JP7442271B2 - Expandable urethane resin composition and polyurethane foam - Google Patents

Expandable urethane resin composition and polyurethane foam Download PDF

Info

Publication number
JP7442271B2
JP7442271B2 JP2019076254A JP2019076254A JP7442271B2 JP 7442271 B2 JP7442271 B2 JP 7442271B2 JP 2019076254 A JP2019076254 A JP 2019076254A JP 2019076254 A JP2019076254 A JP 2019076254A JP 7442271 B2 JP7442271 B2 JP 7442271B2
Authority
JP
Japan
Prior art keywords
urethane resin
resin composition
steel ball
polyurethane foam
foamable urethane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019076254A
Other languages
Japanese (ja)
Other versions
JP2020172604A (en
Inventor
裕介 玉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2019076254A priority Critical patent/JP7442271B2/en
Publication of JP2020172604A publication Critical patent/JP2020172604A/en
Priority to JP2024023953A priority patent/JP2024050974A/en
Application granted granted Critical
Publication of JP7442271B2 publication Critical patent/JP7442271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発泡性ウレタン樹脂組成物及びこれよりなるポリウレタン発泡体に関する。 The present invention relates to a foamable urethane resin composition and a polyurethane foam made from the composition.

ポリウレタン発泡体は、その優れた断熱性を利用して、マンション等の集合住宅、戸建住宅、商業ビル等の建築物の天井、屋根、壁面などの断熱や結露防止に実用されている。 ポリウレタン発泡体は、軽量であるものの、有機物であるため燃えやすい。これを改善するため、難燃剤などをポリウレタン発泡体に含有させ、難燃性を高めたポリウレタン発泡体が用いられている。例えば、特許文献1では、ポリリン酸アンモニウム、ウレア誘導体、ポリオール、イソシアネートを用いて得られる難燃性ポリウレタンフォームが記載されている。該難燃性ポリウレタンフォームは、ポリオール100重量部に対して5~150重量部の範囲のポリリン酸アンモニウム及び0.001~15重量部の範囲のウレア誘導体が用いられることを特徴している。 Utilizing its excellent heat insulating properties, polyurethane foam is put to practical use in insulating and preventing condensation on ceilings, roofs, walls, etc. of buildings such as condominiums and other housing complexes, detached houses, and commercial buildings. Although polyurethane foam is lightweight, it is organic and therefore flammable. In order to improve this problem, polyurethane foams are used in which flame retardants are added to the polyurethane foams to improve flame retardancy. For example, Patent Document 1 describes a flame-retardant polyurethane foam obtained using ammonium polyphosphate, a urea derivative, a polyol, and an isocyanate. The flame-retardant polyurethane foam is characterized in that ammonium polyphosphate is used in an amount of 5 to 150 parts by weight and urea derivative is used in an amount of 0.001 to 15 parts by weight based on 100 parts by weight of polyol.

特開2015-151524号公報Japanese Patent Application Publication No. 2015-151524

近年、断熱材として建築物に用いられるポリウレタン発泡体に起因する火災が比較的多く報告されている。このような問題を改善するため、優れた難燃性を有するのみならず、出火した際に、燃え広がり難い性質を備えるポリウレタン発泡体の開発が期待されている。
赤燐などの難燃性に優れる化合物を多く配合することにより、ポリウレタン発泡体に燃え広がり難い性質を付与できるものの、発泡体が、赤燐特有の暗赤色の着色を呈してしまい、製品の色調に問題が生じる場合がある。ポリウレタン発泡体の用途によっては、染料等を加えることで着色させる場合があるが、この赤燐特有の暗赤色により染料の発色が妨げられる。
そこで本発明は、赤燐を含有せず、かつ燃え広がり難い性質を備えるポリウレタン発泡体を製造するための発泡性ウレタン樹脂組成物、及びこれよりなるポリウレタン発泡体を提供することを課題とする。
In recent years, there have been relatively many reports of fires caused by polyurethane foams used as insulation materials in buildings. In order to improve these problems, it is expected to develop a polyurethane foam that not only has excellent flame retardancy but also has the property of being difficult to spread when a fire breaks out.
By incorporating a large amount of highly flame-retardant compounds such as red phosphorus, it is possible to give polyurethane foam properties that make it difficult for flames to spread, but the foam takes on the dark red coloration characteristic of red phosphorus, which may affect the color tone of the product. Problems may arise. Depending on the use of polyurethane foam, it may be colored by adding a dye or the like, but the dark red characteristic of red phosphorus prevents the dye from developing color.
Therefore, an object of the present invention is to provide a foamable urethane resin composition for producing a polyurethane foam that does not contain red phosphorus and has properties that prevent it from spreading, and a polyurethane foam made of the composition.

本発明者は、鋭意検討の結果、ポリオール化合物、ポリイソシアネート化合物、整泡剤、発泡剤、触媒、及び添加剤を含む発泡性ウレタン樹脂組成物であって、前記発泡性ウレタン樹脂組成物が、赤燐を実質的に含有せず、かつ鋼球の沈み込み距離が、一定値以下である組成物により、上記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明は、以下の[1]~[10]を提供する。
[1]ポリオール化合物、ポリイソシアネート化合物、整泡剤、発泡剤、触媒、及び添加剤を含む発泡性ウレタン樹脂組成物であって、前記発泡性ウレタン樹脂組成物は、赤燐を実質的に含有せず、前記発泡性ウレタン樹脂組成物からなるポリウレタン発泡体の下記の鋼球沈み込み評価における鋼球の沈み込み距離が20mm以下である、発泡性ウレタン樹脂組成物。
(鋼球沈み込み評価)
(1)ポリウレタン発泡体を各辺50mmの立方体に切り出し、試験体とする。
(2)ブンゼンバーナー(外炎長70mm)のバーナー口から30mmの地点に金網を置き、該金網上に、直径4.7mm、重量0.44gの鋼球を載せて、鋼球全体が赤色に変化するまで、少なくとも5分以上加熱し、鋼球温度を750℃以上とする。
(3)23℃雰囲気下にて、上記(2)で加熱した鋼球を直ちに、上記(1)の試験体の上部の中心に載せて、鋼球の沈み込みが完了するまで放置する。次いで、十分に冷却された試験体の断面を裁断して、鋼球の沈み込み距離を測定する。
[2]前記発泡性ウレタン樹脂組成物からなるポリウレタン発泡体を、ISO-5660の試験方法に準拠して、放射熱強度50kW/mにて加熱したときに、5分経過時の総発熱量が8MJ/m以下である、上記[1]に記載の発泡性ウレタン樹脂組成物。
[3]ポリオール化合物が、芳香族ポリオール化合物である、上記[1]又は[2]記載の発泡性ウレタン樹脂組成物。
[4]前記触媒が三量化触媒を含む、上記[1]~[3]のいずれかに記載の発泡性ウレタン樹脂組成物。
[5]イソシアネートインデックスが200~700である、上記[1]~[4]のいずれかに記載の発泡性ウレタン樹脂組成物。
[6]前記添加剤として難燃剤を含み、該難燃剤の含有量が、ポリオール化合物及びポリイソシアネート化合物からなるウレタン樹脂100質量部に対して1質量部以上である、上記[1]~[5]のいずれかに記載の発泡性ウレタン樹脂組成物。
[7]吹き付け用の発泡性ウレタン樹脂組成物である、上記[1]~[6]のいずれかに記載の発泡性ウレタン樹脂組成物。
[8]前記添加剤として固体難燃剤及び液体難燃剤を含有する、上記[1]~[7]のいずれかに記載の発泡性ウレタン樹脂組成物。
[9]前記添加剤として難燃剤を含み、該難燃剤が、リン酸エステル系難燃剤、ホウ素含有難燃剤、臭素含有難燃剤、リン酸塩含有難燃剤、アンチモン含有難燃剤、ホスフィン酸系難燃剤、及び金属水酸化物系難燃剤から選択される少なくとも一種以上である、上記[1]~[8]のいずれかに記載の発泡性ウレタン樹脂組成物。
[10]上記[1]~[9]のいずれかに記載の発泡性ウレタン樹脂組成物から形成されてなり、上記鋼球沈み込み評価における鋼球の沈み込み距離が20mm以下である、ポリウレタン発泡体。
As a result of extensive studies, the present inventors have discovered a foamable urethane resin composition containing a polyol compound, a polyisocyanate compound, a foam stabilizer, a blowing agent, a catalyst, and an additive, the foamable urethane resin composition comprising: The inventors have discovered that the above-mentioned problems can be solved with a composition that does not substantially contain red phosphorus and in which the sinking distance of a steel ball is below a certain value, and has completed the present invention. That is, the present invention provides the following [1] to [10].
[1] A foamable urethane resin composition containing a polyol compound, a polyisocyanate compound, a foam stabilizer, a blowing agent, a catalyst, and an additive, the foamable urethane resin composition substantially containing red phosphorus. A foamable urethane resin composition in which the sinking distance of a steel ball is 20 mm or less in the following steel ball sinking evaluation of a polyurethane foam made of the foamable urethane resin composition.
(Steel ball sinking evaluation)
(1) A polyurethane foam is cut into a cube with each side of 50 mm and used as a test piece.
(2) Place a wire mesh at a point 30 mm from the burner mouth of a Bunsen burner (outer flame length 70 mm), place a steel ball with a diameter of 4.7 mm and a weight of 0.44 g on the wire mesh, and the entire steel ball turns red. Heat the steel ball for at least 5 minutes or more until the steel ball temperature changes to 750°C or higher.
(3) In an atmosphere of 23° C., immediately place the steel ball heated in (2) above on the center of the upper part of the test specimen in (1) above, and leave it until the steel ball sinks completely. Next, a cross section of the sufficiently cooled test specimen is cut to measure the sinking distance of the steel ball.
[2] The total calorific value after 5 minutes when the polyurethane foam made of the foamable urethane resin composition is heated at a radiant heat intensity of 50 kW/m 2 in accordance with the ISO-5660 test method. The foamable urethane resin composition according to the above [1], wherein the foaming capacity is 8 MJ/m 2 or less.
[3] The foamable urethane resin composition according to [1] or [2] above, wherein the polyol compound is an aromatic polyol compound.
[4] The foamable urethane resin composition according to any one of [1] to [3] above, wherein the catalyst includes a trimerization catalyst.
[5] The foamable urethane resin composition according to any one of [1] to [4] above, which has an isocyanate index of 200 to 700.
[6] The above-mentioned [1] to [5] contains a flame retardant as the additive, and the content of the flame retardant is 1 part by mass or more based on 100 parts by mass of the urethane resin consisting of a polyol compound and a polyisocyanate compound. ] The foamable urethane resin composition according to any one of the above.
[7] The foamable urethane resin composition according to any one of [1] to [6] above, which is a foamable urethane resin composition for spraying.
[8] The foamable urethane resin composition according to any one of [1] to [7] above, which contains a solid flame retardant and a liquid flame retardant as the additive.
[9] The additive includes a flame retardant, and the flame retardant is a phosphate-based flame retardant, a boron-containing flame retardant, a bromine-containing flame retardant, a phosphate-containing flame retardant, an antimony-containing flame retardant, or a phosphinic acid-based flame retardant. The foamable urethane resin composition according to any one of [1] to [8] above, which is at least one selected from a flame agent and a metal hydroxide flame retardant.
[10] Polyurethane foam, which is formed from the foamable urethane resin composition according to any one of [1] to [9] above, and has a steel ball sinking distance of 20 mm or less in the steel ball sinking evaluation above. body.

本発明によれば、赤燐を実質的に含有しないことにより、赤燐特有の着色がなく、かつ火災が生じたときなどに、燃え広がり難い性質を備えるポリウレタン発泡体を製造可能な、発泡性ウレタン樹脂組成物及びこれよりなるポリウレタン発泡体を提供できる。 According to the present invention, a foamable urethane foam that does not substantially contain red phosphorus, thereby making it possible to produce a polyurethane foam that does not have the coloring characteristic of red phosphorus and has properties that prevent it from spreading in the event of a fire, etc. A resin composition and a polyurethane foam made of the same can be provided.

[発泡性ウレタン樹脂組成物]
本発明の発泡性ウレタン樹脂組成物は、ポリオール化合物、ポリイソシアネート化合物、整泡剤、発泡剤、触媒、及び添加剤を含む組成物であって、前記発泡性ウレタン樹脂組成物は、赤燐を実質的に含有せず、前記発泡性ウレタン樹脂組成物からなるポリウレタン発泡体の下記の鋼球沈み込み評価における鋼球の沈み込み距離が20mm以下である。
(鋼球沈み込み評価)
(1)ポリウレタン発泡体を各辺50mmの立方体に切り出し、試験体とする。
(2)ブンゼンバーナー(外炎長70mm)のバーナー口から30mmの地点に金網を置き、該金網上に、直径4.7mm、重量0.44gの鋼球を載せて、鋼球全体が赤色に変化するまで、少なくとも5分以上加熱し、鋼球温度は750℃以上とする。ブンゼンバーナーは、LPG燃焼ガスを用いる。
(3)23℃雰囲気下にて、上記(2)で加熱した鋼球を直ちに、上記(1)の試験体の上部の中心に載せて、鋼球の沈み込みが完了するまで放置する。次いで、十分に冷却された試験体の断面を裁断して、鋼球の沈み込み距離を測定する。
[Foamable urethane resin composition]
The foamable urethane resin composition of the present invention is a composition containing a polyol compound, a polyisocyanate compound, a foam stabilizer, a blowing agent, a catalyst, and an additive, and the foamable urethane resin composition contains red phosphorus. The sinking distance of a steel ball in the following steel ball sinking evaluation of a polyurethane foam made of the above-mentioned expandable urethane resin composition is 20 mm or less.
(Steel ball sinking evaluation)
(1) A polyurethane foam is cut into a cube with each side of 50 mm and used as a test piece.
(2) Place a wire mesh at a point 30 mm from the burner mouth of a Bunsen burner (outer flame length 70 mm), place a steel ball with a diameter of 4.7 mm and a weight of 0.44 g on the wire mesh, and the entire steel ball turns red. Heat for at least 5 minutes or more until the steel ball temperature changes to 750°C or higher. Bunsen burners use LPG combustion gas.
(3) In an atmosphere of 23° C., immediately place the steel ball heated in (2) above on the center of the upper part of the test specimen in (1) above, and leave it until the steel ball sinks completely. Next, a cross section of the sufficiently cooled test specimen is cut to measure the sinking distance of the steel ball.

上記鋼球沈み込み評価において、鋼球の直径及び重量に関して、直径が4.7±0.5mm、重量は0.44±0.5gの範囲内であれば、その他の条件を上記のとおりとすることにより、同等の鋼球沈み込み評価となるため、このような直径及び重量の範囲で実施してもよい。
また、外炎長とは、バーナー口の中心部から直上方向の炎の長さを意味する。
In the above steel ball sinkage evaluation, regarding the diameter and weight of the steel ball, if the diameter is within the range of 4.7 ± 0.5 mm and the weight is within the range of 0.44 ± 0.5 g, the other conditions are as above. This results in equivalent steel ball sinkage evaluation, so it may be carried out within such diameter and weight ranges.
Further, the outer flame length means the length of the flame in the direction directly above the center of the burner mouth.

本発明の発泡性ウレタン樹脂組成物からなるポリウレタン発泡体は、鋼球沈み込み評価における鋼球の沈み込み距離が20mm以下である。鋼球の沈み込み距離が20mmを超えると、ポリウレタン発泡体が、火災などに晒された場合に燃え広がりやすく、延焼を有効に防止することが困難になる。延焼を有効に防止する観点から、鋼球の沈み込み距離は、好ましくは15mm以下であり、より好ましくは10mm以下、さらに好ましくは5mm以下である。なお、鋼球の沈み込み距離は0mm以上である。
鋼球沈み込み距離は、発泡性ウレタン樹脂組成物に含有されるポリオール化合物の種類、赤燐以外の難燃剤の含有量などを調整することによって、所望の値に調節することができる。
The polyurethane foam made of the foamable urethane resin composition of the present invention has a steel ball sinking distance of 20 mm or less in steel ball sinking evaluation. If the sinking distance of the steel ball exceeds 20 mm, the polyurethane foam is likely to catch fire when exposed to fire, making it difficult to effectively prevent the spread of fire. From the viewpoint of effectively preventing the spread of fire, the sinking distance of the steel ball is preferably 15 mm or less, more preferably 10 mm or less, and still more preferably 5 mm or less. Note that the sinking distance of the steel ball is 0 mm or more.
The steel ball sinking distance can be adjusted to a desired value by adjusting the type of polyol compound contained in the foamable urethane resin composition, the content of flame retardants other than red phosphorus, and the like.

なお、鋼球沈み込み評価におけるポリウレタン発泡体は、実施例にて記載する条件で作製したものを使用する。 The polyurethane foam used in the steel ball sinking evaluation was produced under the conditions described in Examples.

(赤燐)
本発明の発泡性ウレタン樹脂組成物は、赤燐を実質的に含有しない。赤燐を実質的に含有しないことにより、ポリウレタン発泡体の赤燐特有の着色を防止することができ、製品を所望の色調に調整しやすくなる。なお、本発明において、実質的に含有しないとは、意図的に配合しないことを意味する。
(red phosphorus)
The foamable urethane resin composition of the present invention does not substantially contain red phosphorus. By substantially not containing red phosphorus, it is possible to prevent the polyurethane foam from coloring peculiar to red phosphorus, making it easier to adjust the color of the product to the desired color tone. In the present invention, "not substantially containing" means not intentionally blending.

(総発熱量)
本発明の発泡性ウレタン樹脂組成物からなるポリウレタン発泡体を、ISO-5660の試験方法に準拠して、放射熱強度50kW/mにて加熱したときに、5分経過時の総発熱量が8MJ/m以下であることが好ましい。総発熱量が8MJ/m以下であることにより、本発明の発泡性ウレタン樹脂組成物からなるポリウレタン発泡体は、所定の難燃性を有する。所定の難燃性を有し、かつ上記したように鋼球沈み込み距離が一定値以下であることにより、難燃性を有し、かつ燃え広がらない性質を兼ね備えたポリウレタン発泡体となり、火災時の延焼をより有効に防止することができる。
ポリウレタン発泡体の難燃性をより向上させる観点から、上記総発熱量は、7MJ/m以下であることが好ましく、5MJ/m以下であることがより好ましい。
上記総発熱量は、コーンカロリーメーター試験により得られ、詳細には実施例に記載の方法で測定することができる。
なお、上記コーンカロリーメーター試験の際、試験に供したポリウレタン発泡体がコーンカロリーメーターのスパーク点火器に接触しない程度の形状安定性を有することが好ましい。
(Total calorific value)
When a polyurethane foam made of the foamable urethane resin composition of the present invention is heated at a radiant heat intensity of 50 kW/ m2 in accordance with the ISO-5660 test method, the total calorific value after 5 minutes is It is preferably 8 MJ/m 2 or less. Since the total calorific value is 8 MJ/m 2 or less, the polyurethane foam made of the foamable urethane resin composition of the present invention has a predetermined flame retardancy. By having a specified flame retardant property and the steel ball sinking distance being less than a certain value as mentioned above, the polyurethane foam is both flame retardant and has the property of not spreading when a fire occurs. The spread of fire can be more effectively prevented.
From the viewpoint of further improving the flame retardance of the polyurethane foam, the total calorific value is preferably 7 MJ/m 2 or less, more preferably 5 MJ/m 2 or less.
The above gross calorific value is obtained by a cone calorimeter test, and can be measured in detail by the method described in the Examples.
In addition, during the above-mentioned cone calorimeter test, it is preferable that the polyurethane foam subjected to the test has shape stability to the extent that it does not come into contact with the spark igniter of the cone calorimeter.

(ポリオール化合物)
本発明の発泡性ウレタン樹脂組成物に含まれるポリオール化合物は、特に限定されないが、ポリエーテルポリオール、ポリエステルポリオールが好ましい。中でも、得られるポリウレタン発泡体の難燃性などを高める観点から、後述するように、芳香族ポリエーテルポリオール、芳香族ポリエステルポリオールなどの芳香族ポリオール化合物が好ましい。
(Polyol compound)
The polyol compound contained in the foamable urethane resin composition of the present invention is not particularly limited, but polyether polyols and polyester polyols are preferred. Among these, aromatic polyol compounds such as aromatic polyether polyols and aromatic polyester polyols are preferred, as will be described later, from the viewpoint of improving the flame retardance of the resulting polyurethane foam.

<ポリエーテルポリオール>
ポリエーテルポリオールは、2個以上の活性水素原子を有する開始剤に、アルキレンオキサイドを開環付加重合させて得られたポリオキシアルキレンポリオールである。開始剤としては、具体的には例えば、脂肪族多価アルコール(例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、シクロヘキシレングリコール、シクロヘキサンジメタノールなどのグリコール類、トリメチロールプロパン、グリセリンなどのトリオール類、ペンタエリスリトールなどの4官能アルコール類)、脂肪族アミン(例えば、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、ネオペンチルジアミンなどのアルキレンジアミン、モノエタノールアミン、ジエタノールアミンなどのアルカノールアミン)、芳香族アミン(例えば、アニリン、トリレンジアミン、キシリレンジアミン、ジフェニルメタンジアミン、マンニッヒ縮合物など)などが挙げられ、これらはそれぞれ1種単独で用いても2種以上併用してもよい。
ポリエーテルポリオールとしては、ポリウレタン発泡体の難燃性を高める観点から、分子内に芳香環を有する芳香族ポリエーテルポリオールが好ましく、中でもトリレンジアミン系ポリエーテルポリオール、マンニッヒ系ポリエーテルポリオールなどのアミン系ポリエーテルポリオールが好ましく、マンニッヒ系ポリエーテルポリオールがより好ましい。
なお、上記トリレンジアミン系ポリエーテルポリオールとは、開始剤としてトリレンジアミンを用いて得られたポリエーテルポリオールのことである。上記マンニッヒ系ポリエーテルポリオールとは、開始剤としてマンニッヒ縮合物を用いて得られるポリエーテルポリオールなど、フェノール類、第一級又は第二級アミン類、及びアルデヒド類によるマンニッヒ反応を利用して製造されるポリエーテルポリオールのことである。
<Polyether polyol>
Polyether polyol is a polyoxyalkylene polyol obtained by ring-opening addition polymerization of alkylene oxide to an initiator having two or more active hydrogen atoms. Specific examples of the initiator include aliphatic polyhydric alcohols (e.g., ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, 1,4-butanediol, 1,3-butanediol, 1,6-hexane). diols, glycols such as neopentyl glycol, cyclohexylene glycol, and cyclohexanedimethanol, triols such as trimethylolpropane and glycerin, and tetrafunctional alcohols such as pentaerythritol), aliphatic amines (e.g. ethylenediamine, propylene diamine, butylene) diamines, alkylene diamines such as hexamethylene diamine and neopentyl diamine, alkanolamines such as monoethanolamine and diethanolamine), aromatic amines (e.g. aniline, tolylene diamine, xylylene diamine, diphenylmethane diamine, Mannich condensation products, etc.), etc. These may be used alone or in combination of two or more.
As the polyether polyol, aromatic polyether polyols having an aromatic ring in the molecule are preferable from the viewpoint of improving the flame retardancy of the polyurethane foam, and among them, amines such as tolylene diamine-based polyether polyols and Mannich-based polyether polyols are preferable. Mannich type polyether polyols are preferred, and Mannich type polyether polyols are more preferred.
Note that the above-mentioned tolylene diamine-based polyether polyol is a polyether polyol obtained using tolylene diamine as an initiator. The above-mentioned Mannich polyether polyol is a polyether polyol obtained using a Mannich condensate as an initiator, and is produced using a Mannich reaction with phenols, primary or secondary amines, and aldehydes. It is a polyether polyol.

ポリエーテルポリオールの水酸基価は、200~1000mgKOH/gであることが好ましく、300~600mgKOH/gであることがより好ましい。水酸基価は、JIS K1557-1:2007に準拠して測定される値である。 The hydroxyl value of the polyether polyol is preferably 200 to 1000 mgKOH/g, more preferably 300 to 600 mgKOH/g. The hydroxyl value is a value measured in accordance with JIS K1557-1:2007.

<ポリエステルポリオール>
ポリエステルポリオールは、芳香族ポリエステルポリオールおよび脂肪族ポリエステルポリオールなどが挙げられるが、得られるポリウレタン発泡体の難燃性を考慮した場合、芳香族ポリエステルポリオールを使用することが好ましい。芳香族ポリエステルポリオールは、o-フタル酸(フタル酸)、m-フタル酸(イソフタル酸)、p-フタル酸(テレフタル酸)、ナフタレンジカルボン酸などの芳香族ジカルボン酸とグリコールの縮合物であることが好ましい。中でも、ポリウレタン発泡体の難燃性を高める観点、上記した鋼球沈み込み距離の値を小さくし、燃え広がらない性能を高める観点、及び発泡体に熱が加わったときに形状変形を生じ難くする観点から、o-フタル酸、m-フタル酸、及びp-フタル酸の少なくともいずれかとグリコールとの縮合物である、フタル酸系ポリエステルポリオールが好ましく、p-フタル酸とグリコールの縮合物である、p-フタル酸系ポリエステルポリオールがより好ましい。
グリコールとしては、特に限定されるものではないが、エチレングリコール、プロピレングリコール、ジエチレングリコール等のポリエステルポリオールの構成成分として公知の低分子量脂肪族グリコールを使用することが好ましい。
<Polyester polyol>
Examples of polyester polyols include aromatic polyester polyols and aliphatic polyester polyols, but in consideration of the flame retardancy of the resulting polyurethane foam, it is preferable to use aromatic polyester polyols. The aromatic polyester polyol must be a condensation product of aromatic dicarboxylic acids such as o-phthalic acid (phthalic acid), m-phthalic acid (isophthalic acid), p-phthalic acid (terephthalic acid), naphthalene dicarboxylic acid, and glycol. is preferred. Among these, we aim to improve the flame retardancy of polyurethane foam, to reduce the steel ball sinking distance mentioned above to improve its ability to prevent flame spread, and to make it less likely that the foam will undergo shape deformation when heated. From this point of view, phthalic acid-based polyester polyols are preferred, which are condensates of at least one of o-phthalic acid, m-phthalic acid, and p-phthalic acid and glycol; More preferred is p-phthalic acid polyester polyol.
The glycol is not particularly limited, but it is preferable to use low molecular weight aliphatic glycols known as constituents of polyester polyols such as ethylene glycol, propylene glycol, and diethylene glycol.

上記したポリオール化合物の中でも、ポリウレタン発泡体の難燃性を高める観点、及び上記した鋼球沈み込み距離の値を小さくし、燃え広がらない性能を高める観点から、芳香族ポリオール化合物が好ましく、芳香族ポリオール化合物がフタル酸系ポリエステルポリオール及びアミン系ポリエーテルポリオールの少なくとも一方を含有することがより好ましい。 Among the above-mentioned polyol compounds, aromatic polyol compounds are preferred from the viewpoint of increasing the flame retardancy of the polyurethane foam, and from the viewpoint of reducing the steel ball sinking distance described above and improving the performance of preventing the spread of flame. More preferably, the polyol compound contains at least one of a phthalic acid polyester polyol and an amine polyether polyol.

ポリエステルポリオールの水酸基価は、100~400mgKOH/gであることが好ましく、150~350mgKOH/gであることがより好ましい。 The hydroxyl value of the polyester polyol is preferably 100 to 400 mgKOH/g, more preferably 150 to 350 mgKOH/g.

ポリオール化合物は、芳香族ポリオール化合物を50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、100質量%含むことがさらに好ましい。
また、芳香族ポリオール化合物は、フタル酸系ポリエステルポリオール及びアミン系ポリエーテルポリオールの少なくとも一方を50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、100質量%含むことがさらに好ましい。
The polyol compound preferably contains an aromatic polyol compound in an amount of 50% by mass or more, more preferably 80% by mass or more, and even more preferably 100% by mass.
Further, the aromatic polyol compound preferably contains at least 50% by mass, more preferably 80% by mass or more, and even more preferably 100% by mass of at least one of phthalic acid polyester polyol and amine polyether polyol. .

(ポリイソシアネート化合物)
発泡性ウレタン樹脂組成物に含有されるポリイソシアネート化合物としては、イソシアネート基を2個以上有する芳香族系、脂環族系、脂肪族系などの各種ポリイソシアネート化合物を用いることができる。好ましくは、取扱の容易さ、反応の速さ、得られるポリウレタン発泡体の物理特性が優れていること、および低コストであることなどから、液状ジフェニルメタンジイソシアネート(MDI)を用いることが好ましい。液状MDIとしては、クルードMDI(ポリメリックMDIともいう)が挙げられる。液状MDIの具体的な市販品としては、「44V-10」,「44V-20」(住化コベストロウレタン株式会社製)、「ミリオネートMR-200」(日本ポリウレタン工業))などが挙げられる。また、ウレトンイミン含有MDI(例えば、市販品として「ミリオネートMTL」:日本ポリウレタン工業製)などでもよい。液状MDIに加えて、他のポリイソシアネート化合物を併用してもよく、併用するポリイソシアネート化合物としては、ポリウレタンの技術分野において公知のポリイソシアネート化合物は限定なく使用可能である。
(Polyisocyanate compound)
As the polyisocyanate compound contained in the foamable urethane resin composition, various polyisocyanate compounds having two or more isocyanate groups, such as aromatic, alicyclic, and aliphatic, can be used. Preferably, liquid diphenylmethane diisocyanate (MDI) is used because of its ease of handling, speed of reaction, excellent physical properties of the resulting polyurethane foam, and low cost. Examples of liquid MDI include crude MDI (also referred to as polymeric MDI). Specific commercial products of liquid MDI include "44V-10", "44V-20" (manufactured by Sumika Covestro Urethane Co., Ltd.), and "Millionate MR-200" (Japan Polyurethane Industries). Alternatively, MDI containing uretonimine (for example, "Millionate MTL" as a commercially available product, manufactured by Nippon Polyurethane Industries) may be used. In addition to liquid MDI, other polyisocyanate compounds may be used in combination, and any polyisocyanate compound known in the technical field of polyurethane can be used without limitation.

発泡性ウレタン樹脂組成物におけるイソシアネートインデックス(NCO INDEX)は、特に限定されないが、難燃性を向上させる観点から、200~700が好ましく、250~500がより好ましく、250~400が更に好ましい。
ここで、イソシアネート指数とは、発泡性ウレタン樹脂組成物に含まれる全ての活性水素基(なお、発泡剤としての水は2官能活性水素化合物として計算)に対するポリイソシアネート化合物のイソシアネート基の当量比を百分率で表したもの(活性水素基100当量に対するイソシアネート基の当量比)を意味する。
The isocyanate index (NCO INDEX) in the foamable urethane resin composition is not particularly limited, but from the viewpoint of improving flame retardancy, it is preferably 200 to 700, more preferably 250 to 500, and even more preferably 250 to 400.
Here, the isocyanate index refers to the equivalent ratio of the isocyanate groups of the polyisocyanate compound to all active hydrogen groups contained in the foamable urethane resin composition (water as a blowing agent is calculated as a bifunctional active hydrogen compound). It means what is expressed as a percentage (equivalent ratio of isocyanate groups to 100 equivalents of active hydrogen groups).

(添加剤)
本発明の発泡性ウレタン樹脂組成物には、添加剤として難燃剤を含有することが好ましい。難燃剤としては、特に限定されないが、リン酸エステル系難燃剤、ホウ素含有難燃剤、臭素含有難燃剤、リン酸塩含有難燃剤、アンチモン含有難燃剤、ホスフィン酸系難燃剤、及び金属水酸化物系難燃剤から選択される少なくとも一種以上であることが好ましい。
難燃剤の含有量は、特に限定されないが、ウレタン樹脂に100質量部に対して、好ましくは1質量部以上、より好ましくは5質量部以上、更に好ましくは10質量部以上であり、そして好ましくは40質量部以下、より好ましくは30質量部以下である。
(Additive)
The foamable urethane resin composition of the present invention preferably contains a flame retardant as an additive. Flame retardants include, but are not limited to, phosphate-based flame retardants, boron-containing flame retardants, bromine-containing flame retardants, phosphate-containing flame retardants, antimony-containing flame retardants, phosphinic acid-based flame retardants, and metal hydroxides. It is preferable that the flame retardant is at least one selected from flame retardants.
The content of the flame retardant is not particularly limited, but is preferably 1 part by mass or more, more preferably 5 parts by mass or more, even more preferably 10 parts by mass or more, and preferably It is 40 parts by mass or less, more preferably 30 parts by mass or less.

また、本発明の発泡性ウレタン樹脂組成物は、添加剤として液体難燃剤及び固体難燃剤を含有することも好ましい。これにより、得られるポリウレタン発泡体の難燃性が向上すると共に、ポリウレタン発泡体が熱に晒された際に形状変形しにくくなる。特に、液体難燃剤として後述するリン酸エステル系難燃剤を用い、固体難燃剤として後述するホウ酸含有難燃剤を用いこれらを併用することが好ましい。
ここで、固体難燃剤とは23℃で固体である難燃剤をいい、液体難燃剤とは23℃で液体である難燃剤をいう。
Moreover, it is also preferable that the foamable urethane resin composition of the present invention contains a liquid flame retardant and a solid flame retardant as additives. This improves the flame retardancy of the resulting polyurethane foam and makes it difficult for the polyurethane foam to deform when exposed to heat. In particular, it is preferable to use a phosphate ester flame retardant, which will be described later, as a liquid flame retardant, and a boric acid-containing flame retardant, which will be described later, as a solid flame retardant, and to use these in combination.
Here, the solid flame retardant refers to a flame retardant that is solid at 23°C, and the liquid flame retardant refers to a flame retardant that is liquid at 23°C.

固体難燃剤としては、例えば、ホウ素含有難燃剤、臭素含有難燃剤、リン酸塩含有難燃剤、アンチモン含有難燃剤、ホスフィン酸系難燃剤、及び金属水酸化物系難燃剤等が挙げられ、中でも、ホウ素含有難燃剤、臭素含有難燃剤が好ましく、ホウ素含有難燃剤がより好ましい。固体難燃剤を用いることにより、ポリウレタン発泡体が熱に晒された際の、形状変形を抑制しやすくなる。 Examples of solid flame retardants include boron-containing flame retardants, bromine-containing flame retardants, phosphate-containing flame retardants, antimony-containing flame retardants, phosphinic acid-based flame retardants, and metal hydroxide-based flame retardants, among others. , boron-containing flame retardants, and bromine-containing flame retardants are preferred, and boron-containing flame retardants are more preferred. By using a solid flame retardant, it becomes easier to suppress shape deformation when the polyurethane foam is exposed to heat.

<ホウ素含有難燃剤>
ホウ素含有難燃剤としては、具体的には、ホウ酸リチウム、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸セシウム等のホウ酸アルカリ金属塩、ホウ酸マグネシウム、ホウ酸カルシウム、ホウ酸バリウム等のホウ酸アルカリ土類金属塩、ホウ酸ジルコニウム、ホウ酸亜鉛、ホウ酸アルミニウム、ホウ酸アンモニウム等が挙げられる。中でも、ホウ酸亜鉛が好ましい。
<Boron-containing flame retardant>
Examples of boron-containing flame retardants include alkali metal borates such as lithium borate, sodium borate, potassium borate, and cesium borate, and boric acids such as magnesium borate, calcium borate, and barium borate. Examples include alkaline earth metal salts, zirconium borate, zinc borate, aluminum borate, ammonium borate, and the like. Among these, zinc borate is preferred.

<臭素系難燃剤>
臭素系難燃剤としては、分子構造中に臭素を含有する化合物であれば特に限定はないが、例えば、芳香族臭素化化合物等を挙げることができる。
前記芳香族臭素化化合物の具体例としては、例えば、例えば、ヘキサブロモベンゼン、ペンタブロモトルエン、ヘキサブロモビフェニル、デカブロモビフェニル、ヘキサブロモシクロデカン、デカブロモジフェニルエーテル、オクタブロモジフェニルエーテル、ヘキサブロモジフェニルエーテル、ビス(ペンタブロモフェノキシ)エタン、エチレンビス(ペンタブロモフェニル)、エチレンビス(テトラブロモフタルイミド)、テトラブロモビスフェノールA、等のモノマー系有機臭素化合物、臭素化ビスフェノールAを原料として製造されたポリカーボネートオリゴマー、前記ポリカーボネートオリゴマーとビスフェノールAとの共重合物等の臭素化ポリカーボネート、臭素化ビスフェノールAとエピクロルヒドリンとの反応によって製造されるジエポキシ化合物、臭素化フェノール類とエピクロルヒドリンとの反応によって得られるモノエポキシ化合物等の臭素化エポキシ化合物、ポリ(臭素化ベンジルアクリレート)、臭素化ポリフェニレンエーテル、臭素化ビスフェノールA、塩化シアヌールおよび臭素化フェノールの縮合物、臭素化(ポリスチレン)、ポリ(臭素化スチレン)、架橋臭素化ポリスチレン等の臭素化ポリスチレン、架橋または非架橋臭素化ポリ(α-メチルスチレン)等のハロゲン化された臭素化合物ポリマーが挙げられる。
これらの中でも、エチレンビス(ペンタブロモフェニル)、エチレンビス(テトラブロモフタルイミド)、ヘキサブロモベンゼン等が好ましい。
<Brominated flame retardant>
The brominated flame retardant is not particularly limited as long as it is a compound containing bromine in its molecular structure, and examples thereof include aromatic brominated compounds.
Specific examples of the aromatic brominated compounds include hexabromobenzene, pentabromotoluene, hexabromobiphenyl, decabromobiphenyl, hexabromocyclodecane, decabromodiphenyl ether, octabromodiphenyl ether, hexabromodiphenyl ether, and bisbromodiphenyl ether. (pentabromophenoxy)ethane, ethylenebis(pentabromophenyl), ethylenebis(tetrabromophthalimide), tetrabromobisphenol A, and other monomeric organic bromine compounds, polycarbonate oligomers produced using brominated bisphenol A as raw materials; Brominated polycarbonates such as copolymers of polycarbonate oligomers and bisphenol A, diepoxy compounds produced by the reaction of brominated bisphenol A and epichlorohydrin, and monoepoxy compounds obtained by the reaction of brominated phenols with epichlorohydrin, etc. epoxy compounds, poly(brominated benzyl acrylate), brominated polyphenylene ether, brominated bisphenol A, condensates of cyanuric chloride and brominated phenol, brominated (polystyrene), poly(brominated styrene), crosslinked brominated polystyrene, etc. Examples include halogenated bromine compound polymers such as brominated polystyrene, crosslinked or non-crosslinked brominated poly(α-methylstyrene).
Among these, ethylenebis(pentabromophenyl), ethylenebis(tetrabromophthalimide), hexabromobenzene and the like are preferred.

<リン酸塩含有難燃剤>
リン酸塩含有難燃剤としては、例えば、リン酸と、周期律表IA族~IVB族の金属、アンモニア、脂肪族アミン、芳香族アミンから選ばれる少なくとも一種の金属または化合物との塩からなるリン酸塩を挙げることができる。
リン酸は特に限定はないが、モノリン酸、ピロリン酸、ポリリン酸等の各種リン酸が挙げられる。
前記周期律表IA族~IVB族の金属として、リチウム、ナトリウム、カルシウム、バリウム、鉄(II)、鉄(III)、アルミニウム等が挙げられる。前記脂肪族アミンとして、メチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、ピペラジン等が挙げられる。また前記芳香族アミンとして、ピリジン、トリアジン、メラミン等が挙げられる。
なお、上記のリン酸塩含有難燃剤は、シランカップリング剤処理、メラミン樹脂で被覆する等の公知の耐水性向上処理を加えてもよい。
<Phosphate-containing flame retardant>
Phosphate-containing flame retardants include, for example, phosphoric acid salts of phosphoric acid and at least one metal or compound selected from metals of Groups IA to IVB of the Periodic Table, ammonia, aliphatic amines, and aromatic amines. Mention may be made of acid salts.
The phosphoric acid is not particularly limited, but various phosphoric acids such as monophosphoric acid, pyrophosphoric acid, and polyphosphoric acid can be mentioned.
Examples of the metals of Groups IA to IVB of the periodic table include lithium, sodium, calcium, barium, iron (II), iron (III), aluminum, and the like. Examples of the aliphatic amine include methylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, piperazine, and the like. Further, examples of the aromatic amine include pyridine, triazine, melamine, and the like.
In addition, the above-mentioned phosphate-containing flame retardant may be subjected to known water resistance improvement treatments such as silane coupling agent treatment and coating with melamine resin.

リン酸塩含有難燃剤の具体例としては、例えば、モノリン酸塩、ピロリン酸塩、ポリリン酸塩等が挙げられる。
モノリン酸塩としては特に限定されないが、例えば、リン酸アンモニウム、リン酸二水素アンモニウム、リン酸水素ニアンモニウム等のアンモニウム塩、リン酸一ナトリウム、リン酸二ナトリウム、リン酸三ナトリウム、亜リン酸一ナトリウム、亜リン酸二ナトリウム、次亜リン酸ナトリウム等のナトリウム塩、リン酸一カリウム、リン酸二カリウム、リン酸三カリウム、亜リン酸一カリウム、亜リン酸二カリウム、次亜リン酸カリウム等のカリウム塩、リン酸一リチウム、リン酸二リチウム、リン酸三リチウム、亜リン酸一リチウム、亜リン酸二リチウム、次亜リン酸リチウム等のリチウム塩、リン酸二水素バリウム、リン酸水素バリウム、リン酸三バリウム、次亜リン酸バリウム等のバリウム塩、リン酸一水素マグネシウム、リン酸水素マグネシウム、リン酸三マグネシウム、次亜リン酸マグネシウム等のマグネシウム塩、リン酸二水素カルシウム、リン酸水素カルシウム、リン酸三カルシウム、次亜リン酸カルシウム等のカルシウム塩、リン酸亜鉛、亜リン酸亜鉛、次亜リン酸亜鉛等の亜鉛塩等が挙げられる。
Specific examples of phosphate-containing flame retardants include monophosphates, pyrophosphates, polyphosphates, and the like.
Monophosphates are not particularly limited, but include, for example, ammonium salts such as ammonium phosphate, ammonium dihydrogen phosphate, and ammonium hydrogen phosphate, monosodium phosphate, disodium phosphate, trisodium phosphate, and phosphorous acid. Sodium salts such as monosodium, disodium phosphite, sodium hypophosphite, monopotassium phosphate, dipotassium phosphate, tripotassium phosphate, monopotassium phosphite, dipotassium phosphite, hypophosphorous acid Potassium salts such as potassium, monolithium phosphate, dilithium phosphate, trilithium phosphate, monolithium phosphite, dilithium phosphite, lithium hypophosphite, etc., barium dihydrogen phosphate, phosphorus Barium salts such as barium oxyhydrogen, tribarium phosphate, barium hypophosphite, magnesium salts such as monohydrogen phosphate, magnesium hydrogen phosphate, trimagnesium phosphate, magnesium hypophosphite, calcium dihydrogen phosphate , calcium salts such as calcium hydrogen phosphate, tricalcium phosphate, and calcium hypophosphite, and zinc salts such as zinc phosphate, zinc phosphite, and zinc hypophosphite.

またポリリン酸塩としては特に限定されないが、例えば、ポリリン酸アンモニウム、ポリリン酸ピペラジン、ポリリン酸メラミン、ポリリン酸アンモニウムアミド、ポリリン酸アルミニウム等が挙げられる。
これらの中でも、前記リン酸塩含有難燃剤の自己消火性が向上するため、モノリン酸塩を使用することが好ましく、リン酸二水素アンモニウムを使用することがより好ましい。
リン酸塩含有難燃剤は一種単独で使用してもよいし、二種以上を使用することができる。
Further, the polyphosphate is not particularly limited, but examples thereof include ammonium polyphosphate, piperazine polyphosphate, melamine polyphosphate, ammonium amide polyphosphate, aluminum polyphosphate, and the like.
Among these, monophosphates are preferably used, and ammonium dihydrogen phosphate is more preferably used, since the self-extinguishing properties of the phosphate-containing flame retardant are improved.
The phosphate-containing flame retardants may be used alone or in combination of two or more.

<アンチモン含有難燃剤>
また本発明に使用するアンチモン含有難燃剤としては、例えば、酸化アンチモン、アンチモン酸塩、ピロアンチモン酸塩等が挙げられる。
酸化アンチモンとしては、例えば、三酸化アンチモン、五酸化アンチモン等が挙げられる。アンチモン酸塩としては、例えば、アンチモン酸ナトリウム、アンチモン酸カリウム等が挙げられる。ピロアンチモン酸塩としては、例えば、ピロアンチモン酸ナトリウム、ピロアンチモン酸カリウム等が挙げられる。
アンチモン含有難燃剤は、酸化アンチモンであることが好ましい。
アンチモン含有難燃剤は、一種単独で使用してもよいし、二種以上を使用することができる。
<Antimony-containing flame retardant>
Examples of the antimony-containing flame retardant used in the present invention include antimony oxide, antimonate salts, and pyroantimonate salts.
Examples of antimony oxide include antimony trioxide and antimony pentoxide. Examples of antimonate salts include sodium antimonate, potassium antimonate, and the like. Examples of the pyroantimonate include sodium pyroantimonate, potassium pyroantimonate, and the like.
Preferably, the antimony-containing flame retardant is antimony oxide.
Antimony-containing flame retardants may be used alone or in combination of two or more.

<ホスフィン酸系難燃剤>
ホスフィン酸系難燃剤としては、例えば、ホスフィン酸、ジメチルホスフィン酸、メチルエチルホスフィン酸、メチルプロピルホスフィン酸、ジエチルホスフィン酸、ジオクチルホスフィン酸、フェニルホスフィン酸、ジエチルフェニルホスフィン酸、ジフェニルホスフィン酸、ビス(4-メトキシフェニル)ホスフィン酸等が挙げられる。
<Phosphinic acid flame retardant>
Examples of phosphinic acid flame retardants include phosphinic acid, dimethylphosphinic acid, methylethylphosphinic acid, methylpropylphosphinic acid, diethylphosphinic acid, dioctylphosphinic acid, phenylphosphinic acid, diethylphenylphosphinic acid, diphenylphosphinic acid, bis( Examples include 4-methoxyphenyl)phosphinic acid.

<金属水酸化物系難燃剤>
金属水酸化物系難燃剤としては、例えば、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、水酸化鉄、水酸化ニッケル、水酸化ジルコニウム、水酸化チタン、水酸化亜鉛、水酸化銅、水酸化バナジウム、水酸化スズ等が挙げられる。金属水酸化物系難燃剤は、一種単独で使用してもよいし、二種以上を使用することもできる。
<Metal hydroxide flame retardant>
Examples of metal hydroxide flame retardants include magnesium hydroxide, calcium hydroxide, aluminum hydroxide, iron hydroxide, nickel hydroxide, zirconium hydroxide, titanium hydroxide, zinc hydroxide, copper hydroxide, and hydroxide. Examples include vanadium and tin hydroxide. The metal hydroxide flame retardants may be used alone or in combination of two or more.

上記した固体難燃剤以外の固体難燃剤としては、ホスファゼン、ホスフィン酸金属塩、シリコーン系難燃剤、有機スルホン酸塩系難燃剤などを例示することができる。 Examples of solid flame retardants other than the solid flame retardants mentioned above include phosphazene, phosphinate metal salts, silicone flame retardants, and organic sulfonate flame retardants.

発泡性ウレタン樹脂組成物中の固体難燃剤の含有量は、特に限定されないが、ウレタン樹脂100質量部に対して、1質量部以上10質量部以下であることが好ましい。固体難燃剤の含有量を1質量部以上とすることにより、ポリウレタン発泡体の難燃性が高められ、かつ発泡体が熱に晒された際に形状変形しにくくなる。また、固体難燃剤の含有量を10質量部以下とすることにより、発泡性ウレタン樹脂組成物の発泡性が良好になり、かつ形成されるポリウレタン発泡体が座屈しにくくなり、取り扱い性に優れる。このような観点から、固体難燃剤の含有量は、ウレタン樹脂100質量部に対して、好ましくは1.5質量部以上、より好ましくは2質量部以上であり、 The content of the solid flame retardant in the foamable urethane resin composition is not particularly limited, but is preferably 1 part by mass or more and 10 parts by mass or less based on 100 parts by mass of the urethane resin. By setting the content of the solid flame retardant to 1 part by mass or more, the flame retardancy of the polyurethane foam is enhanced and the foam is less likely to deform when exposed to heat. Furthermore, by controlling the content of the solid flame retardant to 10 parts by mass or less, the foamability of the foamable urethane resin composition becomes good, and the polyurethane foam formed is less likely to buckle, resulting in excellent handling properties. From this point of view, the content of the solid flame retardant is preferably 1.5 parts by mass or more, more preferably 2 parts by mass or more, based on 100 parts by mass of the urethane resin.

液体難燃剤として、例えば、モノリン酸エステル、縮合リン酸エステル等のリン酸エステル系難燃剤が挙げられる。
モノリン酸エステルとしては、特に限定されないが、トリメチルホスフェート、トリエチルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、トリス(β-クロロプロピル)ホスフェートなどが挙げられる。
縮合リン酸エステルとしては、特に限定されないが、例えば、レゾルシノールポリフェニルホスフェート(商品名CR-733S)、ビスフェノールAポリクレジルホスフェート(商品名CR-741)、芳香族縮合リン酸エステル(商品名CR747)などが挙げられる。
液状難燃剤を使用する場合は、ウレタン樹脂100質量部に対して1質量部以上30質量部以下であることが好ましく、5質量部以上20質量部以下であることがより好ましい。
Examples of the liquid flame retardant include phosphoric acid ester flame retardants such as monophosphoric acid ester and condensed phosphoric acid ester.
Examples of the monophosphate ester include, but are not limited to, trimethyl phosphate, triethyl phosphate, tricresyl phosphate, cresyl diphenyl phosphate, tris(β-chloropropyl) phosphate, and the like.
Condensed phosphoric acid esters are not particularly limited, but include, for example, resorcinol polyphenyl phosphate (trade name: CR-733S), bisphenol A polycresyl phosphate (trade name: CR-741), aromatic condensed phosphoric acid esters (trade name: CR747). ), etc.
When using a liquid flame retardant, it is preferably 1 part by mass or more and 30 parts by mass or less, more preferably 5 parts by mass or more and 20 parts by mass or less, based on 100 parts by mass of the urethane resin.

<無機充填材>
本発明の発泡性ウレタン樹脂組成物は、本発明の効果を阻害しない範囲で、添加剤として無機充填材を含有してもよい。無機充填材としては、例えば、シリカ、珪藻土、アルミナ、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、フェライト類、塩基性炭酸マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、石膏繊維、ケイ酸カルシウム等のカリウム塩、タルク、クレー、マイカ、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカパルン、窒化アルミニウム、窒化ホウ素、窒化ケイ素、カーボンブラック、グラファイト、炭素繊維、炭素パルン、木炭粉末、各種金属粉、チタン酸カリウム、硫酸マグネシウム、チタン酸ジルコン酸鉛、アルミニウムポレート、硫化モリブデン、炭化ケイ素、ステンレス繊維、各種磁性粉、スラグ繊維、フライアッシュ、シリカアルミナ繊維、アルミナ繊維、シリカ繊維、ジルコニア繊維等が挙げられる。
無機充填材の含有量は、発泡性ウレタン樹脂組成物の発泡性などの観点から、ウレタン樹100質量部に対して、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
<Inorganic filler>
The foamable urethane resin composition of the present invention may contain an inorganic filler as an additive to the extent that the effects of the present invention are not impaired. Examples of inorganic fillers include silica, diatomaceous earth, alumina, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, ferrites, basic magnesium carbonate, calcium carbonate, magnesium carbonate, barium carbonate, and dawsonite. , hydrotalcite, calcium sulfate, barium sulfate, gypsum fiber, potassium salts such as calcium silicate, talc, clay, mica, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass beads, silica parun, Aluminum nitride, boron nitride, silicon nitride, carbon black, graphite, carbon fiber, carbon parun, charcoal powder, various metal powders, potassium titanate, magnesium sulfate, lead zirconate titanate, aluminum porate, molybdenum sulfide, silicon carbide, stainless steel Examples include fibers, various magnetic powders, slag fibers, fly ash, silica alumina fibers, alumina fibers, silica fibers, and zirconia fibers.
From the viewpoint of foamability of the foamable urethane resin composition, the content of the inorganic filler is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, based on 100 parts by mass of the urethane resin. preferable.

発泡性ウレタン樹脂組成物は、添加剤として固体難燃剤、液体難燃剤、無機充填材以外をさらに含有してもよく、例えば、フェノール系、アミン系、イオウ系等の酸化防止剤、熱安定剤、金属害防止剤、帯電防止剤、安定剤、架橋剤、滑剤、軟化剤、顔料、粘着付与樹脂等の添加剤、ポリブテン、石油樹脂等の粘着付与剤を含むことができる。 The foamable urethane resin composition may further contain additives other than solid flame retardants, liquid flame retardants, and inorganic fillers, such as phenol-based, amine-based, sulfur-based antioxidants, and heat stabilizers. , metal damage inhibitors, antistatic agents, stabilizers, crosslinking agents, lubricants, softeners, pigments, additives such as tackifier resins, and tackifiers such as polybutene and petroleum resins.

(整泡剤)
発泡性ウレタン樹脂組成物は、整泡剤を含有する。整泡剤としては、例えば、ポリオキシアルキレンアルキルエーテル等のポリオキシアルキレン整泡剤、オルガノポリシロキサン等のシリコーン整泡剤等の界面活性剤等が挙げられる。また、シリコーン整泡剤としては、ポリジメチルシロキサンとポリエチレングリコールのグラフト共重合体を含むものでもよい。
発泡性ウレタン樹脂組成物における整泡剤の配合量は、特に限定さないが、例えば、ウレタン樹脂100質量部に対して、0.01~3質量部であることが好ましく、0.05~2質量部であることがより好ましく、0.1~1質量部であることが更に好ましい。整泡剤は一種単独で使用してもよいし、二種以上を使用することができる。
(foam stabilizer)
The foamable urethane resin composition contains a foam stabilizer. Examples of the foam stabilizer include surfactants such as polyoxyalkylene foam stabilizers such as polyoxyalkylene alkyl ether, and silicone foam stabilizers such as organopolysiloxane. The silicone foam stabilizer may also include a graft copolymer of polydimethylsiloxane and polyethylene glycol.
The amount of the foam stabilizer in the foamable urethane resin composition is not particularly limited, but for example, it is preferably 0.01 to 3 parts by mass, and 0.05 to 2 parts by mass, based on 100 parts by mass of the urethane resin. It is more preferably 0.1 to 1 part by mass, and even more preferably 0.1 to 1 part by mass. Foam stabilizers may be used alone or in combination of two or more.

(発泡剤)
発泡剤の具体例としては、例えば、水、低沸点の炭化水素、塩素化脂肪族炭化水素化合物、フッ素化合物、ハイドロクロロフルオロカーボン化合物、ハイドロフルオロカーボン、エーテル化合物、ハイドロフルオロオレフィンなどが挙げられる。さらに、発泡剤としては、これらの化合物の混合物等の有機系物理発泡剤、窒素ガス、酸素ガス、アルゴンガス、二酸化炭素ガス等の無機系物理発泡剤等が挙げられる。
上記低沸点の炭化水素としては、例えば、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、シクロプロパン、シクロブタン、シクロペンタン、シクロヘキサン、シクロヘプタン等が挙げられる。
上記塩素化脂肪族炭化水素化合物としては、例えば、ジクロロエタン、プロピルクロリド、イソプロピルクロリド、ブチルクロリド、イソブチルクロリド、ペンチルクロリド、イソペンチルクロリド等が挙げられる。
上記フッ素化合物としては、例えば、CHF3、CH22、CH3F等が挙げられる。
上記ハイドロクロロフルオロカーボン化合物としては、例えば、トリクロルモノフルオロメタン、トリクロルトリフルオロエタン、ジクロロモノフルオロエタン(例えば、HCFC141b(1,1-ジクロロ-1-フルオロエタン)、HCFC22 (クロロジフルオロメタン)、HCFC142b(1-クロロ-1,1-ジフルオロエタン))等が挙げられる。
上記ハイドロフルオロカーボンとしては、HFC-245fa(1,1,1,3,3-ペンタフルオロプロパン)、HFC-365mfc(1,1,1,3,3-ペンタフルオロブタン)等が挙げられる。
上記エーテル化合物としては、例えば、ジイソプロピルエーテル等が挙げられる。
上記ハイドロフルオロオレフィンとしては、例えば、HFO-1233zd(E)(トランス-1-クロロ-3,3,3-トリフルオロプロペン)、HFO-1234yf(2,3,3,3-テトラフルオロ-1-プロペン)等が挙げられる。
(foaming agent)
Specific examples of the blowing agent include water, low-boiling hydrocarbons, chlorinated aliphatic hydrocarbon compounds, fluorine compounds, hydrochlorofluorocarbon compounds, hydrofluorocarbons, ether compounds, hydrofluoroolefins, and the like. Further, examples of the blowing agent include organic physical blowing agents such as mixtures of these compounds, and inorganic physical blowing agents such as nitrogen gas, oxygen gas, argon gas, and carbon dioxide gas.
Examples of the low boiling point hydrocarbons include propane, butane, pentane, hexane, heptane, cyclopropane, cyclobutane, cyclopentane, cyclohexane, cycloheptane, and the like.
Examples of the chlorinated aliphatic hydrocarbon compound include dichloroethane, propyl chloride, isopropyl chloride, butyl chloride, isobutyl chloride, pentyl chloride, isopentyl chloride, and the like.
Examples of the fluorine compound include CHF 3 , CH 2 F 2 , CH 3 F, and the like.
Examples of the hydrochlorofluorocarbon compounds include trichloromonofluoromethane, trichlorotrifluoroethane, dichloromonofluoroethane (for example, HCFC141b (1,1-dichloro-1-fluoroethane), HCFC22 (chlorodifluoromethane), HCFC142b ( Examples include 1-chloro-1,1-difluoroethane)).
Examples of the hydrofluorocarbon include HFC-245fa (1,1,1,3,3-pentafluoropropane) and HFC-365mfc (1,1,1,3,3-pentafluorobutane).
Examples of the ether compound include diisopropyl ether.
Examples of the hydrofluoroolefins include HFO-1233zd(E) (trans-1-chloro-3,3,3-trifluoropropene), HFO-1234yf (2,3,3,3-tetrafluoro-1- Propene), etc.

発泡剤の含有量は、ウレタン樹脂100質量部に対して、0.1~30質量部が好ましく、0.5~20質量部がより好ましく、1~15質量部がさらに好ましい。 The content of the blowing agent is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 20 parts by weight, and even more preferably 1 to 15 parts by weight, based on 100 parts by weight of the urethane resin.

(触媒)
本発明の発泡性ウレタン樹脂組成物は、触媒を含有する。触媒は、例えばウレタン化触媒及び三量化触媒の一方又は両方を含有してもよく、両方を含有することが好ましい。
(catalyst)
The foamable urethane resin composition of the present invention contains a catalyst. The catalyst may contain, for example, one or both of a urethanization catalyst and a trimerization catalyst, and preferably contains both.

ウレタン化触媒は、ポリオール成分とポリイソシアネートとの反応を促進させる触媒である。具体的には、アミノ化合物、錫化合物、ビスマス化合物、アセチルアセトン金属塩が挙げられる。
前記アミノ化合物としては、例えば、ペンタメチルジエチレントリアミン、トリエチルアミン、N-メチルモルホリンビス(2-ジメチルアミノエチル)エーテル、ビス(2-ジメチルアミノエチル)エーテル、N,N,N’,N”,N”-ペンタメチルジエチレントリアミン、N,N,N’-トリメチルアミノエチル-エタノールアミン、ビス(2-ジメチルアミノエチル)エーテル、N-メチル-N’,N’-ジメチルアミノエチルピペラジン、イミダゾール環中の第2級アミン官能基をシアノエチル基で置換したイミダゾール化合物、N,N-ジメチルシクロヘキシルアミン、ジアザビシクロウンデセン、トリエチレンジアミン、テトラメチルエチレンジアミン、テトラメチルヘキサメチレンジアミン、1-メチルイミダゾール、トリメチルアミノエチルピペラジン、トリプロピルアミン等が挙げられる。
また、錫化合物としては、例えば、オクチル酸第一錫、ジブチル錫ジアセテート、ジブチル錫ジラウレート等が挙げられる。ビスマス化合物としては、ネオデカン酸ビスマス、オクチル酸ビスマスなどが挙げられる。
アセチルアセトン金属塩としては、例えば、アセチルアセトンアルミニウム、アセチルアセトン鉄、アセチルアセトン銅、アセチルアセトン亜鉛、アセチルアセトンベリリウム、アセチルアセトンクロム、アセチルアセトンインジウム、アセチルアセトンマンガン、アセチルアセトンモリブデン、アセチルアセトンチタン、アセチルアセトンコバルト、アセチルアセトンバナジウム、アセチルアセトンジルコニウム等が挙げられる。
ウレタン樹脂硬化触媒は、一種単独で使用してもよいし、二種以上を使用することができる。
The urethanization catalyst is a catalyst that promotes the reaction between the polyol component and the polyisocyanate. Specific examples include amino compounds, tin compounds, bismuth compounds, and acetylacetone metal salts.
Examples of the amino compound include pentamethyldiethylenetriamine, triethylamine, N-methylmorpholine bis(2-dimethylaminoethyl)ether, bis(2-dimethylaminoethyl)ether, N,N,N',N",N" -pentamethyldiethylenetriamine, N,N,N'-trimethylaminoethyl-ethanolamine, bis(2-dimethylaminoethyl)ether, N-methyl-N',N'-dimethylaminoethylpiperazine, second in imidazole ring imidazole compounds in which the primary amine functional group is substituted with a cyanoethyl group, N,N-dimethylcyclohexylamine, diazabicycloundecene, triethylenediamine, tetramethylethylenediamine, tetramethylhexamethylenediamine, 1-methylimidazole, trimethylaminoethylpiperazine, Examples include tripropylamine.
Further, examples of the tin compound include stannous octylate, dibutyltin diacetate, dibutyltin dilaurate, and the like. Examples of the bismuth compound include bismuth neodecanoate and bismuth octylate.
Examples of acetylacetone metal salts include acetylacetone aluminum, acetylacetone iron, acetylacetone copper, acetylacetone zinc, acetylacetone beryllium, acetylacetone chromium, acetylacetone indium, acetylacetone manganese, acetylacetone molybdenum, acetylacetone titanium, acetylacetone cobalt, acetylacetone vanadium, acetylacetone zirconium, and the like. .
The urethane resin curing catalyst may be used alone or in combination of two or more.

発泡性ウレタン樹脂組成物におけるウレタン化触媒の配合量に特に限定はないが、ウレタン樹脂100質量部に対して、0.3~10質量部の範囲であることが好ましく、0.5~8質量部の範囲であることがより好ましく、1~6質量部の範囲であることが更に好ましい。上記範囲内とすることで、適度な反応速度で、ポリオール成分とポリイソシアネート成分との反応を促進できる。 There is no particular limitation on the amount of the urethanization catalyst in the foamable urethane resin composition, but it is preferably in the range of 0.3 to 10 parts by weight, and 0.5 to 8 parts by weight, based on 100 parts by weight of the urethane resin. The amount is more preferably in the range of 1 part by mass, and even more preferably in the range of 1 to 6 parts by mass. By setting it within the above range, the reaction between the polyol component and the polyisocyanate component can be promoted at an appropriate reaction rate.

三量化触媒は、イソシアヌレート結合を形成する三量化を促進する触媒である。ポリウレタン樹脂は、三量化が促進されることで、ポリウレタンフォームの難燃性が向上する。
三量化触媒としては、トリス(ジメチルアミノメチル)フェノール、2,4-ビス(ジメチルアミノメチル)フェノール、2,4,6-トリス(ジアルキルアミノアルキル)ヘキサヒドロ-S-トリアジン等の芳香族化合物、酢酸カリウム、酢酸ナトリウム、2-エチルヘキサン酸カリウム、2-エチルヘキサン酸ナトリウム、オクチル酸カリウム、オクチル酸ナトリウムなどのアルカリ金属塩、2-エチルアジリジン等のアジリジン類、ナフテン酸鉛、オクチル酸鉛等の鉛化合物、ナトリウムメトキシド等のアルコラート化合物、カリウムフェノキシド等のフェノラート化合物、トリメチルアンモニウム塩、トリエチルアンモニウム塩、トリフェニルアンモニウム塩等の3級アンモニウム塩、テトラメチルアンモニウム塩、テトラエチルアンモニウム、テトラフェニルアンモニウム塩等の4級アンモニウム塩等を使用することができる。
三量化触媒は、一種単独で使用してもよいし、二種以上を使用することができる。
A trimerization catalyst is a catalyst that promotes trimerization to form isocyanurate bonds. Polyurethane resin improves the flame retardancy of polyurethane foam by promoting trimerization.
Examples of trimerization catalysts include aromatic compounds such as tris(dimethylaminomethyl)phenol, 2,4-bis(dimethylaminomethyl)phenol, 2,4,6-tris(dialkylaminoalkyl)hexahydro-S-triazine, and acetic acid. Alkali metal salts such as potassium, sodium acetate, potassium 2-ethylhexanoate, sodium 2-ethylhexanoate, potassium octylate, sodium octylate, aziridines such as 2-ethylaziridine, lead naphthenate, lead octylate, etc. Lead compounds, alcoholate compounds such as sodium methoxide, phenolate compounds such as potassium phenoxide, tertiary ammonium salts such as trimethylammonium salt, triethylammonium salt, triphenylammonium salt, tetramethylammonium salt, tetraethylammonium, tetraphenylammonium salt, etc. A quaternary ammonium salt of, etc. can be used.
The trimerization catalyst may be used alone or in combination of two or more.

三量化触媒の配合量は特に限定されないが,ウレタン樹脂100質量部に対して、0.5~12質量部の範囲であることが好ましく、1~9質量部の範囲であることがより好ましく、2~5質量部の範囲であることが更に好ましい。三量化触媒の量を上記範囲内とすることで、イソシアヌレート結合が適度に形成され、難燃性が向上する。
また、触媒の合計量は、ウレタンの硬化速度や難燃性を向上させる観点から、ウレタン樹脂100質量部に対して、0.5~15質量部が好ましく、1~12質量部がより好ましく、2~10質量部がさらに好ましい。
The blending amount of the trimerization catalyst is not particularly limited, but it is preferably in the range of 0.5 to 12 parts by mass, more preferably in the range of 1 to 9 parts by mass, based on 100 parts by mass of the urethane resin. More preferably, the amount is in the range of 2 to 5 parts by mass. By controlling the amount of trimerization catalyst within the above range, isocyanurate bonds are appropriately formed and flame retardancy is improved.
In addition, the total amount of the catalyst is preferably 0.5 to 15 parts by mass, more preferably 1 to 12 parts by mass, based on 100 parts by mass of the urethane resin, from the viewpoint of improving the curing speed and flame retardance of the urethane. More preferably 2 to 10 parts by mass.

本発明の発泡性ウレタン樹脂組成物は、ポリオール化合物とポリイソシアネート化合物とが反応して硬化するため、その粘度は時間と共に変化する。そこで発泡性ウレタン樹脂組成物を使用する前は、発泡性ウレタン樹脂組成物を二以上に分割して、発泡性ウレタン樹脂組成物が反応して硬化することを防止しておく。そして発泡性ウレタン樹脂組成物を使用する際に、二以上に分割しておいた発泡性ウレタン樹脂組成物を一つにまとめることが好ましい。 Since the foamable urethane resin composition of the present invention is cured by the reaction between the polyol compound and the polyisocyanate compound, its viscosity changes with time. Therefore, before using the foamable urethane resin composition, the foamable urethane resin composition is divided into two or more parts to prevent the foamable urethane resin composition from reacting and curing. When using the foamable urethane resin composition, it is preferable to combine the foamable urethane resin composition, which has been divided into two or more parts, into one.

なお発泡性ウレタン樹脂組成物を二以上に分割するときは、二以上に分割された発泡性ウレタン樹脂組成物のそれぞれの成分単独では硬化が始まらず、発泡性ウレタン樹脂組成物のそれぞれの成分を混合した後に硬化反応が始まるようにそれぞれの成分を分割すればよい。通常、発泡性ウレタン樹脂組成物を、ポリオール化合物を含有するポリオール組成物と、ポリイソシアネート化合物を含有するポリイソシアネート組成物とに分割する。 Note that when dividing the foamable urethane resin composition into two or more parts, each component of the foamable urethane resin composition divided into two or more parts does not start curing alone, and each component of the foamable urethane resin composition is divided into two or more parts. Each component may be separated so that the curing reaction begins after mixing. Usually, a foamable urethane resin composition is divided into a polyol composition containing a polyol compound and a polyisocyanate composition containing a polyisocyanate compound.

上記した整泡剤、発泡剤、触媒、及び添加剤は、ポリオール組成物に含有されていてもよいし、ポリイソシアネート組成物に含有されていてもよいし、ポリオール組成物及びポリイソシアネート組成物とは別に提供されてもよいが、ポリオール組成物に含有されることが好ましい。 The foam stabilizer, foaming agent, catalyst, and additive described above may be contained in the polyol composition, may be contained in the polyisocyanate composition, or may be contained in the polyol composition and the polyisocyanate composition. may be provided separately, but is preferably contained in the polyol composition.

発泡性ウレタン樹脂組成物の製造方法は特に限定されないが、予め混練して調製されたポリオール組成物、及びポリウレタン組成物を作製しておき、両者を混練する方法、発泡性ウレタン樹脂組成物を構成する各成分を混練する方法などが挙げられるが、通常は、ポリオール組成物、及びポリイソシアネート組成物を混練することにより製造される。混練は、公知の方法により行うことができ、例えば、単軸押出機、二軸押出機、バンバリーミキサー、ニーダーミキサー、混練ロール、ライカイ機、遊星式撹拝機等公知の装置を用いて混練することにより得ることができる。 The method for producing the foamable urethane resin composition is not particularly limited, but includes a method in which a polyol composition and a polyurethane composition are prepared by kneading in advance and kneaded together, and a method of forming the foamable urethane resin composition. Examples include a method of kneading each component, but it is usually produced by kneading a polyol composition and a polyisocyanate composition. Kneading can be performed by a known method, for example, by using a known device such as a single screw extruder, twin screw extruder, Banbury mixer, kneader mixer, kneading roll, Raikai machine, planetary stirrer, etc. This can be obtained by

(ポリオール組成物の粘度)
ポリオール組成物の20℃における粘度は、特に限定されないが、2000mPa・s以下であることが好ましく、1000mPa・s以下であることが好ましい。ポリオール液剤の粘度を上記上限値以下とすることで、発泡性ウレタン樹脂組成物の流動性も良好となり、混合不良などを抑制することができる。ポリオール組成物の粘度は、例えば使用するポリオール化合物の分子量などにより適宜調整できる。なお、ポリオール組成物の粘度は、B型粘度計を使用し、温度20℃にて測定したものである。
(Viscosity of polyol composition)
The viscosity of the polyol composition at 20° C. is not particularly limited, but is preferably 2000 mPa·s or less, and preferably 1000 mPa·s or less. By setting the viscosity of the polyol liquid agent to the above upper limit value or less, the fluidity of the foamable urethane resin composition also becomes good, and poor mixing and the like can be suppressed. The viscosity of the polyol composition can be adjusted as appropriate by, for example, the molecular weight of the polyol compound used. Note that the viscosity of the polyol composition was measured at a temperature of 20° C. using a B-type viscometer.

(用途)
本発明の発泡性ウレタン樹脂組成物の用途は特に限定されないが、建築物、家具、自動車、電車、船等の構造物などの空洞に充填する用途に用いたり、該構造物に対して吹き付ける用途に用いたりすることができる。中でも、構造物に対して吹き付ける用途、すなわち、吹き付け用の発泡性ウレタン樹脂組成物として用いることが好ましい。
吹き付けは、吹き付け装置(例えばGRACO社製:A-25)及びスプレーガン(例えばガスマー社製:Dガン)を利用して実施することができる。吹付は、別容器に入ったポリオール組成物とポリイソシアネート組成物を吹き付け装置内で温度調整し、スプレーガンの先端で両者を衝突混合させ、混合液をエア圧によりミスト化することで実施できる。吹き付け装置及びスプレーガンは公知であり、市販品を使用することができる。
(Application)
The use of the foamable urethane resin composition of the present invention is not particularly limited, but may be used to fill cavities in structures such as buildings, furniture, automobiles, trains, ships, etc., or sprayed onto such structures. It can be used for Among these, it is preferable to use the composition for spraying onto structures, that is, as a foamable urethane resin composition for spraying.
Spraying can be carried out using a spraying device (for example, A-25 manufactured by GRACO) and a spray gun (for example, D-gun manufactured by Gasmer). Spraying can be carried out by adjusting the temperature of the polyol composition and polyisocyanate composition contained in separate containers in a spraying device, colliding and mixing them at the tip of a spray gun, and turning the mixed liquid into a mist using air pressure. Spraying devices and spray guns are well known and commercially available products can be used.

[ポリウレタン発泡体]
本発明のポリウレタン発泡体は、上記した発泡性ウレタン樹脂組成物から形成されてなるものであり、具体的には、発泡性ウレタン樹脂組成物を発泡及び硬化させて得られるものである。
ポリウレタン発泡体は、鋼球沈み込み評価における鋼球の沈み込み距離が20mm以下である。鋼球の沈み込み距離が20mmを超えると、ポリウレタン発泡体が、火災などに晒された場合に燃え広がりやすく、延焼を有効に防止することが困難になる。延焼を有効に防止する観点から、鋼球の沈み込み距離は、好ましくは15mm以下であり、より好ましくは10mm以下、さらに好ましくは5mm以下である。なお、鋼球の沈み込み距離は0mm以上である。鋼球沈み込み評価方法については上記したとおりである。ところで、ポリウレタン発泡体に起因する火災は、溶接・溶断時の火花や火球(高温に熱された鉄の塊)によるところが大きい。本発明者らの知見によれば、特に火球はポリウレタン発泡体に接触すると、樹脂を溶かしながら内部に進行し、その結果、ポリウレタン発泡体の内部から発火・延焼をさせる危険性があることが判明した。上記鋼球沈み込み評価は、溶接・溶断時のポリウレタン発泡体起因の火災を再現・評価したものであり、ポリウレタン発泡体の燃え広がり難いかどうかを評価することができる。
[Polyurethane foam]
The polyurethane foam of the present invention is formed from the above-described foamable urethane resin composition, and specifically, is obtained by foaming and curing the foamable urethane resin composition.
The polyurethane foam has a steel ball sinking distance of 20 mm or less in steel ball sinking evaluation. If the sinking distance of the steel ball exceeds 20 mm, the polyurethane foam is likely to catch fire when exposed to fire, making it difficult to effectively prevent the spread of fire. From the viewpoint of effectively preventing the spread of fire, the sinking distance of the steel ball is preferably 15 mm or less, more preferably 10 mm or less, and still more preferably 5 mm or less. Note that the sinking distance of the steel ball is 0 mm or more. The steel ball sinkage evaluation method is as described above. Incidentally, fires caused by polyurethane foam are largely caused by sparks and fireballs (heated iron lumps) during welding and fusing. According to the findings of the present inventors, in particular, when a fireball comes into contact with polyurethane foam, it progresses inside while melting the resin, and as a result, it has been found that there is a risk of ignition and fire spread from inside the polyurethane foam. did. The steel ball sinking evaluation described above reproduces and evaluates fires caused by polyurethane foam during welding and fusing, and can evaluate whether polyurethane foam is difficult to spread.

ポリウレタン発泡体の密度は、特に限定されないが、20~200kg/mの範囲であることが好ましい。密度を200kg/m以下とすることで、ポリウレタン発泡体が軽量となり、構造物への施工性が高まる。また、20kg/m以上とすることで、所望の難燃性を発現しやすくなる。これら観点から、ポリウレタンフォームの密度は、25~100kg/mの範囲であることがより好ましく、25~80kg/mの範囲であることがさらに好ましい。ポリウレタンフォームの密度は、JIS K7222に準拠して測定できる。 The density of the polyurethane foam is not particularly limited, but is preferably in the range of 20 to 200 kg/m 3 . By setting the density to 200 kg/m 3 or less, the polyurethane foam becomes lightweight and can be easily applied to structures. Moreover, by setting it as 20 kg/m <3> or more, it becomes easy to express desired flame retardancy. From these viewpoints, the density of the polyurethane foam is more preferably in the range of 25 to 100 kg/m 3 , even more preferably in the range of 25 to 80 kg/m 3 . The density of polyurethane foam can be measured in accordance with JIS K7222.

本発明を実施例により更に詳細に説明するが、本発明はこれらの例によってなんら限定されるものではない。 The present invention will be explained in more detail with reference to examples, but the present invention is not limited to these examples in any way.

各実施例及び比較例において使用した各成分の詳細は次の通りである。
(1)ポリオール化合物
・p-フタル酸系ポリエステルポリオール(川崎化成工業社製、製品名:マキシモールRFK-505、水酸基価=250mgKOH/g)
・o-フタル酸系ポリエステルポリオール(川崎化成工業社製、製品名:マキシモールRDK-133、水酸基価=315mgKOH/g)
・アミン系ポリエーテルポリオール(第一工業製薬株式会社製、製品名:DK3776、水酸基価=350mgKOH/g)
・エチレンジアミン系ポリエーテルポリオール(AGC株式会社製、製品名:エクセノール750ED、水酸基価=760mgKOH/g
(2)添加剤(赤燐(難燃剤))
・赤燐(燐化学工業、製品名:ノーバエクセル140)
(3)添加剤(赤燐以外の難燃剤)
(i)固体難燃剤
・ホウ酸亜鉛(早川商事社製、製品名:Firebrake ZB)
・臭素系難燃剤<エチレンビス(ペンタブロモフェニル)>、(アルベマール日本株式会社製、製品名:SAYTEX8010)
(ii)液体難燃剤
・リン酸エステル系難燃剤<トリス(β-クロロプロピル)ホスフェート>、(大八化学社製、製品名:TMCPP)
(4)整泡剤
・ポリアルキレングリコール系整泡剤(東レダウコーニング社製、製品名:SH-193)
(5)触媒
(i)三量化触媒
・4級アンモニウム塩(東ソー社製、製品名:TOYOCAT TR20)
(ii)ウレタン化触媒
・イミダゾール化合物、(東ソー社製、製品名:TOYOCAT DM70)
・ビスマス化合物、(日東化成社製、製品名:ネオスタンU600)
(6)発泡剤
・水
・HFO-1233zd<ハイドロフルオロオレフィン>(ハネウェル製、製品名:ソルスティスLBA)
(7)ポリイソシアネート化合物
・MDI(住化コベストロウレタン(株)製、製品名:44V-20)
Details of each component used in each Example and Comparative Example are as follows.
(1) Polyol compound/p-phthalic acid polyester polyol (manufactured by Kawasaki Kasei Kogyo Co., Ltd., product name: Maximol RFK-505, hydroxyl value = 250 mgKOH/g)
・O-phthalic acid polyester polyol (manufactured by Kawasaki Kasei Kogyo Co., Ltd., product name: Maximol RDK-133, hydroxyl value = 315 mgKOH/g)
・Amine-based polyether polyol (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd., product name: DK3776, hydroxyl value = 350 mgKOH/g)
・Ethylenediamine-based polyether polyol (manufactured by AGC Co., Ltd., product name: EXCENOL 750ED, hydroxyl value = 760 mgKOH/g
(2) Additive (red phosphorus (flame retardant))
・Red phosphorus (Rin Kagaku Kogyo, product name: Nova Excel 140)
(3) Additives (flame retardants other than red phosphorus)
(i) Solid flame retardant - zinc borate (manufactured by Hayakawa Shoji Co., Ltd., product name: Firebrake ZB)
- Brominated flame retardant <ethylene bis (pentabromophenyl)> (manufactured by Albemarle Japan Co., Ltd., product name: SAYTEX8010)
(ii) Liquid flame retardant/phosphate ester flame retardant <tris (β-chloropropyl) phosphate> (manufactured by Daihachi Kagaku Co., Ltd., product name: TMCPP)
(4) Foam stabilizer/polyalkylene glycol foam stabilizer (manufactured by Dow Corning Toray, product name: SH-193)
(5) Catalyst (i) Trimerization catalyst/quaternary ammonium salt (manufactured by Tosoh Corporation, product name: TOYOCAT TR20)
(ii) Urethane catalyst/imidazole compound (manufactured by Tosoh Corporation, product name: TOYOCAT DM70)
・Bismuth compound, (manufactured by Nitto Kasei Co., Ltd., product name: Neostan U600)
(6) Foaming agent/water/HFO-1233zd <hydrofluoroolefin> (manufactured by Honeywell, product name: Solstice LBA)
(7) Polyisocyanate compound/MDI (manufactured by Sumika Cobestrowrethane Co., Ltd., product name: 44V-20)

各物性及び性状の測定方法は、以下のとおりである。 The measurement methods for each physical property and property are as follows.

[鋼球沈み込み評価]
各実施例及び比較例で作製したポリウレタン発泡体について、以下(1)~(3)の手順で、鋼球の沈み込み距離を測定した。
(1)ポリウレタン発泡体を各辺50mmの立方体に切り出し、試験体とした。
(2)ブンゼンバーナー(外炎長70mm)のバーナー口から30mmの地点に金網を置き、該金網上に、直径4.7mm、重量0.44gの鋼球を載せて、鋼球全体が赤色に変化するまで、7分間加熱し、鋼球実測温度は770℃とした。なお、ブンゼンバーナーは、LPG燃焼ガスを用いた。
(3)23℃雰囲気下にて、上記(2)で加熱した鋼球を直ちに、上記(1)の試験体の上部の中心に載せて、鋼球の沈み込みが完了するまで放置した。次いで、23℃で30分放置することで十分に冷却した試験体の断面を裁断して、鋼球の沈み込み距離を測定した。
なお、試験体には、鋼球の沈み込みにより、上部から内部に渡って空洞が形成される。鋼球の沈み込み距離は、試験体の上面に対して垂直方向の空洞の最大距離を意味する。
得られた鋼球の沈み込み距離から、下記のとおり、燃え広がらない性質の良し悪しを判断した。
◎・・鋼球の沈み込み距離が、0mm以上10mm以下
〇・・鋼球の沈み込み距離が、10mm超20mm以下
×・・鋼球の沈み込み距離が、20mm超
[Steel ball sinking evaluation]
Regarding the polyurethane foams produced in each Example and Comparative Example, the sinking distance of the steel ball was measured according to the following steps (1) to (3).
(1) A polyurethane foam was cut into a cube of 50 mm on each side to prepare a test piece.
(2) Place a wire mesh at a point 30 mm from the burner mouth of a Bunsen burner (outer flame length 70 mm), place a steel ball with a diameter of 4.7 mm and a weight of 0.44 g on the wire mesh, and the entire steel ball turns red. The steel ball was heated for 7 minutes until the temperature changed, and the measured temperature of the steel ball was 770°C. Note that the Bunsen burner used LPG combustion gas.
(3) In an atmosphere of 23° C., the steel ball heated in (2) above was immediately placed on the center of the upper part of the test specimen in (1) above and left until sinking of the steel ball was completed. Next, the cross section of the test specimen was sufficiently cooled by standing at 23° C. for 30 minutes, and the sinking distance of the steel ball was measured.
Note that a cavity was formed in the test specimen from the top to the inside due to the sinking of the steel ball. The sinking distance of the steel ball means the maximum distance of the cavity in the direction perpendicular to the top surface of the test specimen.
Based on the sinking distance of the steel balls obtained, the quality of preventing the flame from spreading was judged as follows.
◎...The sinking distance of the steel ball is 0 mm or more and 10 mm or less ○...The sinking distance of the steel ball is more than 10 mm and 20 mm or less ×...The sinking distance of the steel ball is more than 20 mm

[総発熱量]
各実施例及び比較例で作製したポリウレタン発泡体の総発熱量は、以下の方法により評価した。ポリプロピレンビーカー内に、表1に示す配合でポリオール化合物、難燃剤、整泡剤、触媒、発泡剤を混合して得た混合物とポリイソシアネート化合物を(合計量は200g、液温は10℃)を投入しラボディスパーで3秒間攪拌する。その後直ちに厚さ12.5mmの石膏ボード上に散布しポリウレタン発泡体を得る。石膏ボードを下地として接着したポリウレタン発泡体を縦10cm、横10cmおよび厚み3.25cm(内石膏ボード12.5mm)に切断して、コーンカロリーメーター試験用サンプルを準備した。コーンカロリーメーター試験用サンプル用いて、ISO-5660の試験方法に準拠して、放射熱強度50kW/mにて5分間加熱したときのコーンカロリーメーター試験による5分経過後の総発熱量を測定した。
[形状変形]
上記総発熱量の測定に用いたコーンカロリーメーター試験用サンプルの5分経過後の形状を目視により観察し、以下の基準で評価した。
〇・・サンプルの厚み方向・幅方向への形状変形が小さい。特に厚み方向はスパーク点火器への接触がない。
△・・サンプルの幅方向への形状変形は小さいが厚み方向がやや大きい。

×・・サンプルの厚み方向・幅方向への形状変形が大きく防火上有害であると判断できる。
[Total calorific value]
The total calorific value of the polyurethane foam produced in each Example and Comparative Example was evaluated by the following method. In a polypropylene beaker, a mixture obtained by mixing a polyol compound, a flame retardant, a foam stabilizer, a catalyst, and a blowing agent with the composition shown in Table 1 and a polyisocyanate compound (total amount 200 g, liquid temperature 10 ° C.) were added. Pour in and stir with a lab body spar for 3 seconds. Immediately thereafter, the mixture was spread onto a gypsum board with a thickness of 12.5 mm to obtain a polyurethane foam. A polyurethane foam adhered to a gypsum board as a base was cut into pieces 10 cm long, 10 cm wide, and 3.25 cm thick (inner gypsum board 12.5 mm) to prepare a sample for a cone calorimeter test. Using a corn calorimeter test sample, measure the total calorific value after 5 minutes by the corn calorimeter test when heated for 5 minutes at a radiant heat intensity of 50 kW/m 2 in accordance with the ISO-5660 test method. did.
[Shape deformation]
The shape of the cone calorimeter test sample used to measure the above gross calorific value after 5 minutes was visually observed and evaluated based on the following criteria.
〇...The shape deformation of the sample in the thickness direction and width direction is small. In particular, there is no contact with the spark igniter in the thickness direction.
Δ: The shape deformation of the sample in the width direction is small, but it is slightly large in the thickness direction.

×: It can be determined that the shape deformation of the sample in the thickness direction and width direction is large and harmful in terms of fire prevention.

[実施例1]
表1の配合に従い、ポリオール化合物、難燃剤(赤燐及び赤燐以外の難燃剤)、整泡剤、触媒、発泡剤を1000mLポリプロピレンビーカーに計りとり、20℃、10秒間ハンドミキサーで攪拌しポリオール組成物を作製した。その後10℃に冷却した該ポリオール組成物に対して同じく10℃に温調したポリイソシアネート組成物(ポリイソシアネート化合物)を加えて発泡性ウレタン樹脂組成物とし、該組成物をラボディスパ―で3秒間攪拌し、ポリウレタン発泡体を作製した。該ポリウレタン発泡体を用いて、上記した鋼球沈み込み評価を行った。また、総発熱量、形状変形についても、上記した手順で評価した。
各種評価結果を表1に示した。
[Example 1]
According to the formulation in Table 1, the polyol compound, flame retardant (red phosphorus and flame retardant other than red phosphorus), foam stabilizer, catalyst, and blowing agent were weighed into a 1000 mL polypropylene beaker, stirred at 20°C for 10 seconds with a hand mixer, and the polyol compound was added. A composition was prepared. Thereafter, a polyisocyanate composition (polyisocyanate compound) whose temperature was also controlled at 10°C was added to the polyol composition cooled to 10°C to obtain a foamable urethane resin composition, and the composition was stirred for 3 seconds with a lab body spar. Then, a polyurethane foam was produced. Using the polyurethane foam, the steel ball sinking evaluation described above was performed. Further, the total calorific value and shape deformation were also evaluated using the above-described procedures.
Various evaluation results are shown in Table 1.

[実施例2~9、比較例1~2]
配合を表1のとおりに変更した以外は、実施例1と同様にしてポリウレタン発泡体を得た。該ポリウレタン発泡体を用いて、上記した鋼球沈み込み評価を行った。また、総発熱量、形状変形についても、上記した手順で評価した。
各種評価結果を表1に示した。
[Examples 2 to 9, Comparative Examples 1 to 2]
A polyurethane foam was obtained in the same manner as in Example 1, except that the formulation was changed as shown in Table 1. Using the polyurethane foam, the steel ball sinking evaluation described above was performed. Further, the total calorific value and shape deformation were also evaluated using the above-described procedure.
Various evaluation results are shown in Table 1.

各実施例で示されているように、本発明の発泡性ウレタン樹脂組成物により形成されたポリウレタン発泡体は、鋼球沈み込み距離が短いことより、燃え広がり難い性質を備えていることが分かった。さらに、ポリウレタン発泡体は、赤燐を含有していないことより、赤燐特有の暗赤色の着色が確認されなかった。
これに対して、比較例の発泡性ウレタン樹脂組成物により形成されたポリウレタン発泡体は、赤燐を含有していることより、赤燐特有の暗赤色の着色が確認されたり、あるいは、鋼球沈み込み距離が長く、燃え広がり難い性質を備えていないことが分かった。
As shown in each example, the polyurethane foam formed from the foamable urethane resin composition of the present invention was found to have a property of being difficult to spread due to the short sinking distance of the steel ball. . Furthermore, since the polyurethane foam did not contain red phosphorus, the dark red coloration characteristic of red phosphorus was not observed.
On the other hand, since the polyurethane foam formed from the foamable urethane resin composition of the comparative example contains red phosphorus, the dark red coloring characteristic of red phosphorus was confirmed, or the steel balls It was found that the sinking distance was long and that it did not have properties that would prevent it from spreading.

Claims (6)

ポリオール化合物、ポリイソシアネート化合物、整泡剤、発泡剤、触媒、及び添加剤を含む発泡性ウレタン樹脂組成物であって、
前記発泡性ウレタン樹脂組成物は、赤燐を実質的に含有せず、
前記ポリオール化合物が、芳香族ポリオール化合物を含み、
前記発泡剤がハイドロフルオロオレフィンを含み、
前記触媒はウレタン化触媒と、三量化触媒とを含有し、前記ウレタン化触媒がイミダゾール化合物とビスマス化合物とを含み、前記三量化触媒が4級アンモニウム塩を含み、
前記添加剤として固体難燃剤及び液体難燃剤を含み、該固体難燃剤が、ホウ素含有難燃剤、臭素含有難燃剤及びアンチモン含有難燃剤から選択される少なくとも一種以上であり、
前記固体難燃剤の含有量が、ポリオール化合物及びポリイソシアネート化合物からなるウレタン樹脂100質量部に対して1質量部以上、10質量部以下であり、
前記液体難燃剤の含有量が、ポリオール化合物及びポリイソシアネート化合物からなるウレタン樹脂100質量部に対して1質量部以上、20質量部以下であり、
前記発泡性ウレタン樹脂組成物からなるポリウレタン発泡体の下記の鋼球沈み込み評価における鋼球の沈み込み距離が20mm以下である、発泡性ウレタン樹脂組成物。
(鋼球沈み込み評価)
(1)ポリウレタン発泡体を各辺50mmの立方体に切り出し、試験体とする。
(2)ブンゼンバーナー(外炎長70mm)のバーナー口から30mmの地点に金網を置き、該金網上に、直径4.7mm、重量0.44gの鋼球を載せて、鋼球全体が赤色に変化するまで、少なくとも5分以上加熱し、鋼球温度を750℃以上とする。
(3)23℃雰囲気下にて、上記(2)で加熱した鋼球を直ちに、上記(1)の試験体の上部の中心に載せて、鋼球の沈み込みが完了するまで放置する。次いで、十分に冷却された試験体の断面を裁断して、鋼球の沈み込み距離を測定する。
A foamable urethane resin composition containing a polyol compound, a polyisocyanate compound, a foam stabilizer, a blowing agent, a catalyst, and an additive,
The foamable urethane resin composition does not substantially contain red phosphorus,
the polyol compound includes an aromatic polyol compound,
the blowing agent includes a hydrofluoroolefin;
The catalyst contains a urethanization catalyst and a trimerization catalyst, the urethanization catalyst contains an imidazole compound and a bismuth compound, and the trimerization catalyst contains a quaternary ammonium salt,
The additive includes a solid flame retardant and a liquid flame retardant, and the solid flame retardant is at least one selected from boron-containing flame retardants, bromine-containing flame retardants, and antimony-containing flame retardants,
The content of the solid flame retardant is 1 part by mass or more and 10 parts by mass or less based on 100 parts by mass of the urethane resin consisting of a polyol compound and a polyisocyanate compound,
The content of the liquid flame retardant is 1 part by mass or more and 20 parts by mass or less based on 100 parts by mass of urethane resin consisting of a polyol compound and a polyisocyanate compound,
A foamable urethane resin composition having a steel ball sinking distance of 20 mm or less in the following steel ball sinking evaluation of a polyurethane foam made of the foamable urethane resin composition.
(Steel ball sinking evaluation)
(1) A polyurethane foam is cut into a cube with each side of 50 mm and used as a test piece.
(2) Place a wire mesh at a point 30 mm from the burner mouth of a Bunsen burner (outer flame length 70 mm), place a steel ball with a diameter of 4.7 mm and a weight of 0.44 g on the wire mesh, and the entire steel ball turns red. Heat the steel ball for at least 5 minutes or more until the steel ball temperature changes to 750°C or higher.
(3) In an atmosphere of 23° C., immediately place the steel ball heated in (2) above on the center of the upper part of the test specimen in (1) above, and leave it until the steel ball sinks completely. Next, a cross section of the sufficiently cooled test specimen is cut to measure the sinking distance of the steel ball.
前記発泡性ウレタン樹脂組成物からなるポリウレタン発泡体を、ISO-5660の試験方法に準拠して、放射熱強度50kW/mにて加熱したときに、5分経過時の総発熱量が8MJ/m以下である、請求項1に記載の発泡性ウレタン樹脂組成物。 When the polyurethane foam made of the foamable urethane resin composition is heated at a radiant heat intensity of 50 kW/ m2 in accordance with the ISO-5660 test method, the total calorific value after 5 minutes is 8 MJ/m2. The foamable urethane resin composition according to claim 1, which has a particle size of m 2 or less. イソシアネートインデックスが200~700である、請求項1又は2に記載の発泡性ウレタン樹脂組成物。 The foamable urethane resin composition according to claim 1 or 2 , having an isocyanate index of 200 to 700. 吹き付け用の発泡性ウレタン樹脂組成物である、請求項1~のいずれかに記載の発泡性ウレタン樹脂組成物。 The foamable urethane resin composition according to any one of claims 1 to 3 , which is a foamable urethane resin composition for spraying. 更に、前記難燃剤として、リン酸塩含有難燃剤、ホスフィン酸系難燃剤、及び金属水酸化物系難燃剤から選択される少なくとも1種以上を含有する、請求項1~のいずれかに記載の発泡性ウレタン樹脂組成物。 Further, the flame retardant contains at least one selected from phosphate-containing flame retardants, phosphinic acid flame retardants, and metal hydroxide flame retardants, according to any one of claims 1 to 4 . foamable urethane resin composition. 請求項1~のいずれかに記載の発泡性ウレタン樹脂組成物から形成されてなり、上記鋼球沈み込み評価における鋼球の沈み込み距離が20mm以下である、ポリウレタン発泡体。 A polyurethane foam formed from the expandable urethane resin composition according to any one of claims 1 to 5 , wherein the steel ball sinking distance in the steel ball sinking evaluation is 20 mm or less.
JP2019076254A 2019-04-12 2019-04-12 Expandable urethane resin composition and polyurethane foam Active JP7442271B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019076254A JP7442271B2 (en) 2019-04-12 2019-04-12 Expandable urethane resin composition and polyurethane foam
JP2024023953A JP2024050974A (en) 2019-04-12 2024-02-20 Foamable urethane resin composition and polyurethane foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019076254A JP7442271B2 (en) 2019-04-12 2019-04-12 Expandable urethane resin composition and polyurethane foam

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024023953A Division JP2024050974A (en) 2019-04-12 2024-02-20 Foamable urethane resin composition and polyurethane foam

Publications (2)

Publication Number Publication Date
JP2020172604A JP2020172604A (en) 2020-10-22
JP7442271B2 true JP7442271B2 (en) 2024-03-04

Family

ID=72830119

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019076254A Active JP7442271B2 (en) 2019-04-12 2019-04-12 Expandable urethane resin composition and polyurethane foam
JP2024023953A Pending JP2024050974A (en) 2019-04-12 2024-02-20 Foamable urethane resin composition and polyurethane foam

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024023953A Pending JP2024050974A (en) 2019-04-12 2024-02-20 Foamable urethane resin composition and polyurethane foam

Country Status (1)

Country Link
JP (2) JP7442271B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099822A (en) 2005-09-30 2007-04-19 Asahi Fiber Glass Co Ltd Polyisocyanurate foam and foamed board using the same
JP2014193995A (en) 2013-01-20 2014-10-09 Sekisui Chem Co Ltd Fire-resistant urethane resin composition
JP2015151524A (en) 2014-02-19 2015-08-24 東ソー株式会社 Flame retardant polyurethane foam
JP2018178096A (en) 2017-04-06 2018-11-15 積水化学工業株式会社 Polyol composition and polyurethane foam
JP2019014840A (en) 2017-07-10 2019-01-31 旭有機材株式会社 Foamable composition for polyurethane foam and method for producing polyurethane foam using the same
JP2019031652A (en) 2017-03-02 2019-02-28 株式会社エフコンサルタント Liquid composition and coating method
WO2020110332A1 (en) 2018-11-26 2020-06-04 旭有機材株式会社 Expandable composition for non-flammable polyurethane foams

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007099822A (en) 2005-09-30 2007-04-19 Asahi Fiber Glass Co Ltd Polyisocyanurate foam and foamed board using the same
JP2014193995A (en) 2013-01-20 2014-10-09 Sekisui Chem Co Ltd Fire-resistant urethane resin composition
JP2015151524A (en) 2014-02-19 2015-08-24 東ソー株式会社 Flame retardant polyurethane foam
JP2019031652A (en) 2017-03-02 2019-02-28 株式会社エフコンサルタント Liquid composition and coating method
JP2018178096A (en) 2017-04-06 2018-11-15 積水化学工業株式会社 Polyol composition and polyurethane foam
JP2019014840A (en) 2017-07-10 2019-01-31 旭有機材株式会社 Foamable composition for polyurethane foam and method for producing polyurethane foam using the same
WO2020110332A1 (en) 2018-11-26 2020-06-04 旭有機材株式会社 Expandable composition for non-flammable polyurethane foams

Also Published As

Publication number Publication date
JP2020172604A (en) 2020-10-22
JP2024050974A (en) 2024-04-10

Similar Documents

Publication Publication Date Title
JP6748262B2 (en) In-situ foaming system for in-situ formation of flame-retardant polyurethane foam
JP6626590B2 (en) Flame retardant urethane resin composition
US20160245451A1 (en) Fire-resistant heat-insulating coating material for piping or equipment
JP2018053024A (en) Urethane resin composition preparation system, method for producing urethane molded body, and urethane molded body
JP2021059704A (en) Foamable urethane resin composition
JP7442271B2 (en) Expandable urethane resin composition and polyurethane foam
JP7356813B2 (en) Expandable urethane resin composition and polyurethane foam
JP2022048708A (en) Flame-retardant urethane resin composition
JP2018090721A (en) Flame-retardant urethane resin composition
JP2022056074A (en) Flame-retardant urethane resin composition
JP2022095488A (en) Foamable urethane resin composition and polyurethane foam
JP2022086832A (en) Flame-retardant urethane resin composition
JP2022038409A (en) Polyurethane foam
JP2022057750A (en) Flame-retardant urethane resin composition
JP2021138853A (en) Expanadable polyurethane composition and polyurethane foam
JP2022035857A (en) Foamable urethane resin composition
JP2022030962A (en) Flame-retardant heat-insulation structure
JP2022108206A (en) Polyol composition, polyurethane resin composition, and polyurethane foam
JP2021187987A (en) Foamable urethane resin composition
JP2024033845A (en) Flat deck and fire compartment structure
JP2021059705A (en) Foamable urethane resin composition
JP2022138001A (en) Polyol composition, flame-retardant urethane resin composition, and polyurethane foam
JP2022053302A (en) Flame-retardant urethane resin composition and polyurethane foam
JP2023181931A (en) Polyol composition, polyurethane resin composition, and polyurethane foam
JP2022095432A (en) Polyol composition, flame-retardant urethane resin composition, and polyurethane foam

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20220124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20230324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240220

R150 Certificate of patent or registration of utility model

Ref document number: 7442271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150