JP7443934B2 - Blood component measuring device and blood purification device - Google Patents

Blood component measuring device and blood purification device Download PDF

Info

Publication number
JP7443934B2
JP7443934B2 JP2020093112A JP2020093112A JP7443934B2 JP 7443934 B2 JP7443934 B2 JP 7443934B2 JP 2020093112 A JP2020093112 A JP 2020093112A JP 2020093112 A JP2020093112 A JP 2020093112A JP 7443934 B2 JP7443934 B2 JP 7443934B2
Authority
JP
Japan
Prior art keywords
light
blood
section
output voltage
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020093112A
Other languages
Japanese (ja)
Other versions
JP2021186185A (en
Inventor
歩 星野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JMS Co Ltd
Original Assignee
JMS Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JMS Co Ltd filed Critical JMS Co Ltd
Priority to JP2020093112A priority Critical patent/JP7443934B2/en
Priority to CN202180029367.4A priority patent/CN115427090A/en
Priority to PCT/JP2021/020046 priority patent/WO2021241647A1/en
Publication of JP2021186185A publication Critical patent/JP2021186185A/en
Application granted granted Critical
Publication of JP7443934B2 publication Critical patent/JP7443934B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/14Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis
    • A61M1/16Dialysis systems; Artificial kidneys; Blood oxygenators ; Reciprocating systems for treatment of body fluids, e.g. single needle systems for hemofiltration or pheresis with membranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Vascular Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Emergency Medicine (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • External Artificial Organs (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、体外循環する血液中の血液成分の濃度変化を継続的に測定可能な血液成分測定装置及び血液浄化装置に関する。 The present invention relates to a blood component measuring device and a blood purification device that are capable of continuously measuring changes in the concentration of blood components in extracorporeally circulating blood.

透析治療等の血液浄化療法において、患者の血液に含まれる血液成分の濃度は、治療の効果や効率を判断するための重要な指標となる。血液成分の濃度は、治療中にも変化していくので、体外循環する血液成分の濃度変化を継続的に測定する必要がある。継続的な血液成分の濃度の測定方法として、チューブ等を介して血液に非接触で所定の波長の光を発光部から照射し、その透過光や反射光の強度を受光部で電圧に変換し、受光部の出力電圧に基づいて濃度を測定する方法が知られている。 In blood purification therapy such as dialysis treatment, the concentration of blood components contained in a patient's blood is an important index for determining the effectiveness and efficiency of treatment. Since the concentration of blood components changes during treatment, it is necessary to continuously measure changes in the concentration of blood components circulating extracorporeally. As a method for continuously measuring the concentration of blood components, light of a predetermined wavelength is irradiated from a light emitting part through a tube or the like without contacting the blood, and the intensity of the transmitted light and reflected light is converted into voltage by a light receiving part. 2. Description of the Related Art A method of measuring concentration based on the output voltage of a light receiving section is known.

このように光を用いた測定においては、受光部に入射する外光により受光部の出力電圧に誤差が生じる。この誤差を低減するため、例えば、特許文献1には、発光部の消灯及び点灯を繰り返し行い、消灯中における出力電圧を外光の出力電圧として、点灯中における出力電圧から減じて補正を行い、濃度を算出する方法が記載されている。発光部の点滅ごとに補正を行うので、継続的に精度よく成分濃度の測定が可能となっている。 In such measurements using light, an error occurs in the output voltage of the light receiving section due to external light incident on the light receiving section. In order to reduce this error, for example, Patent Document 1 discloses that the light emitting section is repeatedly turned off and on, and the output voltage while the light is turned off is used as the output voltage of external light, and the output voltage is subtracted from the output voltage when the light is turned on for correction. A method for calculating the concentration is described. Since correction is performed every time the light emitting unit blinks, it is possible to continuously and accurately measure component concentrations.

また、特許文献2には、複数の発光部を用いて、血液中のヘマトクリット値や酸素飽和度等の血液成分濃度を測定可能な血液浄化装置が記載されている。
一般的に、酸素飽和度の測定には、約600nm及び約800nmの2つの波長帯の光が用いられ、また、ヘマトクリット値の測定には、約800nmの波長帯の光が用いられる。また、ヘマトクリット値を精度よく測定するために、約800nmに加えて、約1300nmの2つの波長帯の光が用いられる場合もある。
Further, Patent Document 2 describes a blood purification device that can measure blood component concentrations such as hematocrit value and oxygen saturation in blood using a plurality of light emitting sections.
Generally, light in two wavelength bands of about 600 nm and about 800 nm is used to measure oxygen saturation, and light in a wavelength band of about 800 nm is used to measure hematocrit. Further, in order to accurately measure the hematocrit value, light in two wavelength bands of approximately 1300 nm in addition to approximately 800 nm may be used.

特開2004-97782号公報Japanese Patent Application Publication No. 2004-97782 特開2016-125号公報Unexamined Japanese Patent Publication No. 2016-125

上述の特許文献2に記載されているように、複数の波長帯の光を用いる測定において、特許文献1に記載の方法で精度よく測定するには、それぞれの消灯の時間を残光がなくなる程度まで長くして外光の出力電圧を測定すればよい。しかしながら、複数の波長帯の光を発光させるので、消灯の時間を長くすると、それぞれの波長帯の光の点灯の周期が長くなってしまう。そのため、測定にかかる時間が長くなってしまう。 As described in Patent Document 2 mentioned above, in measurements using light in multiple wavelength bands, in order to accurately measure using the method described in Patent Document 1, each turn-off time must be set to a length that eliminates afterglow. It is sufficient to measure the output voltage of external light by increasing the length to . However, since light in a plurality of wavelength bands is emitted, if the turn-off time is lengthened, the period in which the light in each wavelength band is turned on becomes longer. Therefore, the time required for measurement becomes long.

従って、本発明は、短時間で血液成分の濃度を精度よく測定できる血液成分測定装置の提供を目的とする。 Therefore, an object of the present invention is to provide a blood component measuring device that can accurately measure the concentration of blood components in a short time.

本発明は、血液に向けて照射された光の透過光又は反射光の強度に基づいて、血液成分の濃度変化を継続的に測定する血液成分測定装置であって、可視光を含む複数の波長帯の光を発光する発光部と、前記発光部から照射される光の透過光又は反射光を電圧に変換して出力する受光部と、前記発光部の点灯及び消灯を制御する発光制御部と、前記受光部の出力電圧に基づいて、血液成分の濃度を算出する濃度算出部と、を備え、前記発光制御部は、所定の周期で点灯区間が重ならないように複数の波長帯で前記発光部をそれぞれ点滅させ、複数の消灯区間のうち、1つの消灯区間の長さが前記受光部の出力電圧の立ち下がり時間よりも長く、かつ、その他の消灯区間の長さが前記1つの消灯区間よりも短くなるように制御し、前記濃度算出部は、前記1つの消灯区間において前記受光部の出力電圧を外光の出力電圧として取得し、前記点灯区間における前記受光部の出力電圧から前記外光の出力電圧を減じた値に基づいて血液成分の濃度を算出する血液成分測定装置に関する。 The present invention is a blood component measuring device that continuously measures changes in the concentration of blood components based on the intensity of transmitted light or reflected light of light irradiated toward blood, and the device is capable of measuring blood components at multiple wavelengths including visible light. a light emitting section that emits a strip of light; a light receiving section that converts transmitted light or reflected light emitted from the light emitting section into a voltage and outputs the voltage; and a light emission control section that controls turning on and off of the light emitting section. , a concentration calculation unit that calculates the concentration of blood components based on the output voltage of the light receiving unit, and the light emission control unit controls the light emission in a plurality of wavelength bands at a predetermined period so that lighting sections do not overlap. of the plurality of off sections, the length of one off section is longer than the fall time of the output voltage of the light receiving section, and the length of the other off sections is the same as the one off section. The concentration calculating section obtains the output voltage of the light receiving section in the one lights-out section as the output voltage of external light, and calculates the output voltage of the light receiving section in the lighting section from the output voltage of the light receiving section in the lighting section. The present invention relates to a blood component measuring device that calculates the concentration of blood components based on a value obtained by subtracting the output voltage of light.

また、前記発光制御部は、前記その他の消灯区間が前記受光部の出力電圧の立ち下がり時間よりも短くなるように制御することが好ましい。 Further, it is preferable that the light emission control section performs control such that the other light-off period is shorter than a falling time of the output voltage of the light receiving section.

また、前記受光部は、複数の受光素子を有しており、前記複数の受光素子は、それぞれ異なる波長帯の光を受光し、前記濃度算出部は、前記1つの消灯区間において、前記複数の受光素子の各出力電圧を各外光の出力電圧として取得し、それぞれの波長帯の点灯区間における前記複数の受光素子の各出力電圧から前記各外光の出力電圧を減じた値に基づいて血液成分の濃度を算出することが好ましい。 Further, the light receiving unit includes a plurality of light receiving elements, each of the plurality of light receiving elements receives light in a different wavelength band, and the density calculation unit is configured to calculate the number of light receiving elements in the one light-off period. The output voltage of each light-receiving element is obtained as the output voltage of each external light, and blood is detected based on the value obtained by subtracting the output voltage of each of the external lights from each output voltage of the plurality of light-receiving elements in the lighting section of each wavelength band. Preferably, the concentrations of the components are calculated.

また、本発明は、前記血液成分測定装置と、血液浄化器と、血液回路と、前記血液回路に設けられ、前記血液浄化器に血液を送るための血液ポンプと、前記血液回路を流れる血液の成分濃度を測定するための測定部と、制御装置と、を備える血液浄化装置であって、前記発光部及び前記受光部は、前記測定部に設けられ、前記発光制御部及び前記濃度算出部は、前記制御装置に設けられる血液浄化装置に関する。 The present invention also provides the blood component measuring device, a blood purifier, a blood circuit, a blood pump provided in the blood circuit for sending blood to the blood purifier, and a blood pump that is provided in the blood circuit to send blood to the blood purifier. A blood purification device comprising a measuring section for measuring component concentration and a control device, wherein the light emitting section and the light receiving section are provided in the measuring section, and the light emitting control section and the concentration calculating section are provided in the measuring section. , relates to a blood purification device provided in the control device.

本発明の血液成分測定装置によれば、複数の消灯区間のうち、1つの消灯区間を長くすることで外光の出力電圧を正確に取得して血液成分の濃度を精度よく測定可能であると共に、その他の消灯区間を短くすることにより短時間で血液成分の濃度を測定できる。 According to the blood component measuring device of the present invention, by lengthening one of the plurality of light-off sections, it is possible to accurately obtain the output voltage of external light and measure the concentration of blood components with high precision. By shortening the other light-off periods, the concentration of blood components can be measured in a short time.

本発明の第1実施形態に係る血液成分測定装置を示すブロック図である。FIG. 1 is a block diagram showing a blood component measuring device according to a first embodiment of the present invention. 第1実施形態における測定部の構成を説明するための模式図である。FIG. 3 is a schematic diagram for explaining the configuration of a measuring section in the first embodiment. 第1実施形態における受光部の出力電圧を示すグラフである。It is a graph which shows the output voltage of the light receiving part in 1st Embodiment. 本発明の第2実施形態に係る血液成分測定装置を備える血液浄化装置の概略構成を示す図である。FIG. 2 is a diagram showing a schematic configuration of a blood purification device including a blood component measuring device according to a second embodiment of the present invention. 第2実施形態における血液浄化装置のブロック図である。It is a block diagram of the blood purification apparatus in 2nd Embodiment. 第2実施形態における測定部の構成を説明するための模式図である。FIG. 7 is a schematic diagram for explaining the configuration of a measuring section in a second embodiment. 第2実施形態における受光部の出力電圧を示すグラフである。It is a graph which shows the output voltage of the light receiving part in 2nd Embodiment.

以下、本発明の血液成分測定装置の好ましい各実施形態について、図面を参照しながら説明する。
本発明の血液成分測定装置は、透析療法等を行う血液浄化装置や人工心肺装置等を用いて患者の血液を体外循環させて行う治療において、血液成分の濃度を血液に非接触で継続的に測定可能とするものである。第1実施形態では、血液成分として酸素飽和度を測定可能な血液成分測定装置について説明し、第2実施形態では、血液成分として、酸素飽和度及びヘマトクリット値を測定可能な血液成分測定装置を備える血液浄化装置について説明する。
Hereinafter, preferred embodiments of the blood component measuring device of the present invention will be described with reference to the drawings.
The blood component measuring device of the present invention continuously measures the concentration of blood components without contacting the blood during treatment in which a patient's blood is circulated extracorporeally using a blood purification device, an artificial heart-lung machine, etc. for dialysis therapy, etc. This makes it measurable. The first embodiment describes a blood component measuring device capable of measuring oxygen saturation as a blood component, and the second embodiment includes a blood component measuring device capable of measuring oxygen saturation and hematocrit value as blood components. The blood purification device will be explained.

<第1実施形態>
図1~図3を参照して第1実施形態について詳細に説明する。図1は、本発明の第1実施形態に係る血液成分測定装置1を示すブロック図である。
図1に示すように、血液成分測定装置1は、測定部10と、制御部20と、表示部30と、を備える。
<First embodiment>
The first embodiment will be described in detail with reference to FIGS. 1 to 3. FIG. 1 is a block diagram showing a blood component measuring device 1 according to a first embodiment of the present invention.
As shown in FIG. 1, the blood component measurement device 1 includes a measurement section 10, a control section 20, and a display section 30.

測定部10は、2つの波長帯の光を発光する発光部11と、発光部11から照射される透過光又は反射光を受光して電圧に変換し出力する受光部12と、を有し、血液が流れるチューブや血液チャンバ等の流路に取り付けられる。 The measurement unit 10 includes a light emitting unit 11 that emits light in two wavelength bands, and a light receiving unit 12 that receives transmitted light or reflected light emitted from the light emitting unit 11, converts it into a voltage, and outputs it, It is attached to a flow path such as a tube or blood chamber through which blood flows.

発光部11は、2つの発光素子L1、L2と、発光回路LCと、を含んで構成される。本実施形態では、血液成分の一例として、酸素飽和度を測定するので、発光素子L1として、可視光である約600nmの波長帯の光を発光する発光ダイオードを用い、発光素子L2として、約800nmの波長帯の光を発光する発光ダイオードを用いる。発光回路LCは、後述する発光制御回路21から送られる信号に基づいて、発光素子L1、L2を点灯又は消灯させる。約600nmの波長帯の光は、主に還元ヘモグロビンにより吸収され、約800nmの波長帯の光は、主に還元ヘモグロビンと酸化ヘモグロビンにより吸収される。これら2つの波長帯の光が血液に照射されると、一部は吸収され、一部は透過し、一部は反射する。 The light emitting section 11 includes two light emitting elements L1 and L2 and a light emitting circuit LC. In this embodiment, since oxygen saturation is measured as an example of blood components, a light emitting diode that emits visible light in a wavelength band of about 600 nm is used as the light emitting element L1, and a light emitting diode that emits light in a wavelength band of about 600 nm, which is visible light, is used as the light emitting element L2. A light emitting diode that emits light in the wavelength range is used. The light emitting circuit LC turns on or off the light emitting elements L1 and L2 based on a signal sent from a light emitting control circuit 21, which will be described later. Light in a wavelength band of about 600 nm is mainly absorbed by deoxyhemoglobin, and light in a wavelength band of about 800 nm is mainly absorbed by deoxyhemoglobin and oxyhemoglobin. When blood is irradiated with light in these two wavelength bands, some of it is absorbed, some of it is transmitted, and some of it is reflected.

受光部12は、1つの受光素子F1と、受光回路RCと、を含んで構成されている。本実施形態で用いる2つの波長帯は、約600nmと約800nmで近いため、受光素子F1は、両方の波長帯の光を受光可能なフォトダイオードを用いる。2つの波長帯についてそれぞれ別のフォトダイオードを用いてもよい。受光回路RCは、受光素子F1に入射された光の強度に応じて流れる微弱な電流を電圧に変換して増幅させて出力する回路である。
本実施形態では、図2に示すように、発光部11と受光部12は並列に配置されて、チューブを流れる血液Bに向けて発光部11から光が照射され、血液の表面部において反射された反射光が受光部12に入射して、電圧に変換される。
The light receiving section 12 includes one light receiving element F1 and a light receiving circuit RC. Since the two wavelength bands used in this embodiment are close, approximately 600 nm and approximately 800 nm, the light receiving element F1 uses a photodiode that can receive light in both wavelength bands. Separate photodiodes may be used for the two wavelength bands. The light receiving circuit RC is a circuit that converts a weak current flowing in accordance with the intensity of light incident on the light receiving element F1 into a voltage, amplifies the voltage, and outputs the voltage.
In this embodiment, as shown in FIG. 2, the light emitting section 11 and the light receiving section 12 are arranged in parallel, and light is emitted from the light emitting section 11 toward the blood B flowing through the tube, and is reflected at the surface of the blood. The reflected light enters the light receiving section 12 and is converted into voltage.

制御部20は、発光制御部21と、濃度算出部22と、を備える。
発光制御部21は、発光部11におけるそれぞれの発光素子L1、L2を所定の周期で点滅させるための信号を発光回路LCに送り、発光部11の点灯及び消灯を制御する。
濃度算出部22は、受光回路RCから出力された電圧に基づいて血液成分としての酸素飽和度を算出する。具体的な算出方法については、後に詳しく説明する。
The control section 20 includes a light emission control section 21 and a concentration calculation section 22.
The light emission control section 21 sends a signal to the light emitting circuit LC for blinking each of the light emitting elements L1 and L2 in the light emitting section 11 at a predetermined period, and controls lighting and extinguishing of the light emitting section 11.
The concentration calculation unit 22 calculates the oxygen saturation level as a blood component based on the voltage output from the light receiving circuit RC. A specific calculation method will be explained in detail later.

表示部30は、濃度算出部22で算出された血液成分の濃度や、血液成分の経時変化等を表示する液晶パネル等により構成される。 The display unit 30 is configured with a liquid crystal panel or the like that displays the concentration of blood components calculated by the concentration calculation unit 22, changes in blood components over time, and the like.

次に、具体的な血液成分の濃度の測定方法について、図3を参照しながら説明する。
発光制御部21は、発光素子L1、L2をそれぞれ所定の周期Tで点滅させるように発光部11を制御する。このように所定の周期Tで発光部11を点滅させた場合、受光部12の出力電圧は、図3に示すような波形となる。
Next, a specific method for measuring the concentration of blood components will be described with reference to FIG. 3.
The light emission control section 21 controls the light emission section 11 so as to cause the light emitting elements L1 and L2 to blink at a predetermined period T, respectively. When the light emitting section 11 is blinked at the predetermined period T in this manner, the output voltage of the light receiving section 12 has a waveform as shown in FIG.

図3において、発光素子L1の点灯開始から消灯開始までの区間を点灯区間Ton1とし、発光素子L2の点灯開始から消灯開始までの区間を点灯区間Ton2とする。また、発光素子L2の消灯開始から発光素子L1の点灯開始までの区間を消灯区間Toff1とし、発光素子L1の消灯開始から発光素子L2の点灯開始までの区間を消灯区間Toff2とする。 In FIG. 3, the section from the start of lighting of the light emitting element L1 to the start of turning off the light is defined as a lighting section Ton1, and the section from the start of lighting of the light emitting element L2 to the start of turning off the light is set as a lighting section Ton2. Further, the section from the start of turning off the light emitting element L2 to the start of lighting of the light emitting element L1 is defined as a lights out section Toff1, and the section from the start of turning off the light emitting element L1 to the start of lighting of the light emitting element L2 is set as a lights out section Toff2.

この場合、所定の周期T=Toff1+Ton1+Toff2+Ton2の関係が成立する。ここで、発光制御部21は、2つの消灯区間Toff1、Toff2のうち、消灯区間Toff1よりも消灯区間Toff2が短くなるように制御する。また、消灯区間Toff1は、発光素子L2の点灯による残光の影響がなくなった後も続くように、長さが設定される。 In this case, the predetermined period T=Toff1+Ton1+Toff2+Ton2 holds true. Here, the light emission control unit 21 controls the light-off period Toff2 to be shorter than the light-off period Toff1 among the two light-off periods Toff1 and Toff2. Further, the length of the light-off section Toff1 is set so that it continues even after the influence of afterglow caused by the lighting of the light emitting element L2 disappears.

つまり、点灯区間Ton2において、所定の値まで上昇した出力電圧は、消灯区間Toff1において、所定の立ち下がり時間で立ち下がって収束する。つまり、消灯区間Toff1において、所定の立ち下がり時間が過ぎた後は、受光部12の出力電圧は、外光の入射による出力電圧Vnであるとみなすことができる。 That is, the output voltage that has increased to a predetermined value in the lighting period Ton2 falls and converges with a predetermined fall time in the non-lighting period Toff1. That is, in the lights-off period Toff1, after the predetermined fall time has passed, the output voltage of the light receiving section 12 can be considered to be the output voltage Vn due to the incidence of external light.

本実施形態では、一例として、Ton1=Ton2=Toff1=8msとし、Toff2=4msとした。このように外光の出力電圧Vnを取得するための消灯区間Toff1以外の消灯区間Toff2を短く設定すると、周期Tを短くすることができる。これにより、短時間で血液濃度の測定が可能となる。例えば、本実施形態の場合、周期T=28msとなり、可視光を発光する発光素子L1の1秒間の点滅回数は、35.7回となる。一般的に1秒間に35回以上の点滅は、ちらついて見えないため、上述の設定でちらつきを低減することもできる。 In this embodiment, as an example, Ton1=Ton2=Toff1=8 ms, and Toff2=4 ms. In this way, by setting the light-off period Toff2 other than the light-off period Toff1 for obtaining the output voltage Vn of external light to be short, the period T can be shortened. This allows blood concentration to be measured in a short time. For example, in the case of this embodiment, the period T=28 ms, and the number of blinks per second of the light emitting element L1 that emits visible light is 35.7 times. Generally, blinking of 35 times or more per second is not visible as flickering, so the above settings can also reduce flickering.

濃度算出部22は、消灯区間Toff1において、受光部12の出力電圧を外光の出力電圧Vnとして取得する。次に、発光素子L1の点灯区間Ton1において、出力電圧V1から外光の出力電圧Vnを減じた値を、補正電圧Vc1として取得する。最後に、発光素子L2の点灯区間Ton2において、出力電圧V2から外光の出力電圧Vnを減じた値を、補正電圧Vc2として取得する。濃度算出部22は、還元ヘモグロビンの濃度に依存する補正電圧Vc1と、還元ヘモグロビンの濃度及び酸化ヘモグロビンの濃度に依存する補正電圧Vc2から、還元ヘモグロビンと酸化ヘモグロビンの割合を求めて、酸素飽和度を算出する。以下、これを繰り返し、継続的に濃度を算出する。 The concentration calculation unit 22 obtains the output voltage of the light receiving unit 12 as the external light output voltage Vn in the lights-off period Toff1. Next, in the lighting period Ton1 of the light emitting element L1, a value obtained by subtracting the output voltage Vn of external light from the output voltage V1 is obtained as the correction voltage Vc1. Finally, in the lighting period Ton2 of the light emitting element L2, a value obtained by subtracting the output voltage Vn of external light from the output voltage V2 is obtained as the correction voltage Vc2. The concentration calculating unit 22 calculates the oxygen saturation by calculating the ratio of deoxyhemoglobin and oxyhemoglobin from a correction voltage Vc1 that depends on the concentration of deoxyhemoglobin and a correction voltage Vc2 that depends on the concentration of deoxyhemoglobin and the concentration of oxyhemoglobin. calculate. Thereafter, this is repeated to continuously calculate the concentration.

以上説明した第1実施形態の血液成分測定装置1によれば、以下のような効果を奏する。 According to the blood component measuring device 1 of the first embodiment described above, the following effects are achieved.

(1)血液成分測定装置1は、発光制御部21に、所定の周期Tで点灯区間が重ならないように複数の波長帯で発光部11をそれぞれ点滅させ、複数の消灯区間Toff1、Toff2のうち、1つの消灯区間Toff1の長さが受光部12の出力電圧の立ち下がり時間よりも長く、かつ、その他の消灯区間Toff2の長さが1つの消灯区間Toff1よりも短くなるように制御させるものとし、濃度算出部22に、1つの消灯区間Toff1において外光の出力電圧Vnを取得させ、点灯区間Ton1、Ton2における受光部12の出力電圧V1、V2から外光の出力電圧Vnを減じた値Vc1、Vc2に基づいて血液成分の濃度を算出させた。これにより、すべての消灯区間を残光がなくなる程度まで長くする必要がないので、血液濃度の測定を短時間で、かつ、精度よく濃度を算出させられる。また、周期Tを短くしてちらつきを低減することができる。 (1) The blood component measuring device 1 causes the light emission control unit 21 to blink the light emission unit 11 in a plurality of wavelength bands at a predetermined cycle T so that the lighting sections do not overlap, and one of the plurality of light-off sections Toff1 and Toff2. , the length of one lights-off section Toff1 is longer than the fall time of the output voltage of the light receiving section 12, and the length of the other lights-off section Toff2 is controlled to be shorter than one lights-off section Toff1. , the density calculation unit 22 obtains the output voltage Vn of external light in one lights-off period Toff1, and the value Vc1 is obtained by subtracting the output voltage Vn of external light from the output voltages V1 and V2 of the light receiving unit 12 in the lighting periods Ton1 and Ton2. , the concentration of blood components was calculated based on Vc2. As a result, it is not necessary to lengthen all the light-off sections to the extent that there is no afterglow, so blood concentration can be measured in a short time and the concentration can be calculated with high accuracy. Furthermore, flickering can be reduced by shortening the period T.

<第2実施形態>
次に、第2実施形態に係る血液成分測定装置1Aについて図4~図7を参照して説明する。第2実施形態においては、体外循環装置が血液成分測定装置1Aを備える構成について説明する。体外循環装置の一例として、透析療法を実施可能な血液浄化装置100Aについて説明する。本実施形態で説明する血液浄化装置100Aは、腎不全患者や薬物中毒患者の血液を浄化すると共に、装置の構成部材の洗浄を行うプライミング工程、患者から血液を脱血する脱血工程、血液中の余分な水分を除去する透析工程、患者に血液を返す返血工程等の各工程を、血液回路内の透析液の流れを制御することで連続して自動的に行う自動血液浄化装置である。
<Second embodiment>
Next, a blood component measuring device 1A according to a second embodiment will be described with reference to FIGS. 4 to 7. In the second embodiment, a configuration in which an extracorporeal circulation apparatus includes a blood component measuring device 1A will be described. As an example of an extracorporeal circulation device, a blood purification device 100A that can perform dialysis therapy will be described. The blood purification device 100A described in this embodiment purifies the blood of patients with renal failure or drug addiction, as well as a priming step in which the constituent members of the device are cleaned, a blood removal step in which blood is removed from the patient, and a blood purification step in which blood is removed from the patient. This is an automatic blood purification device that continuously and automatically performs each process, such as the dialysis process to remove excess water from the blood, and the blood return process to return blood to the patient, by controlling the flow of dialysate in the blood circuit. .

図4は、本発明の第2実施形態に係る血液成分測定装置1Aを含む血液浄化装置100Aの概略構成を示す図であり、透析工程における状態を示しており、図5は、血液浄化装置100Aのブロック図である。 FIG. 4 is a diagram showing a schematic configuration of a blood purification device 100A including a blood component measuring device 1A according to a second embodiment of the present invention, and shows a state in a dialysis process, and FIG. FIG.

図4に示すように、血液浄化装置100Aは、血液を流すための血液回路110と、血液浄化器120と、測定部10Aと、透析液回路130と、制御装置140と、を備える。 As shown in FIG. 4, the blood purification device 100A includes a blood circuit 110 for flowing blood, a blood purifier 120, a measuring section 10A, a dialysate circuit 130, and a control device 140.

血液回路110は、動脈側ライン111と、静脈側ライン112と、薬剤ライン113と、排液ライン114と、血液チャンバ115と、を有する。動脈側ライン111、静脈側ライン112、薬剤ライン113及び排液ライン114は、いずれも液体が流通可能な可撓性を有する軟質のチューブを主体として構成される。 Blood circuit 110 includes an arterial line 111, a venous line 112, a drug line 113, a drainage line 114, and a blood chamber 115. The arterial line 111, the venous line 112, the drug line 113, and the drainage line 114 are all mainly composed of flexible, flexible tubes through which liquid can flow.

動脈側ライン111は、一端側が後述する血液浄化器120の血液導入口122aに接続される。動脈側ライン111には、動脈側接続部111a、動脈側気泡検知器111b、及び血液ポンプ111c、動脈側クランプ111dが配置される。
動脈側接続部111aは、動脈側ライン111の他端側に配置される。動脈側接続部111aには、患者の血管に穿刺される針が接続される。
動脈側気泡検知器111bは、チューブ内の気泡の有無を検出する。
血液ポンプ111cは、動脈側ライン111における動脈側気泡検知器111bよりも下流側に配置される。血液ポンプ111cは、動脈側ライン111を構成するチューブをローラーでしごくことにより、動脈側ライン111の内部の血液やプライミング液等の液体を送出する。
動脈側クランプ111dは、動脈側気泡検知器111bよりも上流側に配置される。動脈側クランプ111dは、例えば、動脈側ライン111を介して返血する場合に、動脈側気泡検知器111bによる気泡の検出結果に応じて制御され、動脈側ライン111の流路を開閉する。
One end of the arterial line 111 is connected to a blood inlet 122a of a blood purifier 120, which will be described later. The artery side line 111 is provided with an artery side connection part 111a, an artery side air bubble detector 111b, a blood pump 111c, and an artery side clamp 111d.
The artery side connection part 111a is arranged at the other end side of the artery side line 111. A needle to be punctured into a patient's blood vessel is connected to the artery side connection portion 111a.
The arterial air bubble detector 111b detects the presence or absence of air bubbles within the tube.
The blood pump 111c is arranged downstream of the arterial air bubble detector 111b in the arterial line 111. The blood pump 111c pumps out liquid such as blood and priming liquid inside the arterial line 111 by squeezing the tube constituting the arterial line 111 with a roller.
The artery side clamp 111d is arranged upstream of the artery side bubble detector 111b. For example, when blood is returned through the arterial line 111, the arterial clamp 111d is controlled according to the result of air bubble detection by the arterial air bubble detector 111b, and opens and closes the flow path of the arterial line 111.

静脈側ライン112は、一端側が後述する血液浄化器120の血液導出口122bに接続される。静脈側ライン112には、静脈側接続部112a、静脈側気泡検知器112b、ドリップチャンバ112c、及び静脈側クランプ112dが配置される。
静脈側接続部112aは、静脈側ラインの他端側に配置される。静脈側接続部112aには、患者の血管に穿刺される針が接続される。
静脈側気泡検知器112bは、チューブ内の気泡の有無を検出する。
ドリップチャンバ112cは、静脈側気泡検知器112bよりも上流側に配置される。ドリップチャンバ112cは、静脈側ライン112に混入した気泡や凝固した血液等を除去するため、また、静脈圧を測定するため、一定量の血液を貯留する。
静脈側クランプ112dは、静脈側気泡検知器112bよりも下流側に配置される。静脈側クランプ112dは、静脈側気泡検知器112bによる気泡の検出結果に応じて制御され、静脈側ライン112の流路を開閉する。
One end of the venous line 112 is connected to a blood outlet 122b of a blood purifier 120, which will be described later. The venous line 112 is provided with a venous connection part 112a, a venous bubble detector 112b, a drip chamber 112c, and a venous clamp 112d.
The venous connection part 112a is arranged at the other end of the venous line. A needle to be punctured into a patient's blood vessel is connected to the venous connection portion 112a.
The venous air bubble detector 112b detects the presence or absence of air bubbles within the tube.
The drip chamber 112c is arranged upstream of the venous bubble detector 112b. The drip chamber 112c stores a certain amount of blood in order to remove air bubbles, coagulated blood, etc. that have entered the venous line 112, and to measure venous pressure.
The venous clamp 112d is arranged downstream of the venous bubble detector 112b. The venous clamp 112d is controlled according to the result of bubble detection by the venous bubble detector 112b, and opens and closes the flow path of the venous line 112.

薬剤ライン113は、血液透析中に必要な薬剤を動脈側ライン111に供給する。薬剤ライン113は、一端側が薬剤を送り出す薬液ポンプ113aに接続され、他端側が動脈側ライン111に接続される。また、薬剤ライン113には不図示のクランプ手段が設けられており、薬剤を注入するとき以外は、クランプ手段により流路は閉鎖された状態である。第2実施形態では、薬剤ライン113の他端側は、動脈側ライン111における血液ポンプ111cよりも下流側に接続される。 The drug line 113 supplies necessary drugs to the arterial line 111 during hemodialysis. The drug line 113 has one end connected to a drug liquid pump 113a that pumps out a drug, and the other end connected to the arterial line 111. Further, the drug line 113 is provided with a clamping means (not shown), and the flow path is closed by the clamping means except when injecting the drug. In the second embodiment, the other end of the drug line 113 is connected to the arterial line 111 downstream of the blood pump 111c.

排液ライン114は、ドリップチャンバ112cに接続される。排液ライン114には、排液ラインクランプ114aが配置される。排液ライン114は、血液回路110及び血液浄化器120を洗浄して清浄化するプライミング工程でプライミング液を排液するためのラインである。 Drain line 114 is connected to drip chamber 112c. A drain line clamp 114a is arranged on the drain line 114. The drain line 114 is a line for draining a priming liquid during a priming process for washing and cleaning the blood circuit 110 and the blood purifier 120.

血液チャンバ115は、血液回路110のうち測定部10Aを取り付ける箇所に設けるものである。血液チャンバ115は、透明で硬質のポリカーボネイト等の樹脂により形成されており、血液回路110を構成するチューブに比べて発光部11Aからの照射面積が大きくなるように扁平な形状に構成されている。本実施形態では、患者から取り出す血液の状態を測定するため、血液チャンバ115を動脈側ライン111に設けるものとした。血液チャンバ115の取り付け箇所は、動脈側ライン111のどこに取り付けてもよいが、動脈側ライン111の一端側である血液浄化器120の血液導入口122aとの接続部に取り付けるものとした。 The blood chamber 115 is provided at a location in the blood circuit 110 where the measuring section 10A is attached. The blood chamber 115 is made of a transparent and hard resin such as polycarbonate, and is configured in a flat shape so that the area irradiated by the light emitting part 11A is larger than that of the tube constituting the blood circuit 110. In this embodiment, a blood chamber 115 is provided in the arterial line 111 in order to measure the condition of blood taken out from a patient. Although the blood chamber 115 may be attached anywhere on the arterial line 111, it is attached to the connection part with the blood inlet 122a of the blood purifier 120, which is one end side of the artery line 111.

血液浄化器120は、筒状に形成された容器本体121と、この容器本体121の内部に収容された透析膜(図示せず)と、を備え、容器本体121の内部は、透析膜により血液側流路と透析液側流路とに区画される(いずれも図示せず)。容器本体121には、血液回路110に連通する血液導入口122a及び血液導出口122bと、透析液回路130に連通する透析液導入口123a及び透析液導出口123bと、が形成される。 The blood purifier 120 includes a cylindrical container body 121 and a dialysis membrane (not shown) housed inside the container body 121. It is divided into a side channel and a dialysate side channel (both not shown). The container body 121 is formed with a blood inlet 122a and a blood outlet 122b that communicate with the blood circuit 110, and a dialysate inlet 123a and a dialysate outlet 123b that communicate with the dialysate circuit 130.

以上の血液回路110及び血液浄化器120によれば、対象者(透析患者)の動脈から取り出された血液は、血液ポンプ111cにより動脈側ライン111を流通して血液浄化器120の血液側流路に導入される。血液浄化器120に導入された血液は、透析膜を介して後述する透析液回路130を流通する透析液により浄化される。血液浄化器120において浄化された血液は、静脈側ライン112を流通して対象者の静脈に返血される。 According to the above-described blood circuit 110 and blood purifier 120, the blood taken out from the artery of the subject (dialysis patient) flows through the artery side line 111 by the blood pump 111c and flows through the blood side flow path of the blood purifier 120. will be introduced in Blood introduced into the blood purifier 120 is purified by a dialysate flowing through a dialysate circuit 130 (described later) via a dialysis membrane. The blood purified in the blood purifier 120 flows through the venous line 112 and is returned to the vein of the subject.

測定部10Aは、図5に示すように、3つの波長帯の光を発光する発光部11Aと、発光部11Aから照射される透過光又は反射光を電圧に変換して出力する受光部12Aと、を有し、血液チャンバ115に取り付けられる。
発光部11Aは、3つの発光素子L1、L2、L3と、発光回路LCAと、を含んで構成されている。本実施形態では、血液成分の一例として、酸素飽和度及びヘマトクリット値を測定する。酸素飽和度を測定するための発光素子L1、L2は、第1実施形態で説明したものと同様の発光ダイオードを用いるので、説明を省略する。発光素子L3は、約1300nmの波長帯の光を発光する発光ダイオードを用いる。発光回路LCAは、後述する発光制御回路21Aから送られる信号に基づいて、発光素子L1、L2、L3を点灯又は消灯させる。約1300nmの波長帯の光は、主に水により吸収され、約800nmの波長帯の光は、主にヘモグロビンにより吸収される。これら2つの波長帯の光を用いてヘマトクリット値の測定を行う。
As shown in FIG. 5, the measuring section 10A includes a light emitting section 11A that emits light in three wavelength bands, and a light receiving section 12A that converts transmitted light or reflected light emitted from the light emitting section 11A into a voltage and outputs the voltage. , attached to the blood chamber 115.
The light emitting section 11A includes three light emitting elements L1, L2, L3 and a light emitting circuit LCA. In this embodiment, oxygen saturation and hematocrit value are measured as examples of blood components. As the light emitting elements L1 and L2 for measuring oxygen saturation, the same light emitting diodes as those described in the first embodiment are used, so a description thereof will be omitted. The light emitting element L3 uses a light emitting diode that emits light in a wavelength band of about 1300 nm. The light emitting circuit LCA turns on or off the light emitting elements L1, L2, and L3 based on a signal sent from a light emitting control circuit 21A, which will be described later. Light in a wavelength band of about 1300 nm is mainly absorbed by water, and light in a wavelength band of about 800 nm is mainly absorbed by hemoglobin. The hematocrit value is measured using light in these two wavelength bands.

受光部12Aは、2つの受光素子F1、F2と、受光回路RCAと、を含んで構成されている。本実施形態で用いる3つの波長帯のうち、約600nmと約800nmは近いため、第1実施形態で説明したのと同様に受光素子F1は、両方の波長帯の光を受光可能なフォトダイオードを用いる。受光素子F2は、約1300nmの波長帯の光を受光可能なフォトダイオードを用いる。受光回路RCAは、受光素子F1、F2にそれぞれ入射された光の強度に応じて流れる微弱な電流を電圧に変換して増幅させてそれぞれの電圧を出力する回路である。 The light receiving section 12A includes two light receiving elements F1 and F2 and a light receiving circuit RCA. Of the three wavelength bands used in this embodiment, approximately 600 nm and approximately 800 nm are close to each other, so as described in the first embodiment, the light receiving element F1 includes a photodiode that can receive light in both wavelength bands. use The light receiving element F2 uses a photodiode capable of receiving light in a wavelength band of about 1300 nm. The light-receiving circuit RCA is a circuit that converts weak currents flowing into voltages according to the intensity of light incident on the light-receiving elements F1 and F2, amplifies the voltages, and outputs the respective voltages.

本実施形態では、図6に示すように、発光部11Aと受光部12Aとは、血液チャンバ115を挟んで対向して配置される。血液チャンバ115を流れる血液Bに向けて発光部11から光が照射され、血液を透過した光が受光部12Aに入射して、電圧に変換される。 In this embodiment, as shown in FIG. 6, the light emitting section 11A and the light receiving section 12A are arranged to face each other with the blood chamber 115 in between. Light is emitted from the light emitting section 11 toward the blood B flowing in the blood chamber 115, and the light that has passed through the blood enters the light receiving section 12A and is converted into voltage.

透析液回路130は、第2実施形態では、いわゆる密閉容量制御方式の透析液回路130により構成される。この透析液回路130は、透析液供給ライン131aと、透析液排液ライン131bと、透析液導入ライン132aと、透析液導出ライン132bと、透析液送液部133と、を備える。 In the second embodiment, the dialysate circuit 130 is configured by a so-called sealed volume control type dialysate circuit 130. The dialysate circuit 130 includes a dialysate supply line 131a, a dialysate drain line 131b, a dialysate introduction line 132a, a dialysate outlet line 132b, and a dialysate feed section 133.

透析液送液部133は、透析液チャンバ1331と、バイパスライン1332と、除水/逆濾過ポンプ1333と、を備える。
透析液チャンバ1331は、一定容量(例えば、300mL~500mL)の透析液を収容可能な硬質の容器で構成され、この容器の内部は軟質の隔膜(ダイアフラム)により、送液収容部1331a及び排液収容部1331bに区画される。
バイパスライン1332は、透析液導出ライン132bと透析液排液ライン131bとを接続する。
The dialysate feeding unit 133 includes a dialysate chamber 1331, a bypass line 1332, and a water removal/reverse filtration pump 1333.
The dialysate chamber 1331 is composed of a hard container that can contain a fixed volume (for example, 300 mL to 500 mL) of dialysate, and the interior of this container is separated by a soft diaphragm from the fluid supply storage section 1331a and the drain fluid. It is divided into a housing section 1331b.
Bypass line 1332 connects dialysate lead-out line 132b and dialysate drain line 131b.

除水/逆濾過ポンプ1333は、バイパスライン1332に配置される。除水/逆濾過ポンプ1333は、バイパスライン1332の内部の透析液を透析液排液ライン131b側に流通させる方向(除水方向)及び透析液導出ライン132b側に流通させる方向(逆濾過方向)に送液可能に駆動するポンプにより構成される。 A water removal/reverse filtration pump 1333 is located in the bypass line 1332. The water removal/reverse filtration pump 1333 is configured to flow the dialysate inside the bypass line 1332 toward the dialysate drainage line 131b side (water removal direction) and to flow the dialysate fluid through the dialysate outlet line 132b side (reverse filtration direction). It is composed of a pump that can be driven to send liquid to.

透析液供給ライン131aは、基端側が透析液供給装置(図示せず)に接続され、先端側が透析液チャンバ1331に接続される。透析液供給ライン131aは透析液チャンバ1331の送液収容部1331aに透析液を供給する。 The dialysate supply line 131a is connected to a dialysate supply device (not shown) at its proximal end and to the dialysate chamber 1331 at its distal end. The dialysate supply line 131a supplies dialysate to the liquid supply storage section 1331a of the dialysate chamber 1331.

透析液導入ライン132aは、透析液チャンバ1331と血液浄化器120の透析液導入口123aとを接続し、透析液チャンバ1331の送液収容部1331aに収容された透析液を血液浄化器120の透析液側流路に導入する。 The dialysate introduction line 132 a connects the dialysate chamber 1331 and the dialysate inlet 123 a of the blood purifier 120 , and transfers the dialysate contained in the liquid supply storage section 1331 a of the dialysate chamber 1331 to the blood purifier 120 for dialysis. Introduced into the liquid side channel.

透析液導出ライン132bは、血液浄化器120の透析液導出口123bと透析液チャンバ1331とを接続し、血液浄化器120から排出された透析液を透析液チャンバ1331の排液収容部1331bに導出する。 The dialysate lead-out line 132b connects the dialysate outlet 123b of the blood purifier 120 and the dialysate chamber 1331, and leads the dialysate discharged from the blood purifier 120 to the drain fluid storage section 1331b of the dialysate chamber 1331. do.

透析液排液ライン131bは、基端側が透析液チャンバ1331に接続され、排液収容部1331bに収容された透析液の排液を排出する。 The dialysate drain line 131b is connected at its proximal end to the dialysate chamber 1331, and discharges the dialysate contained in the drain fluid storage section 1331b.

以上の透析液回路130によれば、透析液チャンバ1331を構成する硬質の容器の内部を軟質の隔膜(ダイアフラム)により区画することで、透析液チャンバ1331からの透析液の導出量(送液収容部1331aへの透析液の供給量)と、透析液チャンバ1331(排液収容部1331b)に回収される排液の量と、を同量にできる。
これにより、除水/逆濾過ポンプ1333を停止させた状態では、血液浄化器120に導入される透析液の流量と血液浄化器120から導出される透析液(排液)の量とを同量にできる。また、除水/逆濾過ポンプ1333を除水方向に送液するように駆動させた場合は、血液浄化器120において、血液から所定の速度で所定量の除水が行われる。また、除水/逆濾過ポンプ1333を逆濾過方向に送液するように駆動させた場合は、血液浄化器120において、血液回路110に所定量の透析液が注入(逆濾過)される。
According to the dialysate circuit 130 described above, by dividing the inside of the hard container constituting the dialysate chamber 1331 with a soft diaphragm, the amount of dialysate drawn out from the dialysate chamber 1331 (liquid supply capacity The amount of dialysate supplied to the dialysate chamber 1331a (the amount of dialysate supplied to the dialysate chamber 1331a) and the amount of drainage fluid collected in the dialysate chamber 1331 (drainage fluid storage section 1331b) can be made equal.
As a result, when the water removal/reverse filtration pump 1333 is stopped, the flow rate of the dialysate introduced into the blood purifier 120 and the amount of dialysate (effluent) drawn out from the blood purifier 120 are made equal to each other. Can be done. Furthermore, when the water removal/reverse filtration pump 1333 is driven to send liquid in the water removal direction, a predetermined amount of water is removed from the blood at a predetermined speed in the blood purifier 120. Further, when the water removal/back filtration pump 1333 is driven to send liquid in the back filtration direction, a predetermined amount of dialysate is injected into the blood circuit 110 in the blood purifier 120 (back filtration).

制御装置140は、情報処理装置(コンピュータ)により構成され、制御プログラムを実行することにより、血液浄化装置100Aの動作を制御する。図5に示すように、具体的には、制御装置140は、血液回路110及び透析液回路130に配置された各種のポンプやクランプ等の動作を制御して、血液浄化装置100により行われる各種工程、例えば、プライミング工程、脱血工程、透析工程、補液工程、返血工程等を実行する。 The control device 140 is constituted by an information processing device (computer), and controls the operation of the blood purification device 100A by executing a control program. As shown in FIG. 5, specifically, the control device 140 controls the operations of various pumps, clamps, etc. arranged in the blood circuit 110 and the dialysate circuit 130, and controls various operations performed by the blood purification device 100. Steps such as a priming step, a blood removal step, a dialysis step, a fluid replacement step, a blood return step, etc. are executed.

また、制御装置140は、血液成分測定装置1Aを構成する制御部20Aを備える。制御部20Aは、発光制御部21Aと、濃度算出部22Aと、を備える。
発光制御部21Aは、発光部11Aにおけるそれぞれの発光素子L1、L2、L3を所定の周期で点滅させるための信号を発光回路LCAに送り、発光部11Aの点灯及び消灯を制御する。
濃度算出部22Aは、受光回路RCAから出力された電圧に基づいて血液成分としての酸素飽和度及びヘマトクリット値を算出する。具体的な算出方法については、後に詳しく説明する。
Further, the control device 140 includes a control section 20A that constitutes the blood component measuring device 1A. The control section 20A includes a light emission control section 21A and a concentration calculation section 22A.
The light emission control section 21A sends a signal to the light emitting circuit LCA to cause the light emitting elements L1, L2, and L3 in the light emitting section 11A to blink at a predetermined period, and controls lighting and extinguishing of the light emitting section 11A.
The concentration calculation unit 22A calculates the oxygen saturation level and hematocrit value as blood components based on the voltage output from the light receiving circuit RCA. A specific calculation method will be explained in detail later.

上述した血液浄化装置100Aで実施される各種工程のうち、図4に示す透析工程について簡単に説明する。 Among the various processes performed in the blood purification apparatus 100A described above, the dialysis process shown in FIG. 4 will be briefly described.

透析工程では、患者の余剰水分の除水及び老廃物の除去が行われる。
透析工程において、動脈側接続部111aから導入される患者の血液は、動脈側ライン111を通って血液浄化器120で浄化され、静脈側ライン112を通って静脈側接続部112aから患者に戻される。
In the dialysis process, excess water from the patient is removed and waste products are removed.
In the dialysis process, the patient's blood introduced from the arterial connection 111a passes through the arterial line 111, is purified by the blood purifier 120, and is returned to the patient through the venous line 112 from the venous connection 112a. .

透析工程では、図4に示すように、動脈側接続部111a及び静脈側接続部112aは、それぞれ患者の血管に穿刺される針に接続された状態であり、排液ラインクランプ114aは閉状態、静脈側クランプ112dは開状態である。 In the dialysis process, as shown in FIG. 4, the arterial side connection part 111a and the venous side connection part 112a are each connected to a needle puncturing the patient's blood vessel, and the drain line clamp 114a is in a closed state. The venous clamp 112d is in an open state.

不図示の透析液供給装置は、透析液チャンバ1331に対して平均500mL/minの送液量で透析液を供給及び排出し、除水/逆濾過ポンプ1333を、除水方向に一例として10mLで送液するように作動させ、血液浄化器120において、10mL/minの除水が行われる。
血液ポンプ111cは、例えば200mL/minの流量で動脈側接続部111a側から血液浄化器120側に血液を送出する。
血液浄化器120内には、血液導入口122aから200mL/minの流量で血液が流入し、10mL/minの流量で除水されて、血液導出口122bから190mL/minの流量で導出される。また、透析排液は、透析液導出口123bから導出される。
このようにして、透析工程において10mL/minの流量で除水が行われる。
A dialysate supply device (not shown) supplies and discharges dialysate to and from the dialysate chamber 1331 at an average flow rate of 500 mL/min, and operates a water removal/reverse filtration pump 1333 in the water removal direction at an average rate of 10 mL/min. The blood purifier 120 is operated to feed liquid, and water is removed at a rate of 10 mL/min.
The blood pump 111c sends blood from the artery side connection part 111a side to the blood purifier 120 side at a flow rate of, for example, 200 mL/min.
Blood flows into the blood purifier 120 from the blood inlet 122a at a flow rate of 200 mL/min, is removed at a flow rate of 10 mL/min, and is led out from the blood outlet 122b at a flow rate of 190 mL/min. Further, the dialysis fluid is led out from the dialysate outlet 123b.
In this way, water removal is performed at a flow rate of 10 mL/min in the dialysis step.

このように透析工程では、徐々に除水が行われて患者の血液が濃縮されて行くので、血液成分としてヘマトクリット値を測定することで、除水速度の調整が可能となり、再循環の測定等が可能となる。また、ヘマトクリット値に基づいて、患者の循環血液量の変化も算出することが可能である。また、透析工程において、酸素飽和度を測定することで、睡眠時無呼吸症候群等を検出できる可能性がある。 In this way, in the dialysis process, water is gradually removed and the patient's blood becomes concentrated, so by measuring the hematocrit value as a blood component, it is possible to adjust the water removal rate and measure recirculation, etc. becomes possible. It is also possible to calculate changes in the patient's circulating blood volume based on the hematocrit value. Additionally, by measuring oxygen saturation during the dialysis process, it is possible to detect sleep apnea syndrome and the like.

次に、本実施形態における具体的な血液成分の濃度の測定方法について、図7を参照しながら説明する。
発光制御部21Aは、発光素子L1、L2、L3をそれぞれ所定の周期Tで点滅させるように発光部11Aを制御する。このように所定の周期Tで発光部11Aを点滅させた場合、受光部12Aの出力電圧としては、受光素子F1からの出力電圧1と、受光素子F2からの出力電圧2と、が得られる。それぞれの出力電圧1及び出力電圧2は、図7に示すような波形となる。
図7において、発光素子L1の点灯開始から消灯開始までの区間を点灯区間Ton1とし、発光素子L2の点灯開始から消灯開始までの区間を点灯区間Ton2とし、発光素子L3の点灯開始から消灯開始までの区間を点灯区間Ton3とする。また、発光素子L3の消灯開始から発光素子L1の点灯開始までの区間を消灯区間Toff1とし、発光素子L1の消灯開始から発光素子L2の点灯開始までの区間を消灯区間Toff2とし、発光素子L2の消灯開始から発光素子L3の点灯開始までの区間を消灯区間Toff3とする。所定の周期T=Toff1+Ton1+Toff2+Ton2+Toff3+Ton3の関係が成立する。発光制御部21Aは、3つの消灯区間Toff1、Toff2、及び、Toff3のうち、1つの消灯区間Toff3よりも、その他の消灯区間Toff1、Toff2が短くなるように制御する。また、消灯区間Toff3は、発光素子L2の点灯による残光の影響がなくなった後も続くように、長さを設定する。つまり、点灯区間Ton2において、所定の値まで上昇した出力電圧は、消灯区間Toff3において、所定の立ち下がり時間で立ち下がって収束する。つまり、消灯区間Toff3において、所定の立ち下がり時間が過ぎれば、受光部12Aの受光素子F1、F2の各出力電圧は、外光の入射による各出力電圧Vn1、Vn2であるとみなすことができる。また、消灯区間Toff1、Toff2においては、それぞれ発光素子L3の残光及び発光素子L1の残光が収束しないまま、次の発光素子L1及び発光素子L2の点灯が開始される。つまり、直前に発光した発光素子の点灯により、所定の値まで上昇した出力電圧の立ち下がり時間よりも短い時間になるよう、消灯区間Toff1、Toff2を設定する。
Next, a specific method for measuring the concentration of blood components in this embodiment will be described with reference to FIG.
The light emission control unit 21A controls the light emission unit 11A to cause the light emitting elements L1, L2, and L3 to blink at a predetermined period TA . In this way, when the light emitting section 11A is blinked at a predetermined period TA , the output voltages of the light receiving section 12A are output voltage 1 from the light receiving element F1 and output voltage 2 from the light receiving element F2. . The respective output voltages 1 and 2 have waveforms as shown in FIG.
In FIG. 7, the section from the start of lighting of the light emitting element L1 to the start of turning off the light is defined as a lighting section T A on1, the section from the start of lighting of the light emitting element L2 to the start of turning off the light is defined as a lighting section T A on2, and the section from the start of lighting of the light emitting element L2 to the start of turning off the light is set as a lighting section T A on2, and the section from the start of lighting of the light emitting element L2 to the start of turning off the light is set as a lighting section T A on1, and the section from the start of lighting of the light emitting element L2 to the start of turning off the light is a lighting section T A on1 The section from the start to the start of turning off the light is defined as a lighting section T A on3. Further, the section from the start of turning off the light emitting element L3 to the start of lighting of the light emitting element L1 is defined as a light-off section T A off1, and the section from the start of turning off the light emitting element L1 to the start of lighting of the light emitting element L2 is set as a light-off section T A off2, The section from the start of turning off the light emitting element L2 to the start of turning on the light emitting element L3 is defined as a turning off section T A off3. A relationship of predetermined period TA = TA off1 + TA on1 + TA off2 + TA on2 + TA off3 + TA on3 is established. The light emission control unit 21A determines that among the three light- off sections TA off1 , TA off2, and TA off3, the other light-off sections TA off1 and TA off2 are shorter than one light-off section TA off3. Control as follows. Further, the length of the light-off section T A off3 is set so that it continues even after the influence of afterglow caused by the lighting of the light emitting element L2 disappears. That is, the output voltage that has increased to a predetermined value in the lighting section T A on2 falls and converges with a predetermined fall time in the light-off section T A off3. That is, in the light-off period T A off3, after a predetermined falling time, the output voltages of the light receiving elements F1 and F2 of the light receiving section 12A are the respective output voltages V A n1 and V A n2 due to the incidence of external light. It can be considered as In addition, in the light-off sections T A off1 and T A off2, lighting of the next light emitting element L1 and light emitting element L2 is started without the afterglow of the light emitting element L3 and the afterglow of the light emitting element L1 converging, respectively. That is, the light-off periods T A off1 and T A off2 are set so that the time is shorter than the fall time of the output voltage that has risen to a predetermined value due to the lighting of the light emitting element that emitted light immediately before.

本実施形態では、一例として、Ton1=Ton2=Ton3=5msとし、Toff3=7msとし、Toff1=Toff2=3msとした。このように外光の出力電圧Vnを取得するための消灯区間Toff3以外の消灯区間Toff1、Toff2を残光が収束しない程度の短い時間に設定することで、周期Tを更に短くすることができる。これにより、更に短時間で血液濃度の測定が可能となる。例えば、本実施形態の場合、周期T=28msとなり、可視光を発光する発光素子L1の1秒間の点滅回数は、35.7回となる。一般的に1秒間に35回以上の点滅は、ちらついて見えないため、上述の設定でちらつきを低減することもできる。 In this embodiment, as an example, T A on1 = T A on2 = T A on3 = 5 ms, T A off3 = 7 ms, and T A off1 = T A off2 = 3 ms. In this way, by setting the light-off periods T A off1 and T A off2 other than the light-off period T A off3 for obtaining the output voltage V A n of external light to short times such that the afterglow does not converge, the period T A can be made even shorter. This makes it possible to measure blood concentration in an even shorter time. For example, in the case of this embodiment, the period T=28 ms, and the number of blinks per second of the light emitting element L1 that emits visible light is 35.7 times. Generally, blinking of 35 times or more per second is not visible as flickering, so the above settings can also reduce flickering.

濃度算出部22Aは、消灯区間Toff3において、受光部12Aにおけるそれぞれの受光素子F1、F2からの各出力電圧を外光の出力電圧Vn1、Vn2、として取得する。次に、発光素子L3の点灯区間Ton3において、出力電圧V3から外光の出力電圧Vn2を減じた値を、補正電圧Vc3として取得する。続いて、発光素子L1の点灯区間Ton1において、出力電圧V1から外光の出力電圧Vn1を減じた値を、補正電圧Vc1として取得する。最後に、発光素子L2の点灯区間Ton2において、出力電圧V2から外光の出力電圧Vn1を減じた値を、補正電圧Vc2として取得する。濃度算出部22Aは、還元ヘモグロビンの濃度に依存する補正電圧Vc1と、還元ヘモグロビンの濃度及び酸化ヘモグロビンの濃度に依存する補正電圧Vc2から、還元ヘモグロビンと酸化ヘモグロビンの割合を求めて、酸素飽和度を算出する。また、濃度算出部22Aは、ヘモグロビンの濃度に依存する補正電圧Vc2と、水の割合に依存する補正電圧Vc3から、ヘマトクリット値を算出する。以下、これを繰り返し、継続的に酸素飽和度及びヘマトクリット値を算出する。 The concentration calculation unit 22A obtains the output voltages from the respective light receiving elements F1 and F2 in the light receiving unit 12A as external light output voltages V A n1 and V A n2 in the lights-off period T A off3. Next, in the lighting period T A on3 of the light emitting element L3, a value obtained by subtracting the output voltage V A n2 of external light from the output voltage V A 3 is obtained as a correction voltage V A c3. Subsequently, in the lighting period T A on1 of the light emitting element L1, a value obtained by subtracting the output voltage V A n1 of external light from the output voltage V A 1 is obtained as the correction voltage V A c1. Finally, in the lighting period T A on2 of the light emitting element L2, the value obtained by subtracting the output voltage V A n1 of external light from the output voltage V A 2 is obtained as the correction voltage V A c2. The concentration calculation unit 22A calculates the ratio of deoxyhemoglobin and oxyhemoglobin from a correction voltage V A c1 that depends on the concentration of deoxyhemoglobin and a correction voltage V A c2 that depends on the concentration of deoxyhemoglobin and the concentration of oxyhemoglobin. Calculate oxygen saturation. Further, the concentration calculation unit 22A calculates the hematocrit value from the correction voltage V A c2 that depends on the concentration of hemoglobin and the correction voltage V A c3 that depends on the proportion of water. Thereafter, this is repeated to continuously calculate the oxygen saturation and hematocrit values.

以上説明した第2実施形態の血液成分測定装置1Aによれば、上述の効果(1)に加えて、以下のような効果を奏する。 According to the blood component measuring device 1A of the second embodiment described above, in addition to the above-mentioned effect (1), the following effects are achieved.

(2)血液成分測定装置1Aの発光制御部21Aは、消灯区間Toff1、Toff2が受光部12Aの受光素子F3、F1からの出力電圧の立ち下がり時間よりも短くなるように制御するものとした。これにより、更に周期を短くすることができるので、血液濃度の測定をより短時間化できる。また、ちらつきを更に低減可能である。 (2) The light emission control unit 21A of the blood component measuring device 1A controls the light-off periods T A off1 and T A off2 to be shorter than the falling time of the output voltage from the light receiving elements F3 and F1 of the light receiving unit 12A. I took it as a thing. This allows the cycle to be further shortened, and therefore the blood concentration can be measured in a shorter period of time. Furthermore, flickering can be further reduced.

(3)血液成分測定装置1Aの受光部12Aは、複数の受光素子F1、F2を有しており、複数の受光素子F1、F2は、それぞれ異なる波長帯の光を受光し、濃度算出部22Aは、1つの消灯区間Toff3において、複数の受光素子F1、F2からの各出力電圧を各外光の出力電圧Vn1、Vn2として取得し、それぞれの波長帯の点灯区間Ton1、Ton2、Ton3における複数の受光素子F1、F2の各出力電圧V1、V2、V3から各外光の出力電圧Vn1、Vn2を減じた値Vc1、Vc2、Vc3に基づいて血液成分の濃度を算出するものとした。これにより、受光部が有する受光素子が多くなっても、長くする消灯区間は1つだけでよいので、周期を短くできる。 (3) The light receiving unit 12A of the blood component measuring device 1A has a plurality of light receiving elements F1 and F2, and the plurality of light receiving elements F1 and F2 each receive light in different wavelength bands, and the concentration calculating unit 22A acquires each output voltage from the plurality of light-receiving elements F1 and F2 as output voltages V A n1 and V A n2 of each external light in one light-off period T A off3, and obtains each output voltage from the plurality of light-receiving elements F1 and F2 as output voltages V A n1 and V A n2 of each wavelength band, and calculates the output voltages from each of the light receiving elements F1 and F2 as the output voltage V A n1 and V A n2 of each wavelength band. The value obtained by subtracting the output voltages VA n1 and VA n2 of each external light from the output voltages VA 1, VA 2, and VA 3 of the plurality of light receiving elements F1 and F2 in on1, TA on2, and TA on3. The concentration of blood components was calculated based on V A c1, V A c2, and V A c3. As a result, even if the number of light-receiving elements included in the light-receiving section increases, only one light-off period needs to be lengthened, so the period can be shortened.

以上、本発明の血液成分測定装置の好ましい各実施形態について説明したが、本発明は、上述した各実施形態に制限されるものではなく、適宜変更が可能である。 Although preferred embodiments of the blood component measuring device of the present invention have been described above, the present invention is not limited to the embodiments described above, and can be modified as appropriate.

例えば、上述の各実施形態では、発光部は、異なる波長帯で発光する複数の発光素子を用いる構成を示したが、1つの発光素子にフィルタをかけることにより、複数の波長帯の光を発光可能とするように構成してもよい。
また、上述の各実施形態では、測定部を血液回路のチューブや血液チャンバに取り付ける場合を示したが、例えば、体外循環装置の装置本体の筐体に測定部を備え付けて、血液回路を構成するチューブを測定部に取り付けるように構成してもよい。
For example, in each of the embodiments described above, the light emitting unit has a configuration using a plurality of light emitting elements that emit light in different wavelength bands, but by applying a filter to one light emitting element, light in multiple wavelength bands can be emitted. It may be configured so that it is possible.
Further, in each of the above-described embodiments, a case has been shown in which the measurement unit is attached to a tube or a blood chamber of a blood circuit, but for example, a measurement unit may be attached to the casing of the main body of an extracorporeal circulation apparatus to configure a blood circuit. The tube may be configured to be attached to the measurement section.

1、1A 血液成分測定装置
10、10A 測定部
11、11A 発光部
12、12A 受光部
20、20A 制御部
21、21A 発光制御部
22,22A 濃度算出部
30 表示部
100A 透析装置
110 血液回路
111 動脈側ライン
111c 血液ポンプ
112 静脈側ライン
120 血液浄化器
130 透析液回路
133 透析液送液部
140 制御部
1, 1A Blood component measuring device 10, 10A Measuring section 11, 11A Light emitting section 12, 12A Light receiving section 20, 20A Control section 21, 21A Luminescence control section 22, 22A Concentration calculation section 30 Display section 100A Dialysis device 110 Blood circuit 111 Artery Side line 111c Blood pump 112 Venous line 120 Blood purifier 130 Dialysate circuit 133 Dialysate feeding section 140 Control section

Claims (4)

血液に向けて照射された光の透過光又は反射光の強度に基づいて、血液成分の濃度変化を継続的に測定する血液成分測定装置であって、
可視光を含む複数の波長帯の光を発光する発光部と、
前記発光部から照射される光の透過光又は反射光を受光し、電圧に変換して出力する受光部と、
前記発光部の点灯及び消灯を制御する発光制御部と、
前記受光部の出力電圧に基づいて、血液成分の濃度を算出する濃度算出部と、
を備え、
前記発光制御部は、所定の周期で点灯区間が重ならないように複数の波長帯で前記発光部をそれぞれ点滅させ、複数の消灯区間のうち、1つの消灯区間の長さが前記受光部の出力電圧の立ち下がり時間よりも長く、かつ、その他の消灯区間の長さが前記1つの消灯区間よりも短くなるように制御し、
前記濃度算出部は、前記1つの消灯区間において前記受光部の出力電圧を外光の出力電圧として取得し、前記点灯区間における前記受光部の出力電圧から前記外光の出力電圧を減じた値に基づいて血液成分の濃度を算出する血液成分測定装置。
A blood component measuring device that continuously measures changes in the concentration of blood components based on the intensity of transmitted light or reflected light of light irradiated toward the blood,
a light emitting part that emits light in multiple wavelength bands including visible light;
a light receiving section that receives transmitted light or reflected light of the light emitted from the light emitting section, converts it into a voltage, and outputs it;
a light emission control unit that controls lighting and extinguishment of the light emission unit;
a concentration calculation unit that calculates the concentration of blood components based on the output voltage of the light receiving unit;
Equipped with
The light emission control section causes each of the light emitting sections to blink in a plurality of wavelength bands at a predetermined period so that the lighting sections do not overlap, and the length of one of the plurality of non-lighting sections is the output of the light receiving section. Controlling the voltage so that it is longer than the fall time of the voltage and the length of the other non-lighting sections is shorter than the one non-lighting section;
The concentration calculation unit acquires the output voltage of the light receiving unit in the one lights-out period as the output voltage of external light, and calculates the output voltage of the light receiving unit in the one lighting period by subtracting the output voltage of the external light. A blood component measuring device that calculates the concentration of blood components based on the following information.
前記発光制御部は、前記その他の消灯区間が前記受光部の出力電圧の立ち下がり時間よりも短くなるように制御する請求項1に記載の血液成分測定装置。 The blood component measuring device according to claim 1, wherein the light emission control section controls the other light-off period to be shorter than a fall time of the output voltage of the light receiving section. 前記受光部は、複数の受光素子を有しており、
前記複数の受光素子は、それぞれ異なる波長帯の光を受光し、
前記濃度算出部は、前記1つの消灯区間において、前記複数の受光素子の各出力電圧を各外光の出力電圧として取得し、それぞれの波長帯の点灯区間における前記複数の受光素子の各出力電圧から前記各外光の出力電圧を減じた値に基づいて血液成分の濃度を算出する請求項1又は2に記載の血液成分測定装置。
The light receiving section has a plurality of light receiving elements,
The plurality of light receiving elements each receive light in different wavelength bands,
The concentration calculation unit acquires each output voltage of the plurality of light receiving elements as an output voltage of each external light in the one lights-out section, and obtains each output voltage of the plurality of light receiving elements in the lighting section of each wavelength band. The blood component measuring device according to claim 1 or 2, wherein the blood component concentration is calculated based on a value obtained by subtracting the output voltage of each of the external lights from the output voltage of each external light.
請求項1~3のいずれかに記載の血液成分測定装置と、
血液浄化器と、
血液回路と、
前記血液回路に設けられ、前記血液浄化器に血液を送るための血液ポンプと、
前記血液回路を流れる血液の成分濃度を測定するための測定部と、
制御装置と、
を備える血液浄化装置であって、
前記発光部及び前記受光部は、前記測定部に設けられ、
前記発光制御部及び前記濃度算出部は、前記制御装置に設けられる血液浄化装置。
The blood component measuring device according to any one of claims 1 to 3,
blood purifier,
blood circuit,
a blood pump provided in the blood circuit and configured to send blood to the blood purifier;
a measurement unit for measuring component concentration of blood flowing through the blood circuit;
a control device;
A blood purification device comprising:
The light emitting section and the light receiving section are provided in the measuring section,
The light emission control section and the concentration calculation section are a blood purification device provided in the control device.
JP2020093112A 2020-05-28 2020-05-28 Blood component measuring device and blood purification device Active JP7443934B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020093112A JP7443934B2 (en) 2020-05-28 2020-05-28 Blood component measuring device and blood purification device
CN202180029367.4A CN115427090A (en) 2020-05-28 2021-05-26 Blood component measuring device and blood purifying device
PCT/JP2021/020046 WO2021241647A1 (en) 2020-05-28 2021-05-26 Blood component measurement device and blood purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020093112A JP7443934B2 (en) 2020-05-28 2020-05-28 Blood component measuring device and blood purification device

Publications (2)

Publication Number Publication Date
JP2021186185A JP2021186185A (en) 2021-12-13
JP7443934B2 true JP7443934B2 (en) 2024-03-06

Family

ID=78744623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020093112A Active JP7443934B2 (en) 2020-05-28 2020-05-28 Blood component measuring device and blood purification device

Country Status (3)

Country Link
JP (1) JP7443934B2 (en)
CN (1) CN115427090A (en)
WO (1) WO2021241647A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7408869B1 (en) 2023-04-12 2024-01-05 日機装株式会社 blood purification device
JP7408868B1 (en) 2023-04-12 2024-01-05 日機装株式会社 blood purification device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136326A (en) 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring instrument and control method thereof
WO2012049753A1 (en) 2010-10-14 2012-04-19 株式会社日立製作所 Equipment for in vivo data acquisition and analysis
JP2012523254A (en) 2009-04-11 2012-10-04 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Apparatus and method for measuring blood components in blood for an extracorporeal blood treatment apparatus
JP2012237758A (en) 2012-07-23 2012-12-06 Jms Co Ltd Instrument for component measurement and hemodialysis apparatus including the same
JP2018021940A (en) 2014-08-29 2018-02-08 国立大学法人東北大学 Concentration measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136326A (en) 2007-12-03 2009-06-25 Nippon Telegr & Teleph Corp <Ntt> Component concentration measuring instrument and control method thereof
JP2012523254A (en) 2009-04-11 2012-10-04 フレセニウス・メディカル・ケア・ドイチュラント・ゲーエムベーハー Apparatus and method for measuring blood components in blood for an extracorporeal blood treatment apparatus
WO2012049753A1 (en) 2010-10-14 2012-04-19 株式会社日立製作所 Equipment for in vivo data acquisition and analysis
JP2012237758A (en) 2012-07-23 2012-12-06 Jms Co Ltd Instrument for component measurement and hemodialysis apparatus including the same
JP2018021940A (en) 2014-08-29 2018-02-08 国立大学法人東北大学 Concentration measurement method

Also Published As

Publication number Publication date
JP2021186185A (en) 2021-12-13
CN115427090A (en) 2022-12-02
WO2021241647A1 (en) 2021-12-02

Similar Documents

Publication Publication Date Title
TWI352604B (en) Blood purification device
JP4925159B2 (en) Blood purification equipment
JP6027720B2 (en) Blood purification equipment
JP4889297B2 (en) Hemodialysis machine
US8518247B2 (en) Error correction for a liquid concentration detector of a blood purification apparatus
WO2021241647A1 (en) Blood component measurement device and blood purification device
JP2008055180A (en) Process and device for determining pulse transition time and extracorporeal hemotherapeutic arrangement with such device
CN105473170A (en) Blood purifier
JP4573231B2 (en) Blood purification equipment
JP5491844B2 (en) Blood purification equipment
CN100548392C (en) Apparatus for purifying blood
CN110494749B (en) Optical detection of bubbles in salt or blood or mixtures of the two
JP2007143815A (en) Blood purifying apparatus, and blood purifying method
JP5301259B2 (en) Hemodialysis machine
JPWO2008120803A1 (en) Continuous blood purification device with syringe pump
CN111225694A (en) Blood purification device
JP2023005175A (en) Blood purification device
JP7367425B2 (en) blood purification device
US11419963B2 (en) Blood purification apparatus
JP2023007641A (en) Liquid concentration measuring device and extracorporeal circulation device
JP2023007642A (en) extracorporeal circulation device
JP2022185796A (en) Blood purification device
CN112312940A (en) Blood purification device and method for obtaining plasma flow rate of blood purification device
JP2010068927A (en) Blood purifying apparatus
JP2004329747A (en) Shunt recycling rate calculation system of hemodialysis device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240205

R150 Certificate of patent or registration of utility model

Ref document number: 7443934

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150