almost the same filtering rate was obtained at a film thickness of 600 nm.

比較例Comparative example

導電性高硬度保護被膜20内の導電性炭素微粒子22の含有割合を面積比で0.5%になるようにフィルタリング率を99.5%とした点を除いて実施例と同様にして比較例の炭素系被膜を成膜した。 Comparative Example in the same manner as in Example except that the filtering rate was set to 99.5% so that the content ratio of the conductive carbon fine particles 22 in the conductive high hardness protective film 20 was 0.5% in area ratio. A carbon-based film was formed.

[評価]
表2に各実施例で成膜した本件発明に係る導電性高硬度保護被膜20及び比較例で成膜した炭素系被膜における導電性炭素微粒子22の含有割合、表面抵抗値及び表面硬度を示す。なお、表面抵抗値は2端子法のデジタルマルチメータ(三和電気計器株式会社製Digital Multimeter SANWA PC20)で測定した。また、表面硬度は、膜厚が薄いためナノインデンター(株式会社エリオニクス製ENT-2100)を用い、押し込み荷重5mNで10回測定し、得られた値の平均を膜の硬度とした。また、図3(a)~(c)に実施例1~実施例3の導電性高硬度保護被膜20の表面のSEM写真(撮影倍率2,000倍)を示す。また、図4に比較例の炭素系被膜の表面のSEM写真(撮影倍率300倍)を示す。図3(a)~(c)から、導電性炭素微粒子22の含有割合が高くなるにつれて、表面に表れる導電性炭素微粒子22の数も増加することが観察される。なお、各写真において白点又は丸く、或いは楕円状等に看取される部分が導電性炭素微粒子22である。また、表1から導電性炭素微粒子22の含有割合が増加すると表面硬度は低下する傾向がみられるが、導電性炭素微粒子22の含有割合が面積比で80%のときも10Gpaの表面硬度を有し、耐摩耗性向上のための十分な硬度が得られることが確認された。また、表2から導電性炭素微粒子22を面積比で1%含む実施例1は抵抗値が1×10Ωとなり、実施例2及び実施例3から導電性炭素微粒子22を面積比で13%以上含む場合抵抗値が0Ωとなり、導電性の高い炭素系被膜を得ることができることが確認された。
[evaluation]
Table 2 shows the content ratio, surface resistance value and surface hardness of the conductive carbon fine particles 22 in the conductive high hardness protective film 20 according to the present invention formed in each example and the carbon-based film formed in the comparative example. The surface resistance value was measured with a two-terminal digital multimeter (Digital Multimeter SANWA PC20 manufactured by Sanwa Electric Meter Co., Ltd.). The surface hardness was measured 10 times with a pushing load of 5 mN using a nano indenter (ENT-2100 manufactured by Elionix Inc.) because the film thickness was thin, and the average of the obtained values was taken as the film hardness. Further, FIGS. 3A to 3C show SEM photographs (photographing magnification 2,000 times) of the surface of the conductive high hardness protective coating 20 of Examples 1 to 3. Further, FIG. 4 shows an SEM photograph (photographing magnification 300 times) of the surface of the carbon-based coating of the comparative example. From FIGS. 3A to 3C, it is observed that as the content ratio of the conductive carbon fine particles 22 increases, the number of the conductive carbon fine particles 22 appearing on the surface also increases. In each photograph, the portion that is seen as a white spot, a circle, an ellipse, or the like is the conductive carbon fine particles 22. Further, from Table 1, the surface hardness tends to decrease as the content ratio of the conductive carbon fine particles 22 increases, but even when the content ratio of the conductive carbon fine particles 22 is 80% in terms of area ratio, the surface hardness is 10 Gpa. However, it was confirmed that sufficient hardness for improving wear resistance can be obtained. Further, from Table 2, the resistance value of Example 1 containing 1% of the conductive carbon fine particles 22 in the area ratio is 1 × 10 3 Ω, and the resistance value of the conductive carbon fine particles 22 is 13% in the area ratio from Examples 2 and 3. When the above was included, the resistance value became 0Ω, and it was confirmed that a highly conductive carbon-based film could be obtained.

以上より、表2に示すように実施例1~実施例3の炭素系被膜の抵抗値は1×10Ωより小さく、10GPa以上の表面硬度を有することから、接点部材100において、他の部材と電気的及び機械的に接する部位に当該炭素系被膜を保護被膜として設けても、他の部材との導通を確保しつつ、耐摩耗性を向上することができる。よって、本件発明に係る導電性高硬度保護被膜を接点部材に用いた場合は転写を抑制することができる。また、導電性炭素微粒子22を含む炭素系被膜により転写を抑制しているため、PTFE粒子等の樹脂を用いる方法とは異なり高温環境下でも使用可能な接点部材及び摺接部材を提供することができる。 From the above, as shown in Table 2, the resistance values of the carbon-based coatings of Examples 1 to 3 are smaller than 1 × 10 3 Ω and have a surface hardness of 10 GPa or more. Even if the carbon-based coating is provided as a protective coating on a portion that is in electrical and mechanical contact with the member, wear resistance can be improved while ensuring continuity with other members. Therefore, when the conductive high hardness protective film according to the present invention is used for the contact member, transfer can be suppressed. Further, since the transfer is suppressed by the carbon-based film containing the conductive carbon fine particles 22, it is possible to provide a contact member and a sliding contact member that can be used even in a high temperature environment, unlike the method using a resin such as PTFE particles. can.

Figure 2022088909000002
Figure 2022088909000002

Figure 2022088909000003
Figure 2022088909000003

本発明によれば、耐摩耗性を向上させつつ、接点部材に用いた場合は転写を抑制し、高温環境下でも使用可能な摺接部材、このような摺接部材に設けられる導電性高硬度保護被膜、或いは接点部材、及びこれらの摺接部材の製造方法を提供することができる。これらの部材は、各種摺動部、或いは接点部に好適に用いることができる。 According to the present invention, while improving wear resistance, transfer is suppressed when used for a contact member, a sliding contact member that can be used even in a high temperature environment, and a high conductive hardness provided for such a sliding contact member. It is possible to provide a protective film, a contact member, and a method for manufacturing these sliding contact members. These members can be suitably used for various sliding portions or contact portions.

10 基材
20 導電性高硬度保護被膜
21 炭素被膜
22 導電性炭素微粒子
30 金属中間層
31 金属微粒子
100 接点部材
10 Base material 20 Conductive high hardness protective coating 21 Carbon coating 22 Conductive carbon fine particles 30 Metal intermediate layer 31 Metal fine particles 100 Contact member

Claims (8)

基材の表面に、表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜からなる導電性高硬度保護被膜を備えたことを特徴とする摺接部材。 A sliding contact member characterized in that a conductive high hardness protective film made of a carbon-based film having a surface resistance value of less than 1 × 10 3 Ω and a surface hardness of 10 GPa or more is provided on the surface of a base material. 前記炭素系被膜は、sp2構造の炭素とsp3構造の炭素とを含む炭素被膜内に導電性微粒子が分散されており、前記炭素系被膜の表面を観察したときに導電性微粒子を面積比で1%以上80%以下含む請求項1に記載の摺接部材。 In the carbon-based coating, conductive fine particles are dispersed in a carbon coating containing carbon having a sp2 structure and carbon having a sp3 structure, and when the surface of the carbon-based coating is observed, the conductive fine particles are 1 in area ratio. The sliding contact member according to claim 1, which includes% or more and 80% or less. 前記炭素系被膜は、添加元素として、H、N、F、Al、Si、Cr、Ag、Ti、Cu、Ni、W、Ta、Mo、Zr、B、Fe、Pt、P、S、I、Mg、Zn及びGeからなる群から選択される一以上の元素を含む請求項1又は請求項2に記載の摺接部材。 The carbon-based coating has H, N, F, Al, Si, Cr, Ag, Ti, Cu, Ni, W, Ta, Mo, Zr, B, Fe, Pt, P, S, I, as additive elements. The sliding contact member according to claim 1 or 2, which contains one or more elements selected from the group consisting of Mg, Zn and Ge. 前記炭素系被膜の摩擦係数が0.5以下である請求項1~請求項3のいずれか一項に記載の摺接部材。 The sliding contact member according to any one of claims 1 to 3, wherein the carbon-based coating has a friction coefficient of 0.5 or less. 前記炭素系被膜の膜厚が20nm以上10μm以下である請求項1~請求項4のいずれか一項に記載の摺接部材。 The sliding contact member according to any one of claims 1 to 4, wherein the carbon-based film has a film thickness of 20 nm or more and 10 μm or less. 前記導電性高硬度保護被膜は、前記基材の電気的及び/又は機械的に他の部材に接する端子部の表面に少なくとも設けられる請求項1~請求項5のいずれか一項に記載の摺接部材。 The slide according to any one of claims 1 to 5, wherein the conductive high hardness protective film is provided at least on the surface of a terminal portion that is electrically and / or mechanically in contact with another member of the base material. Contact member. 電気的及び/又は機械的に他の部材に接する接点部材の表面に設けられ、その表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜からなることを特徴とする導電性高硬度保護被膜。 It is provided on the surface of a contact member that is electrically and / or mechanically in contact with another member, and is characterized by having a carbon-based coating having a surface resistance value of less than 1 × 10 3 Ω and a surface hardness of 10 GPa or more. Conductive high hardness protective coating. アーク放電によりカーボンプラズマを発生させる際に、電磁場の偏向作用によって炭素イオンと炭素微粒子の比率を制することで、基材の表面に導電性炭素微粒子が分散した炭素被膜を成膜して、基材の表面に表面抵抗値が1×10Ωより小さく且つ、表面硬度が10GPa以上の炭素系被膜から成る導電性高硬度保護被膜を設けることを特徴とする摺接部材の製造方法。 When carbon plasma is generated by arc discharge, the ratio of carbon ions to carbon fine particles is controlled by the deflection action of the electromagnetic field to form a carbon film in which conductive carbon fine particles are dispersed on the surface of the base material. A method for manufacturing a sliding contact member, characterized in that a conductive high hardness protective film made of a carbon-based film having a surface resistance value of less than 1 × 10 3 Ω and a surface hardness of 10 GPa or more is provided on the surface of the material.
JP2020201042A 2020-12-03 2020-12-03 Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member Active JP7457638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020201042A JP7457638B2 (en) 2020-12-03 2020-12-03 Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201042A JP7457638B2 (en) 2020-12-03 2020-12-03 Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member

Publications (3)

Publication Number Publication Date
JP2022088909A true JP2022088909A (en) 2022-06-15
JP2022088909A5 JP2022088909A5 (en) 2023-03-28
JP7457638B2 JP7457638B2 (en) 2024-03-28

Family

ID=81987886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201042A Active JP7457638B2 (en) 2020-12-03 2020-12-03 Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member

Country Status (1)

Country Link
JP (1) JP7457638B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287268A (en) * 2009-06-10 2010-12-24 Fuji Electric Device Technology Co Ltd Filtered cathodic arc device and carbon protective film produced using the same
WO2011138967A1 (en) * 2010-05-07 2011-11-10 株式会社ニコン Conductive sliding film, member formed from conductive sliding film, and method for producing same
JP2019116677A (en) * 2017-12-27 2019-07-18 株式会社リケン Sliding member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010287268A (en) * 2009-06-10 2010-12-24 Fuji Electric Device Technology Co Ltd Filtered cathodic arc device and carbon protective film produced using the same
WO2011138967A1 (en) * 2010-05-07 2011-11-10 株式会社ニコン Conductive sliding film, member formed from conductive sliding film, and method for producing same
JP2019116677A (en) * 2017-12-27 2019-07-18 株式会社リケン Sliding member

Also Published As

Publication number Publication date
JP7457638B2 (en) 2024-03-28

Similar Documents

Publication Publication Date Title
JP5036892B2 (en) Contact probe
KR100762084B1 (en) Copper or copper alloy target/copper alloy backing plate assembly
US20070138601A1 (en) Etch resistant wafer processing apparatus and method for producing the same
WO2010101051A1 (en) Sputtering target and process for producing same
JP2008214759A (en) Method for producing carbon film-coated member
US20080173541A1 (en) Target designs and related methods for reduced eddy currents, increased resistance and resistivity, and enhanced cooling
US20130222005A1 (en) Contact probe pin
WO2015170534A1 (en) Sputtering target material
JP2007024613A (en) Contact terminal and connector for semiconductor device inspection using the same
JP5695605B2 (en) Electrical contact member
JP7457638B2 (en) Sliding contact member, conductive high hardness protective coating, and manufacturing method of sliding contact member
US6007390A (en) Low friction metal-ceramic composite coatings for electrical contacts
JP4382547B2 (en) Semiconductor device substrate and semiconductor device
WO2012067162A1 (en) Contact probe pin and test method
TW202409307A (en) Tungsten target and method for manufacturing same
JP2012021223A (en) Plasma treatment apparatus and surface modifying method of contact probe
TWI429774B (en) Coils utilized in vapor deposition applications and methods of production
JPH05304229A (en) Terminal for ic socket
JP5730681B2 (en) PROBE PIN FOR SEMICONDUCTOR INSPECTION DEVICE, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR INSPECTION METHOD
JP5535131B2 (en) Probe pin for semiconductor inspection apparatus and manufacturing method thereof
JP2022088909A5 (en)
JPWO2022196637A5 (en)
JP2022093964A (en) Metal material
CN113073245A (en) Silver-molybdenum alloy film and preparation method and application thereof
TW202217027A (en) Preparation method of copper-rhodium coating wherein a copper-rhodium coating obtained by the preparation method has the effect of low resistivity and high stability

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230317

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230731

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240315

R150 Certificate of patent or registration of utility model

Ref document number: 7457638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150