JP7457175B2 - 電動垂直離着陸(vtol)機用の翼傾斜作動システム - Google Patents

電動垂直離着陸(vtol)機用の翼傾斜作動システム Download PDF

Info

Publication number
JP7457175B2
JP7457175B2 JP2023024268A JP2023024268A JP7457175B2 JP 7457175 B2 JP7457175 B2 JP 7457175B2 JP 2023024268 A JP2023024268 A JP 2023024268A JP 2023024268 A JP2023024268 A JP 2023024268A JP 7457175 B2 JP7457175 B2 JP 7457175B2
Authority
JP
Japan
Prior art keywords
wing
rotor
vtol
aircraft
landing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023024268A
Other languages
English (en)
Other versions
JP2023058697A (ja
Inventor
ダドリー ムーア,アンドリュー
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AMSL Innovations Pty Ltd
Original Assignee
AMSL Innovations Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2017903864A external-priority patent/AU2017903864A0/en
Application filed by AMSL Innovations Pty Ltd filed Critical AMSL Innovations Pty Ltd
Publication of JP2023058697A publication Critical patent/JP2023058697A/ja
Application granted granted Critical
Publication of JP7457175B2 publication Critical patent/JP7457175B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • B64C29/0008Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0033Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/22Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
    • B64C27/28Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with forward-propulsion propellers pivotable to act as lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • B64C9/16Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
    • B64C9/18Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing by single flaps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces or the like
    • B64C1/14Windows; Doors; Hatch covers or access panels; Surrounding frame structures; Canopies; Windscreens accessories therefor, e.g. pressure sensors, water deflectors, hinges, seals, handles, latches, windscreen wipers
    • B64C1/1407Doors; surrounding frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C15/00Attitude, flight direction, or altitude control by jet reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C23/00Influencing air flow over aircraft surfaces, not otherwise provided for
    • B64C23/06Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices
    • B64C23/065Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips
    • B64C23/069Influencing air flow over aircraft surfaces, not otherwise provided for by generating vortices at the wing tips using one or more wing tip airfoil devices, e.g. winglets, splines, wing tip fences or raked wingtips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/52Tilting of rotor bodily relative to fuselage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/54Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
    • B64C27/80Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement for differential adjustment of blade pitch between two or more lifting rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/14Adjustable control surfaces or members, e.g. rudders forming slots
    • B64C9/16Adjustable control surfaces or members, e.g. rudders forming slots at the rear of the wing
    • B64D27/40
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/82Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft
    • B64C2027/8227Rotorcraft; Rotors peculiar thereto characterised by the provision of an auxiliary rotor or fluid-jet device for counter-balancing lifting rotor torque or changing direction of rotorcraft comprising more than one rotor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/06Aircraft not otherwise provided for having disc- or ring-shaped wings
    • B64C39/068Aircraft not otherwise provided for having disc- or ring-shaped wings having multiple wings joined at the tips
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Description

本開示は、電動垂直離着陸(VTOL)機用の翼傾斜作動システムに関する。特に、本発明は、旅客および/または軍事的用途の電動VTOL機のための翼傾斜作動システムおよび機構に関する。
VTOL機は、垂直にまたは垂直に近い角度で離着陸することが可能である。この形式の航空機には、ヘリコプターや特定の固定翼機が含まれ、軍事用途によく使用されている。有利には、VTOL機は、限られたスペースでの離着陸が可能であるため、長い滑走路が不要であり、船の甲板やビルなどの建造物上の離着陸場といった小さなスペースでの離着陸が可能である。
ヘリコプターは、その上昇と前進との両方がローターによって行われる形式の航空機である。ヘリコプターに関しては、高レベルのノイズ出力など、一部の用途で問題になる可能性のあるいくつかの問題がある。ヘリコプターに関連するそのような欠点の1つは、飛行において重要なローターの設計に関係している。通常、設計には冗長性が無く、そのため、ローター(あるいは各ローター)の動作が重要である。このように冗長性が欠如していることにより、ローターおよび駆動系統のあらゆる部品に対して高い安全性を確保する必要が生じ、その結果、ヘリコプターの重量と製造コストとが大幅に増加している。
さまざまな商業的および安全上の理由から電動航空機への関心が高まっている。近年、ほぼピッチ円径の間隔に配置される複数の電動ローターを一般的に用いるドローン技術に関して数多くの開発が行われている。通常、ドローンはそれぞれがほぼ垂直な軸を中心に回転する電動ローターで動作する。
ドローンは、積載量の小さな物を運ぶために商業的に成長してきている一方で、ローターの回転軸が垂直であるため、一般的に比較的低い飛行速度に制限されている。さらに、バッテリーの充電1回あたりの移動範囲がかなり狭い傾向がある。
ティルトウィング型の航空機が利用されており、それは一般に離着陸に際しては垂直プロペラ軸の原理に基づいて動作する。その翼は傾斜可能に構成されており、翼を傾斜させることで、プロペラが離着陸のための垂直軸を有する形態と、プロペラが前進飛行のための水平軸を有する形態とを取ることができる。
上記のティルトウィング構成によって、空母や離着陸場などの利用可能な空きスペースが限られている領域での離着陸が可能になるという利点が得られる。さらに、ティルトウィング機は、従来のプロペラ駆動の固定翼機に匹敵する飛行速度を実現可能である。
ティルトウィング機は一般に、翼に直接設置されたプロペラまたはダクト付きファンを駆動する電動モーターまたはガスタービンエンジンを備えている。翼全体が垂直と水平の間で回転することで、推力ベクトルを垂直から水平に傾けたり戻したりすることが可能である。
定義として、「推力ベクトル」とも呼ばれる「推力線」は、プロペラの推力であり、プロペラの回転軸とほぼ同じである。「ヒンジ線」はヒンジ回転の軸である。
既存のティルトウィング機にはいくつかの固有の欠点がある。欠点の1つは、離着陸用形態と前進飛行用形態との間の翼の傾斜角度を制御するために必要なアクチュエータやベアリングまたはその他の機構に関する。アクチュエータは、前進飛行中に翼を所望の傾斜でロックするようにも機能する。ただし、実際には、アクチュエータやベアリングによって航空機の重量がかなり増加している。その結果、輸送できる人員や貨物などの積載量が減少している。さらに、翼傾斜作動システムとベアリングの重要な性質のため、壊滅的な故障のリスクを減らすために十分な冗長性を備えて設計する必要がある。
電動VTOLジェット機は現在、Lilium Jet(登録商標)ブランドでLilimu Aviation社によって設計およびテストが行われている。そのプロトタイプは、2つの翼と約36個の電動モーターを備えた2人乗りの軽量コミューター機としての利用が想定されている。
Lilium Jet(登録商標)型の航空機の欠点は、ファンが覆われた形式のモーターである電動モーターに関係している。この構成ではエネルギーを大量に消費するため、特定のバッテリーサイズでの飛行可能範囲が狭くなってしまう。
さらに、覆われた形状のファンは、指定された離着陸場や滑走路などの舗装された表面での離着陸時にのみ稼働可能である。このため、この航空機の有用性が制限され、公園、野原、運動場などの未舗装表面での離着陸時に稼働させることができない。これは軍事用途では望ましくなく、遠隔地での即時着陸に対応できていない。
別のコンセプトのVTOL機には、Joby Aviation社によるS2 electric(登録商標)がある。この設計では、複数の電動モーターを備えた固定翼を有し、好ましくはそれぞれの翼に4つのモーターが設置されている。さらに4つのモーターが後部スタビライザーまたはテールに設置されている。このコンセプトの航空機の欠点は、各電動モーターが独立して作動するため、モーターごとに個別のアクチュエータが必要になることである。上記のように、このことによって作動モーターシステムのために相当な重量が増加することになる。
本発明の目的は、上記の欠点の1つ以上を実質的に克服または少なくとも改善すること、または有用な代替物を提供することである。
第1の態様において、本発明は垂直離着陸(VTOL)機を提供し、該垂直離着陸(VTOL)機は、
機体と、
前記機体の互いに反対側に取り付けられた第1および第2の前翼と、
前記機体の互いに反対側に取り付けられた第1および第2の後翼と、を備え
前記翼それぞれが固定された前縁部とほぼ水平な軸を中心に枢動する後部操縦翼面とを有しており、
前記翼に設置されたローターを有する複数の電動モーターであって、該ローターは、各ローターがほぼ垂直な回転軸を有する第1の位置と、各ローターがほぼ水平な回転軸を有する第2の位置との間で前記後部操縦翼面と共に枢動する、複数の電動モーターをさらに備え、
前記翼の少なくとも1つは、それぞれが互いに平行ではない回転軸を持つように配置された第1のローターを有する第1の電動モーターおよび第2のローターを有する第2の電動モーターを有し、前記第1および第2のローターの推力線が異なっている。
好ましくは、前記第1のローターの推力線がヒンジ線の上方を通るように傾けられ、前記第2のローターの推力線が前記ヒンジ線の下方を通るように傾けられている。
好ましくは、前記第1のローターの回転軸は前記操縦翼面の前部および後部を通る面に対して上方に傾けられ、前記第2のローターの回転軸は前記操縦翼面の前部および後部を通る面に対して下方に傾けられている。
前記第1および第2のローターが同じ回転速度で動作している場合、前記第1および第2のローターのそれぞれによって発生され、前記操縦翼面に作用する回転モーメントが互いに相殺される。
好ましくは、前記第1および第2の電動モーターが前記固定前縁部の下側に枢動可能に設置されている。
好ましくは、前記第1および第2の電動モーターが前記後部操縦翼面に固定されている。
第2の態様において、本発明は垂直離着陸(VTOL)機を提供し、該垂直離着陸(VTOL)機は、
機体と、
前記機体の互いに反対側に取り付けられた第1および第2の前翼と、
前記機体の互いに反対側に取り付けられた第1および第2の後翼と、を備え
前記翼それぞれが固定された前縁部とほぼ水平な軸を中心に枢動する後部操縦翼面とを有しており、
前記翼に設置されたローターをそれぞれが有する複数の電動モーターであって、該電動モーターおよびローターは、各ローターがほぼ垂直な回転軸を有する第1の位置と、各ローターがほぼ水平な回転軸を有する第2の位置との間で前記後部操縦翼面と共に枢動する、複数の電動モーターをさらに備え、
前記翼の少なくとも1つは、前記翼の上面および下面に対してオフセットされた第1のローターを有する第1の電動モーターおよび第2のローターを有する第2の電動モーターを有している。
好ましくは、前記第1のローターは前記翼の下面の下側に位置し、前記第2のローターは前記翼の上面の上側に位置している。
好ましくは、前記電動モーターおよびローターは、前記翼の下面の下側および前記翼の上面の上側の位置に前記翼に沿って互い違いに分配されている。
好ましくは、前記機体から最も遠い前記前翼それぞれの先端部分が隣接する前記後翼の先端部分に接続部材によって接続されて箱型翼構造を画定している。
好ましくは、前記前翼それぞれが隣接する前記後翼に1つ以上のストラットまたはタイバーによって接続されている。
好ましくは、前記操縦翼面が約80100度の範囲で枢動する。好ましくは、前記操縦翼面が約90度の範囲で枢動する。
第3の態様において、本発明は垂直離着陸(VTOL)機を提供し、該垂直離着陸(VTOL)機は、
機体と、
前記機体の互いに反対側に取り付けられた第1および第2の前翼と、
前記機体の互いに反対側に取り付けられた第1および第2の後翼であって、前記前翼それぞれが隣接する前記後翼に先端接続部材またはストラットによって接続されて箱型翼構造またはストラットブレース翼構造を画定する、第1および第2の後翼と、を備え
前記翼それぞれが固定された前縁部とほぼ水平な軸を中心に枢動する後部操縦翼面とを有しており、
前記翼に設置されたローターを有する複数の電動モーターであって、該ローターを有する電動モーターは、各ローターがほぼ垂直な回転軸を有する第1の位置と、各ローターがほぼ水平な回転軸を有する第2の位置との間で前記後部操縦翼面と共に枢動する、複数の電動モーターをさらに備えている。
好ましくは、前記翼の少なくとも1つは、前記翼の上面および下面に対してオフセットされた第1のローターを有する第1の電動モーターおよび第2のローターを有する第2の電動モーターを有している。
好ましくは、前記第1の電動ローターは前記翼の下面の下側に位置し、前記第2の電動ローターは前記翼の上面の上側に位置している。
前記電動モーターおよびローターは、前記翼の下面の下側および前記翼の上面の上側の位置に前記翼に沿って互い違いに分配されている。
第4の態様において、本発明は垂直離着陸(VTOL)機を提供し、該垂直離着陸(VTOL)機は、
機体と、
前記機体の互いに反対側に取り付けられた第1および第2の前翼であって、各翼は固定された前縁部とほぼ水平な枢動軸を中心に枢動する後部操縦翼面とを有する、第1および第2の前翼と、を備え
前記翼それぞれが、第1のローターを有する第1の電動モーターおよび第2のローターを有する第2の電動モーターであって、該電動モーターおよびローターは、各ローターがほぼ垂直な回転軸を有する第1の位置と、各ローターがほぼ水平な回転軸を有する第2の位置との間で前記後部操縦翼面と共に枢動する、第1および第2の電動モーターを有しており、
各モーターおよびローターを制御するための制御システムをさらに備え、
前記制御システムは、前記第1の電動モーターおよび第1のローターと前記第2の電動モーターおよび第2のローターとを異なる回転速度で選択的に動作させて、前記枢動軸を中心に前記操縦翼面を枢動させる回転モーメントを発生させるように構成されている。
好ましくは、前記翼の少なくとも1つには第1および第2の電動ローターが設けられ、前記第1の電動ローターの推力線がヒンジ線の上方を通るように傾けられ、前記第2の電動ローターの推力線が前記ヒンジ線の下方を通るように傾けられている。
好ましくは、前記電動ローターは前記翼のそれぞれの下側に位置している。
好ましくは、前記ローターそれぞれが、同一の前記翼に設置された隣接するローターに対して長手方向に、前記ローターの回転軸方向に関してオフセットされている。
好ましくは、前記ローターの回転軸に直交する面で見ると、前記ローターそれぞれの外径が、同一の前記翼に設置された隣接する前記ローターの外径に重なっている。
好ましくは、前記機体は、前方を向いており上方に開くように上部領域でヒンジ固定されたドアから乗り込むことができるキャビンを有している。
好ましくは、前記第1および第2の後翼のそれぞれは、前記VTOL機を支持する1つ以上の車輪を有し下方および後方に延在しているウィングレットを備えている。
添付の図面を参照して、本発明の好適な実施形態を具体的な例に基づいて以下に説明する。
離着陸形態における本発明の垂直離着陸(VTOL)機を示す概略図である。 第2の前進飛行形態における図1のVTOL機を示す概略図である。 図1および図2の航空機の翼に配置された電動モーターの、ローターが垂直(離着陸)位置にある場合の配置構成を示す概略図である。 ローターが部分的に傾斜した位置にある場合の図3の構成のさらなる概略図である。 ローターがさらに傾斜した位置にある場合の図3の構成のさらなる概略図である。 ローターが水平(前進飛行)位置にある場合の図3の構成のさらなる概略図である。 VTOL機のさらなる実施形態を示す斜視図である。 図7の翼構成の側面図である。 図7の翼構成の上面図である。 ローターブレードが収納された状態における、図7の翼構成の斜視図である。 航空機の翼に配置された電動モーターの配置構成(水平ローター軸)を示す概略側面図である。 図11Aの配置構成の斜視図である。 ローター軸が垂直である場合の図11Aの配置構成を示す概略側面図である。 図11Cの配置構成の斜視図である。 図7~図11Dのいずれか1つの航空機における翼構成の垂直位置と水平位置との間の移行を示す概略断面図である。 アクセスハッチが開いた状態の航空機の駐機形態を示す概略斜視図である。 ローターが垂直軸位置にある状態の航空機を示す側面図である。 ローターが水平軸位置にある状態の航空機を示す上面図である。 ローターが垂直軸位置にある状態の航空機を示す斜視図である。 ローターが水平軸位置にある状態の航空機を示す正面図である。
垂直離着陸(VTOL)機10が開示されている。好適な実施形態では、図示されているように、2対の翼を有している。すなわち、前翼20、22と後翼30、32である。前翼20、22のそれぞれは、機体24の横方向に反対側の領域に取り付けられている。同様に、後翼30、32のそれぞれも、胴体24の横方向に反対側の領域に取り付けられている。図示される実施形態では、航空機10は単座機あるいは双座機10として示されている。しかしながら、より大きな複数人用の実施形態も想定される。航空機10は、その内部においてパイロットにより操縦されてもよいし、遠隔操作されてもよい。
図示される実施形態では、2対の翼20、22、30、32が箱型翼構造または閉じた翼構造を画定するように、前翼20、22および後翼30、32の先端部分が接続部材またはウェブ42によって接続されている。
別の実施形態(図示せず)では、前翼20、22および後翼30、32は、タイバーまたはストラットで接続されたストラットブレース翼であってもよい。ストラットブレース翼は通常、従来の片持翼よりも軽量である。
本明細書に記載されているVTOL機10は、箱型翼機またはストラットブレース型航空機10であるが、航空機10が、前翼20、22および後翼30、32が分離され相互接続されていない従来の片持翼機であってもよいことは当業者には理解されるであろう。さらに、航空機10は、一対の翼のみを有するものであってもよい。
図を参照すると、前翼20、22および後翼30、32は垂直方向に分離されており、前翼20、22が後翼30、32の垂直方向下側に位置している。
図2に示されるように、後翼30、32の先端部分40は、下方および後方に延在している。この翼端部分、すなわちウィングレット40は、翼端渦を低減するのに役立つ。ウィングレット40は、静止している際および離着陸時において航空機10を支持する1つ以上の車輪39(図13および14)を備えてよい。航空機10にはさらに、機体24の下部、一般には機体24の前方部分付近に位置する車輪もしくは1組の車輪41を備えている。このように、後部車輪39および前部車輪41が二等辺三角形の頂点に位置している。車輪39がウィングレット40に位置していることで、前述の二等辺三角形の幅が最大化され、航空機10の安定性が増加することになる。
図14の側面図を参照すると、ウィングレット40と接続部材42とが、翼構造のほぼT字型の部分を画定している。
図13~図17に示す実施形態を参照すると、キャビンには、ヒンジ85によって乗組員の上方でヒンジ固定されているドアすなわちハッチ82から乗り込むことができる。図13~図18に示す実施形態においては、2つのヒンジ85と上方に開くハッチ82とが備えられている。
ハッチ82を固定するための上方に位置するヒンジ85の構成と上方に開くハッチ82とによって、複数の機能的に有利な点がもたらされる。第1に、この構成では、乗組員がローター70に近づくことなく航空機10の前方からキャビンに乗り込むことができる。この構成により、単に着座位置から立ち上がって航空機10から離れるように前に移動するというように、航空機10からの降機が特に簡略化される。
ハッチ82が上方に開くことによって、ハッチが開く際にキャビンのほぼ上方にあるため、乗り降りの際の雨よけに関しても改善できる。
さらに、ハッチ82によって、キャビンの前方部分を地面の近くに位置させることが可能になる。地面からキャビンに乗り込む際の段差の高さは約250mmであり、他の軽量飛行機と比較して、乗り降りの際の快適さや容易さの点において大幅に改善されている。
再度図2を参照すると、各ウィングレット40の近位側は、隣接する前翼20と後翼30とを接合する接続部材42に接続されている。別の接続部材42は、機体の反対側で隣接する前翼22と後翼32とを接合している。
前翼20、22および後翼30、32のそれぞれは、固定された前縁部25、35を有している。前縁部25、35は、翼の一部の形状を成す湾曲した輪郭を有している。前縁部は機体24に対して回転あるいは移動しないということが重要である。
各固定された前縁部25、35の後方側で、前翼20、22および/または後翼30、32には、枢動可能に設置された補助翼すなわち操縦翼面50が設けられている。各操縦翼面50は、(図1に示されるような)離着陸のためのほぼ垂直な形態と(図2に示されるような)前進飛行のためのほぼ水平な形態との間で枢動する。
操縦翼面50は、翼20、22、30、32の全長に沿って連続的に延在する単一の面であってもよい。あるいは、各翼20、22、30、32は、1つまたは複数の独立した枢動操縦翼面50を有していてもよく、操縦翼面50が他の操縦翼面50とは独立して前縁部25、35を中心に枢動できるように構成されていてもよい。
垂直離着陸(VTOL)機10は、複数の電動モーター60を備えている。各モーター60は、プロペラすなわちローター70を有する。図示されるように、各モーター60の本体部分62は、可動操縦翼面50の上面または下面に隣接して、一般に固定前縁部25、35の前側に設置されている。操縦翼面50は、水平飛行モード(図2)および垂直飛行モード(図1)の両方への移行のために、約80100度の範囲で、好ましくは約90度回転することができる。
モーター60は、翼構造に接触することなくローターブレードを後方に折りたたむことができるように、固定された前縁部25、35の十分前方に設置することができる。しかしながら、好適な実施形態においては、可変ピッチ機構を有する折りたたみできないローター70を用いる。固定ピッチのブレードを用いることもできる。
モーター60および操縦翼面50については、例えば以下の2つの配置構成が可能である。すなわち:
a)各モーター60が、固定前縁部25、35の1つに枢動可能に接続されており、操縦翼面50が、モーター60の本体部分62に固定される構成;または、
b)操縦翼面50が、固定前縁部25、35の1つに枢動可能に接続されており、操縦翼面がさらにモーター60の本体部分62に固定される構成。
電動モーター60はそれぞれ、各モーター60のローターがほぼ垂直な回転軸を有する第1の位置と各モーター60のローターがほぼ水平な回転軸を有する第2の位置との間で、操縦翼面50と共に前縁部25、35を中心に枢動する。
図1~図6に示す実施形態では、翼20、22、30、32の少なくとも1つは、操縦翼面50を通る平面に対して互いにオフセットされた第1および第2のモーター60を有する。図1~図6の図面に示される実施形態では、このことは、翼20、22、30、32の対向する上側および下側にモーター60を配置することによって達成される。図1~図6に示される実施形態では、各翼に4つの電動モーター60が設けられる。すなわち、翼20、22、30、32の上側に2つの電動モーター60が、翼20、22、30、32の下側に2つの電動モーター60が、互い違いの構成で配置される。別の実施形態では、各翼20、22、30、32に2つの電動モーター60が設けられている。
電動モーター60およびそれらの設置用パイロンは、それぞれ枢動操縦翼面50に配置されている。各モーター60はヒンジ点33を中心に回転する。4つのモーター60は、異なる推力線で設置されている。特に、2つのモーター60は、操縦翼面50を水平方向に回転させる推力線を有し、他の2つのモーターは、翼20、22、30、32を垂直方向に回転させる推力線を有している。4つすべてのモーター60が一斉に作動すると、モーメントが相殺され、垂直飛行モードでの安定化が達成される。
図3~図6に示す一連の翼の調節過程では、離陸翼位置から前進飛行翼位置へ移行する際の、モーター60および操縦翼面50の傾斜の変化が示されている。これらの図に示されるように、前縁部25、35は静止しており、枢動しない。対照的に、モーター60および操縦翼面50は、一体的に枢動する。
図6を参照すると、翼が前進飛行のための最終水平位置に到達すると、前縁部25、35と操縦翼面50とが係合し、翼20、22、30、32がそれ以上枢動することが防止される。このことは、翼20、22、30、32および操縦翼面50が相補的な係合面を有していることにより起こる。
本発明の第2の実施形態を図7~図12に示す。本実施形態では、4つのモーター60はそれぞれ、翼20、22、30、32の下側に配置されている。特に、各モーター60は翼20、22、30、32の下側の位置にヒンジ固定されており、これを用いて前縁部スロット72が形成されることで、揚力係数がさらに増加され、降下中の高傾斜角度でのバフェットが低減される。
前縁部スロット72は、前縁部25、35と傾斜操縦翼面50との間の隙間である。スロット72は、図3、4、および5において見ることができ、図6では閉位置にある。前縁部スロット72は図11Aにおいても見られる。
図8を参照すると、この構成では、モーター60の回転軸は互いに平行ではない。特に、モーター60のそれぞれの対について、各奇数番モーター60は、操縦翼面50に対して下向きに傾斜した回転軸XXを有し、各偶数番モーター60は、操縦翼面50に対して上向きに傾斜した回転軸YYを有している。このようにして、一方のモーター60は、操縦翼面50を時計回りに回転させる推力線を有し、他方のモーターは、操縦翼面50を反時計回りに回転させる推力線を有している。対のモーター60が同等の回転速度で一斉に作動すると、モーメントが相殺され、垂直飛行モードでの安定化が達成される。
航空機10は、各モーター60に別々に制御された電源を供給する。これにより、各モーターに異なる電圧を供給することができるため、各モーター60で可変動力出力を選択的に生成して、左旋回や右旋回などの所望の飛行状態を実現できる。
さらに、モーター60の独立した動力により、モーター60を用いて、翼20、22、30、32の後縁部に位置する操縦翼面50を傾斜させることができる。
図11A~図11Dは、翼20、22、30、32の1つの下側に設置されたモーター60の概略側方図である。ヒンジプレート28は、固定された前縁部25、35に接続され、下向きに延在している。モーター60は、ヒンジ点33でヒンジプレート28に枢動可能に接続されている。プロペラ70およびパイロン構造は、ヒンジ点33を中心に回転する操縦翼面50に固定されている。
第2実施形態ではモーター60が翼の下側に設置され、垂直離陸翼位置と水平前進飛行翼位置との間を移行する際の一連の翼の調節過程における、モーター60および操縦翼面50の傾斜の変化が図11A~図11Dに示されている。第1の実施形態と同様に、前縁部25、35は静止しており枢動せず、モーター60および操縦翼面50は一体的に枢動する。
図12は、図7~図11Dのいずれか1つの翼構成における垂直位置と水平位置との間の移行を示す概略断面図である。図示されるように、前翼と後翼との間の垂直方向および水平方向における間隔が示されている。図12には、各翼上の隣接するモーターの推力線が互いに非平行であることも示されており、これにより、ヒンジ点33を中心にモーメントが生じ、これを選択的に使用することで操縦翼面50を回転させることができる。
図1~図17に示された実施形態では、2つまたは4つのモーター60が各翼20、22、30、32に設置されている。しかしながら、追加のモーター60を航空機10に、例えば翼20、22、30、32、機体24の機首または翼接続部材42に設置してもよい。
図15~図17に示される実施形態では、2つのモーター60が各翼20、22、30、32に設置されている。設置するモーター60の数を減らすことで、ローター70の直径を大きくすることができる。図17の実施形態に示すように、前方から見ると、ローターブレード70の直径は隣接するローターブレードと重なっている。この重なった構成に適合させるために、モーター60は、ローターブレードの各組が隣接するローターブレードの組に対して(回転軸に対して)長手方向にオフセットされるように設置され、そうすることで隣接するローター同士が接触しないようにするとともに、直径の大きなローターを配置することが可能となる。これを図15に示す。
一実施形態においては、ヒンジ機構をモーターポッド構造に統合することで、構造重量をさらに低減することができる。さらに考えられる改善点としては、モーターポッドが複数ある場合、各ポッドにヒンジベアリングを搭載する構成がある。
図10を参照すると、モーター60のローターブレード70は、非使用時に下向きに折りたたむことができる。さらに、離着陸時と比較して前進飛行モードでは通常必要とされる推進力が少ないため、前進飛行モードのときにはローターブレード70のいくつかを下向きおよび後ろ向きに折りたたむことができる。
有利には、航空機10においては、各モーター60に対して、より小さな分散型ヒンジベアリングの使用が可能であり、これにより冗長化が図られ、大幅な直径の縮小化(したがって、軽量化)が実現する。
本発明は、降下中にティルトウィング機が経験するバフェットを劇的に減少させるスロット付き前縁部を備えることができる。
揚力および/または前進速度を増加させるために、機体などの翼以外の構造に電動モーター(図示せず)を追加して設置することも可能である。
有利には、箱型翼構造は、同じサイズの従来の翼よりも空気力学的に効率的であり、構造的により効率的(したがってより軽量)であり得る。
有利には、箱型翼構造を用いることで剛性が増す。
有利には、航空機10では、従来のティルトウィング機と比較して、必要とされるベアリングおよび傾斜構造の重量が低減される。これは、従来のティルトウィングでは、回転する堅い構造の1対の大きなベアリング(航空機の機体の両側に1つずつ)が必要なためである。
本発明を具体的な例を参照して説明したが、本発明が他の多くの形態で具現化され得ることは当業者には理解されるであろう。

Claims (14)

  1. 機体と、
    前記機体の互いに反対側に取り付けられた第1および第2の前翼と、
    前記機体の互いに反対側に取り付けられた第1および第2の後翼と、を備え
    前記翼それぞれは、固定された前縁部とほぼ水平な軸を中心に枢動する後部操縦翼面とを有しており、
    前記翼に設置された電動のローターをそれぞれが有する複数の電動モーターであって、前記ローターは、各ローターがほぼ垂直な回転軸を有する第1の位置と、各ローターがほぼ水平な回転軸を有する第2の位置との間で前記後部操縦翼面と共に枢動する、複数の電動モーターをさらに備え、
    前記第1の前翼、第2の前翼、前記第1の後翼および第2の後翼の少なくとも1つは、前記翼の上面および下面に対してオフセットされかつ共通の後部操縦翼面と共に枢動する前記ローターのうちの第1および第2のローターを有し、
    前記第1および第2のローターの各々の本体部分は、前記共通の後部操縦翼面に固定され、前記第1のローターの第1の推力線は、前記共通の後部操縦翼面をヒンジ線の周りで第1の方向に回転させるように位置決めされ、前記第2のローターの第2の推力線は、前記共通の後部操縦翼面を前記ヒンジ線の周りで第2の方向に回転させるように位置決めされ、前記第1の方向は、前記第2の方向とは反対方向である、
    垂直離着陸(VTOL)機。
  2. 前記第1のローターは前記翼の下面の下側に位置し、前記第2のローターは前記翼の上面の上側に位置していることを特徴とする、
    請求項1に記載の垂直離着陸(VTOL)機。
  3. 前記電動モーターおよびローターは、前記翼の下面の下側および前記翼の上面の上側の位置に前記翼に沿って互い違いに分配されていることを特徴とする、
    請求項1または2に記載の垂直離着陸(VTOL)機。
  4. 前記機体から最も遠い前記前翼それぞれの先端部分が隣接する前記後翼の先端部分に接続部材によって接続されて箱型翼構造を画定していることを特徴とする、
    請求項1~3のいずれか1項に記載の垂直離着陸(VTOL)機。
  5. 前記前翼それぞれが隣接する前記後翼に1つ以上のストラットまたはタイバーによって接続されていることを特徴とする、
    請求項1~4のいずれか1項に記載の垂直離着陸(VTOL)機。
  6. 前記操縦翼面が約80~100度の範囲で枢動することを特徴とする、
    請求項1~5のいずれか1項に記載の垂直離着陸(VTOL)機。
  7. 前記操縦翼面が約90度の範囲で枢動することを特徴とする、
    請求項6に記載の垂直離着陸(VTOL)機。
  8. 機体と、
    前記機体の互いに反対側に取り付けられた第1および第2の前翼と、
    前記機体の互いに反対側に取り付けられた第1および第2の後翼であって、前記前翼それぞれが隣接する前記後翼に先端接続部材またはストラットによって接続されて箱型翼構造またはストラットブレース翼構造を画定する、第1および第2の後翼と、を備え
    前記翼それぞれは、固定された前縁部とほぼ水平な軸を中心に枢動する後部操縦翼面とを有しており、
    前記第1の前翼、第2の前翼、前記第1の後翼および第2の後翼の1つに設置された電動の第1および第2のローターであって、前記ローターは、各ローターがほぼ垂直な回転軸を有する第1の位置と、各ローターがほぼ水平な回転軸を有する第2の位置との間で前記後部操縦翼面と共に枢動する、第1および第2のローターをさらに備え、
    前記第1および第2のローターの各々の本体部分は、前記共通の後部操縦翼面に固定され、前記第1のローターの第1の推力線は、前記共通の後部操縦翼面をヒンジ線の周りで第1の方向に回転させるように位置決めされ、前記第2のローターの第2の推力線は、前記共通の後部操縦翼面を前記ヒンジ線の周りで第2の方向に回転させるように位置決めされ、前記第1の方向は、前記第2の方向とは反対方向である、
    垂直離着陸(VTOL)機。
  9. 前記翼の少なくとも1つは、前記翼の上面および下面に対してオフセットされた第1のローターを有する第1の電動モーターおよび第2のローターを有する第2の電動モーターを有していることを特徴とする、
    請求項8に記載の垂直離着陸(VTOL)機。
  10. 前記電動モーターおよびローターは、前記翼の下面の下側および前記翼の上面の上側の位置に前記翼に沿って互い違いに分配されていることを特徴とする、
    請求項8または9に記載の垂直離着陸(VTOL)機。
  11. 前記ローターそれぞれが、同一の前記翼に設置された隣接するローターに対して長手方向に、前記ローターの回転軸方向に関してオフセットされていることを特徴とする、
    請求項1~10のいずれか1項に記載の垂直離着陸(VTOL)機。
  12. 前記ローターの回転軸に直交する面で見ると、前記ローターそれぞれの外径が、同一の前記翼に設置された隣接する前記ローターの外径に重なっていることを特徴とする、
    請求項11に記載の垂直離着陸(VTOL)機。
  13. 前記機体は、前方を向いており上方に開くように上部領域でヒンジ固定されたドアから乗り込むことができるキャビンを有していることを特徴とする、
    請求項1~12のいずれか1項に記載の垂直離着陸(VTOL)機。
  14. 前記第1および第2の後翼のそれぞれは、前記VTOL機を支持する1つ以上の車輪を有し下方および後方に延在しているウィングレットを備えていることを特徴とする、
    請求項1~13のいずれか1項に記載の垂直離着陸(VTOL)機。
JP2023024268A 2017-09-22 2023-02-20 電動垂直離着陸(vtol)機用の翼傾斜作動システム Active JP7457175B2 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
AU2017903864 2017-09-22
AU2017903864A AU2017903864A0 (en) 2017-09-22 Wing tilt mechanism for electric vertical take-off and landing (VTOL) aircraft
AU2017904036 2017-10-06
AU2017904036A AU2017904036A0 (en) 2017-10-06 Wing tilt actuation system for electric vertical take-off and landing (VTOL) aircraft
AU2018901154A AU2018901154A0 (en) 2018-04-06 Wing tilt mechanism for electric vertical take-off and landing (VTOL) aircraft
AU2018901154 2018-04-06
PCT/AU2018/050963 WO2019056053A1 (en) 2017-09-22 2018-09-06 TILT ACTUATION SYSTEM FOR VERTICAL TAKE-OFF AND LANDING AIRCRAFT (ADAV)
JP2020537810A JP7232834B2 (ja) 2017-09-22 2018-09-06 電動垂直離着陸(vtol)機用の翼傾斜作動システム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020537810A Division JP7232834B2 (ja) 2017-09-22 2018-09-06 電動垂直離着陸(vtol)機用の翼傾斜作動システム

Publications (2)

Publication Number Publication Date
JP2023058697A JP2023058697A (ja) 2023-04-25
JP7457175B2 true JP7457175B2 (ja) 2024-03-27

Family

ID=65809451

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2020537809A Active JP7174054B2 (ja) 2017-09-22 2018-09-06 電動垂直離着陸(vtol)機用の翼傾斜作動システム
JP2020537810A Active JP7232834B2 (ja) 2017-09-22 2018-09-06 電動垂直離着陸(vtol)機用の翼傾斜作動システム
JP2023024268A Active JP7457175B2 (ja) 2017-09-22 2023-02-20 電動垂直離着陸(vtol)機用の翼傾斜作動システム

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2020537809A Active JP7174054B2 (ja) 2017-09-22 2018-09-06 電動垂直離着陸(vtol)機用の翼傾斜作動システム
JP2020537810A Active JP7232834B2 (ja) 2017-09-22 2018-09-06 電動垂直離着陸(vtol)機用の翼傾斜作動システム

Country Status (18)

Country Link
US (2) US20200223542A1 (ja)
EP (3) EP3684688A4 (ja)
JP (3) JP7174054B2 (ja)
KR (2) KR102650998B1 (ja)
CN (2) CN111247066B (ja)
AU (4) AU2018337069B2 (ja)
BR (2) BR112020005611B1 (ja)
CA (2) CA3075429A1 (ja)
ES (1) ES2953004T3 (ja)
IL (2) IL273314B2 (ja)
MX (2) MX2020003022A (ja)
PH (2) PH12020500508A1 (ja)
PL (1) PL3684687T3 (ja)
RU (2) RU2766634C2 (ja)
SG (2) SG11202002180RA (ja)
SI (1) SI3684687T1 (ja)
WO (2) WO2019056052A1 (ja)
ZA (2) ZA202001684B (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694911B2 (en) * 2014-03-18 2017-07-04 Joby Aviation, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
KR20210006972A (ko) 2018-05-31 2021-01-19 조비 에어로, 인크. 전력 시스템 아키텍처 및 이를 이용한 내고장성 vtol 항공기
US20220169380A1 (en) * 2018-06-23 2022-06-02 Behrang Mehrgan Vtol tail sitting aircraft with rotor blown nonplanar wing configuration
WO2020009871A1 (en) 2018-07-02 2020-01-09 Joby Aero, Inc. System and method for airspeed determination
EP3853736A4 (en) 2018-09-17 2022-11-16 Joby Aero, Inc. AIRCRAFT CONTROL SYSTEM
EP3860912B1 (en) * 2018-10-02 2023-04-05 Embraer S.A. Vertical and short takeoff and landing (vstol) aircraft
EP3891066A4 (en) 2018-12-07 2022-08-10 Joby Aero, Inc. ROTATING AIRFORCE AND DESIGN METHOD THEREFORE
WO2020180373A2 (en) 2018-12-07 2020-09-10 Joby Aero, Inc. Aircraft control system and method
WO2020132332A1 (en) 2018-12-19 2020-06-25 Joby Aero, Inc. Vehicle navigation system
US11230384B2 (en) 2019-04-23 2022-01-25 Joby Aero, Inc. Vehicle cabin thermal management system and method
EP3959770A4 (en) 2019-04-23 2023-01-04 Joby Aero, Inc. BATTERY THERMAL MANAGEMENT SYSTEM AND METHOD
KR20220029554A (ko) 2019-04-25 2022-03-08 조비 에어로, 인크. 수직 이착륙 항공기
USD933528S1 (en) * 2019-04-30 2021-10-19 Katla Aero AB Aircraft
BR112021023948A2 (pt) * 2019-05-29 2022-02-08 Craft Aerospace Tech Inc Design de aeronave novo utilizando asas em tandem e um sistema de propulsão distribuída
GB2585864B (en) * 2019-07-18 2022-04-27 Gkn Aerospace Services Ltd An aircraft
GB2601453B (en) * 2019-07-18 2023-05-03 Gkn Aerospace Services Ltd An aircraft
JP7342250B2 (ja) 2019-10-09 2023-09-11 キティー・ホーク・コーポレーション 異なる飛行モードのためのハイブリット電力システム
GB202007673D0 (en) * 2020-05-22 2020-07-08 Univ Nelson Mandela Metropolitan A vertical take-off and landing aircraft, methods and systems for controlling a vertical take-off and landing aircraft
WO2022056597A1 (en) * 2020-09-18 2022-03-24 AMSL Innovations Pty Ltd Aircraft structure
US20220402603A1 (en) * 2021-06-22 2022-12-22 Kitty Hawk Corporation Vehicle with tractor tiltrotors and pusher tiltrotors
WO2023282789A1 (ru) * 2021-07-06 2023-01-12 Владимир Анатольевич ПЕТРОВ Летательный аппарат с вертикальными взлетом и посадкой
CN113353254B (zh) * 2021-07-14 2023-02-28 空中舞者(威海)航空动力技术有限公司 一种垂直起降旋翼机
CN114084344A (zh) * 2021-08-23 2022-02-25 上海新云彩航空科技有限责任公司 一种带动力轮式起落架的多轴旋翼飞行器
CN114313251B (zh) * 2022-03-03 2022-06-21 天津斑斓航空科技有限公司 一种组合式飞行器主动倾转结构及飞行器
UA152017U (uk) * 2022-09-06 2022-10-12 Євген Олександрович Кононихін Літальний апарат вертикального зльоту і посадки із замкнутим крилом
KR102622742B1 (ko) 2023-05-09 2024-01-08 함명래 비행 안정성이 향상되는 복합형 수직이착륙기

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042509A1 (en) 2009-08-24 2011-02-24 Bevirt Joeben Lightweight Vertical Take-Off and Landing Aircraft and Flight Control Paradigm Using Thrust Differentials
WO2016135697A1 (en) 2015-02-27 2016-09-01 Skybox Engineering S.R.L. Tiltrotor with double mobile wing
US20160288903A1 (en) 2015-03-24 2016-10-06 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Aerodynamically Actuated Thrust Vectoring Devices

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1498412A (en) * 1920-02-18 1924-06-17 Whiteside Howard Austin Helico-plane
US3181810A (en) * 1961-02-27 1965-05-04 Curtiss Wright Corp Attitude control system for vtol aircraft
FR94023E (fr) * 1967-05-24 1969-06-20 Bertin & Cie Systeme sustentateur ou propulso sustentateur pour aéronefs.
US5046684A (en) * 1989-02-09 1991-09-10 Julian Wolkovitch Airplane with braced wings and pivoting propulsion devices
RU2097272C1 (ru) * 1993-12-30 1997-11-27 Анатолий Васильевич Бобров Экологичный гибридный летательный аппарат вертикального взлета и посадки с хранилищем для используемого в нем гелия
US5823468A (en) * 1995-10-24 1998-10-20 Bothe; Hans-Jurgen Hybrid aircraft
ITFI20030043A1 (it) * 2003-02-19 2004-08-20 Aldo Frediani Velivolo biplano ad ali contrapposte ad elevata stabilita' statica
JP4566551B2 (ja) * 2003-12-04 2010-10-20 株式会社東京アールアンドデー 電動機駆動回路
US20050178879A1 (en) * 2004-01-15 2005-08-18 Youbin Mao VTOL tailsitter flying wing
US7118066B2 (en) * 2004-07-22 2006-10-10 Norman Carter Allen Tall V/STOL aircraft
CN1907806A (zh) * 2005-08-02 2007-02-07 韩培洲 前旋翼倾转式垂直起落飞机
US7871033B2 (en) * 2008-04-11 2011-01-18 Karem Aircraft, Inc Tilt actuation for a rotorcraft
JP2010057314A (ja) * 2008-08-29 2010-03-11 Kyocera Mita Corp モータ制御装置及び画像形成装置
US9187174B2 (en) * 2010-10-06 2015-11-17 Donald Orval Shaw Aircraft with wings and movable propellers
DE102012106869A1 (de) * 2012-07-27 2014-01-30 Jonathan Hesselbarth Senkrecht startendes Flugzeug
US10071801B2 (en) * 2013-08-13 2018-09-11 The United States Of America As Represented By The Administrator Of Nasa Tri-rotor aircraft capable of vertical takeoff and landing and transitioning to forward flight
DE102013109392A1 (de) * 2013-08-29 2015-03-05 Airbus Defence and Space GmbH Schnellfliegendes, senkrechtstartfähiges Fluggerät
US9694911B2 (en) * 2014-03-18 2017-07-04 Joby Aviation, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
WO2015143098A2 (en) * 2014-03-18 2015-09-24 Joby Aviation, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
EP3798123B1 (en) * 2014-03-18 2024-05-01 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
US10625852B2 (en) * 2014-03-18 2020-04-21 Joby Aero, Inc. Aerodynamically efficient lightweight vertical take-off and landing aircraft with pivoting rotors and stowing rotor blades
GB2526517A (en) * 2014-03-27 2015-12-02 Malloy Aeronautics Ltd Rotor-Lift Aircraft
RU2577931C1 (ru) * 2015-01-13 2016-03-20 Дмитрий Сергеевич Дуров Гибридный самолет короткого взлета и посадки
DE102015207445B4 (de) * 2015-04-23 2023-08-17 Lilium GmbH Tragfläche für ein Luftfahrzeug und Luftfahrzeug
DE102015006511A1 (de) * 2015-05-26 2016-12-01 Airbus Defence and Space GmbH Senkrechtstartfähiges Fluggerät
US20170297699A1 (en) * 2015-10-30 2017-10-19 Sikorsky Aircraft Corporation Quad rotor tail-sitter aircraft with rotor blown wing (rbw) configuration
WO2017096478A1 (en) * 2015-12-11 2017-06-15 Coriolis Games Corporation Hybrid multicopter and fixed wing aerial vehicle
CN105882961A (zh) * 2016-04-13 2016-08-24 邓阳平 一种可垂直起降的高速飞行器及其控制方法
CN105730692B (zh) * 2016-04-19 2018-04-17 北京航空航天大学 一种倾转四旋翼长航时复合式飞行器
KR20190040136A (ko) * 2016-05-18 2019-04-17 에이캐럿큐브드 바이 에어버스 엘엘씨 승객 또는 화물 수송용 자율 조종 항공기
EP3464064B1 (en) * 2016-06-03 2022-11-16 AeroVironment, Inc. Vertical take-off and landing (vtol) winged air vehicle with complementary angled rotors
US10807707B1 (en) * 2016-09-15 2020-10-20 Draganfly Innovations Inc. Vertical take-off and landing (VTOL) aircraft having variable center of gravity

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110042509A1 (en) 2009-08-24 2011-02-24 Bevirt Joeben Lightweight Vertical Take-Off and Landing Aircraft and Flight Control Paradigm Using Thrust Differentials
WO2016135697A1 (en) 2015-02-27 2016-09-01 Skybox Engineering S.R.L. Tiltrotor with double mobile wing
US20160288903A1 (en) 2015-03-24 2016-10-06 U.S.A. As Represented By The Administrator Of The National Aeronautics And Space Administration Aerodynamically Actuated Thrust Vectoring Devices

Also Published As

Publication number Publication date
AU2018337666B2 (en) 2020-09-17
AU2018337069B2 (en) 2020-09-17
CN111225853B (zh) 2024-04-05
EP4219303A1 (en) 2023-08-02
AU2018337666A1 (en) 2020-03-26
SI3684687T1 (sl) 2023-10-30
EP3684687A4 (en) 2021-06-16
JP2020534212A (ja) 2020-11-26
AU2020230338B2 (en) 2022-08-25
JP2020534211A (ja) 2020-11-26
BR112020005611B1 (pt) 2024-03-05
NZ762347A (en) 2020-11-27
AU2018337069A1 (en) 2020-03-26
SG11202002180RA (en) 2020-04-29
AU2020230338A1 (en) 2020-10-01
PH12020500507A1 (en) 2021-05-17
NZ762345A (en) 2020-11-27
MX2020003021A (es) 2020-08-06
RU2766634C2 (ru) 2022-03-15
MX2020003022A (es) 2020-08-06
EP3684688A4 (en) 2021-06-16
CN111225853A (zh) 2020-06-02
EP3684688A1 (en) 2020-07-29
EP3684687A1 (en) 2020-07-29
KR102627026B1 (ko) 2024-01-19
EP3684687B1 (en) 2023-05-24
KR20200057057A (ko) 2020-05-25
WO2019056053A1 (en) 2019-03-28
BR112020005719A2 (pt) 2020-10-06
US20200223542A1 (en) 2020-07-16
RU2020110832A3 (ja) 2021-12-14
CA3075430A1 (en) 2019-03-28
CN111247066B (zh) 2024-03-08
JP7174054B2 (ja) 2022-11-17
IL273314A (en) 2020-04-30
KR20200057058A (ko) 2020-05-25
JP7232834B2 (ja) 2023-03-03
BR112020005611A2 (pt) 2020-09-29
ES2953004T3 (es) 2023-11-07
US20200231277A1 (en) 2020-07-23
IL273315A (en) 2020-04-30
CA3075429A1 (en) 2019-03-28
SG11202002182XA (en) 2020-04-29
PH12020500508A1 (en) 2021-05-17
RU2020110832A (ru) 2021-10-22
RU2766037C2 (ru) 2022-02-07
RU2020110837A3 (ja) 2021-12-10
KR102650998B1 (ko) 2024-03-26
AU2020230337A1 (en) 2020-10-01
RU2020110837A (ru) 2021-10-22
ZA202001683B (en) 2021-08-25
US11535371B2 (en) 2022-12-27
IL273314B2 (en) 2024-01-01
AU2020230337B2 (en) 2022-08-04
JP2023058697A (ja) 2023-04-25
WO2019056052A1 (en) 2019-03-28
IL273314B1 (en) 2023-09-01
PL3684687T3 (pl) 2023-12-11
CN111247066A (zh) 2020-06-05
ZA202001684B (en) 2021-08-25

Similar Documents

Publication Publication Date Title
JP7457175B2 (ja) 電動垂直離着陸(vtol)機用の翼傾斜作動システム
JP7436499B2 (ja) 垂直離着陸(vtol)航空機
US10293933B2 (en) Rotating wing assemblies for tailsitter aircraft
AU2022323419A1 (en) Vertical take-off and landing craft systems and methods
RU2786262C1 (ru) Конвертоплан и соответствующий способ управления
NZ762347B2 (en) Wing tilt actuation system for electric vertical take-off and landing (vtol) aircraft
NZ762345B2 (en) Wing tilt actuation system for electric vertical take-off and landing (vtol) aircraft

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240314

R150 Certificate of patent or registration of utility model

Ref document number: 7457175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150