JP7443284B2 - Reaction method and reaction tank - Google Patents

Reaction method and reaction tank Download PDF

Info

Publication number
JP7443284B2
JP7443284B2 JP2021069965A JP2021069965A JP7443284B2 JP 7443284 B2 JP7443284 B2 JP 7443284B2 JP 2021069965 A JP2021069965 A JP 2021069965A JP 2021069965 A JP2021069965 A JP 2021069965A JP 7443284 B2 JP7443284 B2 JP 7443284B2
Authority
JP
Japan
Prior art keywords
reaction tank
reaction
cooling
hydrochloric acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021069965A
Other languages
Japanese (ja)
Other versions
JP2022164464A (en
Inventor
敦 藤本
拓也 横田
孝宏 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2021069965A priority Critical patent/JP7443284B2/en
Publication of JP2022164464A publication Critical patent/JP2022164464A/en
Application granted granted Critical
Publication of JP7443284B2 publication Critical patent/JP7443284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、反応方法および反応槽に関する。 The present invention relates to a reaction method and a reaction vessel.

銅製錬工程においては主に銅精鉱を含む原料を乾式製錬し約99%の品位の粗銅を製造した後に電解精製により製品電気銅を製造する。その電解精製の際に得られる電解殿物から有価金属を回収する際に塩酸や酸化剤を用いて電解殿物または、その中間物を浸出処理する工程がある。そのような浸出工程においては反応熱が発生するため冷却しながら実施する必要があるが、塩酸のような腐食性の高い酸を用いることや、浸出液の温度が比較的高温となることから、例えば、反応槽内に耐腐食性の高い樹脂製の冷却管を反応槽内に設置して冷却していた(例えば、特許文献1参照)。 In the copper smelting process, raw materials mainly containing copper concentrate are pyrometallurgically smelted to produce blister copper with a grade of approximately 99%, and then electrolytic copper is produced by electrolytic refining. When valuable metals are recovered from the electrolytic precipitate obtained during electrolytic refining, there is a step of leaching the electrolytic precipitate or its intermediates using hydrochloric acid or an oxidizing agent. Such a leaching process generates reaction heat and must be carried out while cooling, but since highly corrosive acids such as hydrochloric acid are used and the temperature of the leaching solution is relatively high, for example, For cooling, a cooling pipe made of resin with high corrosion resistance was installed in the reaction tank (for example, see Patent Document 1).

特開2001-215094号公報Japanese Patent Application Publication No. 2001-215094

しかしながら、反応槽内に冷却管を設置して直接的に浸出液を冷却しようとすると、浸出液の冷却状態が不均一となり、局所的に過冷却となった箇所に鋳付が発生しやすいという欠点が有る。鋳付が発生すると徐々に成長し、本来浸出により回収すべき有価金属の回収が遅れるという問題が有る。また、鋳付が成長して液流れを阻害し反応槽内の攪拌状態が悪化することにより、貴金属のような比重の大きい物質が攪拌されずに沈降しやすくなるという問題も発生する。 However, if a cooling pipe is installed in the reaction tank to directly cool the leachate, the cooling state of the leachate becomes uneven, and there is a drawback that casting tends to occur in locally overcooled areas. Yes. When casting occurs, it gradually grows, causing a problem in that recovery of valuable metals that should originally be recovered by leaching is delayed. In addition, the growth of castings obstructs the flow of the liquid and deteriorates the agitation condition in the reaction tank, resulting in the problem that substances with high specific gravity, such as precious metals, tend to settle without being agitated.

本発明は上記の課題に鑑みてなされたものであり、槽内の冷却状態を均一化することができる反応方法および反応槽を提供することを目的としている。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide a reaction method and a reaction tank that can uniformize the cooling state within the tank.

本発明に係る反応方法は、非鉄金属の電解殿物、または前記電解殿物を湿式処理した中間物を塩酸酸性水溶液中で発熱反応させる反応方法であって、前記塩酸酸性水溶液が収容されている反応槽の側壁の外周に設置した複数の冷却ジャケットに冷却媒体を流入させることにより、前記塩酸酸性水溶液を冷却しながら前記発熱反応させ、前記複数の冷却ジャケットは互いに分離して設けられ、前記複数の冷却ジャケットの内部には、前記反応槽の外周の周方向に冷却媒体が流れる流路が設けられていることを特徴とする。
The reaction method according to the present invention is a reaction method in which an electrolytic precipitate of a non-ferrous metal or an intermediate obtained by wet-processing the electrolytic precipitate is subjected to an exothermic reaction in an acidic hydrochloric acid aqueous solution, wherein the hydrochloric acid acidic aqueous solution is contained. The exothermic reaction is caused while cooling the hydrochloric acid acidic aqueous solution by flowing a cooling medium into a plurality of cooling jackets installed on the outer periphery of the side wall of the reaction tank , and the plurality of cooling jackets are provided separately from each other, The cooling jacket is characterized in that a channel is provided inside the cooling jacket, through which a cooling medium flows in the circumferential direction of the outer periphery of the reaction tank .

前記電解殿物又は前記中間物は、貴金属を含んでいてもよい。前記発熱反応は、浸出反応であってもよい。前記電解殿物又は前記中間物は、SiOを含んでいてもよい。前記中間物は、銅電解殿物を湿式処理して得られる中間物であってもよい。前記中間物は、前記銅電解殿物を脱銅浸出した後に得られる浸出残渣であってもよい。前記反応槽から前記塩酸酸性水溶液を抜き出した後に前記反応槽の内壁に付着した鋳付を、洗浄液の液圧により洗浄してもよい。前記洗浄する際に、上下方向にロッドで吊り下げられかつ該ロッドに反応槽外周方向に噴霧する複数のスプレーを用い、前記ロッドを上下方向に移動させつつ噴霧を行なってもよい。前記洗浄液の液圧を0.1MPa以上としてもよい。前記ロッドを水平方向に回転させ、鋳付付着部の単位面積当たりの洗浄水量を10L/cm以上としてもよい。前記冷却ジャケットの材質にチタンを用いてもよい。前記反応槽の材質にチタンを用いてもよい。前記冷却ジャケットへ導入する冷却媒体の温度を20℃以上、前記塩酸酸性水溶液の温度以下の温度範囲としてもよい。 The electrolytic precipitate or the intermediate may contain a noble metal. The exothermic reaction may be a leaching reaction. The electrolytic precipitate or the intermediate may contain SiO 2 . The intermediate may be an intermediate obtained by wet-processing a copper electrolytic precipitate. The intermediate may be a leaching residue obtained after leaching the copper electrolytic precipitate to remove copper. After the hydrochloric acid acidic aqueous solution is extracted from the reaction tank, the casting adhering to the inner wall of the reaction tank may be cleaned by hydraulic pressure of a cleaning liquid. During the cleaning, a plurality of sprays may be used which are suspended by a rod in the vertical direction and sprayed onto the rod toward the outer periphery of the reaction tank, and spraying may be carried out while moving the rod in the vertical direction. The hydraulic pressure of the cleaning liquid may be 0.1 MPa or more. The rod may be rotated horizontally so that the amount of washing water per unit area of the casting attachment portion may be 10 L/cm 2 or more. Titanium may be used as the material of the cooling jacket. Titanium may be used as the material of the reaction tank. The temperature of the cooling medium introduced into the cooling jacket may be within a temperature range of 20° C. or higher and lower than the temperature of the hydrochloric acid aqueous solution.

本発明に係る反応槽は、非鉄金属の電解殿物、または前記電解殿物を湿式処理した中間物を塩酸酸性水溶液中で発熱反応させる反応槽であって、前記反応槽の側壁の外周に冷却媒体を通液する複数の冷却ジャケットを備え、前記複数の冷却ジャケットは互いに分離して設けられ、前記複数の冷却ジャケットの内部には、前記反応槽の外周の周方向に冷却媒体が流れる流路が設けられていることを特徴とする。
The reaction tank according to the present invention is a reaction tank in which an electrolytic precipitate of a nonferrous metal or an intermediate obtained by wet-processing the electrolytic precipitate is subjected to an exothermic reaction in an acidic aqueous solution of hydrochloric acid, and the reaction tank is cooled on the outer periphery of the side wall of the reaction tank. A plurality of cooling jackets are provided to allow a medium to pass therethrough, and the plurality of cooling jackets are provided separately from each other, and inside the plurality of cooling jackets, there is a channel through which a cooling medium flows in a circumferential direction of the outer periphery of the reaction tank. It is characterized by being provided with .

前記反応槽から前記塩酸酸性水溶液を抜き出した後に前記反応槽の内壁に付着した鋳付を洗浄液の液圧により洗浄するための洗浄設備を有していてもよい。前記洗浄設備は、上下方向にロッドで吊り下げられかつ該ロッドに反応槽外周方向に噴霧するスプレーが複数取り付けられ、前記ロッドが上下方向に稼働できるように設置されていてもよい。前記洗浄液の液圧は、0.1MPa以上であってもよい。前記洗浄設備は、前記ロッドを水平方向に回転させ、鋳付付着部の単位面積当たりの洗浄水量を10L/cm以上としてもよい。前記冷却ジャケットの材質は、チタンであってもよい。前記反応槽の材質は、チタンであってもよい。 The reactor may have cleaning equipment for cleaning the casting deposited on the inner wall of the reaction tank by using hydraulic pressure of a cleaning liquid after the hydrochloric acid acidic aqueous solution is extracted from the reaction tank. The cleaning equipment may be suspended by a rod in the vertical direction, and a plurality of sprayers for spraying toward the outer periphery of the reaction tank may be attached to the rod, and the rod may be installed so that the rod can be operated in the vertical direction. The hydraulic pressure of the cleaning liquid may be 0.1 MPa or more. The cleaning equipment may rotate the rod in a horizontal direction, and the amount of cleaning water per unit area of the casting attachment portion may be 10 L/cm 2 or more. The material of the cooling jacket may be titanium. The material of the reaction tank may be titanium.

本発明によれば、槽内の冷却状態を均一化することができる反応方法および反応槽を提供することができる。 According to the present invention, it is possible to provide a reaction method and a reaction tank that can uniformize the cooling state within the tank.

(a)および(b)は比較形態に係る反応槽を例示する図である(a) and (b) are diagrams illustrating reaction vessels according to comparative embodiments. (a)および図2(b)は実施形態に係る反応槽を例示する図である。(a) and FIG. 2(b) are diagrams illustrating the reaction tank according to the embodiment. (a)および(b)はロッドによって吊り下げられたスプレーを例示する図である。(a) and (b) are views illustrating a spray suspended by a rod; 実施例1および実施例2の結果を示す図である。FIG. 2 is a diagram showing the results of Example 1 and Example 2.

以下、実施形態に係る反応槽および塩化浸出方法について、図を参照しつつ、詳細に説明する。 Hereinafter, a reaction tank and a chloride leaching method according to an embodiment will be described in detail with reference to the drawings.

(実施形態)
本実施形態で対象とする固体物質は、銅、銀、鉛などの非鉄金属の電解殿物、またはその電解殿物を湿式処理した中間物である。中間物は、例えば、銅電解殿物を湿式処理して得られる中間物である。当該中間物は、例えば、銅電解殿物を脱銅浸出した後に得られる浸出残渣である。なお、湿式処理とは、電解殿物の一部成分を分離するために行う湿式処理であり、浸出等の化学反応を用いる処理や、湿式で行う比重選別や分級選別のような物理的な選別処理も含む。
(Embodiment)
The solid substance targeted in this embodiment is an electrolytic precipitate of a non-ferrous metal such as copper, silver, or lead, or an intermediate obtained by wet-processing the electrolytic precipitate. The intermediate is, for example, an intermediate obtained by wet-processing a copper electrolytic precipitate. The intermediate is, for example, a leaching residue obtained after copper-removal leaching of a copper electrolytic precipitate. Wet processing is a wet processing performed to separate some components of electrolytic precipitates, and includes processing using chemical reactions such as leaching, and physical sorting such as specific gravity sorting and classification sorting performed by wet methods. Also includes processing.

銅製錬工程においては主に銅精鉱を含む原料を乾式製錬し約99%の品位の粗銅を製造した後に電解精製により製品電気銅を製造する。銅(Cu)の電解精製において、転炉からの粗銅を精製炉において99.5wt%程度に精製し、鋳造した陽極(アノード)と陰極としての種板とを電解槽に交互に吊るし、電解精製を実施する。電解槽の底には、陽極に含まれる不純物が泥状に沈積する。この泥状の沈積物を銅電解殿物(アノードスライム)と称する。銅電解殿物には、銅に加えて、金(Au)、白金(Pt)、パラジウム(Pd)、セレン(Se)などの金属が濃縮されている。 In the copper smelting process, raw materials mainly containing copper concentrate are pyrometallurgically smelted to produce blister copper with a grade of approximately 99%, and then electrolytic copper is produced by electrolytic refining. In electrolytic refining of copper (Cu), blister copper from a converter is refined to approximately 99.5 wt% in a refining furnace, and a cast anode and a seed plate as a cathode are hung alternately in an electrolytic tank, and electrolytic refining is carried out. Implement. Impurities contained in the anode are deposited in the form of mud at the bottom of the electrolytic cell. This muddy deposit is called a copper electrolyte (anode slime). In addition to copper, metals such as gold (Au), platinum (Pt), palladium (Pd), and selenium (Se) are concentrated in the copper electrolytic precipitate.

この銅電解殿物に塩化浸出を行なうことで、金、白金、パラジウム、セレンなどを浸出することができる。または、銅電解殿物に含まれる銅を硫酸溶液で浸出除去するなどの湿式処理を行なうことで脱銅して固液分離して塩酸でリパルプした中間物(脱銅殿物スラリー)に塩化浸出を行なうことで、金、白金、パラジウム、セレンなどを浸出する。 By subjecting this copper electrolytic precipitate to chloride leaching, gold, platinum, palladium, selenium, etc. can be leached out. Alternatively, the copper contained in the copper electrolytic precipitate can be removed by wet treatment such as leaching out with a sulfuric acid solution, followed by solid-liquid separation and repulping with hydrochloric acid. By doing this, gold, platinum, palladium, selenium, etc. are leached out.

銅電解殿物は、例えば、銅を3.0mass%~33mass%含み、金を0.6mass%~4.0mass%含み、白金を0.006mass%~0.06mass%含み、パラジウムを0.03mass%~0.3mass%含み、セレンを6.0mass%~25mass%含み、SiOを3.0mass%~36mass%含む。このように、銅電解殿物には一部に貴金属が含まれる。SiO量が多いのは、電解工程の懸濁物質をろ過除去するためのろ過助剤としてラヂオライトを使用することにより、SiOが銅電解殿物に混入しやすくなっているためである。 The copper electrolytic precipitate contains, for example, 3.0 mass% to 33 mass% of copper, 0.6 mass% to 4.0 mass% of gold, 0.006 mass% to 0.06 mass% of platinum, and 0.03 mass% of palladium. % to 0.3 mass%, selenium of 6.0 mass% to 25 mass%, and SiO 2 of 3.0 mass% to 36 mass%. In this way, the copper electrolytic precipitate partially contains noble metals. The reason why the amount of SiO 2 is large is that SiO 2 is easily mixed into the copper electrolytic precipitate by using radiolite as a filter aid for filtering out suspended matter in the electrolytic process.

脱銅殿物スラリーは、金を0.8mass%~7.4mass%含み、白金を0.008mass%~0.1mass%含み、パラジウムを0.04mass%~0.6mass%含み、セレンを7.6mass%~46mass%含み、SiOを3.8mass%~66mass%含む。このように、中間物にも、一部に貴金属が含まれる。 The decoppered precipitate slurry contains 0.8 mass% to 7.4 mass% of gold, 0.008 mass% to 0.1 mass% of platinum, 0.04 mass% to 0.6 mass% of palladium, and 7.5 mass% of selenium. It contains 6 mass% to 46 mass%, and 3.8 mass% to 66 mass% of SiO 2 . In this way, some of the intermediates also contain precious metals.

銀殿物や鉛殿物も含有量の違いはあるが、金等の貴金属を含むため、銅殿物同様に塩酸処理が必要となる。鉛殿物は、例えば、鉛を5mass%~15mass%含み、銀を15mass%~20mass%含み、銅を4mass%~9mass%含み、アンチモンを25mass%~34mass%含み、ビスマスを14mass%~22mass%含み、金を300g/t~500g/t含み、その他、テルル、セレン、スズなどを含む。 Silver deposits and lead deposits also contain precious metals such as gold, although there are differences in their content, so they require hydrochloric acid treatment in the same way as copper deposits. For example, the lead precipitate contains 5 mass% to 15 mass% of lead, 15 mass% to 20 mass% of silver, 4 mass% to 9 mass% of copper, 25 mass% to 34 mass% of antimony, and 14 mass% to 22 mass% of bismuth. Contains 300g/t to 500g/t of gold, and also contains tellurium, selenium, tin, etc.

また、銀殿物は、例えば、金を約60mass%含み、銀を約25mass%含み、白金族元素を約15mass%含む。なお、鉛殿物も銀殿物も浸出液として塩酸を用いる場合、銀は溶解度が低いためSiOのように固体として存在する。よって、SiO同様に鋳付発達の原因となる可能性があると考えられる。 Further, the silver precipitate contains, for example, about 60 mass% gold, about 25 mass% silver, and about 15 mass% platinum group elements. Note that when hydrochloric acid is used as a leaching solution for both lead precipitates and silver precipitates, silver has a low solubility and therefore exists as a solid like SiO 2 . Therefore, like SiO 2 , it is thought that it may be a cause of casting development.

塩化浸出工程では、浸出液として塩酸と過酸化水素が用いられ、例えば、下記式(1)~(4)のような反応が生じる。
3Au+3H+8HCl→2HAuCl+6HO (1)
Pt+2H+6HCl→HPtCl+4HO (2)
Pd+H+4HCl→HPdCl+2HO (3)
Se+2H→HSeO+HO (4)
In the chlorination leaching step, hydrochloric acid and hydrogen peroxide are used as a leaching solution, and reactions as shown in the following formulas (1) to (4) occur, for example.
3Au+3H 2 O 2 +8HCl→2HAuCl 4 +6H 2 O (1)
Pt+2H 2 O 2 +6HCl→H 2 PtCl 6 +4H 2 O (2)
Pd+H 2 O 2 +4HCl→H 2 PdCl 4 +2H 2 O (3)
Se+2H 2 O 2 →H 2 SeO 3 +H 2 O (4)

上記式(1)~(4)のような塩化浸出反応は発熱反応であるため、反応槽の温度が過剰に上昇するおそれがある。そこで、熱交換器によって浸出液温を所定温度範囲(例えば、70℃~75℃)に制御することが望まれる。 Since the chloride leaching reactions shown in formulas (1) to (4) above are exothermic reactions, there is a risk that the temperature of the reaction tank may rise excessively. Therefore, it is desirable to control the temperature of the leachate within a predetermined temperature range (for example, 70°C to 75°C) using a heat exchanger.

例えば、反応槽の側壁の内面よりも内側に、冷却水などの冷却媒体が流動する冷却管を設けることによって、反応槽内の浸出液の温度を所定範囲に制御することが考えられる。 For example, it is conceivable to control the temperature of the leachate in the reaction tank within a predetermined range by providing a cooling pipe through which a cooling medium such as cooling water flows inside the inner surface of the side wall of the reaction tank.

図1(a)および図1(b)は、比較形態に係る反応槽20を例示する図である。図1(a)は、反応槽20の上面図である。図1(b)は、反応槽20の透過図である。図1(a)および図1(b)で例示するように、反応槽20の側壁の内面よりも内側に、冷却管21が設けられている。冷却管21内を冷却水などの冷却媒体が流動することによって浸出液が冷却される。しかしながら、冷却管21の周囲が集中的に冷却されて、浸出液の冷却状態が不均一となる。この場合、局所的に過冷却となった箇所に鋳付が生じるおそれがあり、鋳付が発生すると徐々に成長し、本来浸出により回収すべき有価金属の回収が遅れるという問題が有る。また、鋳付が成長して液流れを阻害し反応槽内の攪拌状態が悪化することにより、貴金属のような比重の大きい物質が攪拌されずに沈降しやすくなるという問題も発生する。これまで、銅電解殿物や脱銅殿物スラリーに含まれるSiO量が少なかったために鋳付が少なかったが、近年になって銅電解殿物や脱銅殿物スラリーに含まれるSiO量が増えてきて鋳付量が増え、鋳付対策が必要となってきている。 FIGS. 1A and 1B are diagrams illustrating a reaction tank 20 according to a comparative embodiment. FIG. 1(a) is a top view of the reaction tank 20. FIG. 1(b) is a transparent diagram of the reaction tank 20. As illustrated in FIGS. 1(a) and 1(b), a cooling pipe 21 is provided inside the inner surface of the side wall of the reaction tank 20. The leachate is cooled by flowing a cooling medium such as cooling water through the cooling pipe 21 . However, the area around the cooling pipe 21 is intensively cooled, and the cooling state of the exudate becomes non-uniform. In this case, there is a risk that cast-off may occur in locally supercooled areas, and when cast-off occurs, it gradually grows, causing a problem that recovery of valuable metals that should originally be recovered by leaching is delayed. In addition, the growth of castings obstructs the flow of the liquid and deteriorates the agitation condition in the reaction tank, resulting in the problem that substances with high specific gravity, such as precious metals, tend to settle without being agitated. Up until now, the amount of SiO2 contained in copper electrolytic precipitates and decoppered precipitate slurry was small, so casting was low, but in recent years, the amount of SiO2 contained in copper electrolytic precipitates and decoppered precipitate slurries has decreased. As the amount of casting increases, countermeasures against casting become necessary.

そこで、本実施形態においては、反応槽10の側壁の外周に冷却ジャケットを設ける。図2(a)および図2(b)は、実施形態に係る反応槽10を例示する図である。図2(a)は、反応槽10の上面図である。図2(b)は、反応槽10の正面図である。図2(a)および図2(b)で例示するように、反応槽10の側壁の外周に冷却ジャケット11が設けられている。冷却ジャケット11内には、冷却水などの冷却媒体が流動するための配管などが設けられている。例えば、冷却ジャケット11内では、反応槽10の側壁の周方向に巻かれた複数の配管が設けられている。これらの配管には、流入配管12から冷却媒体が流入する。また、これらの配管から、排出配管13を介して冷却媒体が排出される。冷却ジャケット11を反応槽10の側壁よりも外側に配置することで、反応槽10内における浸出液の流動を妨げる部材が減り、反応槽10内の攪拌が均一となって局所的な冷却が抑制され、反応槽10内の冷却状態を均一化することができる。その結果、鋳付の発生を抑制することができる。冷却面において鋳付の発生が抑制されれば、冷却効率が維持され、反応槽10内での塩化浸出の反応効率が向上する。 Therefore, in this embodiment, a cooling jacket is provided around the outer periphery of the side wall of the reaction tank 10. FIGS. 2(a) and 2(b) are diagrams illustrating the reaction tank 10 according to the embodiment. FIG. 2(a) is a top view of the reaction tank 10. FIG. 2(b) is a front view of the reaction tank 10. As illustrated in FIGS. 2(a) and 2(b), a cooling jacket 11 is provided around the outer periphery of the side wall of the reaction tank 10. Inside the cooling jacket 11, piping and the like are provided through which a cooling medium such as cooling water flows. For example, inside the cooling jacket 11, a plurality of pipes are provided that are wound around the side wall of the reaction tank 10 in the circumferential direction. A cooling medium flows into these pipes from the inflow pipe 12. Further, the cooling medium is discharged from these pipes via the discharge pipe 13. By arranging the cooling jacket 11 outside the side wall of the reaction tank 10, the number of members that obstruct the flow of the leachate in the reaction tank 10 is reduced, and stirring in the reaction tank 10 becomes uniform, suppressing local cooling. , the cooling state inside the reaction tank 10 can be made uniform. As a result, the occurrence of casting can be suppressed. If the occurrence of casting on the cooling surface is suppressed, the cooling efficiency is maintained and the reaction efficiency of chloride leaching in the reaction tank 10 is improved.

なお、冷却ジャケット11を反応槽10よりも外側に配置することで、冷却媒体の冷却効果が反応槽10の側壁を介して反応槽10内に伝わり、冷却媒体の冷却効果が反応槽10の側壁の全体に広がり、反応槽10内の冷却状態を均一化することができるという効果も得られる。 Note that by arranging the cooling jacket 11 outside the reaction tank 10, the cooling effect of the cooling medium is transmitted into the reaction tank 10 via the side wall of the reaction tank 10, and the cooling effect of the cooling medium is transmitted to the side wall of the reaction tank 10. It is also possible to obtain the effect that the cooling state within the reaction tank 10 can be made uniform by spreading throughout the reaction tank 10.

浸出液温度を一例として70℃~75℃に維持しつつ、壁面の鋳付の生成を水洗で洗浄可能な程度の発生量に留めるためには、冷却ジャケット11内に導入する冷却媒体の温度に下限を設けることが好ましい。例えば、冷却ジャケット11内に導入する冷却媒体の温度を、20℃以上とすることが望ましく、より洗浄を容易にするためにはさらに25℃以上とすることが望ましい。一方、上限は、浸出液温度を維持したい温度範囲の上限を超えないような温度であればよく、浸出液温度以下とすることができ、例えば、40℃以下とすることができる。なお、浸出液温度を所定温度範囲に維持するために、冷却媒体の温度ではなく、冷却媒体の流量などを調整してもよい。 In order to maintain the temperature of the leachate at 70°C to 75°C, for example, and to keep the amount of castings on the wall to a level that can be washed with water, the temperature of the cooling medium introduced into the cooling jacket 11 must be set at a lower limit. It is preferable to provide For example, it is desirable that the temperature of the cooling medium introduced into the cooling jacket 11 be 20° C. or higher, and further desirably 25° C. or higher to make cleaning easier. On the other hand, the upper limit may be a temperature that does not exceed the upper limit of the temperature range in which the temperature of the leachate is desired to be maintained, and can be set to be lower than the leachate temperature, for example, 40° C. or lower. Note that in order to maintain the leachate temperature within a predetermined temperature range, the flow rate of the cooling medium, etc. may be adjusted instead of the temperature of the cooling medium.

冷却ジャケットの材質は、特に限定されるものではないが、熱伝導性を向上させるためには、チタンであることが好ましい。反応槽10の材質は、特に限定されるものではないが、熱伝導性を向上させるためには、チタンであることが好ましい。冷却ジャケットおよび反応槽10の材質は、ニッケル合金などであってもよい。 The material of the cooling jacket is not particularly limited, but titanium is preferable in order to improve thermal conductivity. The material of the reaction tank 10 is not particularly limited, but titanium is preferable in order to improve thermal conductivity. The material of the cooling jacket and the reaction tank 10 may be a nickel alloy or the like.

なお、反応槽10内の冷却状態が均一化されて鋳付の発生が抑制されても、反応槽10による塩化浸出を繰り返していると鋳付が発生することがある。そこで、反応槽10から浸出液を抜き出した後に反応槽10の内壁に付着した鋳付を液圧により洗浄するための洗浄設備が備わっていることが好ましい。そこで、本実施形態においては、反応槽10の内部にスプレーが設けてあることが好ましい。 Note that even if the cooling state in the reaction tank 10 is made uniform and the occurrence of casting is suppressed, if chloride leaching in the reaction tank 10 is repeated, casting may occur. Therefore, it is preferable to provide cleaning equipment for cleaning the casting deposited on the inner wall of the reaction tank 10 using hydraulic pressure after extracting the leachate from the reaction tank 10. Therefore, in this embodiment, it is preferable that a sprayer be provided inside the reaction tank 10.

図3(a)および図3(b)は、ロッド14によって吊り下げられたスプレー15を例示する図である。図3(a)および図3(b)で例示するように、スプレー15は、上下方向にロッド14で吊り下げられかつ反応槽10の内壁に向かって噴霧を行なう。スプレー15は、ロッド14の複数箇所に設けられている。 3(a) and 3(b) are diagrams illustrating the spray 15 suspended by the rod 14. As illustrated in FIGS. 3(a) and 3(b), the sprayer 15 is suspended by a rod 14 in the vertical direction and sprays toward the inner wall of the reaction tank 10. The sprays 15 are provided at multiple locations on the rod 14.

ロッド14は、上下方向に稼動する。ロッド14は、水平方向に回転可能である。それにより、反応槽10内の各高さにおける内壁に向かってスプレー15から満遍なく噴霧を行なうことができる。噴霧における水圧は、0.1MPa以上であることが好ましく、さらに水圧による除去効果を高めるためには0.4MPa以上であることがより好ましい。ロッド14を水平方向に回転させ、鋳付付着部の単位面積当たりの洗浄水量を10L/cm以上とすることが好ましい。 The rod 14 moves in the vertical direction. Rod 14 is horizontally rotatable. Thereby, the spray 15 can spray evenly toward the inner wall at each height in the reaction tank 10. The water pressure in spraying is preferably 0.1 MPa or more, and more preferably 0.4 MPa or more in order to enhance the removal effect by water pressure. It is preferable to rotate the rod 14 in the horizontal direction so that the amount of cleaning water per unit area of the casting attachment portion is 10 L/cm 2 or more.

なお、反応槽10の底部に溜まった残渣を滞留させないように、反応槽10の底部から残渣を含む液を抜き出して反応槽10の上部から再度投入してもよい。 Note that, in order to prevent the residue accumulated at the bottom of the reaction tank 10 from remaining, a liquid containing the residue may be extracted from the bottom of the reaction tank 10 and reintroduced from the top of the reaction tank 10.

銅電解殿物を脱銅浸出した脱銅殿物スラリーに対して、上記実施形態に係る反応槽10を用いて、塩酸と過酸化水素を添加して塩化浸出を行なった。塩化浸出は、バッチ処理とした。すなわち、塩化浸出を複数回行う場合、塩化浸出反応終了後に反応槽内のスラリーを全て抜き出し、新たな脱銅スラリーを受け入れて塩化浸出を行った。塩化浸出時の浸出液温度は70~75℃に維持するよう冷却した。 Hydrochloric acid and hydrogen peroxide were added to the copper-decoppered precipitate slurry obtained by decoppering and leaching the copper electrolytic precipitate using the reaction tank 10 according to the embodiment described above to perform chloride leaching. Chloride leaching was a batch process. That is, when performing chloride leaching multiple times, all the slurry in the reaction tank was extracted after the chloride leaching reaction was completed, new decopper-removed slurry was received, and chloride leaching was performed. The leachate temperature during chloride leaching was cooled to maintain it at 70 to 75°C.

(実施例1)
実施例1では、冷却ジャケット11に冷却媒体として冷却水を通液しつつ塩化浸出を複数回行なった。各塩化浸出のインターバルに、ロッド14を回転させつつスプレー15(水圧0.1MPa)を用いて水洗洗浄を行なった。冷却媒体の温度は、10℃から19℃の間になるように調整した。
(Example 1)
In Example 1, chloride leaching was performed multiple times while cooling water was passed through the cooling jacket 11 as a cooling medium. At each interval of chloride leaching, water washing was performed using the spray 15 (water pressure 0.1 MPa) while rotating the rod 14. The temperature of the cooling medium was adjusted to be between 10°C and 19°C.

(実施例2)
実施例2では、冷却ジャケット11に冷却媒体として冷却水を通液しつつ塩化浸出を複数回行なった。実施例2では、各塩化浸出のインターバルに、スプレー15を用いた水洗洗浄を行わなかった。冷却媒体の温度は、10℃から19℃の間になるように調整した。
(Example 2)
In Example 2, chloride leaching was performed multiple times while cooling water was passed through the cooling jacket 11 as a cooling medium. In Example 2, water washing with Spray 15 was not performed at each chloride leaching interval. The temperature of the cooling medium was adjusted to be between 10°C and 19°C.

実施例1および実施例2について、反応槽10の冷却能力を調べた。実施例1および実施例2の合計回数(約70回)のそれぞれの塩化浸出を行なった際に、各回の総括熱伝達係数を算出し、横軸を実施順としてプロットした結果である。「▲」の結果は、実施例1の方法で水洗を行った後に塩化浸出を実施した回の総括熱伝達係数を算出した結果である。「●」のデータは、実施例2のように水洗を行わずに次の塩化浸出を行った回の総括熱伝達係数を算出した結果である。結果を図4に示す。図4に示すように、実施例1および実施例2のいずれにおいても、おおむね良好な冷却能力が継続して維持された。これは、反応槽10の側壁の外部に冷却ジャケット11を設けたことで、反応槽10内の冷却状態が均一化され、鋳付の発生が抑制されたからであると考えられる。 Regarding Example 1 and Example 2, the cooling capacity of the reaction tank 10 was investigated. This is the result of calculating the overall heat transfer coefficient for each time when chloride leaching was performed for the total number of times (approximately 70 times) in Example 1 and Example 2, and plotting the results with the horizontal axis representing the order of implementation. The results marked with "▲" are the results of calculating the overall heat transfer coefficient for the times in which chloride leaching was performed after washing with water using the method of Example 1. The data marked with "●" is the result of calculating the overall heat transfer coefficient when the next chloride leaching was performed without washing with water as in Example 2. The results are shown in Figure 4. As shown in FIG. 4, in both Example 1 and Example 2, generally good cooling ability was continuously maintained. This is considered to be because the provision of the cooling jacket 11 outside the side wall of the reaction tank 10 made the cooling state inside the reaction tank 10 uniform and suppressed the occurrence of casting.

実施例1と実施例2とを比較した結果、実施例1の方が高い冷却能力が維持された。これは、スプレー15を用いて水洗洗浄することによって鋳付を洗浄することができたからであると考えられる。 As a result of comparing Example 1 and Example 2, it was found that Example 1 maintained a higher cooling capacity. This is thought to be because the casting could be cleaned by washing with water using the spray 15.

(実施例3)
実施例3では、冷却ジャケット11に冷却媒体として冷却水を通液しつつ塩化浸出を複数回行なった。冷却媒体の温度は、20℃から28℃の間になるように調整した。
(Example 3)
In Example 3, chloride leaching was performed multiple times while cooling water was passed through the cooling jacket 11 as a cooling medium. The temperature of the cooling medium was adjusted to be between 20°C and 28°C.

(比較例)
比較例では、図1(a)および図1(b)のように、反応槽内の内壁よりも内側に設けた冷却管に冷却媒体として冷却水を流入させた。
(Comparative example)
In the comparative example, as shown in FIGS. 1(a) and 1(b), cooling water was flowed as a cooling medium into a cooling pipe provided inside the inner wall of the reaction tank.

反応槽内の鋳付発生量kg/年を定量した。結果を表1に示す。また、鋳付の成分分析結果を表2に示す。表1に示すように、比較例では鋳付発生量が非常に多くなった。これは、反応槽内の冷却管を用いて冷却したからであると考えられる。一方、実施例1では、鋳付発生量が非常に少なくなった。これは、反応槽の外周に設けた冷却ジャケットを用いて冷却したからであると考えられる。なお、表1の実施例1は、上述したように冷却媒体の温度を10℃から19℃の間になるように調整し、上述した水洗洗浄を行なったものと水洗洗浄を行わなかった場合を含む。実施例3では、鋳付発生量がさらに少なくなった。これは、冷却媒体の温度を20℃以上にしたからであると考えられる。

Figure 0007443284000001
Figure 0007443284000002
The amount of casting generated in the reaction tank kg/year was quantified. The results are shown in Table 1. In addition, Table 2 shows the results of component analysis of the casting. As shown in Table 1, in the comparative example, the amount of casting occurrence increased significantly. This is thought to be because the cooling pipe inside the reaction tank was used for cooling. On the other hand, in Example 1, the amount of cast-off occurrence was extremely small. This is thought to be due to cooling using a cooling jacket provided around the outer periphery of the reaction tank. In addition, Example 1 in Table 1 shows cases in which the temperature of the cooling medium was adjusted to between 10°C and 19°C and the water washing described above was performed and the case in which the water washing was not performed. include. In Example 3, the amount of cast-off occurrence was further reduced. This is considered to be because the temperature of the cooling medium was set to 20° C. or higher.
Figure 0007443284000001
Figure 0007443284000002

上述した実施形態は本発明の好適な実施の例である。但し、これに限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変形実施可能である。 The embodiments described above are examples of preferred implementations of the present invention. However, the present invention is not limited to this, and various modifications can be made without departing from the gist of the present invention.

10 反応槽
11 冷却ジャケット
12 流入配管
13 排出配管
14 ロッド
15 スプレー
10 Reaction tank 11 Cooling jacket 12 Inflow pipe 13 Discharge pipe 14 Rod 15 Spray

Claims (20)

非鉄金属の電解殿物、または前記電解殿物を湿式処理した中間物を塩酸酸性水溶液中で発熱反応させる反応方法であって、
前記塩酸酸性水溶液が収容されている反応槽の側壁の外周に設置した複数の冷却ジャケットに冷却媒体を流入させることにより、前記塩酸酸性水溶液を冷却しながら前記発熱反応させ、
前記複数の冷却ジャケットは互いに分離して設けられ、
前記複数の冷却ジャケットの内部には、前記反応槽の外周の周方向に冷却媒体が流れる流路が設けられていることを特徴とする反応方法。
A reaction method in which an electrolytic precipitate of a nonferrous metal or an intermediate obtained by wet-processing the electrolytic precipitate is subjected to an exothermic reaction in an acidic aqueous solution of hydrochloric acid, the method comprising:
causing the exothermic reaction while cooling the hydrochloric acid acidic aqueous solution by flowing a cooling medium into a plurality of cooling jackets installed on the outer periphery of the side wall of the reaction tank containing the hydrochloric acid acidic aqueous solution,
The plurality of cooling jackets are provided separately from each other,
A reaction method characterized in that a flow path through which a cooling medium flows in a circumferential direction of the outer periphery of the reaction tank is provided inside the plurality of cooling jackets .
前記電解殿物又は前記中間物は、貴金属を含むことを特徴とする請求項1に記載の反応方法。 2. The reaction method according to claim 1, wherein the electrolytic precipitate or the intermediate contains a noble metal. 前記発熱反応は、浸出反応であることを特徴とする請求項1または請求項2に記載の反応方法。 3. The reaction method according to claim 1, wherein the exothermic reaction is a leaching reaction. 前記電解殿物又は前記中間物は、SiOを含むことを特徴とする請求項1から請求項3のいずれか一項に記載の反応方法。 The reaction method according to any one of claims 1 to 3, wherein the electrolytic precipitate or the intermediate contains SiO2 . 前記中間物は、銅電解殿物を湿式処理して得られる中間物であることを特徴とする請求項1から請求項4のいずれか一項に記載の反応方法。 5. The reaction method according to claim 1, wherein the intermediate is an intermediate obtained by wet-processing a copper electrolytic precipitate. 前記中間物は、前記銅電解殿物を脱銅浸出した後に得られる浸出残渣であることを特徴とする請求項5に記載の反応方法。 6. The reaction method according to claim 5, wherein the intermediate is a leaching residue obtained after leaching the copper electrolytic precipitate to remove copper. 前記反応槽から前記塩酸酸性水溶液を抜き出した後に前記反応槽の内壁に付着した鋳付を、洗浄液の液圧により洗浄することを特徴とする請求項1から請求項6のいずれか一項に記載の反応方法。 According to any one of claims 1 to 6, the molding adhered to the inner wall of the reaction tank is cleaned by hydraulic pressure of a cleaning liquid after the hydrochloric acid acidic aqueous solution is extracted from the reaction tank. reaction method. 前記洗浄液の液圧を0.1MPa以上とすることを特徴とする請求項7に記載の反応方法。 8. The reaction method according to claim 7, wherein the liquid pressure of the cleaning liquid is 0.1 MPa or more. 前記冷却ジャケットの材質にチタンを用いることを特徴とする請求項1から請求項8のいずれか一項に記載の反応方法。 9. The reaction method according to claim 1, wherein titanium is used as a material for the cooling jacket. 前記反応槽の材質にチタンを用いることを特徴とする請求項1から請求項9のいずれか一項に記載の反応方法。 10. The reaction method according to claim 1, wherein titanium is used as a material for the reaction tank. 前記冷却ジャケットへ導入する冷却媒体の温度を20℃以上、前記塩酸酸性水溶液の温度以下の温度範囲とすることを特徴とする請求項1から請求項10のいずれか一項に記載の反応方法。 The reaction method according to any one of claims 1 to 10, characterized in that the temperature of the cooling medium introduced into the cooling jacket is set in a temperature range of 20°C or higher and lower than the temperature of the hydrochloric acid acidic aqueous solution. 非鉄金属の電解殿物、または前記電解殿物を湿式処理した中間物を塩酸酸性水溶液中で発熱反応させる反応方法であって、
前記塩酸酸性水溶液が収容されている反応槽の外周に設置した冷却ジャケットに冷却媒体を流入させることにより、前記塩酸酸性水溶液を冷却しながら前記発熱反応させ、
前記反応槽から前記塩酸酸性水溶液を抜き出した後に前記反応槽の内壁に付着した鋳付を、洗浄液の液圧により洗浄し、
前記洗浄する際に、上下方向にロッドで吊り下げられかつ該ロッドに反応槽外周方向に噴霧する複数のスプレーを用い、前記ロッドを上下方向に移動させつつ噴霧を行なうことを特徴とする反応方法。
A reaction method in which an electrolytic precipitate of a nonferrous metal or an intermediate obtained by wet-processing the electrolytic precipitate is subjected to an exothermic reaction in an acidic aqueous solution of hydrochloric acid, the method comprising:
causing the exothermic reaction while cooling the hydrochloric acid acidic aqueous solution by flowing a cooling medium into a cooling jacket installed on the outer periphery of the reaction tank in which the hydrochloric acid acidic aqueous solution is stored;
After extracting the hydrochloric acid acidic aqueous solution from the reaction tank, the casting adhering to the inner wall of the reaction tank is cleaned by hydraulic pressure of a cleaning liquid,
A reaction method characterized in that, during the cleaning, a plurality of sprays are suspended vertically by a rod and are sprayed onto the rod toward the outer periphery of the reaction tank, and spraying is performed while the rod is moved vertically. .
前記ロッドを水平方向に回転させ、鋳付付着部の単位面積当たりの洗浄水量を10L/cm以上とすることを特徴とする請求項12に記載の反応方法。 13. The reaction method according to claim 12, wherein the rod is rotated in a horizontal direction, and the amount of washing water per unit area of the casting attachment portion is set to 10 L/cm 2 or more. 非鉄金属の電解殿物、または前記電解殿物を湿式処理した中間物を塩酸酸性水溶液中で発熱反応させる反応槽であって、
前記反応槽の側壁の外周に冷却媒体を通液する複数の冷却ジャケットを備え、
前記複数の冷却ジャケットは互いに分離して設けられ、
前記複数の冷却ジャケットの内部には、前記反応槽の外周の周方向に冷却媒体が流れる流路が設けられていることを特徴とする反応槽。
A reaction tank in which an electrolytic precipitate of a non-ferrous metal or an intermediate obtained by wet-processing the electrolytic precipitate is subjected to an exothermic reaction in an acidic aqueous solution of hydrochloric acid,
A plurality of cooling jackets are provided for passing a cooling medium around the outer periphery of the side wall of the reaction tank ,
The plurality of cooling jackets are provided separately from each other,
A reaction tank characterized in that a flow path through which a cooling medium flows in a circumferential direction of an outer periphery of the reaction tank is provided inside the plurality of cooling jackets .
前記反応槽から前記塩酸酸性水溶液を抜き出した後に前記反応槽の内壁に付着した鋳付を洗浄液の液圧により洗浄するための洗浄設備を有することを特徴とする請求項14に記載の反応槽。 15. The reaction tank according to claim 14, further comprising a cleaning facility for cleaning the casting adhered to the inner wall of the reaction tank using hydraulic pressure of a cleaning liquid after the hydrochloric acid acidic aqueous solution is extracted from the reaction tank. 前記洗浄液の液圧は、0.1MPa以上であることを特徴とする請求項15に記載の反応槽。 16. The reaction tank according to claim 15 , wherein the liquid pressure of the cleaning liquid is 0.1 MPa or more. 前記冷却ジャケットの材質は、チタンであることを特徴とする請求項14から請求項16のいずれか一項に記載の反応槽。 17. The reaction tank according to claim 14, wherein the material of the cooling jacket is titanium. 前記反応槽の材質は、チタンであることを特徴とする請求項14から請求項17のいずれか一項に記載の反応槽。 The reaction tank according to any one of claims 14 to 17 , wherein the material of the reaction tank is titanium. 非鉄金属の電解殿物、または前記電解殿物を湿式処理した中間物を塩酸酸性水溶液中で発熱反応させる反応槽であって、
前記反応槽の外周に冷却媒体を通液する冷却ジャケットを備え、
前記反応槽から前記塩酸酸性水溶液を抜き出した後に前記反応槽の内壁に付着した鋳付を洗浄液の液圧により洗浄するための洗浄設備を有し、
前記洗浄設備は、上下方向にロッドで吊り下げられかつ該ロッドに反応槽外周方向に噴霧するスプレーが複数取り付けられ、
前記ロッドが上下方向に稼働できるように設置されていることを特徴とする反応槽。
A reaction tank in which an electrolytic precipitate of a non-ferrous metal or an intermediate obtained by wet-processing the electrolytic precipitate is subjected to an exothermic reaction in an acidic aqueous solution of hydrochloric acid,
A cooling jacket for passing a cooling medium around the outer periphery of the reaction tank,
having cleaning equipment for cleaning the casting adhered to the inner wall of the reaction tank by hydraulic pressure of a cleaning liquid after extracting the hydrochloric acid acidic aqueous solution from the reaction tank;
The cleaning equipment is suspended by a rod in the vertical direction, and a plurality of sprayers that spray in the direction of the outer circumference of the reaction tank are attached to the rod,
A reaction tank characterized in that the rod is installed so that it can move in the vertical direction.
前記洗浄設備は、前記ロッドを水平方向に回転させ、鋳付付着部の単位面積当たりの洗浄水量を10L/cm以上とすることを特徴とする請求項19に記載の反応槽。
20. The reaction tank according to claim 19 , wherein the cleaning equipment rotates the rod in a horizontal direction and sets the amount of cleaning water per unit area of the casting attachment part to 10 L/cm2 or more.
JP2021069965A 2021-04-16 2021-04-16 Reaction method and reaction tank Active JP7443284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021069965A JP7443284B2 (en) 2021-04-16 2021-04-16 Reaction method and reaction tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021069965A JP7443284B2 (en) 2021-04-16 2021-04-16 Reaction method and reaction tank

Publications (2)

Publication Number Publication Date
JP2022164464A JP2022164464A (en) 2022-10-27
JP7443284B2 true JP7443284B2 (en) 2024-03-05

Family

ID=83742634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021069965A Active JP7443284B2 (en) 2021-04-16 2021-04-16 Reaction method and reaction tank

Country Status (1)

Country Link
JP (1) JP7443284B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016679A (en) 2004-07-05 2006-01-19 Sumitomo Metal Mining Co Ltd Method for recovering noble metal from copper sulfide ore
JP2012126952A (en) 2010-12-15 2012-07-05 Sumitomo Metal Mining Co Ltd Chlorine-leaching method of copper electrolytic slime
JP2016121399A (en) 2014-12-25 2016-07-07 三菱マテリアル株式会社 Leaching method of valuable metal contained in copper removal slime
JP2019131838A (en) 2018-01-29 2019-08-08 Jx金属株式会社 METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER
JP2020196921A (en) 2019-05-31 2020-12-10 Jx金属株式会社 Chlorination leaching method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006016679A (en) 2004-07-05 2006-01-19 Sumitomo Metal Mining Co Ltd Method for recovering noble metal from copper sulfide ore
JP2012126952A (en) 2010-12-15 2012-07-05 Sumitomo Metal Mining Co Ltd Chlorine-leaching method of copper electrolytic slime
JP2016121399A (en) 2014-12-25 2016-07-07 三菱マテリアル株式会社 Leaching method of valuable metal contained in copper removal slime
JP2019131838A (en) 2018-01-29 2019-08-08 Jx金属株式会社 METHOD FOR REMOVING SiO2 FROM SLURRY CONTAINING SILVER AND SiO2, AND PURIFICATION METHOD OF SILVER
JP2020196921A (en) 2019-05-31 2020-12-10 Jx金属株式会社 Chlorination leaching method

Also Published As

Publication number Publication date
JP2022164464A (en) 2022-10-27

Similar Documents

Publication Publication Date Title
JP5209249B2 (en) Copper manufacturing method
JP2001316736A (en) Method for recovering silver
Rao et al. Study to enhance cementation of impurities from zinc leach liquor by modifying the shape and size of zinc dust
CN109485023B (en) Method for recovering tellurium from copper-tellurium-containing waste liquid
US20220298661A1 (en) Copper electrorefining
CN106757179A (en) A kind of cupric electrolysis tail washings purifies the process of decopper(ing) removal of impurities
JP7443284B2 (en) Reaction method and reaction tank
JP5209248B2 (en) Copper electrolyte raw material manufacturing method and copper manufacturing method using the same
CN106868543B (en) Electrolytic refining system and method for crude copper with high precious metal content
WO2004031453A1 (en) Electowinning of metals
Dib et al. Mass transfer correlation of simultaneous removal by cementation of nickel and cobalt from sulphate industrial solution containing copper: Part II: Onto zinc powder
US6090341A (en) Method and system for extracting and refining gold from ores
JP2014189458A (en) Tellurium recovery method
JP5165958B2 (en) Noble metal recovery method and copper production method
CN111690819A (en) Platinum purification method and reaction kettle
RU2729798C1 (en) Autoclave and method of removing salt from autoclave
CN1087387A (en) Method and device that mineral reclaim
JP3136093B2 (en) Method for removing tellurium from tellurium-containing copper sulfate solution
JP2017119623A (en) Method for recovering tellurium
JPS59179723A (en) Gold recovering process and device
CN101589163B (en) Method and apparatus for collection of indium from etching waste solution containing indium and ferric chloride
JPH08311628A (en) Device for removing dross in hot dip metal coating bath
RU2516180C1 (en) Method to process alloy of ligature gold
JP7146174B2 (en) Electrolyte drainage method in electrorefining
RU2237750C1 (en) Method for electrolytic refining of copper and nickel from copper/nickel alloys

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240221

R151 Written notification of patent or utility model registration

Ref document number: 7443284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151